Inferensia Vektor Rata-rata Variabel Indikator Makro Ekonomi Penentuan Upah Minimum Provinsi 2022 (Studi Kasus Provinsi Jawa Tengah dan jawa Timur)

Analisis Peubah Ganda

Source Image: Analisis Peubah Ganda

Source Image: Analisis Peubah Ganda

library(readxl)
## Warning: package 'readxl' was built under R version 3.6.3
Jateng <- read_excel("F:/Semester 6/APG/Paper 1/data_fix.xlsx", 
    sheet = "Jateng")
Jatim <- read_excel("F:/Semester 6/APG/Paper 1/data_fix.xlsx", 
    sheet = "Jatim")

#Ringkasan Data
summary(Jateng)
##     Dati2                 L               Un             PPP        
##  Length:35          Min.   :1.200   Min.   :3.850   Min.   :0.6670  
##  Class :character   1st Qu.:1.315   1st Qu.:4.860   1st Qu.:0.7665  
##  Mode  :character   Median :1.390   Median :6.070   Median :0.8130  
##                     Mean   :1.421   Mean   :6.402   Mean   :0.8273  
##                     3rd Qu.:1.515   3rd Qu.:7.500   3rd Qu.:0.9025  
##                     Max.   :1.690   Max.   :9.830   Max.   :1.0100  
##        Y          
##  Min.   :  6.312  
##  1st Qu.: 15.038  
##  Median : 20.563  
##  Mean   : 27.545  
##  3rd Qu.: 28.965  
##  Max.   :137.610
summary(Jatim)
##     Dati2                 L               Un              PPP        
##  Length:38          Min.   :1.150   Min.   : 2.280   Min.   :0.6300  
##  Class :character   1st Qu.:1.302   1st Qu.: 4.210   1st Qu.:0.7292  
##  Mode  :character   Median :1.345   Median : 5.185   Median :0.8010  
##                     Mean   :1.362   Mean   : 5.624   Mean   :0.8010  
##                     3rd Qu.:1.420   3rd Qu.: 6.593   3rd Qu.:0.8920  
##                     Max.   :1.560   Max.   :10.970   Max.   :0.9970  
##        Y          
##  Min.   :  4.723  
##  1st Qu.: 12.960  
##  Median : 22.416  
##  Mean   : 42.550  
##  3rd Qu.: 52.229  
##  Max.   :390.936

#Analisis Deskriptif

library(GGally)
## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
plot2 <- ggpairs(Jateng[,c(2,3,4,5)],title = "Persebaran Data Jawa Tengah")
plot3<-ggpairs(Jatim[,c(2,3,4,5)],title = "Persebaran Data Jawa Timur")
plot2

plot3

#Analisis Deskriptif Lanjutan

library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
pairs.panels(Jateng[,c(2,3,4,5)], 
             method = "pearson", # correlation method
             hist.col = "grey",
             density = TRUE,  # show density plots
             ellipses = TRUE, # show correlation ellipses
             lm = FALSE)

#Pendefinisian Matriks

mJateng<-matrix(c(Jateng$L,Jateng$Un,Jateng$PPP,Jateng$Y),35,4)
mJateng
##       [,1] [,2]  [,3]       [,4]
##  [1,] 1.24 9.10 0.733  90.011584
##  [2,] 1.36 6.00 0.779  39.121624
##  [3,] 1.43 6.10 0.791  17.182874
##  [4,] 1.35 5.86 0.909  15.045885
##  [5,] 1.28 6.07 0.875  19.527665
##  [6,] 1.31 4.04 0.751  13.138294
##  [7,] 1.29 5.37 0.695  13.566176
##  [8,] 1.39 4.27 0.863  22.865152
##  [9,] 1.35 5.28 0.681  22.409733
## [10,] 1.46 5.46 0.719  27.480359
## [11,] 1.52 6.93 0.904  26.616503
## [12,] 1.31 4.27 0.809  20.563144
## [13,] 1.51 5.96 0.834  26.103228
## [14,] 1.42 4.75 0.792  26.367261
## [15,] 1.30 4.50 0.667  19.383027
## [16,] 1.28 4.89 0.776  17.483887
## [17,] 1.34 4.83 0.761  13.409631
## [18,] 1.32 4.74 0.823  30.527473
## [19,] 1.69 5.53 0.760  70.961748
## [20,] 1.66 6.70 0.675  20.973089
## [21,] 1.50 7.31 0.898  18.374562
## [22,] 1.45 4.57 0.779  34.688037
## [23,] 1.39 3.85 0.804  14.890755
## [24,] 1.39 7.56 0.822  30.449024
## [25,] 1.52 6.92 0.905  15.031084
## [26,] 1.59 6.97 0.837  16.047512
## [27,] 1.31 7.64 0.966  18.155597
## [28,] 1.39 9.82 0.934  24.492666
## [29,] 1.20 9.83 0.772  32.693081
## [30,] 1.47 8.59 0.968   6.312054
## [31,] 1.57 7.92 0.998  34.815965
## [32,] 1.52 7.44 0.901   9.503711
## [33,] 1.55 9.57 1.010 137.609712
## [34,] 1.55 7.02 0.813   7.337834
## [35,] 1.51 8.40 0.953  10.949122
mJatim<-matrix(c(Jatim$L,Jatim$Un,Jatim$PPP,Jatim$Y),38,4)
mJatim
##       [,1]  [,2]  [,3]      [,4]
##  [1,] 1.32  2.28 0.790  10.83787
##  [2,] 1.25  4.45 0.850  14.16862
##  [3,] 1.22  4.11 0.750  12.50239
##  [4,] 1.35  4.61 0.736  26.45576
##  [5,] 1.34  3.82 0.831  24.94546
##  [6,] 1.42  5.24 0.740  28.49095
##  [7,] 1.42  5.49 0.838  66.54547
##  [8,] 1.34  3.36 0.736  21.93379
##  [9,] 1.35  5.12 0.677  52.58656
## [10,] 1.36  5.34 0.736  53.29511
## [11,] 1.28  4.13 0.677  13.45177
## [12,] 1.21  3.85 0.708  13.28284
## [13,] 1.36  4.86 0.711  22.89824
## [14,] 1.31  6.24 0.897 103.15280
## [15,] 1.48 10.97 0.997 135.30532
## [16,] 1.39  5.75 0.852  57.81842
## [17,] 1.37  7.48 0.802  27.65758
## [18,] 1.29  4.80 0.640  17.99036
## [19,] 1.28  4.80 0.698  12.93958
## [20,] 1.30  3.74 0.704  13.02089
## [21,] 1.33  5.44 0.630  13.47974
## [22,] 1.34  4.92 0.787  69.70342
## [23,] 1.29  4.81 0.766  42.70501
## [24,] 1.34  5.13 0.800  26.97265
## [25,] 1.49  8.21 0.886  97.61660
## [26,] 1.33  8.77 0.818  17.51462
## [27,] 1.15  3.35 0.680  13.95374
## [28,] 1.33  3.49 0.727  11.11762
## [29,] 1.21  2.84 0.894  23.54651
## [30,] 1.48  6.21 0.922  84.37498
## [31,] 1.46  6.68 0.900   4.72255
## [32,] 1.56  9.61 0.914  51.15453
## [33,] 1.44  6.70 0.896   8.03527
## [34,] 1.44  6.33 0.819   5.70660
## [35,] 1.42  6.74 0.925   4.80146
## [36,] 1.41  8.32 0.863  10.26244
## [37,] 1.54  9.79 0.911 390.93643
## [38,] 1.55  5.93 0.929  11.02581

#Uji kenormalan data metode chi-square

#Fungsi chi-square
grafikchi<-function(mdt){
  #vektor rata-rata
  mrata<-colMeans(mdt)
  S2<-cov(mdt)
  #membuat d-square
  dsq<-apply(mdt, MARGIN = 1,function(mdt)+
               t(mdt-mrata)%*%solve(S2)%*%(mdt-mrata))
  #construct chi-square plot
  par(mfrow=c(1,1))
  plot(qchisq((1:nrow(mdt)-1/2)/nrow(mdt),df=2),sort(dsq),
       xlab = expression(paste(chi[2]^2,"Quantile")),
       ylab = "Ordered Squared of Distance",
       main="Nama Provinsi"); abline(a=0, b=2)
      
  print(sort(dsq))
}

grafikchi(mJateng)

##  [1]  0.3738290  0.7110495  0.7348639  0.7909981  1.0564141  1.1049058
##  [7]  1.1348372  1.1794805  1.4969739  1.7684214  1.7956675  1.8381286
## [13]  2.0497802  2.2738719  2.3359952  2.3470625  2.3612699  2.5226536
## [19]  2.6181990  2.6318006  2.7040330  2.7460052  2.9059850  3.2681216
## [25]  3.2986342  3.3942008  3.9221441  4.2022517  4.2703670  5.0043756
## [31] 10.0887178 10.9606906 11.4201563 13.0093353 21.6787796
grafikchi(mJatim)

##  [1]  0.1306848  0.4636043  0.6031539  0.6830448  0.8009078  0.8731075
##  [7]  1.0921019  1.2931583  1.5366289  1.5460471  1.7263504  1.7269109
## [13]  1.7413654  2.0128711  2.1228177  2.1712150  2.1871780  2.3144269
## [19]  2.4854371  2.5076199  2.6199573  2.7289604  2.8136065  3.0386027
## [25]  3.2912489  3.5872817  4.0385637  4.0530386  4.5277602  4.8246125
## [31]  5.2922892  5.3412483  6.0702400  8.4552138  8.5263677  9.1744219
## [37] 10.6890861 28.9088690

#Uji kenormalan data multivariate shapiro wilks

library(mvnormtest)
mshapiro.test(t(mJateng))
## 
##  Shapiro-Wilk normality test
## 
## data:  Z
## W = 0.66594, p-value = 1.147e-07
mshapiro.test(t(mJatim))
## 
##  Shapiro-Wilk normality test
## 
## data:  Z
## W = 0.54924, p-value = 1.263e-09

#Uji kesamaan varians 2 populasi

#Generalized Variance
GV1=det(var(mJateng))
GV2=det(var(mJatim))
GV1
## [1] 0.137199
GV2
## [1] 0.2710045
#Bartlet test
bartlet <- read_excel("F:/Semester 6/APG/Paper 1/Data Tugas 1 APG.xlsx", sheet = "Join")
head(bartlet)
## # A tibble: 6 x 7
##   Dati2                L    Un     Y   Pov   PPP  Prov
##   <chr>            <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Kab Cilacap       1.24  9.1   90.0  11.7 0.733     1
## 2 Kab Banyumas      1.36  6     39.1  13.7 0.779     1
## 3 Kab Purbalingga   1.43  6.1   17.2  16.2 0.791     1
## 4 Kab Banjarnegara  1.35  5.86  15.0  16.2 0.909     1
## 5 Kab Kebumen       1.28  6.07  19.5  17.8 0.875     1
## 6 Kab Purworejo     1.31  4.04  13.1  12.4 0.751     1
library(biotools)
## Loading required package: MASS
## Warning: package 'MASS' was built under R version 3.6.3
## ---
## biotools version 4.2
mbart<-matrix(c(bartlet$L,bartlet$Y,bartlet$Pov,bartlet$PPP,bartlet$Prov),73,5)
boxM(mbart[,1:4],mbart[,5])
## 
##  Box's M-test for Homogeneity of Covariance Matrices
## 
## data:  mbart[, 1:4]
## Chi-Sq (approx.) = 41.975, df = 10, p-value = 7.575e-06

#Uji Hipotesis

#Fungsi aproximasi 
multvar<-function(mdt1, mdt2, Ho,alfa=0.05){
  #populasi 1
  n1<-nrow(mdt1)
  p1<-ncol(mdt1)
  #Membentuk vektor rata-rata sampel
  xbar1=apply(mdt1, 2, mean)
  varcovar1=cov(mdt1)
  #populasi 2
  n2<-nrow(mdt2)
  p2<-ncol(mdt2)
  #Membentuk vektor rata-rata sampel
  xbar2=apply(mdt2, 2, mean)
  varcovar2=cov(mdt2)
  #T hotelling
  Tsq<-t((xbar1-xbar2)-Ho)%*%solve((varcovar1/n1)+(varcovar2/n2))%*%((xbar1-xbar2)-Ho)
#wilayah kritis
chis<-qchisq(1-alfa,p1)
uji<-ifelse(Tsq>chis, "Tolak Ho","Gagal Tolak Ho")
hasil<-list(xbar1, varcovar1, xbar2, varcovar2,Tsq,chis,uji)
names(hasil)<-c("Vektor rata 1","matriks var-covar1","Vektor rata 2",
                "matriks var-covar2","Statistik Uji","Chi Tabel","Keputusan")
return(hasil)
}

#Hipotesis nul
Ho=matrix(c(0,0,0,0),4,1)
multvar(mJateng, mJatim, Ho, alfa=0.01)
## $`Vektor rata 1`
## [1]  1.4205714  6.4017143  0.8273429 27.5454016
## 
## $`matriks var-covar1`
##             [,1]        [,2]        [,3]        [,4]
## [1,] 0.014540840  0.03711958 0.003137151   0.3746293
## [2,] 0.037119580  2.97582050 0.086112630  15.0463194
## [3,] 0.003137151  0.08611263 0.008784291   0.2501230
## [4,] 0.374629262 15.04631944 0.250123048 632.8433727
## 
## $`Vektor rata 2`
## [1]  1.3618421  5.6239474  0.8009737 42.5502568
## 
## $`matriks var-covar2`
##             [,1]       [,2]        [,3]        [,4]
## [1,] 0.009372191  0.1407709 0.005827617    2.687376
## [2,] 0.140770910  4.0138840 0.116510107   67.636921
## [3,] 0.005827617  0.1165101 0.008882945    2.262313
## [4,] 2.687376198 67.6369212 2.262312842 4328.608388
## 
## $`Statistik Uji`
##          [,1]
## [1,] 12.46762
## 
## $`Chi Tabel`
## [1] 13.2767
## 
## $Keputusan
##      [,1]            
## [1,] "Gagal Tolak Ho"