11H3.
library(rethinking)
## Loading required package: rstan
## Loading required package: StanHeaders
## Loading required package: ggplot2
## rstan (Version 2.21.3, GitRev: 2e1f913d3ca3)
## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)
## Do not specify '-march=native' in 'LOCAL_CPPFLAGS' or a Makevars file
## Loading required package: cmdstanr
## This is cmdstanr version 0.4.0
## - Online documentation and vignettes at mc-stan.org/cmdstanr
## - CmdStan path set to: C:/Users/Dani Grant/Documents/.cmdstanr/cmdstan-2.29.2
## - Use set_cmdstan_path() to change the path
## Loading required package: parallel
## rethinking (Version 2.21)
##
## Attaching package: 'rethinking'
## The following object is masked from 'package:rstan':
##
## stan
## The following object is masked from 'package:stats':
##
## rstudent
library(MASS)
data(eagles)
d <- eagles
(salamanders) = records of salmon pirating attempts by Bald Eagles in Washington State. While one eagle feeds, sometimes another will swoop in and try to steal the salmon from it.
victim = feeding eagle pirate = the thief
yi ∼ Binomial(n_i, p_i) log (pi / 1 − p_i) = α + βPP_i + βVV_i + βAA_i α ∼ Normal(0, 1.5) βP ∼ Normal(0, 0.5) βV ∼ Normal(0, 0.5) βA ∼ Normal(0, 0.5)
y = number of successful attempts n = total number of attempts P = body size of pirate eagle (large, small) V = body size of victim eagle (large, small) A = age of pirate eagle (immature, adult)
Fit the model above to the eagles data, using both quap and ulam. Is the quadratic approximation okay?
d$pirateSize <- as.integer(ifelse(d$P == "S", 2, 1)) #small = 2, large = 1
d$victimSize <- as.integer(ifelse(d$V == "S", 2, 1)) #small = 2, large = 1
d$pirateAge <- as.integer(ifelse(d$P == "I", 2, 1)) #immature = 2, adult = 1
(dat_list <- list(
pirateSize = d$pirateSize,
victimSize = d$victimSize,
pirateAge = d$pirateAge,
successfulThefts = d$y,
attempts = d$n
))
## $pirateSize
## [1] 1 1 1 1 2 2 2 2
##
## $victimSize
## [1] 1 2 1 2 1 2 1 2
##
## $pirateAge
## [1] 1 1 1 1 1 1 1 1
##
## $successfulThefts
## [1] 17 29 17 20 1 15 0 1
##
## $attempts
## [1] 24 29 27 20 12 16 28 4
#yi ∼ Binomial(n_i, p_i)
#log (pi / 1 − p_i) = α + βPP_i + βVV_i + βAA_i
#α ∼ Normal(0, 1.5)
#βP ∼ Normal(0, 0.5)
#βV ∼ Normal(0, 0.5)
#βA ∼ Normal(0, 0.5)
#I coundn't get the code form the slides to work for me in this problem so I had to troubleshoot using different R syntax. I don't know why it wouldn't work??
m.ulam <- ulam(
alist(
successfulThefts ~ dbinom(attempts, p),
logit(p) <- alpha + beta1*pirateSize + beta2*victimSize + beta3*pirateAge,
alpha ~ dnorm(0, 1.5),
beta1 ~ dnorm(0, .5),
beta2 ~ dnorm(0, .5),
beta3 ~ dnorm(0, .5)
), data = dat_list, chains = 4, log_lik = TRUE, iter = 1e4)
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpwxLjW4/model-433434b52a26.stan', line 2, column 4: Declaration
## of arrays by placing brackets after a variable name is deprecated and
## will be removed in Stan 2.32.0. Instead use the array keyword before the
## type. This can be changed automatically using the auto-format flag to
## stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpwxLjW4/model-433434b52a26.stan', line 3, column 4: Declaration
## of arrays by placing brackets after a variable name is deprecated and
## will be removed in Stan 2.32.0. Instead use the array keyword before the
## type. This can be changed automatically using the auto-format flag to
## stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpwxLjW4/model-433434b52a26.stan', line 4, column 4: Declaration
## of arrays by placing brackets after a variable name is deprecated and
## will be removed in Stan 2.32.0. Instead use the array keyword before the
## type. This can be changed automatically using the auto-format flag to
## stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpwxLjW4/model-433434b52a26.stan', line 5, column 4: Declaration
## of arrays by placing brackets after a variable name is deprecated and
## will be removed in Stan 2.32.0. Instead use the array keyword before the
## type. This can be changed automatically using the auto-format flag to
## stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpwxLjW4/model-433434b52a26.stan', line 6, column 4: Declaration
## of arrays by placing brackets after a variable name is deprecated and
## will be removed in Stan 2.32.0. Instead use the array keyword before the
## type. This can be changed automatically using the auto-format flag to
## stanc
## Running MCMC with 4 sequential chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 10000 [ 1%] (Warmup)
## Chain 1 Iteration: 200 / 10000 [ 2%] (Warmup)
## Chain 1 Iteration: 300 / 10000 [ 3%] (Warmup)
## Chain 1 Iteration: 400 / 10000 [ 4%] (Warmup)
## Chain 1 Iteration: 500 / 10000 [ 5%] (Warmup)
## Chain 1 Iteration: 600 / 10000 [ 6%] (Warmup)
## Chain 1 Iteration: 700 / 10000 [ 7%] (Warmup)
## Chain 1 Iteration: 800 / 10000 [ 8%] (Warmup)
## Chain 1 Iteration: 900 / 10000 [ 9%] (Warmup)
## Chain 1 Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 1 Iteration: 1100 / 10000 [ 11%] (Warmup)
## Chain 1 Iteration: 1200 / 10000 [ 12%] (Warmup)
## Chain 1 Iteration: 1300 / 10000 [ 13%] (Warmup)
## Chain 1 Iteration: 1400 / 10000 [ 14%] (Warmup)
## Chain 1 Iteration: 1500 / 10000 [ 15%] (Warmup)
## Chain 1 Iteration: 1600 / 10000 [ 16%] (Warmup)
## Chain 1 Iteration: 1700 / 10000 [ 17%] (Warmup)
## Chain 1 Iteration: 1800 / 10000 [ 18%] (Warmup)
## Chain 1 Iteration: 1900 / 10000 [ 19%] (Warmup)
## Chain 1 Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 1 Iteration: 2100 / 10000 [ 21%] (Warmup)
## Chain 1 Iteration: 2200 / 10000 [ 22%] (Warmup)
## Chain 1 Iteration: 2300 / 10000 [ 23%] (Warmup)
## Chain 1 Iteration: 2400 / 10000 [ 24%] (Warmup)
## Chain 1 Iteration: 2500 / 10000 [ 25%] (Warmup)
## Chain 1 Iteration: 2600 / 10000 [ 26%] (Warmup)
## Chain 1 Iteration: 2700 / 10000 [ 27%] (Warmup)
## Chain 1 Iteration: 2800 / 10000 [ 28%] (Warmup)
## Chain 1 Iteration: 2900 / 10000 [ 29%] (Warmup)
## Chain 1 Iteration: 3000 / 10000 [ 30%] (Warmup)
## Chain 1 Iteration: 3100 / 10000 [ 31%] (Warmup)
## Chain 1 Iteration: 3200 / 10000 [ 32%] (Warmup)
## Chain 1 Iteration: 3300 / 10000 [ 33%] (Warmup)
## Chain 1 Iteration: 3400 / 10000 [ 34%] (Warmup)
## Chain 1 Iteration: 3500 / 10000 [ 35%] (Warmup)
## Chain 1 Iteration: 3600 / 10000 [ 36%] (Warmup)
## Chain 1 Iteration: 3700 / 10000 [ 37%] (Warmup)
## Chain 1 Iteration: 3800 / 10000 [ 38%] (Warmup)
## Chain 1 Iteration: 3900 / 10000 [ 39%] (Warmup)
## Chain 1 Iteration: 4000 / 10000 [ 40%] (Warmup)
## Chain 1 Iteration: 4100 / 10000 [ 41%] (Warmup)
## Chain 1 Iteration: 4200 / 10000 [ 42%] (Warmup)
## Chain 1 Iteration: 4300 / 10000 [ 43%] (Warmup)
## Chain 1 Iteration: 4400 / 10000 [ 44%] (Warmup)
## Chain 1 Iteration: 4500 / 10000 [ 45%] (Warmup)
## Chain 1 Iteration: 4600 / 10000 [ 46%] (Warmup)
## Chain 1 Iteration: 4700 / 10000 [ 47%] (Warmup)
## Chain 1 Iteration: 4800 / 10000 [ 48%] (Warmup)
## Chain 1 Iteration: 4900 / 10000 [ 49%] (Warmup)
## Chain 1 Iteration: 5000 / 10000 [ 50%] (Warmup)
## Chain 1 Iteration: 5001 / 10000 [ 50%] (Sampling)
## Chain 1 Iteration: 5100 / 10000 [ 51%] (Sampling)
## Chain 1 Iteration: 5200 / 10000 [ 52%] (Sampling)
## Chain 1 Iteration: 5300 / 10000 [ 53%] (Sampling)
## Chain 1 Iteration: 5400 / 10000 [ 54%] (Sampling)
## Chain 1 Iteration: 5500 / 10000 [ 55%] (Sampling)
## Chain 1 Iteration: 5600 / 10000 [ 56%] (Sampling)
## Chain 1 Iteration: 5700 / 10000 [ 57%] (Sampling)
## Chain 1 Iteration: 5800 / 10000 [ 58%] (Sampling)
## Chain 1 Iteration: 5900 / 10000 [ 59%] (Sampling)
## Chain 1 Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 1 Iteration: 6100 / 10000 [ 61%] (Sampling)
## Chain 1 Iteration: 6200 / 10000 [ 62%] (Sampling)
## Chain 1 Iteration: 6300 / 10000 [ 63%] (Sampling)
## Chain 1 Iteration: 6400 / 10000 [ 64%] (Sampling)
## Chain 1 Iteration: 6500 / 10000 [ 65%] (Sampling)
## Chain 1 Iteration: 6600 / 10000 [ 66%] (Sampling)
## Chain 1 Iteration: 6700 / 10000 [ 67%] (Sampling)
## Chain 1 Iteration: 6800 / 10000 [ 68%] (Sampling)
## Chain 1 Iteration: 6900 / 10000 [ 69%] (Sampling)
## Chain 1 Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 1 Iteration: 7100 / 10000 [ 71%] (Sampling)
## Chain 1 Iteration: 7200 / 10000 [ 72%] (Sampling)
## Chain 1 Iteration: 7300 / 10000 [ 73%] (Sampling)
## Chain 1 Iteration: 7400 / 10000 [ 74%] (Sampling)
## Chain 1 Iteration: 7500 / 10000 [ 75%] (Sampling)
## Chain 1 Iteration: 7600 / 10000 [ 76%] (Sampling)
## Chain 1 Iteration: 7700 / 10000 [ 77%] (Sampling)
## Chain 1 Iteration: 7800 / 10000 [ 78%] (Sampling)
## Chain 1 Iteration: 7900 / 10000 [ 79%] (Sampling)
## Chain 1 Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 1 Iteration: 8100 / 10000 [ 81%] (Sampling)
## Chain 1 Iteration: 8200 / 10000 [ 82%] (Sampling)
## Chain 1 Iteration: 8300 / 10000 [ 83%] (Sampling)
## Chain 1 Iteration: 8400 / 10000 [ 84%] (Sampling)
## Chain 1 Iteration: 8500 / 10000 [ 85%] (Sampling)
## Chain 1 Iteration: 8600 / 10000 [ 86%] (Sampling)
## Chain 1 Iteration: 8700 / 10000 [ 87%] (Sampling)
## Chain 1 Iteration: 8800 / 10000 [ 88%] (Sampling)
## Chain 1 Iteration: 8900 / 10000 [ 89%] (Sampling)
## Chain 1 Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 1 Iteration: 9100 / 10000 [ 91%] (Sampling)
## Chain 1 Iteration: 9200 / 10000 [ 92%] (Sampling)
## Chain 1 Iteration: 9300 / 10000 [ 93%] (Sampling)
## Chain 1 Iteration: 9400 / 10000 [ 94%] (Sampling)
## Chain 1 Iteration: 9500 / 10000 [ 95%] (Sampling)
## Chain 1 Iteration: 9600 / 10000 [ 96%] (Sampling)
## Chain 1 Iteration: 9700 / 10000 [ 97%] (Sampling)
## Chain 1 Iteration: 9800 / 10000 [ 98%] (Sampling)
## Chain 1 Iteration: 9900 / 10000 [ 99%] (Sampling)
## Chain 1 Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 1 finished in 1.3 seconds.
## Chain 2 Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 10000 [ 1%] (Warmup)
## Chain 2 Iteration: 200 / 10000 [ 2%] (Warmup)
## Chain 2 Iteration: 300 / 10000 [ 3%] (Warmup)
## Chain 2 Iteration: 400 / 10000 [ 4%] (Warmup)
## Chain 2 Iteration: 500 / 10000 [ 5%] (Warmup)
## Chain 2 Iteration: 600 / 10000 [ 6%] (Warmup)
## Chain 2 Iteration: 700 / 10000 [ 7%] (Warmup)
## Chain 2 Iteration: 800 / 10000 [ 8%] (Warmup)
## Chain 2 Iteration: 900 / 10000 [ 9%] (Warmup)
## Chain 2 Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 2 Iteration: 1100 / 10000 [ 11%] (Warmup)
## Chain 2 Iteration: 1200 / 10000 [ 12%] (Warmup)
## Chain 2 Iteration: 1300 / 10000 [ 13%] (Warmup)
## Chain 2 Iteration: 1400 / 10000 [ 14%] (Warmup)
## Chain 2 Iteration: 1500 / 10000 [ 15%] (Warmup)
## Chain 2 Iteration: 1600 / 10000 [ 16%] (Warmup)
## Chain 2 Iteration: 1700 / 10000 [ 17%] (Warmup)
## Chain 2 Iteration: 1800 / 10000 [ 18%] (Warmup)
## Chain 2 Iteration: 1900 / 10000 [ 19%] (Warmup)
## Chain 2 Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 2 Iteration: 2100 / 10000 [ 21%] (Warmup)
## Chain 2 Iteration: 2200 / 10000 [ 22%] (Warmup)
## Chain 2 Iteration: 2300 / 10000 [ 23%] (Warmup)
## Chain 2 Iteration: 2400 / 10000 [ 24%] (Warmup)
## Chain 2 Iteration: 2500 / 10000 [ 25%] (Warmup)
## Chain 2 Iteration: 2600 / 10000 [ 26%] (Warmup)
## Chain 2 Iteration: 2700 / 10000 [ 27%] (Warmup)
## Chain 2 Iteration: 2800 / 10000 [ 28%] (Warmup)
## Chain 2 Iteration: 2900 / 10000 [ 29%] (Warmup)
## Chain 2 Iteration: 3000 / 10000 [ 30%] (Warmup)
## Chain 2 Iteration: 3100 / 10000 [ 31%] (Warmup)
## Chain 2 Iteration: 3200 / 10000 [ 32%] (Warmup)
## Chain 2 Iteration: 3300 / 10000 [ 33%] (Warmup)
## Chain 2 Iteration: 3400 / 10000 [ 34%] (Warmup)
## Chain 2 Iteration: 3500 / 10000 [ 35%] (Warmup)
## Chain 2 Iteration: 3600 / 10000 [ 36%] (Warmup)
## Chain 2 Iteration: 3700 / 10000 [ 37%] (Warmup)
## Chain 2 Iteration: 3800 / 10000 [ 38%] (Warmup)
## Chain 2 Iteration: 3900 / 10000 [ 39%] (Warmup)
## Chain 2 Iteration: 4000 / 10000 [ 40%] (Warmup)
## Chain 2 Iteration: 4100 / 10000 [ 41%] (Warmup)
## Chain 2 Iteration: 4200 / 10000 [ 42%] (Warmup)
## Chain 2 Iteration: 4300 / 10000 [ 43%] (Warmup)
## Chain 2 Iteration: 4400 / 10000 [ 44%] (Warmup)
## Chain 2 Iteration: 4500 / 10000 [ 45%] (Warmup)
## Chain 2 Iteration: 4600 / 10000 [ 46%] (Warmup)
## Chain 2 Iteration: 4700 / 10000 [ 47%] (Warmup)
## Chain 2 Iteration: 4800 / 10000 [ 48%] (Warmup)
## Chain 2 Iteration: 4900 / 10000 [ 49%] (Warmup)
## Chain 2 Iteration: 5000 / 10000 [ 50%] (Warmup)
## Chain 2 Iteration: 5001 / 10000 [ 50%] (Sampling)
## Chain 2 Iteration: 5100 / 10000 [ 51%] (Sampling)
## Chain 2 Iteration: 5200 / 10000 [ 52%] (Sampling)
## Chain 2 Iteration: 5300 / 10000 [ 53%] (Sampling)
## Chain 2 Iteration: 5400 / 10000 [ 54%] (Sampling)
## Chain 2 Iteration: 5500 / 10000 [ 55%] (Sampling)
## Chain 2 Iteration: 5600 / 10000 [ 56%] (Sampling)
## Chain 2 Iteration: 5700 / 10000 [ 57%] (Sampling)
## Chain 2 Iteration: 5800 / 10000 [ 58%] (Sampling)
## Chain 2 Iteration: 5900 / 10000 [ 59%] (Sampling)
## Chain 2 Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 2 Iteration: 6100 / 10000 [ 61%] (Sampling)
## Chain 2 Iteration: 6200 / 10000 [ 62%] (Sampling)
## Chain 2 Iteration: 6300 / 10000 [ 63%] (Sampling)
## Chain 2 Iteration: 6400 / 10000 [ 64%] (Sampling)
## Chain 2 Iteration: 6500 / 10000 [ 65%] (Sampling)
## Chain 2 Iteration: 6600 / 10000 [ 66%] (Sampling)
## Chain 2 Iteration: 6700 / 10000 [ 67%] (Sampling)
## Chain 2 Iteration: 6800 / 10000 [ 68%] (Sampling)
## Chain 2 Iteration: 6900 / 10000 [ 69%] (Sampling)
## Chain 2 Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 2 Iteration: 7100 / 10000 [ 71%] (Sampling)
## Chain 2 Iteration: 7200 / 10000 [ 72%] (Sampling)
## Chain 2 Iteration: 7300 / 10000 [ 73%] (Sampling)
## Chain 2 Iteration: 7400 / 10000 [ 74%] (Sampling)
## Chain 2 Iteration: 7500 / 10000 [ 75%] (Sampling)
## Chain 2 Iteration: 7600 / 10000 [ 76%] (Sampling)
## Chain 2 Iteration: 7700 / 10000 [ 77%] (Sampling)
## Chain 2 Iteration: 7800 / 10000 [ 78%] (Sampling)
## Chain 2 Iteration: 7900 / 10000 [ 79%] (Sampling)
## Chain 2 Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 2 Iteration: 8100 / 10000 [ 81%] (Sampling)
## Chain 2 Iteration: 8200 / 10000 [ 82%] (Sampling)
## Chain 2 Iteration: 8300 / 10000 [ 83%] (Sampling)
## Chain 2 Iteration: 8400 / 10000 [ 84%] (Sampling)
## Chain 2 Iteration: 8500 / 10000 [ 85%] (Sampling)
## Chain 2 Iteration: 8600 / 10000 [ 86%] (Sampling)
## Chain 2 Iteration: 8700 / 10000 [ 87%] (Sampling)
## Chain 2 Iteration: 8800 / 10000 [ 88%] (Sampling)
## Chain 2 Iteration: 8900 / 10000 [ 89%] (Sampling)
## Chain 2 Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 2 Iteration: 9100 / 10000 [ 91%] (Sampling)
## Chain 2 Iteration: 9200 / 10000 [ 92%] (Sampling)
## Chain 2 Iteration: 9300 / 10000 [ 93%] (Sampling)
## Chain 2 Iteration: 9400 / 10000 [ 94%] (Sampling)
## Chain 2 Iteration: 9500 / 10000 [ 95%] (Sampling)
## Chain 2 Iteration: 9600 / 10000 [ 96%] (Sampling)
## Chain 2 Iteration: 9700 / 10000 [ 97%] (Sampling)
## Chain 2 Iteration: 9800 / 10000 [ 98%] (Sampling)
## Chain 2 Iteration: 9900 / 10000 [ 99%] (Sampling)
## Chain 2 Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 2 finished in 1.2 seconds.
## Chain 3 Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 10000 [ 1%] (Warmup)
## Chain 3 Iteration: 200 / 10000 [ 2%] (Warmup)
## Chain 3 Iteration: 300 / 10000 [ 3%] (Warmup)
## Chain 3 Iteration: 400 / 10000 [ 4%] (Warmup)
## Chain 3 Iteration: 500 / 10000 [ 5%] (Warmup)
## Chain 3 Iteration: 600 / 10000 [ 6%] (Warmup)
## Chain 3 Iteration: 700 / 10000 [ 7%] (Warmup)
## Chain 3 Iteration: 800 / 10000 [ 8%] (Warmup)
## Chain 3 Iteration: 900 / 10000 [ 9%] (Warmup)
## Chain 3 Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 3 Iteration: 1100 / 10000 [ 11%] (Warmup)
## Chain 3 Iteration: 1200 / 10000 [ 12%] (Warmup)
## Chain 3 Iteration: 1300 / 10000 [ 13%] (Warmup)
## Chain 3 Iteration: 1400 / 10000 [ 14%] (Warmup)
## Chain 3 Iteration: 1500 / 10000 [ 15%] (Warmup)
## Chain 3 Iteration: 1600 / 10000 [ 16%] (Warmup)
## Chain 3 Iteration: 1700 / 10000 [ 17%] (Warmup)
## Chain 3 Iteration: 1800 / 10000 [ 18%] (Warmup)
## Chain 3 Iteration: 1900 / 10000 [ 19%] (Warmup)
## Chain 3 Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 3 Iteration: 2100 / 10000 [ 21%] (Warmup)
## Chain 3 Iteration: 2200 / 10000 [ 22%] (Warmup)
## Chain 3 Iteration: 2300 / 10000 [ 23%] (Warmup)
## Chain 3 Iteration: 2400 / 10000 [ 24%] (Warmup)
## Chain 3 Iteration: 2500 / 10000 [ 25%] (Warmup)
## Chain 3 Iteration: 2600 / 10000 [ 26%] (Warmup)
## Chain 3 Iteration: 2700 / 10000 [ 27%] (Warmup)
## Chain 3 Iteration: 2800 / 10000 [ 28%] (Warmup)
## Chain 3 Iteration: 2900 / 10000 [ 29%] (Warmup)
## Chain 3 Iteration: 3000 / 10000 [ 30%] (Warmup)
## Chain 3 Iteration: 3100 / 10000 [ 31%] (Warmup)
## Chain 3 Iteration: 3200 / 10000 [ 32%] (Warmup)
## Chain 3 Iteration: 3300 / 10000 [ 33%] (Warmup)
## Chain 3 Iteration: 3400 / 10000 [ 34%] (Warmup)
## Chain 3 Iteration: 3500 / 10000 [ 35%] (Warmup)
## Chain 3 Iteration: 3600 / 10000 [ 36%] (Warmup)
## Chain 3 Iteration: 3700 / 10000 [ 37%] (Warmup)
## Chain 3 Iteration: 3800 / 10000 [ 38%] (Warmup)
## Chain 3 Iteration: 3900 / 10000 [ 39%] (Warmup)
## Chain 3 Iteration: 4000 / 10000 [ 40%] (Warmup)
## Chain 3 Iteration: 4100 / 10000 [ 41%] (Warmup)
## Chain 3 Iteration: 4200 / 10000 [ 42%] (Warmup)
## Chain 3 Iteration: 4300 / 10000 [ 43%] (Warmup)
## Chain 3 Iteration: 4400 / 10000 [ 44%] (Warmup)
## Chain 3 Iteration: 4500 / 10000 [ 45%] (Warmup)
## Chain 3 Iteration: 4600 / 10000 [ 46%] (Warmup)
## Chain 3 Iteration: 4700 / 10000 [ 47%] (Warmup)
## Chain 3 Iteration: 4800 / 10000 [ 48%] (Warmup)
## Chain 3 Iteration: 4900 / 10000 [ 49%] (Warmup)
## Chain 3 Iteration: 5000 / 10000 [ 50%] (Warmup)
## Chain 3 Iteration: 5001 / 10000 [ 50%] (Sampling)
## Chain 3 Iteration: 5100 / 10000 [ 51%] (Sampling)
## Chain 3 Iteration: 5200 / 10000 [ 52%] (Sampling)
## Chain 3 Iteration: 5300 / 10000 [ 53%] (Sampling)
## Chain 3 Iteration: 5400 / 10000 [ 54%] (Sampling)
## Chain 3 Iteration: 5500 / 10000 [ 55%] (Sampling)
## Chain 3 Iteration: 5600 / 10000 [ 56%] (Sampling)
## Chain 3 Iteration: 5700 / 10000 [ 57%] (Sampling)
## Chain 3 Iteration: 5800 / 10000 [ 58%] (Sampling)
## Chain 3 Iteration: 5900 / 10000 [ 59%] (Sampling)
## Chain 3 Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 3 Iteration: 6100 / 10000 [ 61%] (Sampling)
## Chain 3 Iteration: 6200 / 10000 [ 62%] (Sampling)
## Chain 3 Iteration: 6300 / 10000 [ 63%] (Sampling)
## Chain 3 Iteration: 6400 / 10000 [ 64%] (Sampling)
## Chain 3 Iteration: 6500 / 10000 [ 65%] (Sampling)
## Chain 3 Iteration: 6600 / 10000 [ 66%] (Sampling)
## Chain 3 Iteration: 6700 / 10000 [ 67%] (Sampling)
## Chain 3 Iteration: 6800 / 10000 [ 68%] (Sampling)
## Chain 3 Iteration: 6900 / 10000 [ 69%] (Sampling)
## Chain 3 Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 3 Iteration: 7100 / 10000 [ 71%] (Sampling)
## Chain 3 Iteration: 7200 / 10000 [ 72%] (Sampling)
## Chain 3 Iteration: 7300 / 10000 [ 73%] (Sampling)
## Chain 3 Iteration: 7400 / 10000 [ 74%] (Sampling)
## Chain 3 Iteration: 7500 / 10000 [ 75%] (Sampling)
## Chain 3 Iteration: 7600 / 10000 [ 76%] (Sampling)
## Chain 3 Iteration: 7700 / 10000 [ 77%] (Sampling)
## Chain 3 Iteration: 7800 / 10000 [ 78%] (Sampling)
## Chain 3 Iteration: 7900 / 10000 [ 79%] (Sampling)
## Chain 3 Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 3 Iteration: 8100 / 10000 [ 81%] (Sampling)
## Chain 3 Iteration: 8200 / 10000 [ 82%] (Sampling)
## Chain 3 Iteration: 8300 / 10000 [ 83%] (Sampling)
## Chain 3 Iteration: 8400 / 10000 [ 84%] (Sampling)
## Chain 3 Iteration: 8500 / 10000 [ 85%] (Sampling)
## Chain 3 Iteration: 8600 / 10000 [ 86%] (Sampling)
## Chain 3 Iteration: 8700 / 10000 [ 87%] (Sampling)
## Chain 3 Iteration: 8800 / 10000 [ 88%] (Sampling)
## Chain 3 Iteration: 8900 / 10000 [ 89%] (Sampling)
## Chain 3 Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 3 Iteration: 9100 / 10000 [ 91%] (Sampling)
## Chain 3 Iteration: 9200 / 10000 [ 92%] (Sampling)
## Chain 3 Iteration: 9300 / 10000 [ 93%] (Sampling)
## Chain 3 Iteration: 9400 / 10000 [ 94%] (Sampling)
## Chain 3 Iteration: 9500 / 10000 [ 95%] (Sampling)
## Chain 3 Iteration: 9600 / 10000 [ 96%] (Sampling)
## Chain 3 Iteration: 9700 / 10000 [ 97%] (Sampling)
## Chain 3 Iteration: 9800 / 10000 [ 98%] (Sampling)
## Chain 3 Iteration: 9900 / 10000 [ 99%] (Sampling)
## Chain 3 Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 3 finished in 1.3 seconds.
## Chain 4 Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 10000 [ 1%] (Warmup)
## Chain 4 Iteration: 200 / 10000 [ 2%] (Warmup)
## Chain 4 Iteration: 300 / 10000 [ 3%] (Warmup)
## Chain 4 Iteration: 400 / 10000 [ 4%] (Warmup)
## Chain 4 Iteration: 500 / 10000 [ 5%] (Warmup)
## Chain 4 Iteration: 600 / 10000 [ 6%] (Warmup)
## Chain 4 Iteration: 700 / 10000 [ 7%] (Warmup)
## Chain 4 Iteration: 800 / 10000 [ 8%] (Warmup)
## Chain 4 Iteration: 900 / 10000 [ 9%] (Warmup)
## Chain 4 Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 4 Iteration: 1100 / 10000 [ 11%] (Warmup)
## Chain 4 Iteration: 1200 / 10000 [ 12%] (Warmup)
## Chain 4 Iteration: 1300 / 10000 [ 13%] (Warmup)
## Chain 4 Iteration: 1400 / 10000 [ 14%] (Warmup)
## Chain 4 Iteration: 1500 / 10000 [ 15%] (Warmup)
## Chain 4 Iteration: 1600 / 10000 [ 16%] (Warmup)
## Chain 4 Iteration: 1700 / 10000 [ 17%] (Warmup)
## Chain 4 Iteration: 1800 / 10000 [ 18%] (Warmup)
## Chain 4 Iteration: 1900 / 10000 [ 19%] (Warmup)
## Chain 4 Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 4 Iteration: 2100 / 10000 [ 21%] (Warmup)
## Chain 4 Iteration: 2200 / 10000 [ 22%] (Warmup)
## Chain 4 Iteration: 2300 / 10000 [ 23%] (Warmup)
## Chain 4 Iteration: 2400 / 10000 [ 24%] (Warmup)
## Chain 4 Iteration: 2500 / 10000 [ 25%] (Warmup)
## Chain 4 Iteration: 2600 / 10000 [ 26%] (Warmup)
## Chain 4 Iteration: 2700 / 10000 [ 27%] (Warmup)
## Chain 4 Iteration: 2800 / 10000 [ 28%] (Warmup)
## Chain 4 Iteration: 2900 / 10000 [ 29%] (Warmup)
## Chain 4 Iteration: 3000 / 10000 [ 30%] (Warmup)
## Chain 4 Iteration: 3100 / 10000 [ 31%] (Warmup)
## Chain 4 Iteration: 3200 / 10000 [ 32%] (Warmup)
## Chain 4 Iteration: 3300 / 10000 [ 33%] (Warmup)
## Chain 4 Iteration: 3400 / 10000 [ 34%] (Warmup)
## Chain 4 Iteration: 3500 / 10000 [ 35%] (Warmup)
## Chain 4 Iteration: 3600 / 10000 [ 36%] (Warmup)
## Chain 4 Iteration: 3700 / 10000 [ 37%] (Warmup)
## Chain 4 Iteration: 3800 / 10000 [ 38%] (Warmup)
## Chain 4 Iteration: 3900 / 10000 [ 39%] (Warmup)
## Chain 4 Iteration: 4000 / 10000 [ 40%] (Warmup)
## Chain 4 Iteration: 4100 / 10000 [ 41%] (Warmup)
## Chain 4 Iteration: 4200 / 10000 [ 42%] (Warmup)
## Chain 4 Iteration: 4300 / 10000 [ 43%] (Warmup)
## Chain 4 Iteration: 4400 / 10000 [ 44%] (Warmup)
## Chain 4 Iteration: 4500 / 10000 [ 45%] (Warmup)
## Chain 4 Iteration: 4600 / 10000 [ 46%] (Warmup)
## Chain 4 Iteration: 4700 / 10000 [ 47%] (Warmup)
## Chain 4 Iteration: 4800 / 10000 [ 48%] (Warmup)
## Chain 4 Iteration: 4900 / 10000 [ 49%] (Warmup)
## Chain 4 Iteration: 5000 / 10000 [ 50%] (Warmup)
## Chain 4 Iteration: 5001 / 10000 [ 50%] (Sampling)
## Chain 4 Iteration: 5100 / 10000 [ 51%] (Sampling)
## Chain 4 Iteration: 5200 / 10000 [ 52%] (Sampling)
## Chain 4 Iteration: 5300 / 10000 [ 53%] (Sampling)
## Chain 4 Iteration: 5400 / 10000 [ 54%] (Sampling)
## Chain 4 Iteration: 5500 / 10000 [ 55%] (Sampling)
## Chain 4 Iteration: 5600 / 10000 [ 56%] (Sampling)
## Chain 4 Iteration: 5700 / 10000 [ 57%] (Sampling)
## Chain 4 Iteration: 5800 / 10000 [ 58%] (Sampling)
## Chain 4 Iteration: 5900 / 10000 [ 59%] (Sampling)
## Chain 4 Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 4 Iteration: 6100 / 10000 [ 61%] (Sampling)
## Chain 4 Iteration: 6200 / 10000 [ 62%] (Sampling)
## Chain 4 Iteration: 6300 / 10000 [ 63%] (Sampling)
## Chain 4 Iteration: 6400 / 10000 [ 64%] (Sampling)
## Chain 4 Iteration: 6500 / 10000 [ 65%] (Sampling)
## Chain 4 Iteration: 6600 / 10000 [ 66%] (Sampling)
## Chain 4 Iteration: 6700 / 10000 [ 67%] (Sampling)
## Chain 4 Iteration: 6800 / 10000 [ 68%] (Sampling)
## Chain 4 Iteration: 6900 / 10000 [ 69%] (Sampling)
## Chain 4 Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 4 Iteration: 7100 / 10000 [ 71%] (Sampling)
## Chain 4 Iteration: 7200 / 10000 [ 72%] (Sampling)
## Chain 4 Iteration: 7300 / 10000 [ 73%] (Sampling)
## Chain 4 Iteration: 7400 / 10000 [ 74%] (Sampling)
## Chain 4 Iteration: 7500 / 10000 [ 75%] (Sampling)
## Chain 4 Iteration: 7600 / 10000 [ 76%] (Sampling)
## Chain 4 Iteration: 7700 / 10000 [ 77%] (Sampling)
## Chain 4 Iteration: 7800 / 10000 [ 78%] (Sampling)
## Chain 4 Iteration: 7900 / 10000 [ 79%] (Sampling)
## Chain 4 Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 4 Iteration: 8100 / 10000 [ 81%] (Sampling)
## Chain 4 Iteration: 8200 / 10000 [ 82%] (Sampling)
## Chain 4 Iteration: 8300 / 10000 [ 83%] (Sampling)
## Chain 4 Iteration: 8400 / 10000 [ 84%] (Sampling)
## Chain 4 Iteration: 8500 / 10000 [ 85%] (Sampling)
## Chain 4 Iteration: 8600 / 10000 [ 86%] (Sampling)
## Chain 4 Iteration: 8700 / 10000 [ 87%] (Sampling)
## Chain 4 Iteration: 8800 / 10000 [ 88%] (Sampling)
## Chain 4 Iteration: 8900 / 10000 [ 89%] (Sampling)
## Chain 4 Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 4 Iteration: 9100 / 10000 [ 91%] (Sampling)
## Chain 4 Iteration: 9200 / 10000 [ 92%] (Sampling)
## Chain 4 Iteration: 9300 / 10000 [ 93%] (Sampling)
## Chain 4 Iteration: 9400 / 10000 [ 94%] (Sampling)
## Chain 4 Iteration: 9500 / 10000 [ 95%] (Sampling)
## Chain 4 Iteration: 9600 / 10000 [ 96%] (Sampling)
## Chain 4 Iteration: 9700 / 10000 [ 97%] (Sampling)
## Chain 4 Iteration: 9800 / 10000 [ 98%] (Sampling)
## Chain 4 Iteration: 9900 / 10000 [ 99%] (Sampling)
## Chain 4 Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 4 finished in 1.3 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 1.3 seconds.
## Total execution time: 6.2 seconds.
m.quap <- quap(
alist(
successfulThefts ~ dbinom(attempts, p),
logit(p) <- alpha + beta1*pirateSize + beta2*victimSize + beta3*pirateAge,
alpha ~ dnorm(0, 1.5),
beta1 ~ dnorm(0, .5),
beta2 ~ dnorm(0, .5),
beta3 ~ dnorm(0, .5)
), data = dat_list)
(outcomes <- precis(m.ulam, depth = 2, prob = .95, hist = FALSE))
## mean sd 2.5% 97.5% n_eff Rhat4
## alpha 0.27938018 0.6986669 -1.0939612 1.6493540 10188.57 1.000441
## beta1 -1.60421510 0.3010733 -2.1943662 -1.0182148 11710.50 1.000042
## beta2 1.81265236 0.3101798 1.2185790 2.4280532 12270.26 1.000399
## beta3 0.02354015 0.4785971 -0.9150909 0.9688061 12483.65 1.000146
precis(m.quap, depth = 2, prob = .95, hist = FALSE)
## mean sd 2.5% 97.5%
## alpha 0.27537663 0.6968729 -1.0904692 1.6412225
## beta1 -1.59346371 0.2957625 -2.1731475 -1.0137799
## beta2 1.79456184 0.3104537 1.1860838 2.4030399
## beta3 0.03106679 0.4777213 -0.9052498 0.9673834
ANSWER the ulam and quap models give outputs very closely in line with one another. I’ll still use ulam to interpret.
to do this I need to first build contrasts…
# i had to figure this out without the slides code--wouldn't work for my model
#size of pirate
(Sp_prob <- inv_logit(outcomes[2,1]))
## [1] 0.1673933
(Lp_prob <- 1-Sp_prob)
## [1] 0.8326067
(diff_prob <- Lp_prob - Sp_prob)
## [1] 0.6652134
#size of victim
(Sv_prob <- inv_logit(outcomes[3,1]))
## [1] 0.8596821
(Lv_prob <- 1 - Sv_prob)
## [1] 0.1403179
(diff_prob <- Lv_prob - Sv_prob)
## [1] -0.7193643
#age of pirate
(Ip_prob <- inv_logit(outcomes[4,1]))
## [1] 0.5058848
(Ap_prob <- 1 - Ip_prob)
## [1] 0.4941152
(diff_prob <- Ip_prob - Ap_prob)
## [1] 0.01176953
ANSWER As body size of pirate eagles increases, they are more likely to be successful thieves, p(success given large) = .83. In contrast, smaller victim eagles are more likely to lose their food, p(success given small) = .86. Age of pirate eagle doesn’t seem to matter, p(success given adult) = .49.
postcheck(m.ulam)
Purple dots = raw data Circles = model predictions with 89% intervals Crosses = predicted probabilities
m.ulam.int <- ulam(
alist(
successfulThefts ~ dbinom(attempts, p),
logit(p) <- alpha + beta1*pirateSize + beta2*victimSize + beta3*pirateAge + beta4*pirateAge*pirateSize,
alpha ~ dnorm(0, 1.5),
beta1 ~ dnorm(0, .5),
beta2 ~ dnorm(0, .5),
beta3 ~ dnorm(0, .5),
beta4 ~ dnorm(0, .5)
), data = dat_list, chains = 4, log_lik = TRUE, iter = 1e4)
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpwxLjW4/model-433442316721.stan', line 2, column 4: Declaration
## of arrays by placing brackets after a variable name is deprecated and
## will be removed in Stan 2.32.0. Instead use the array keyword before the
## type. This can be changed automatically using the auto-format flag to
## stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpwxLjW4/model-433442316721.stan', line 3, column 4: Declaration
## of arrays by placing brackets after a variable name is deprecated and
## will be removed in Stan 2.32.0. Instead use the array keyword before the
## type. This can be changed automatically using the auto-format flag to
## stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpwxLjW4/model-433442316721.stan', line 4, column 4: Declaration
## of arrays by placing brackets after a variable name is deprecated and
## will be removed in Stan 2.32.0. Instead use the array keyword before the
## type. This can be changed automatically using the auto-format flag to
## stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpwxLjW4/model-433442316721.stan', line 5, column 4: Declaration
## of arrays by placing brackets after a variable name is deprecated and
## will be removed in Stan 2.32.0. Instead use the array keyword before the
## type. This can be changed automatically using the auto-format flag to
## stanc
## Warning in 'C:/Users/DANIGR~1/AppData/Local/Temp/RtmpwxLjW4/model-433442316721.stan', line 6, column 4: Declaration
## of arrays by placing brackets after a variable name is deprecated and
## will be removed in Stan 2.32.0. Instead use the array keyword before the
## type. This can be changed automatically using the auto-format flag to
## stanc
## Running MCMC with 4 sequential chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 10000 [ 1%] (Warmup)
## Chain 1 Iteration: 200 / 10000 [ 2%] (Warmup)
## Chain 1 Iteration: 300 / 10000 [ 3%] (Warmup)
## Chain 1 Iteration: 400 / 10000 [ 4%] (Warmup)
## Chain 1 Iteration: 500 / 10000 [ 5%] (Warmup)
## Chain 1 Iteration: 600 / 10000 [ 6%] (Warmup)
## Chain 1 Iteration: 700 / 10000 [ 7%] (Warmup)
## Chain 1 Iteration: 800 / 10000 [ 8%] (Warmup)
## Chain 1 Iteration: 900 / 10000 [ 9%] (Warmup)
## Chain 1 Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 1 Iteration: 1100 / 10000 [ 11%] (Warmup)
## Chain 1 Iteration: 1200 / 10000 [ 12%] (Warmup)
## Chain 1 Iteration: 1300 / 10000 [ 13%] (Warmup)
## Chain 1 Iteration: 1400 / 10000 [ 14%] (Warmup)
## Chain 1 Iteration: 1500 / 10000 [ 15%] (Warmup)
## Chain 1 Iteration: 1600 / 10000 [ 16%] (Warmup)
## Chain 1 Iteration: 1700 / 10000 [ 17%] (Warmup)
## Chain 1 Iteration: 1800 / 10000 [ 18%] (Warmup)
## Chain 1 Iteration: 1900 / 10000 [ 19%] (Warmup)
## Chain 1 Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 1 Iteration: 2100 / 10000 [ 21%] (Warmup)
## Chain 1 Iteration: 2200 / 10000 [ 22%] (Warmup)
## Chain 1 Iteration: 2300 / 10000 [ 23%] (Warmup)
## Chain 1 Iteration: 2400 / 10000 [ 24%] (Warmup)
## Chain 1 Iteration: 2500 / 10000 [ 25%] (Warmup)
## Chain 1 Iteration: 2600 / 10000 [ 26%] (Warmup)
## Chain 1 Iteration: 2700 / 10000 [ 27%] (Warmup)
## Chain 1 Iteration: 2800 / 10000 [ 28%] (Warmup)
## Chain 1 Iteration: 2900 / 10000 [ 29%] (Warmup)
## Chain 1 Iteration: 3000 / 10000 [ 30%] (Warmup)
## Chain 1 Iteration: 3100 / 10000 [ 31%] (Warmup)
## Chain 1 Iteration: 3200 / 10000 [ 32%] (Warmup)
## Chain 1 Iteration: 3300 / 10000 [ 33%] (Warmup)
## Chain 1 Iteration: 3400 / 10000 [ 34%] (Warmup)
## Chain 1 Iteration: 3500 / 10000 [ 35%] (Warmup)
## Chain 1 Iteration: 3600 / 10000 [ 36%] (Warmup)
## Chain 1 Iteration: 3700 / 10000 [ 37%] (Warmup)
## Chain 1 Iteration: 3800 / 10000 [ 38%] (Warmup)
## Chain 1 Iteration: 3900 / 10000 [ 39%] (Warmup)
## Chain 1 Iteration: 4000 / 10000 [ 40%] (Warmup)
## Chain 1 Iteration: 4100 / 10000 [ 41%] (Warmup)
## Chain 1 Iteration: 4200 / 10000 [ 42%] (Warmup)
## Chain 1 Iteration: 4300 / 10000 [ 43%] (Warmup)
## Chain 1 Iteration: 4400 / 10000 [ 44%] (Warmup)
## Chain 1 Iteration: 4500 / 10000 [ 45%] (Warmup)
## Chain 1 Iteration: 4600 / 10000 [ 46%] (Warmup)
## Chain 1 Iteration: 4700 / 10000 [ 47%] (Warmup)
## Chain 1 Iteration: 4800 / 10000 [ 48%] (Warmup)
## Chain 1 Iteration: 4900 / 10000 [ 49%] (Warmup)
## Chain 1 Iteration: 5000 / 10000 [ 50%] (Warmup)
## Chain 1 Iteration: 5001 / 10000 [ 50%] (Sampling)
## Chain 1 Iteration: 5100 / 10000 [ 51%] (Sampling)
## Chain 1 Iteration: 5200 / 10000 [ 52%] (Sampling)
## Chain 1 Iteration: 5300 / 10000 [ 53%] (Sampling)
## Chain 1 Iteration: 5400 / 10000 [ 54%] (Sampling)
## Chain 1 Iteration: 5500 / 10000 [ 55%] (Sampling)
## Chain 1 Iteration: 5600 / 10000 [ 56%] (Sampling)
## Chain 1 Iteration: 5700 / 10000 [ 57%] (Sampling)
## Chain 1 Iteration: 5800 / 10000 [ 58%] (Sampling)
## Chain 1 Iteration: 5900 / 10000 [ 59%] (Sampling)
## Chain 1 Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 1 Iteration: 6100 / 10000 [ 61%] (Sampling)
## Chain 1 Iteration: 6200 / 10000 [ 62%] (Sampling)
## Chain 1 Iteration: 6300 / 10000 [ 63%] (Sampling)
## Chain 1 Iteration: 6400 / 10000 [ 64%] (Sampling)
## Chain 1 Iteration: 6500 / 10000 [ 65%] (Sampling)
## Chain 1 Iteration: 6600 / 10000 [ 66%] (Sampling)
## Chain 1 Iteration: 6700 / 10000 [ 67%] (Sampling)
## Chain 1 Iteration: 6800 / 10000 [ 68%] (Sampling)
## Chain 1 Iteration: 6900 / 10000 [ 69%] (Sampling)
## Chain 1 Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 1 Iteration: 7100 / 10000 [ 71%] (Sampling)
## Chain 1 Iteration: 7200 / 10000 [ 72%] (Sampling)
## Chain 1 Iteration: 7300 / 10000 [ 73%] (Sampling)
## Chain 1 Iteration: 7400 / 10000 [ 74%] (Sampling)
## Chain 1 Iteration: 7500 / 10000 [ 75%] (Sampling)
## Chain 1 Iteration: 7600 / 10000 [ 76%] (Sampling)
## Chain 1 Iteration: 7700 / 10000 [ 77%] (Sampling)
## Chain 1 Iteration: 7800 / 10000 [ 78%] (Sampling)
## Chain 1 Iteration: 7900 / 10000 [ 79%] (Sampling)
## Chain 1 Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 1 Iteration: 8100 / 10000 [ 81%] (Sampling)
## Chain 1 Iteration: 8200 / 10000 [ 82%] (Sampling)
## Chain 1 Iteration: 8300 / 10000 [ 83%] (Sampling)
## Chain 1 Iteration: 8400 / 10000 [ 84%] (Sampling)
## Chain 1 Iteration: 8500 / 10000 [ 85%] (Sampling)
## Chain 1 Iteration: 8600 / 10000 [ 86%] (Sampling)
## Chain 1 Iteration: 8700 / 10000 [ 87%] (Sampling)
## Chain 1 Iteration: 8800 / 10000 [ 88%] (Sampling)
## Chain 1 Iteration: 8900 / 10000 [ 89%] (Sampling)
## Chain 1 Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 1 Iteration: 9100 / 10000 [ 91%] (Sampling)
## Chain 1 Iteration: 9200 / 10000 [ 92%] (Sampling)
## Chain 1 Iteration: 9300 / 10000 [ 93%] (Sampling)
## Chain 1 Iteration: 9400 / 10000 [ 94%] (Sampling)
## Chain 1 Iteration: 9500 / 10000 [ 95%] (Sampling)
## Chain 1 Iteration: 9600 / 10000 [ 96%] (Sampling)
## Chain 1 Iteration: 9700 / 10000 [ 97%] (Sampling)
## Chain 1 Iteration: 9800 / 10000 [ 98%] (Sampling)
## Chain 1 Iteration: 9900 / 10000 [ 99%] (Sampling)
## Chain 1 Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 1 finished in 1.7 seconds.
## Chain 2 Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 10000 [ 1%] (Warmup)
## Chain 2 Iteration: 200 / 10000 [ 2%] (Warmup)
## Chain 2 Iteration: 300 / 10000 [ 3%] (Warmup)
## Chain 2 Iteration: 400 / 10000 [ 4%] (Warmup)
## Chain 2 Iteration: 500 / 10000 [ 5%] (Warmup)
## Chain 2 Iteration: 600 / 10000 [ 6%] (Warmup)
## Chain 2 Iteration: 700 / 10000 [ 7%] (Warmup)
## Chain 2 Iteration: 800 / 10000 [ 8%] (Warmup)
## Chain 2 Iteration: 900 / 10000 [ 9%] (Warmup)
## Chain 2 Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 2 Iteration: 1100 / 10000 [ 11%] (Warmup)
## Chain 2 Iteration: 1200 / 10000 [ 12%] (Warmup)
## Chain 2 Iteration: 1300 / 10000 [ 13%] (Warmup)
## Chain 2 Iteration: 1400 / 10000 [ 14%] (Warmup)
## Chain 2 Iteration: 1500 / 10000 [ 15%] (Warmup)
## Chain 2 Iteration: 1600 / 10000 [ 16%] (Warmup)
## Chain 2 Iteration: 1700 / 10000 [ 17%] (Warmup)
## Chain 2 Iteration: 1800 / 10000 [ 18%] (Warmup)
## Chain 2 Iteration: 1900 / 10000 [ 19%] (Warmup)
## Chain 2 Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 2 Iteration: 2100 / 10000 [ 21%] (Warmup)
## Chain 2 Iteration: 2200 / 10000 [ 22%] (Warmup)
## Chain 2 Iteration: 2300 / 10000 [ 23%] (Warmup)
## Chain 2 Iteration: 2400 / 10000 [ 24%] (Warmup)
## Chain 2 Iteration: 2500 / 10000 [ 25%] (Warmup)
## Chain 2 Iteration: 2600 / 10000 [ 26%] (Warmup)
## Chain 2 Iteration: 2700 / 10000 [ 27%] (Warmup)
## Chain 2 Iteration: 2800 / 10000 [ 28%] (Warmup)
## Chain 2 Iteration: 2900 / 10000 [ 29%] (Warmup)
## Chain 2 Iteration: 3000 / 10000 [ 30%] (Warmup)
## Chain 2 Iteration: 3100 / 10000 [ 31%] (Warmup)
## Chain 2 Iteration: 3200 / 10000 [ 32%] (Warmup)
## Chain 2 Iteration: 3300 / 10000 [ 33%] (Warmup)
## Chain 2 Iteration: 3400 / 10000 [ 34%] (Warmup)
## Chain 2 Iteration: 3500 / 10000 [ 35%] (Warmup)
## Chain 2 Iteration: 3600 / 10000 [ 36%] (Warmup)
## Chain 2 Iteration: 3700 / 10000 [ 37%] (Warmup)
## Chain 2 Iteration: 3800 / 10000 [ 38%] (Warmup)
## Chain 2 Iteration: 3900 / 10000 [ 39%] (Warmup)
## Chain 2 Iteration: 4000 / 10000 [ 40%] (Warmup)
## Chain 2 Iteration: 4100 / 10000 [ 41%] (Warmup)
## Chain 2 Iteration: 4200 / 10000 [ 42%] (Warmup)
## Chain 2 Iteration: 4300 / 10000 [ 43%] (Warmup)
## Chain 2 Iteration: 4400 / 10000 [ 44%] (Warmup)
## Chain 2 Iteration: 4500 / 10000 [ 45%] (Warmup)
## Chain 2 Iteration: 4600 / 10000 [ 46%] (Warmup)
## Chain 2 Iteration: 4700 / 10000 [ 47%] (Warmup)
## Chain 2 Iteration: 4800 / 10000 [ 48%] (Warmup)
## Chain 2 Iteration: 4900 / 10000 [ 49%] (Warmup)
## Chain 2 Iteration: 5000 / 10000 [ 50%] (Warmup)
## Chain 2 Iteration: 5001 / 10000 [ 50%] (Sampling)
## Chain 2 Iteration: 5100 / 10000 [ 51%] (Sampling)
## Chain 2 Iteration: 5200 / 10000 [ 52%] (Sampling)
## Chain 2 Iteration: 5300 / 10000 [ 53%] (Sampling)
## Chain 2 Iteration: 5400 / 10000 [ 54%] (Sampling)
## Chain 2 Iteration: 5500 / 10000 [ 55%] (Sampling)
## Chain 2 Iteration: 5600 / 10000 [ 56%] (Sampling)
## Chain 2 Iteration: 5700 / 10000 [ 57%] (Sampling)
## Chain 2 Iteration: 5800 / 10000 [ 58%] (Sampling)
## Chain 2 Iteration: 5900 / 10000 [ 59%] (Sampling)
## Chain 2 Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 2 Iteration: 6100 / 10000 [ 61%] (Sampling)
## Chain 2 Iteration: 6200 / 10000 [ 62%] (Sampling)
## Chain 2 Iteration: 6300 / 10000 [ 63%] (Sampling)
## Chain 2 Iteration: 6400 / 10000 [ 64%] (Sampling)
## Chain 2 Iteration: 6500 / 10000 [ 65%] (Sampling)
## Chain 2 Iteration: 6600 / 10000 [ 66%] (Sampling)
## Chain 2 Iteration: 6700 / 10000 [ 67%] (Sampling)
## Chain 2 Iteration: 6800 / 10000 [ 68%] (Sampling)
## Chain 2 Iteration: 6900 / 10000 [ 69%] (Sampling)
## Chain 2 Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 2 Iteration: 7100 / 10000 [ 71%] (Sampling)
## Chain 2 Iteration: 7200 / 10000 [ 72%] (Sampling)
## Chain 2 Iteration: 7300 / 10000 [ 73%] (Sampling)
## Chain 2 Iteration: 7400 / 10000 [ 74%] (Sampling)
## Chain 2 Iteration: 7500 / 10000 [ 75%] (Sampling)
## Chain 2 Iteration: 7600 / 10000 [ 76%] (Sampling)
## Chain 2 Iteration: 7700 / 10000 [ 77%] (Sampling)
## Chain 2 Iteration: 7800 / 10000 [ 78%] (Sampling)
## Chain 2 Iteration: 7900 / 10000 [ 79%] (Sampling)
## Chain 2 Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 2 Iteration: 8100 / 10000 [ 81%] (Sampling)
## Chain 2 Iteration: 8200 / 10000 [ 82%] (Sampling)
## Chain 2 Iteration: 8300 / 10000 [ 83%] (Sampling)
## Chain 2 Iteration: 8400 / 10000 [ 84%] (Sampling)
## Chain 2 Iteration: 8500 / 10000 [ 85%] (Sampling)
## Chain 2 Iteration: 8600 / 10000 [ 86%] (Sampling)
## Chain 2 Iteration: 8700 / 10000 [ 87%] (Sampling)
## Chain 2 Iteration: 8800 / 10000 [ 88%] (Sampling)
## Chain 2 Iteration: 8900 / 10000 [ 89%] (Sampling)
## Chain 2 Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 2 Iteration: 9100 / 10000 [ 91%] (Sampling)
## Chain 2 Iteration: 9200 / 10000 [ 92%] (Sampling)
## Chain 2 Iteration: 9300 / 10000 [ 93%] (Sampling)
## Chain 2 Iteration: 9400 / 10000 [ 94%] (Sampling)
## Chain 2 Iteration: 9500 / 10000 [ 95%] (Sampling)
## Chain 2 Iteration: 9600 / 10000 [ 96%] (Sampling)
## Chain 2 Iteration: 9700 / 10000 [ 97%] (Sampling)
## Chain 2 Iteration: 9800 / 10000 [ 98%] (Sampling)
## Chain 2 Iteration: 9900 / 10000 [ 99%] (Sampling)
## Chain 2 Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 2 finished in 1.7 seconds.
## Chain 3 Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 10000 [ 1%] (Warmup)
## Chain 3 Iteration: 200 / 10000 [ 2%] (Warmup)
## Chain 3 Iteration: 300 / 10000 [ 3%] (Warmup)
## Chain 3 Iteration: 400 / 10000 [ 4%] (Warmup)
## Chain 3 Iteration: 500 / 10000 [ 5%] (Warmup)
## Chain 3 Iteration: 600 / 10000 [ 6%] (Warmup)
## Chain 3 Iteration: 700 / 10000 [ 7%] (Warmup)
## Chain 3 Iteration: 800 / 10000 [ 8%] (Warmup)
## Chain 3 Iteration: 900 / 10000 [ 9%] (Warmup)
## Chain 3 Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 3 Iteration: 1100 / 10000 [ 11%] (Warmup)
## Chain 3 Iteration: 1200 / 10000 [ 12%] (Warmup)
## Chain 3 Iteration: 1300 / 10000 [ 13%] (Warmup)
## Chain 3 Iteration: 1400 / 10000 [ 14%] (Warmup)
## Chain 3 Iteration: 1500 / 10000 [ 15%] (Warmup)
## Chain 3 Iteration: 1600 / 10000 [ 16%] (Warmup)
## Chain 3 Iteration: 1700 / 10000 [ 17%] (Warmup)
## Chain 3 Iteration: 1800 / 10000 [ 18%] (Warmup)
## Chain 3 Iteration: 1900 / 10000 [ 19%] (Warmup)
## Chain 3 Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 3 Iteration: 2100 / 10000 [ 21%] (Warmup)
## Chain 3 Iteration: 2200 / 10000 [ 22%] (Warmup)
## Chain 3 Iteration: 2300 / 10000 [ 23%] (Warmup)
## Chain 3 Iteration: 2400 / 10000 [ 24%] (Warmup)
## Chain 3 Iteration: 2500 / 10000 [ 25%] (Warmup)
## Chain 3 Iteration: 2600 / 10000 [ 26%] (Warmup)
## Chain 3 Iteration: 2700 / 10000 [ 27%] (Warmup)
## Chain 3 Iteration: 2800 / 10000 [ 28%] (Warmup)
## Chain 3 Iteration: 2900 / 10000 [ 29%] (Warmup)
## Chain 3 Iteration: 3000 / 10000 [ 30%] (Warmup)
## Chain 3 Iteration: 3100 / 10000 [ 31%] (Warmup)
## Chain 3 Iteration: 3200 / 10000 [ 32%] (Warmup)
## Chain 3 Iteration: 3300 / 10000 [ 33%] (Warmup)
## Chain 3 Iteration: 3400 / 10000 [ 34%] (Warmup)
## Chain 3 Iteration: 3500 / 10000 [ 35%] (Warmup)
## Chain 3 Iteration: 3600 / 10000 [ 36%] (Warmup)
## Chain 3 Iteration: 3700 / 10000 [ 37%] (Warmup)
## Chain 3 Iteration: 3800 / 10000 [ 38%] (Warmup)
## Chain 3 Iteration: 3900 / 10000 [ 39%] (Warmup)
## Chain 3 Iteration: 4000 / 10000 [ 40%] (Warmup)
## Chain 3 Iteration: 4100 / 10000 [ 41%] (Warmup)
## Chain 3 Iteration: 4200 / 10000 [ 42%] (Warmup)
## Chain 3 Iteration: 4300 / 10000 [ 43%] (Warmup)
## Chain 3 Iteration: 4400 / 10000 [ 44%] (Warmup)
## Chain 3 Iteration: 4500 / 10000 [ 45%] (Warmup)
## Chain 3 Iteration: 4600 / 10000 [ 46%] (Warmup)
## Chain 3 Iteration: 4700 / 10000 [ 47%] (Warmup)
## Chain 3 Iteration: 4800 / 10000 [ 48%] (Warmup)
## Chain 3 Iteration: 4900 / 10000 [ 49%] (Warmup)
## Chain 3 Iteration: 5000 / 10000 [ 50%] (Warmup)
## Chain 3 Iteration: 5001 / 10000 [ 50%] (Sampling)
## Chain 3 Iteration: 5100 / 10000 [ 51%] (Sampling)
## Chain 3 Iteration: 5200 / 10000 [ 52%] (Sampling)
## Chain 3 Iteration: 5300 / 10000 [ 53%] (Sampling)
## Chain 3 Iteration: 5400 / 10000 [ 54%] (Sampling)
## Chain 3 Iteration: 5500 / 10000 [ 55%] (Sampling)
## Chain 3 Iteration: 5600 / 10000 [ 56%] (Sampling)
## Chain 3 Iteration: 5700 / 10000 [ 57%] (Sampling)
## Chain 3 Iteration: 5800 / 10000 [ 58%] (Sampling)
## Chain 3 Iteration: 5900 / 10000 [ 59%] (Sampling)
## Chain 3 Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 3 Iteration: 6100 / 10000 [ 61%] (Sampling)
## Chain 3 Iteration: 6200 / 10000 [ 62%] (Sampling)
## Chain 3 Iteration: 6300 / 10000 [ 63%] (Sampling)
## Chain 3 Iteration: 6400 / 10000 [ 64%] (Sampling)
## Chain 3 Iteration: 6500 / 10000 [ 65%] (Sampling)
## Chain 3 Iteration: 6600 / 10000 [ 66%] (Sampling)
## Chain 3 Iteration: 6700 / 10000 [ 67%] (Sampling)
## Chain 3 Iteration: 6800 / 10000 [ 68%] (Sampling)
## Chain 3 Iteration: 6900 / 10000 [ 69%] (Sampling)
## Chain 3 Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 3 Iteration: 7100 / 10000 [ 71%] (Sampling)
## Chain 3 Iteration: 7200 / 10000 [ 72%] (Sampling)
## Chain 3 Iteration: 7300 / 10000 [ 73%] (Sampling)
## Chain 3 Iteration: 7400 / 10000 [ 74%] (Sampling)
## Chain 3 Iteration: 7500 / 10000 [ 75%] (Sampling)
## Chain 3 Iteration: 7600 / 10000 [ 76%] (Sampling)
## Chain 3 Iteration: 7700 / 10000 [ 77%] (Sampling)
## Chain 3 Iteration: 7800 / 10000 [ 78%] (Sampling)
## Chain 3 Iteration: 7900 / 10000 [ 79%] (Sampling)
## Chain 3 Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 3 Iteration: 8100 / 10000 [ 81%] (Sampling)
## Chain 3 Iteration: 8200 / 10000 [ 82%] (Sampling)
## Chain 3 Iteration: 8300 / 10000 [ 83%] (Sampling)
## Chain 3 Iteration: 8400 / 10000 [ 84%] (Sampling)
## Chain 3 Iteration: 8500 / 10000 [ 85%] (Sampling)
## Chain 3 Iteration: 8600 / 10000 [ 86%] (Sampling)
## Chain 3 Iteration: 8700 / 10000 [ 87%] (Sampling)
## Chain 3 Iteration: 8800 / 10000 [ 88%] (Sampling)
## Chain 3 Iteration: 8900 / 10000 [ 89%] (Sampling)
## Chain 3 Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 3 Iteration: 9100 / 10000 [ 91%] (Sampling)
## Chain 3 Iteration: 9200 / 10000 [ 92%] (Sampling)
## Chain 3 Iteration: 9300 / 10000 [ 93%] (Sampling)
## Chain 3 Iteration: 9400 / 10000 [ 94%] (Sampling)
## Chain 3 Iteration: 9500 / 10000 [ 95%] (Sampling)
## Chain 3 Iteration: 9600 / 10000 [ 96%] (Sampling)
## Chain 3 Iteration: 9700 / 10000 [ 97%] (Sampling)
## Chain 3 Iteration: 9800 / 10000 [ 98%] (Sampling)
## Chain 3 Iteration: 9900 / 10000 [ 99%] (Sampling)
## Chain 3 Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 3 finished in 1.6 seconds.
## Chain 4 Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 10000 [ 1%] (Warmup)
## Chain 4 Iteration: 200 / 10000 [ 2%] (Warmup)
## Chain 4 Iteration: 300 / 10000 [ 3%] (Warmup)
## Chain 4 Iteration: 400 / 10000 [ 4%] (Warmup)
## Chain 4 Iteration: 500 / 10000 [ 5%] (Warmup)
## Chain 4 Iteration: 600 / 10000 [ 6%] (Warmup)
## Chain 4 Iteration: 700 / 10000 [ 7%] (Warmup)
## Chain 4 Iteration: 800 / 10000 [ 8%] (Warmup)
## Chain 4 Iteration: 900 / 10000 [ 9%] (Warmup)
## Chain 4 Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 4 Iteration: 1100 / 10000 [ 11%] (Warmup)
## Chain 4 Iteration: 1200 / 10000 [ 12%] (Warmup)
## Chain 4 Iteration: 1300 / 10000 [ 13%] (Warmup)
## Chain 4 Iteration: 1400 / 10000 [ 14%] (Warmup)
## Chain 4 Iteration: 1500 / 10000 [ 15%] (Warmup)
## Chain 4 Iteration: 1600 / 10000 [ 16%] (Warmup)
## Chain 4 Iteration: 1700 / 10000 [ 17%] (Warmup)
## Chain 4 Iteration: 1800 / 10000 [ 18%] (Warmup)
## Chain 4 Iteration: 1900 / 10000 [ 19%] (Warmup)
## Chain 4 Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 4 Iteration: 2100 / 10000 [ 21%] (Warmup)
## Chain 4 Iteration: 2200 / 10000 [ 22%] (Warmup)
## Chain 4 Iteration: 2300 / 10000 [ 23%] (Warmup)
## Chain 4 Iteration: 2400 / 10000 [ 24%] (Warmup)
## Chain 4 Iteration: 2500 / 10000 [ 25%] (Warmup)
## Chain 4 Iteration: 2600 / 10000 [ 26%] (Warmup)
## Chain 4 Iteration: 2700 / 10000 [ 27%] (Warmup)
## Chain 4 Iteration: 2800 / 10000 [ 28%] (Warmup)
## Chain 4 Iteration: 2900 / 10000 [ 29%] (Warmup)
## Chain 4 Iteration: 3000 / 10000 [ 30%] (Warmup)
## Chain 4 Iteration: 3100 / 10000 [ 31%] (Warmup)
## Chain 4 Iteration: 3200 / 10000 [ 32%] (Warmup)
## Chain 4 Iteration: 3300 / 10000 [ 33%] (Warmup)
## Chain 4 Iteration: 3400 / 10000 [ 34%] (Warmup)
## Chain 4 Iteration: 3500 / 10000 [ 35%] (Warmup)
## Chain 4 Iteration: 3600 / 10000 [ 36%] (Warmup)
## Chain 4 Iteration: 3700 / 10000 [ 37%] (Warmup)
## Chain 4 Iteration: 3800 / 10000 [ 38%] (Warmup)
## Chain 4 Iteration: 3900 / 10000 [ 39%] (Warmup)
## Chain 4 Iteration: 4000 / 10000 [ 40%] (Warmup)
## Chain 4 Iteration: 4100 / 10000 [ 41%] (Warmup)
## Chain 4 Iteration: 4200 / 10000 [ 42%] (Warmup)
## Chain 4 Iteration: 4300 / 10000 [ 43%] (Warmup)
## Chain 4 Iteration: 4400 / 10000 [ 44%] (Warmup)
## Chain 4 Iteration: 4500 / 10000 [ 45%] (Warmup)
## Chain 4 Iteration: 4600 / 10000 [ 46%] (Warmup)
## Chain 4 Iteration: 4700 / 10000 [ 47%] (Warmup)
## Chain 4 Iteration: 4800 / 10000 [ 48%] (Warmup)
## Chain 4 Iteration: 4900 / 10000 [ 49%] (Warmup)
## Chain 4 Iteration: 5000 / 10000 [ 50%] (Warmup)
## Chain 4 Iteration: 5001 / 10000 [ 50%] (Sampling)
## Chain 4 Iteration: 5100 / 10000 [ 51%] (Sampling)
## Chain 4 Iteration: 5200 / 10000 [ 52%] (Sampling)
## Chain 4 Iteration: 5300 / 10000 [ 53%] (Sampling)
## Chain 4 Iteration: 5400 / 10000 [ 54%] (Sampling)
## Chain 4 Iteration: 5500 / 10000 [ 55%] (Sampling)
## Chain 4 Iteration: 5600 / 10000 [ 56%] (Sampling)
## Chain 4 Iteration: 5700 / 10000 [ 57%] (Sampling)
## Chain 4 Iteration: 5800 / 10000 [ 58%] (Sampling)
## Chain 4 Iteration: 5900 / 10000 [ 59%] (Sampling)
## Chain 4 Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 4 Iteration: 6100 / 10000 [ 61%] (Sampling)
## Chain 4 Iteration: 6200 / 10000 [ 62%] (Sampling)
## Chain 4 Iteration: 6300 / 10000 [ 63%] (Sampling)
## Chain 4 Iteration: 6400 / 10000 [ 64%] (Sampling)
## Chain 4 Iteration: 6500 / 10000 [ 65%] (Sampling)
## Chain 4 Iteration: 6600 / 10000 [ 66%] (Sampling)
## Chain 4 Iteration: 6700 / 10000 [ 67%] (Sampling)
## Chain 4 Iteration: 6800 / 10000 [ 68%] (Sampling)
## Chain 4 Iteration: 6900 / 10000 [ 69%] (Sampling)
## Chain 4 Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 4 Iteration: 7100 / 10000 [ 71%] (Sampling)
## Chain 4 Iteration: 7200 / 10000 [ 72%] (Sampling)
## Chain 4 Iteration: 7300 / 10000 [ 73%] (Sampling)
## Chain 4 Iteration: 7400 / 10000 [ 74%] (Sampling)
## Chain 4 Iteration: 7500 / 10000 [ 75%] (Sampling)
## Chain 4 Iteration: 7600 / 10000 [ 76%] (Sampling)
## Chain 4 Iteration: 7700 / 10000 [ 77%] (Sampling)
## Chain 4 Iteration: 7800 / 10000 [ 78%] (Sampling)
## Chain 4 Iteration: 7900 / 10000 [ 79%] (Sampling)
## Chain 4 Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 4 Iteration: 8100 / 10000 [ 81%] (Sampling)
## Chain 4 Iteration: 8200 / 10000 [ 82%] (Sampling)
## Chain 4 Iteration: 8300 / 10000 [ 83%] (Sampling)
## Chain 4 Iteration: 8400 / 10000 [ 84%] (Sampling)
## Chain 4 Iteration: 8500 / 10000 [ 85%] (Sampling)
## Chain 4 Iteration: 8600 / 10000 [ 86%] (Sampling)
## Chain 4 Iteration: 8700 / 10000 [ 87%] (Sampling)
## Chain 4 Iteration: 8800 / 10000 [ 88%] (Sampling)
## Chain 4 Iteration: 8900 / 10000 [ 89%] (Sampling)
## Chain 4 Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 4 Iteration: 9100 / 10000 [ 91%] (Sampling)
## Chain 4 Iteration: 9200 / 10000 [ 92%] (Sampling)
## Chain 4 Iteration: 9300 / 10000 [ 93%] (Sampling)
## Chain 4 Iteration: 9400 / 10000 [ 94%] (Sampling)
## Chain 4 Iteration: 9500 / 10000 [ 95%] (Sampling)
## Chain 4 Iteration: 9600 / 10000 [ 96%] (Sampling)
## Chain 4 Iteration: 9700 / 10000 [ 97%] (Sampling)
## Chain 4 Iteration: 9800 / 10000 [ 98%] (Sampling)
## Chain 4 Iteration: 9900 / 10000 [ 99%] (Sampling)
## Chain 4 Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 4 finished in 1.6 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 1.6 seconds.
## Total execution time: 7.5 seconds.
precis(m.ulam.int)
## mean sd 5.5% 94.5% n_eff Rhat4
## alpha 0.64336708 0.7100770 -0.4860052 1.7798987 13187.53 1.0000284
## beta1 -0.97564874 0.3909612 -1.6015411 -0.3496857 13439.08 0.9998985
## beta2 1.87634927 0.3138518 1.3742196 2.3814632 15000.44 1.0003276
## beta3 0.08336638 0.4775583 -0.6894643 0.8378146 14371.38 0.9999609
## beta4 -0.98685923 0.3925373 -1.6083417 -0.3596568 13776.34 1.0000080
compare(m.ulam, m.ulam.int)
## WAIC SE dWAIC dSE pWAIC weight
## m.ulam.int 57.67800 14.52790 0.000000 NA 7.639628 0.93195048
## m.ulam 62.91209 16.07169 5.234088 4.812959 8.163386 0.06804952
ANSWER Given the WAIC values are almost exactly the same, I don’t think the added interaction adds to the model.