Ecuaciones - Fórmulas - Sintaxis y comandos LaTeX

Superíndice - Potencia

\[ e=mc^2 \]

\[ a^2 + b^2 = c^2 \]

Subíndice

\[ H_2O \]

\[ NH_3 \] ## Fracciones - Casos - Ejemplos

\[ \frac{1}{2} \]

\[ \frac{1}{5} + \frac{1}{2} \] \[ \frac{5}{8} \times \frac{5}{6} \] \[ \frac{5}{8} \div \frac{3}{8} \] \[ (\frac{3}{2}) \] \[ \left(\frac{6}{7}\right)^2 \] Dada la fracción \(\frac{1}{2}\),podemos determinar el valor de la variable …

Dada la fracción \(\tfrac{1}{2}\),podemos determinar el valor de la variable …

Dada la fracción \(\dfrac{1}{2}\),podemos determinar el valor de la variable …

Raíces

\[ \sqrt{2} = 1.412135 \] \[ \sqrt{3} = 1.7320508 \] \[ \sqrt{4} = 2 \]

Sumatoria

\[ \sum_{i=1}^5 2i \] \[ \sum_{i=3}^6 2i -1 \]

\[ \sum_{i=2}^6 \frac{i+1}{i} \]

Logaritmos

\[ \log_7{49} = 2 \] \[ \log_6{216} = 3 \] \[ \log_3{81} = 4 \]

Matrices

\[ \begin{matrix} 10 & 11 & 4 \\ 3 & 9 & 2 \\ 8 & 4 & 6 \end{matrix} \] \[ \begin{pmatrix} 10 & 11 & 4 \\ 3 & 9 & 2 \\ 8 & 4 & 6 \end{pmatrix} \] \[ \begin{bmatrix} 10 & 11 & 4 \\ 3 & 9 & 2 \\ 8 & 4 & 6 \end{bmatrix} \]

\[ \begin{Bmatrix} 10 & 11 & 4 \\ 3 & 9 & 2 \\ 8 & 4 & 6 \end{Bmatrix} \]

\[ \begin{vmatrix} 10 & 11 & 4 \\ 3 & 9 & 2 \\ 8 & 4 & 6 \end{vmatrix} \]

\[ \begin{Vmatrix} 10 & 11 & 4 \\ 3 & 9 & 2 \\ 8 & 4 & 6 \end{Vmatrix} \]

Ecuaciones

Dada la función

\[ \begin{equation} f(x)=y \end{equation} \] Podemos determinar el valor de la variable

\[ \text{Fórmula de Ecuación 2° Grado} \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] ## Símbolos Matemáticos Básicos

\[ (900) \] \[ [900] \] \[ |900| \] \[ 900 > 877 \] \[ 566 < 900 \]

LS0tDQp0aXRsZTogIkVjdWFjaW9uZXMgLSBGw7NybXVsYXMgZW4gTWFya2Rvd24iDQpzdWJ0aXRsZTogIk1hcmtkb3duIC0gTGFUZVgiDQphdXRob3I6ICJFbWVyc29uIFN1YXJleiINCmRhdGU6ICIyMDIyLzA0LzIzIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCi0tLQ0KPCEtLSBVc2FyIHNpbnRheGlzIHkgY29tYW5kb3MgTGFUZVggcGFyYSBhw4PCsWFkaXIgZWN1YWNpb25lcyB5IGbDg8Kzcm11bGFzIGEgbnVlc3RybyBkb2N1bWVudG8gTWFya2Rvd24gLS0+DQoNCiMgRWN1YWNpb25lcyAtIEbDs3JtdWxhcyAtIFNpbnRheGlzIHkgY29tYW5kb3MgTGFUZVgNCg0KIyMgU3VwZXLDrW5kaWNlIC0gUG90ZW5jaWENCg0KJCQNCmU9bWNeMg0KJCQNCg0KJCQNCmFeMiArIGJeMiA9IGNeMg0KJCQNCg0KIyMgU3Viw61uZGljZQ0KDQokJA0KSF8yTw0KJCQNCg0KDQokJA0KTkhfMw0KJCQNCiMjIEZyYWNjaW9uZXMgLSBDYXNvcyAtIEVqZW1wbG9zDQoNCiQkDQpcZnJhY3sxfXsyfQ0KJCQNCg0KJCQNClxmcmFjezF9ezV9ICsgXGZyYWN7MX17Mn0NCiQkDQokJA0KXGZyYWN7NX17OH0gXHRpbWVzIFxmcmFjezV9ezZ9DQokJA0KJCQNClxmcmFjezV9ezh9IFxkaXYgXGZyYWN7M317OH0NCiQkDQokJA0KKFxmcmFjezN9ezJ9KQ0KJCQNCiQkDQpcbGVmdChcZnJhY3s2fXs3fVxyaWdodCleMg0KJCQNCkRhZGEgbGEgZnJhY2Npw7NuICRcZnJhY3sxfXsyfSQscG9kZW1vcyBkZXRlcm1pbmFyIGVsIHZhbG9yIGRlIGxhIHZhcmlhYmxlIC4uLg0KDQpEYWRhIGxhIGZyYWNjacOzbiAkXHRmcmFjezF9ezJ9JCxwb2RlbW9zIGRldGVybWluYXIgZWwgdmFsb3IgZGUgbGEgdmFyaWFibGUgLi4uDQoNCkRhZGEgbGEgZnJhY2Npw7NuICRcZGZyYWN7MX17Mn0kLHBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZSAuLi4NCg0KIyMgUmHDrWNlcw0KDQokJA0KXHNxcnR7Mn0gPSAxLjQxMjEzNQ0KJCQNCiQkDQpcc3FydHszfSA9IDEuNzMyMDUwOA0KJCQNCiQkDQpcc3FydHs0fSA9IDINCiQkDQoNCiMjIFN1bWF0b3JpYQ0KDQokJA0KXHN1bV97aT0xfV41IDJpDQokJA0KJCQNClxzdW1fe2k9M31eNiAyaSAtMQ0KJCQNCg0KJCQNClxzdW1fe2k9Mn1eNiBcZnJhY3tpKzF9e2l9DQokJA0KDQojIyBMb2dhcml0bW9zDQoNCiQkDQpcbG9nXzd7NDl9ID0gMg0KJCQNCiQkDQpcbG9nXzZ7MjE2fSA9IDMNCiQkDQokJA0KXGxvZ18zezgxfSA9IDQNCiQkDQoNCiMjIE1hdHJpY2VzDQoNCiQkDQpcYmVnaW57bWF0cml4fQ0KMTAgJiAxMSAmIDQgXFwNCjMgJiA5ICYgMiBcXA0KOCAmIDQgJiA2DQpcZW5ke21hdHJpeH0NCiQkDQokJA0KXGJlZ2lue3BtYXRyaXh9DQoxMCAmIDExICYgNCBcXA0KMyAmIDkgJiAyIFxcDQo4ICYgNCAmIDYNClxlbmR7cG1hdHJpeH0NCiQkDQokJA0KXGJlZ2lue2JtYXRyaXh9DQoxMCAmIDExICYgNCBcXA0KMyAmIDkgJiAyIFxcDQo4ICYgNCAmIDYNClxlbmR7Ym1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Qm1hdHJpeH0NCjEwICYgMTEgJiA0IFxcDQozICYgOSAmIDIgXFwNCjggJiA0ICYgNg0KXGVuZHtCbWF0cml4fQ0KJCQNCg0KJCQNClxiZWdpbnt2bWF0cml4fQ0KMTAgJiAxMSAmIDQgXFwNCjMgJiA5ICYgMiBcXA0KOCAmIDQgJiA2DQpcZW5ke3ZtYXRyaXh9DQokJA0KDQoNCiQkDQpcYmVnaW57Vm1hdHJpeH0NCjEwICYgMTEgJiA0IFxcDQozICYgOSAmIDIgXFwNCjggJiA0ICYgNg0KXGVuZHtWbWF0cml4fQ0KJCQNCg0KIyMgRWN1YWNpb25lcw0KDQpEYWRhIGxhIGZ1bmNpw7NuDQoNCiQkDQpcYmVnaW57ZXF1YXRpb259DQpmKHgpPXkNClxlbmR7ZXF1YXRpb259DQokJA0KUG9kZW1vcyBkZXRlcm1pbmFyIGVsIHZhbG9yIGRlIGxhIHZhcmlhYmxlDQoNCiQkDQpcdGV4dHtGw7NybXVsYSBkZSBFY3VhY2nDs24gMsKwIEdyYWRvfSBccXVhZCB4ID0gXGZyYWN7LWIgXHBtIFxzcXJ0e2JeMiAtIDRhY319ezJhfQ0KJCQNCiMjIFPDrW1ib2xvcyBNYXRlbcOhdGljb3MgQsOhc2ljb3MNCg0KJCQNCig5MDApDQokJA0KJCQNCls5MDBdDQokJA0KJCQNCnw5MDB8DQokJA0KJCQNCjkwMCA+IDg3Nw0KJCQNCiQkDQo1NjYgPCA5MDANCiQkDQoNCg0KDQoNCg0KDQo=