Ecuaciones - Fórmulas - Sintaxis y comandos LaTeX

Superíndice - Potencia

\[ e=mc^2 \]


\[ a^2 + b^2 = c^2 \]


Subíndice

\[ H_2O \]


\[ NH_3 \]

Fracciones - Casos - ejemplos

\[ \frac{1}{2} \]

\[ \frac{5}{6} + \frac{1}{2} \]

\[ \frac{1}{2} - \frac{8}{9} \]

\[ \frac{5}{8} \times \frac{5}{6} \]

\[ \frac{9}{8} \cdot \frac{3}{4} \]

\[ \frac{5}{6} \div \frac{3}{8} \]

\[ (\frac{3}{2}) \]

\[ \left(\frac{6}{7}\right)^2 \]

Dada la fracción \(\frac{1}{2}\), podmeos determinar el valor de la variable…

Dada la fracción \(\tfrac{1}{2}\), podemos determinar el valor de la variable…

Dada la fracción \(\dfrac{1}{2}\), podemos determinar el valor de la variable…

Raíces

\[ \sqrt{2} = 1.41213562 \]

\[ \sqrt{3} = 1.7320508 \]

\[ \sqrt{4} = 2 \]

Sumatoria

\[ \sum_{i=1}^5 2i \]

\[ \sum_{i=3}^6 2i -1 \]

\[ \sum_{i=2}^6 \frac{i+1}{i} \]

Logaritmos

\[ \log_7{49} = 2 \]

\[ \log_6{216} = 3 \]

\[ \log_3{81} = 4 \]

Matrices

\[ \begin{matrix} 1 & 8 & 19 \\ 8 & 9 & 10 \\ 9 & 8 & 10 \end{matrix} \]

\[ \begin{pmatrix} 1 & 8 & 19 \\ 8 & 9 & 10 \\ 9 & 8 & 10 \end{pmatrix} \]

\[ \begin{bmatrix} 1 & 8 & 19 \\ 8 & 9 & 10 \\ 9 & 8 & 10 \end{bmatrix} \]

\[ \begin{Bmatrix} 1 & 8 & 19 \\ 8 & 9 & 10 \\ 9 & 8 & 10 \end{Bmatrix} \]

\[ \begin{vmatrix} 1 & 8 & 19 \\ 8 & 9 & 10 \\ 9 & 8 & 10 \end{vmatrix} \]

\[ \begin{Vmatrix} 1 & 8 & 19 \\ 8 & 9 & 10 \\ 9 & 8 & 10 \end{Vmatrix} \]

Ecuaciones

Dada la función

\[ \begin{equation} f(x)=y \end{equation} \]

podemos determinar el valor de la variable

\[ \text{Fórmula Ecuación 2º Grado} \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Símbolos Matemáticos Básicos

\[ (900) \]

\[ [900] \]

\[ |900| \]

\[ 900 > 877 \]

\[ 566 < 900 \]

LS0tDQp0aXRsZTogIlNpbnRheGlzIC0gQ29tYW5kb3MgTGFUZVgiDQpzdWJ0aXRsZTogIkxhVGVYIC0gTWFya2Rvd24iDQphdXRob3I6ICJSZW56byBDw6FjZXJlcyBSb3NzaSINCmRhdGU6ICIyMDIyLzA0LzIzIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCi0tLQ0KDQo8IS0tIEHDsWFkaXIgZWN1YWNpb25lcyB5IGbDs3JtdWxhcyBlbiBNYXJrZG93biBoYWNpZW5kbyB1c28gZGUgTGFUZVggLS0+DQoNCiMgRWN1YWNpb25lcyAtIEbDs3JtdWxhcyAtIFNpbnRheGlzIHkgY29tYW5kb3MgTGFUZVgNCg0KIyMgU3VwZXLDrW5kaWNlIC0gUG90ZW5jaWENCg0KJCQNCmU9bWNeMg0KJCQNCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCiQkDQphXjIgKyBiXjIgPSBjXjINCiQkDQoNCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQ0KDQojIyBTdWLDrW5kaWNlDQoNCiQkDQpIXzJPDQokJA0KDQotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0NCg0KJCQNCk5IXzMNCiQkDQoNCiMjIEZyYWNjaW9uZXMgLSBDYXNvcyAtIGVqZW1wbG9zDQoNCiQkDQpcZnJhY3sxfXsyfQ0KJCQNCg0KJCQNClxmcmFjezV9ezZ9ICsgXGZyYWN7MX17Mn0NCiQkDQoNCiQkDQpcZnJhY3sxfXsyfSAtIFxmcmFjezh9ezl9DQokJA0KDQokJA0KXGZyYWN7NX17OH0gXHRpbWVzIFxmcmFjezV9ezZ9DQokJA0KDQokJA0KXGZyYWN7OX17OH0gXGNkb3QgXGZyYWN7M317NH0NCiQkDQoNCiQkDQpcZnJhY3s1fXs2fSBcZGl2IFxmcmFjezN9ezh9DQokJA0KDQokJA0KKFxmcmFjezN9ezJ9KQ0KJCQNCg0KJCQNClxsZWZ0KFxmcmFjezZ9ezd9XHJpZ2h0KV4yDQokJA0KDQpEYWRhIGxhIGZyYWNjacOzbiAkXGZyYWN7MX17Mn0kLCBwb2RtZW9zIGRldGVybWluYXIgZWwgdmFsb3IgZGUgbGEgdmFyaWFibGUuLi4NCg0KRGFkYSBsYSBmcmFjY2nDs24gJFx0ZnJhY3sxfXsyfSQsIHBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZS4uLg0KDQpEYWRhIGxhIGZyYWNjacOzbiAkXGRmcmFjezF9ezJ9JCwgcG9kZW1vcyBkZXRlcm1pbmFyIGVsIHZhbG9yIGRlIGxhIHZhcmlhYmxlLi4uDQoNCiMjIFJhw61jZXMNCg0KJCQNClxzcXJ0ezJ9ID0gMS40MTIxMzU2Mg0KJCQNCg0KJCQNClxzcXJ0ezN9ID0gMS43MzIwNTA4DQokJA0KDQokJA0KXHNxcnR7NH0gPSAyDQokJA0KDQojIyBTdW1hdG9yaWENCg0KJCQNClxzdW1fe2k9MX1eNSAyaQ0KJCQNCg0KJCQNClxzdW1fe2k9M31eNiAyaSAtMQ0KJCQNCg0KJCQNClxzdW1fe2k9Mn1eNiBcZnJhY3tpKzF9e2l9DQokJA0KDQojIyBMb2dhcml0bW9zDQoNCiQkDQpcbG9nXzd7NDl9ID0gMg0KJCQNCg0KJCQNClxsb2dfNnsyMTZ9ID0gMw0KJCQNCg0KJCQNClxsb2dfM3s4MX0gPSA0DQokJA0KDQojIyBNYXRyaWNlcw0KDQokJA0KXGJlZ2lue21hdHJpeH0NCjEgJiA4ICYgMTkgXFwNCjggJiA5ICYgMTAgXFwNCjkgJiA4ICYgMTANClxlbmR7bWF0cml4fQ0KJCQNCg0KJCQNClxiZWdpbntwbWF0cml4fQ0KMSAmIDggJiAxOSBcXA0KOCAmIDkgJiAxMCBcXA0KOSAmIDggJiAxMA0KXGVuZHtwbWF0cml4fQ0KJCQNCg0KJCQNClxiZWdpbntibWF0cml4fQ0KMSAmIDggJiAxOSBcXA0KOCAmIDkgJiAxMCBcXA0KOSAmIDggJiAxMA0KXGVuZHtibWF0cml4fQ0KJCQNCg0KJCQNClxiZWdpbntCbWF0cml4fQ0KMSAmIDggJiAxOSBcXA0KOCAmIDkgJiAxMCBcXA0KOSAmIDggJiAxMA0KXGVuZHtCbWF0cml4fQ0KJCQNCg0KJCQNClxiZWdpbnt2bWF0cml4fQ0KMSAmIDggJiAxOSBcXA0KOCAmIDkgJiAxMCBcXA0KOSAmIDggJiAxMA0KXGVuZHt2bWF0cml4fQ0KJCQNCg0KJCQNClxiZWdpbntWbWF0cml4fQ0KMSAmIDggJiAxOSBcXA0KOCAmIDkgJiAxMCBcXA0KOSAmIDggJiAxMA0KXGVuZHtWbWF0cml4fQ0KJCQNCg0KIyMgRWN1YWNpb25lcw0KDQpEYWRhIGxhIGZ1bmNpw7NuDQoNCiQkDQpcYmVnaW57ZXF1YXRpb259DQpmKHgpPXkNClxlbmR7ZXF1YXRpb259DQokJA0KDQpwb2RlbW9zIGRldGVybWluYXIgZWwgdmFsb3IgZGUgbGEgdmFyaWFibGUNCg0KJCQNClx0ZXh0e0bDs3JtdWxhIEVjdWFjacOzbiAywrogR3JhZG99IFxxdWFkIHggPSBcZnJhY3stYiBccG0gXHNxcnR7Yl4yIC0gNGFjfX17MmF9DQokJA0KDQojIyBTw61tYm9sb3MgTWF0ZW3DoXRpY29zIELDoXNpY29zDQoNCiQkDQooOTAwKQ0KJCQNCg0KJCQNCls5MDBdDQokJA0KDQokJA0KfDkwMHwNCiQkDQoNCiQkDQo5MDAgPiA4NzcNCiQkDQoNCiQkDQo1NjYgPCA5MDANCiQkDQo=