Ecuaciones - Fórmulas - Sintaxis y comandos LaTeX

Superíndice - Potencia

\[ E=mc^2 \]


\[ a^2 + b^2 = c^2 \]


Subíndice

\[ H_2O \]


\[ NH_3 \]


Fracciones - Casos - Ejemplos

\[ \frac{5}{2} \]

\[ \frac{5}{2} + \frac{3}{4} \]

\[ \frac{6}{7} - \frac{1}{2} \]

\[ \frac{8}{9} \times \frac{6}{7} \]

\[ \frac{4}{8} \cdot \frac{6}{7} \]

\[ \frac{9}{8} \div \frac{3}{2} \]

\[ (\frac{3}{4}) \]

\[ \left(\frac{1}{2}\right)^2 \]

Dada la fracción \(\frac{1}{2}\), podemos determinar el valor de la variable…

Dada la fracción\(\tfrac{1}{2}\), podemos determinar el valor de la variable…

Dada la fracción\(\dfrac{1}{2}\), podemos determinar el valor de la variable…

Raíces

\[ \sqrt{2} = 1.41421356 \]

\[ \sqrt{3} = 1.7320508 \]

\[ \sqrt{4} = 2 \]

Sumatoria

\[ \sum_{i=1}^5 2i \]

\[ \sum_{i=3}^6 2i -1 \]

\[ \sum_{i=2}^6 \frac{i+1}{i} \]

Logaritmos

\[ \log_7{49} = 2 \]

\[ \log_6{216}= 3 \]

\[ \log_3{81} = 4 \]

Matrices

\[ \begin{matrix} 10 & 11 & 4 \\ 3 & 9 & 2 \\ 8 & 4 & 6 \end{matrix} \]

\[ \begin{pmatrix} 10 & 11 & 4 \\ 3 & 9 & 2 \\ 8 & 4 & 6 \end{pmatrix} \]

\[ \begin{bmatrix} 10 & 11 & 4 \\ 3 & 9 & 2 \\ 8 & 4 & 6 \end{bmatrix} \]

\[ \begin{Bmatrix} 10 & 11 & 4 \\ 3 & 9 & 2 \\ 8 & 4 & 6 \end{Bmatrix} \]

\[ \begin{vmatrix} 10 & 11 & 4 \\ 3 & 9 & 2 \\ 8 & 4 & 6 \end{vmatrix} \]

\[ \begin{Vmatrix} 10 & 11 & 4 \\ 3 & 9 & 2 \\ 8 & 4 & 6 \end{Vmatrix} \]

Ecuaciones

Dada la función

\[ \begin{equation} f(x)=y \end{equation} \]

podemos determinar el valor de la variable…

\[ \text{Fórmula Ecuación de 2º Grado} \quad x=\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Símbolos Matemáticos Básicos

\[ (900) \]

\[ [900] \]

\[ |900| \]

\[ 900 > 455 \]

\[ 455 < 899 \]

LS0tDQp0aXRsZTogIkVjdWFjaW9uZXMgLSBGw7NybXVsYXMgZW4gTWFya2Rvd24iDQpzdWJ0aXRsZTogIk1hcmtkb3duIC0gTGFUZVgiDQphdXRob3I6ICJSZW56byBDw6FjZXJlcyBSb3NzaSINCmRhdGU6ICIyMDIyLzA0LzIzIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCi0tLQ0KDQo8IS0tIFVzYXIgc2ludGF4aXMgeSBjb21hbmRvcyBMYVRlWCBwYXJhIGHDsWFkaXIgZWN1YWNpb25lcyB5IGbDs3JtdWxhcyBhIG51ZXN0cm8gZG9jdW1lbnRvIE1hcmtkb3duIC0tPg0KDQojIEVjdWFjaW9uZXMgLSBGw7NybXVsYXMgLSBTaW50YXhpcyB5IGNvbWFuZG9zIExhVGVYDQoNCiMjIFN1cGVyw61uZGljZSAtIFBvdGVuY2lhDQoNCiQkDQpFPW1jXjINCiQkDQoNCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQ0KDQokJA0KYV4yICsgYl4yID0gY14yDQokJA0KDQotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0NCg0KIyMgU3Viw61uZGljZQ0KDQokJA0KSF8yTw0KJCQNCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCiQkDQpOSF8zDQokJA0KDQotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0NCg0KIyMgRnJhY2Npb25lcyAtIENhc29zIC0gRWplbXBsb3MNCg0KJCQNClxmcmFjezV9ezJ9DQokJA0KDQokJA0KXGZyYWN7NX17Mn0gKyBcZnJhY3szfXs0fQ0KJCQNCg0KJCQNClxmcmFjezZ9ezd9IC0gXGZyYWN7MX17Mn0NCiQkDQoNCiQkDQpcZnJhY3s4fXs5fSBcdGltZXMgXGZyYWN7Nn17N30NCiQkDQoNCiQkDQpcZnJhY3s0fXs4fSBcY2RvdCBcZnJhY3s2fXs3fQ0KJCQNCg0KJCQNClxmcmFjezl9ezh9IFxkaXYgXGZyYWN7M317Mn0NCiQkDQoNCiQkDQooXGZyYWN7M317NH0pDQokJA0KDQokJA0KXGxlZnQoXGZyYWN7MX17Mn1ccmlnaHQpXjINCiQkDQoNCkRhZGEgbGEgZnJhY2Npw7NuICRcZnJhY3sxfXsyfSQsIHBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZS4uLg0KDQpEYWRhIGxhIGZyYWNjacOzbiRcdGZyYWN7MX17Mn0kLCBwb2RlbW9zIGRldGVybWluYXIgZWwgdmFsb3IgZGUgbGEgdmFyaWFibGUuLi4NCg0KRGFkYSBsYSBmcmFjY2nDs24kXGRmcmFjezF9ezJ9JCwgcG9kZW1vcyBkZXRlcm1pbmFyIGVsIHZhbG9yIGRlIGxhIHZhcmlhYmxlLi4uDQoNCiMjIFJhw61jZXMNCg0KJCQNClxzcXJ0ezJ9ID0gMS40MTQyMTM1Ng0KJCQNCg0KJCQNClxzcXJ0ezN9ID0gMS43MzIwNTA4DQokJA0KDQokJA0KXHNxcnR7NH0gPSAyDQokJA0KDQojIyBTdW1hdG9yaWENCg0KJCQNClxzdW1fe2k9MX1eNSAyaQ0KJCQNCg0KJCQNClxzdW1fe2k9M31eNiAyaSAtMQ0KJCQNCg0KJCQNClxzdW1fe2k9Mn1eNiBcZnJhY3tpKzF9e2l9DQokJA0KDQojIyBMb2dhcml0bW9zDQoNCiQkDQpcbG9nXzd7NDl9ID0gMg0KJCQNCg0KJCQNClxsb2dfNnsyMTZ9PSAzDQokJA0KDQokJA0KXGxvZ18zezgxfSA9IDQNCiQkDQoNCiMjIE1hdHJpY2VzDQoNCiQkDQpcYmVnaW57bWF0cml4fQ0KMTAgJiAxMSAmIDQgXFwNCjMgJiA5ICYgMiBcXA0KOCAmIDQgJiA2DQpcZW5ke21hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57cG1hdHJpeH0NCjEwICYgMTEgJiA0IFxcDQozICYgOSAmIDIgXFwNCjggJiA0ICYgNg0KXGVuZHtwbWF0cml4fQ0KJCQNCg0KJCQNClxiZWdpbntibWF0cml4fQ0KMTAgJiAxMSAmIDQgXFwNCjMgJiA5ICYgMiBcXA0KOCAmIDQgJiA2DQpcZW5ke2JtYXRyaXh9DQokJA0KDQokJA0KXGJlZ2lue0JtYXRyaXh9DQoxMCAmIDExICYgNCBcXA0KMyAmIDkgJiAyIFxcDQo4ICYgNCAmIDYNClxlbmR7Qm1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57dm1hdHJpeH0NCjEwICYgMTEgJiA0IFxcDQozICYgOSAmIDIgXFwNCjggJiA0ICYgNg0KXGVuZHt2bWF0cml4fQ0KJCQNCg0KJCQNClxiZWdpbntWbWF0cml4fQ0KMTAgJiAxMSAmIDQgXFwNCjMgJiA5ICYgMiBcXA0KOCAmIDQgJiA2DQpcZW5ke1ZtYXRyaXh9DQokJA0KDQojIyBFY3VhY2lvbmVzDQoNCkRhZGEgbGEgZnVuY2nDs24NCg0KJCQNClxiZWdpbntlcXVhdGlvbn0NCmYoeCk9eQ0KXGVuZHtlcXVhdGlvbn0NCiQkDQoNCnBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZS4uLg0KDQokJA0KXHRleHR7RsOzcm11bGEgRWN1YWNpw7NuIGRlIDLCuiBHcmFkb30gXHF1YWQgeD1cZnJhY3stYiBccG0gXHNxcnR7Yl4yIC0gNGFjfX17MmF9DQokJA0KDQojIyBTw61tYm9sb3MgTWF0ZW3DoXRpY29zIELDoXNpY29zDQoNCiQkDQooOTAwKQ0KJCQNCg0KJCQNCls5MDBdDQokJA0KDQokJA0KfDkwMHwNCiQkDQoNCiQkDQo5MDAgPiA0NTUNCiQkDQoNCiQkDQo0NTUgPCA4OTkNCiQkDQo=