Ecuaciones - Fórmulas - Sintaxis y comandos LaTeX
Superíndice - Potencia
\[
E=mc^2
\]
\[
a^2 + b^2 = c^2
\]
Subíndice
\[
H_2O
\]
\[
NH_3
\]
Fracciones - Casos - Ejemplos
\[
\frac{5}{2}
\]
\[
\frac{5}{2} + \frac{3}{4}
\]
\[
\frac{6}{7} - \frac{1}{2}
\]
\[
\frac{8}{9} \times \frac{6}{7}
\]
\[
\frac{4}{8} \cdot \frac{6}{7}
\]
\[
\frac{9}{8} \div \frac{3}{2}
\]
\[
(\frac{3}{4})
\]
\[
\left(\frac{1}{2}\right)^2
\]
Dada la fracción \(\frac{1}{2}\),
podemos determinar el valor de la variable…
Dada la fracción\(\tfrac{1}{2}\),
podemos determinar el valor de la variable…
Dada la fracción\(\dfrac{1}{2}\),
podemos determinar el valor de la variable…
Raíces
\[
\sqrt{2} = 1.41421356
\]
\[
\sqrt{3} = 1.7320508
\]
\[
\sqrt{4} = 2
\]
Sumatoria
\[
\sum_{i=1}^5 2i
\]
\[
\sum_{i=3}^6 2i -1
\]
\[
\sum_{i=2}^6 \frac{i+1}{i}
\]
Logaritmos
\[
\log_7{49} = 2
\]
\[
\log_6{216}= 3
\]
\[
\log_3{81} = 4
\]
Matrices
\[
\begin{matrix}
10 & 11 & 4 \\
3 & 9 & 2 \\
8 & 4 & 6
\end{matrix}
\]
\[
\begin{pmatrix}
10 & 11 & 4 \\
3 & 9 & 2 \\
8 & 4 & 6
\end{pmatrix}
\]
\[
\begin{bmatrix}
10 & 11 & 4 \\
3 & 9 & 2 \\
8 & 4 & 6
\end{bmatrix}
\]
\[
\begin{Bmatrix}
10 & 11 & 4 \\
3 & 9 & 2 \\
8 & 4 & 6
\end{Bmatrix}
\]
\[
\begin{vmatrix}
10 & 11 & 4 \\
3 & 9 & 2 \\
8 & 4 & 6
\end{vmatrix}
\]
\[
\begin{Vmatrix}
10 & 11 & 4 \\
3 & 9 & 2 \\
8 & 4 & 6
\end{Vmatrix}
\]
Ecuaciones
Dada la función
\[
\begin{equation}
f(x)=y
\end{equation}
\]
podemos determinar el valor de la variable…
\[
\text{Fórmula Ecuación de 2º Grado} \quad x=\frac{-b \pm \sqrt{b^2 -
4ac}}{2a}
\]
Símbolos Matemáticos Básicos
\[
(900)
\]
\[
[900]
\]
\[
|900|
\]
\[
900 > 455
\]
\[
455 < 899
\]
LS0tDQp0aXRsZTogIkVjdWFjaW9uZXMgLSBGw7NybXVsYXMgZW4gTWFya2Rvd24iDQpzdWJ0aXRsZTogIk1hcmtkb3duIC0gTGFUZVgiDQphdXRob3I6ICJSZW56byBDw6FjZXJlcyBSb3NzaSINCmRhdGU6ICIyMDIyLzA0LzIzIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCi0tLQ0KDQo8IS0tIFVzYXIgc2ludGF4aXMgeSBjb21hbmRvcyBMYVRlWCBwYXJhIGHDsWFkaXIgZWN1YWNpb25lcyB5IGbDs3JtdWxhcyBhIG51ZXN0cm8gZG9jdW1lbnRvIE1hcmtkb3duIC0tPg0KDQojIEVjdWFjaW9uZXMgLSBGw7NybXVsYXMgLSBTaW50YXhpcyB5IGNvbWFuZG9zIExhVGVYDQoNCiMjIFN1cGVyw61uZGljZSAtIFBvdGVuY2lhDQoNCiQkDQpFPW1jXjINCiQkDQoNCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQ0KDQokJA0KYV4yICsgYl4yID0gY14yDQokJA0KDQotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0NCg0KIyMgU3Viw61uZGljZQ0KDQokJA0KSF8yTw0KJCQNCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCiQkDQpOSF8zDQokJA0KDQotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0NCg0KIyMgRnJhY2Npb25lcyAtIENhc29zIC0gRWplbXBsb3MNCg0KJCQNClxmcmFjezV9ezJ9DQokJA0KDQokJA0KXGZyYWN7NX17Mn0gKyBcZnJhY3szfXs0fQ0KJCQNCg0KJCQNClxmcmFjezZ9ezd9IC0gXGZyYWN7MX17Mn0NCiQkDQoNCiQkDQpcZnJhY3s4fXs5fSBcdGltZXMgXGZyYWN7Nn17N30NCiQkDQoNCiQkDQpcZnJhY3s0fXs4fSBcY2RvdCBcZnJhY3s2fXs3fQ0KJCQNCg0KJCQNClxmcmFjezl9ezh9IFxkaXYgXGZyYWN7M317Mn0NCiQkDQoNCiQkDQooXGZyYWN7M317NH0pDQokJA0KDQokJA0KXGxlZnQoXGZyYWN7MX17Mn1ccmlnaHQpXjINCiQkDQoNCkRhZGEgbGEgZnJhY2Npw7NuICRcZnJhY3sxfXsyfSQsIHBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZS4uLg0KDQpEYWRhIGxhIGZyYWNjacOzbiRcdGZyYWN7MX17Mn0kLCBwb2RlbW9zIGRldGVybWluYXIgZWwgdmFsb3IgZGUgbGEgdmFyaWFibGUuLi4NCg0KRGFkYSBsYSBmcmFjY2nDs24kXGRmcmFjezF9ezJ9JCwgcG9kZW1vcyBkZXRlcm1pbmFyIGVsIHZhbG9yIGRlIGxhIHZhcmlhYmxlLi4uDQoNCiMjIFJhw61jZXMNCg0KJCQNClxzcXJ0ezJ9ID0gMS40MTQyMTM1Ng0KJCQNCg0KJCQNClxzcXJ0ezN9ID0gMS43MzIwNTA4DQokJA0KDQokJA0KXHNxcnR7NH0gPSAyDQokJA0KDQojIyBTdW1hdG9yaWENCg0KJCQNClxzdW1fe2k9MX1eNSAyaQ0KJCQNCg0KJCQNClxzdW1fe2k9M31eNiAyaSAtMQ0KJCQNCg0KJCQNClxzdW1fe2k9Mn1eNiBcZnJhY3tpKzF9e2l9DQokJA0KDQojIyBMb2dhcml0bW9zDQoNCiQkDQpcbG9nXzd7NDl9ID0gMg0KJCQNCg0KJCQNClxsb2dfNnsyMTZ9PSAzDQokJA0KDQokJA0KXGxvZ18zezgxfSA9IDQNCiQkDQoNCiMjIE1hdHJpY2VzDQoNCiQkDQpcYmVnaW57bWF0cml4fQ0KMTAgJiAxMSAmIDQgXFwNCjMgJiA5ICYgMiBcXA0KOCAmIDQgJiA2DQpcZW5ke21hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57cG1hdHJpeH0NCjEwICYgMTEgJiA0IFxcDQozICYgOSAmIDIgXFwNCjggJiA0ICYgNg0KXGVuZHtwbWF0cml4fQ0KJCQNCg0KJCQNClxiZWdpbntibWF0cml4fQ0KMTAgJiAxMSAmIDQgXFwNCjMgJiA5ICYgMiBcXA0KOCAmIDQgJiA2DQpcZW5ke2JtYXRyaXh9DQokJA0KDQokJA0KXGJlZ2lue0JtYXRyaXh9DQoxMCAmIDExICYgNCBcXA0KMyAmIDkgJiAyIFxcDQo4ICYgNCAmIDYNClxlbmR7Qm1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57dm1hdHJpeH0NCjEwICYgMTEgJiA0IFxcDQozICYgOSAmIDIgXFwNCjggJiA0ICYgNg0KXGVuZHt2bWF0cml4fQ0KJCQNCg0KJCQNClxiZWdpbntWbWF0cml4fQ0KMTAgJiAxMSAmIDQgXFwNCjMgJiA5ICYgMiBcXA0KOCAmIDQgJiA2DQpcZW5ke1ZtYXRyaXh9DQokJA0KDQojIyBFY3VhY2lvbmVzDQoNCkRhZGEgbGEgZnVuY2nDs24NCg0KJCQNClxiZWdpbntlcXVhdGlvbn0NCmYoeCk9eQ0KXGVuZHtlcXVhdGlvbn0NCiQkDQoNCnBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZS4uLg0KDQokJA0KXHRleHR7RsOzcm11bGEgRWN1YWNpw7NuIGRlIDLCuiBHcmFkb30gXHF1YWQgeD1cZnJhY3stYiBccG0gXHNxcnR7Yl4yIC0gNGFjfX17MmF9DQokJA0KDQojIyBTw61tYm9sb3MgTWF0ZW3DoXRpY29zIELDoXNpY29zDQoNCiQkDQooOTAwKQ0KJCQNCg0KJCQNCls5MDBdDQokJA0KDQokJA0KfDkwMHwNCiQkDQoNCiQkDQo5MDAgPiA0NTUNCiQkDQoNCiQkDQo0NTUgPCA4OTkNCiQkDQo=