This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
hoteles <- factor(c(rep("Capilla del Mar", 4),
rep("Caribe", 6),
rep("Charleston", 5),
rep("De Camerón", 12),
rep("Hilton", 6),
rep("Las Américas", 6),
rep("Santa Clara", 8)
))
hoteles
## [1] Capilla del Mar Capilla del Mar Capilla del Mar Capilla del Mar
## [5] Caribe Caribe Caribe Caribe
## [9] Caribe Caribe Charleston Charleston
## [13] Charleston Charleston Charleston De Camerón
## [17] De Camerón De Camerón De Camerón De Camerón
## [21] De Camerón De Camerón De Camerón De Camerón
## [25] De Camerón De Camerón De Camerón Hilton
## [29] Hilton Hilton Hilton Hilton
## [33] Hilton Las Américas Las Américas Las Américas
## [37] Las Américas Las Américas Las Américas Santa Clara
## [41] Santa Clara Santa Clara Santa Clara Santa Clara
## [45] Santa Clara Santa Clara Santa Clara
## 7 Levels: Capilla del Mar Caribe Charleston De Camerón Hilton ... Santa Clara
Tabla <- table(hoteles);Tabla
## hoteles
## Capilla del Mar Caribe Charleston De Camerón Hilton
## 4 6 5 12 6
## Las Américas Santa Clara
## 6 8
pie(Tabla)
#install.packages("lessR")
library(lessR)
##
## lessR 4.1.7 feedback: gerbing@pdx.edu
## --------------------------------------------------------------
## > d <- Read("") Read text, Excel, SPSS, SAS, or R data file
## d is default data frame, data= in analysis routines optional
##
## Learn about reading, writing, and manipulating data, graphics,
## testing means and proportions, regression, factor analysis,
## customization, and descriptive statistics from pivot tables.
## Enter: browseVignettes("lessR")
##
## View changes in this or recent versions of lessR.
## Enter: help(package=lessR) Click: Package NEWS
## Enter: interact() for access to interactive graphics
## New function: reshape_long() to move data from wide to long
Datos<- data.frame(hoteles = hoteles);Datos
## hoteles
## 1 Capilla del Mar
## 2 Capilla del Mar
## 3 Capilla del Mar
## 4 Capilla del Mar
## 5 Caribe
## 6 Caribe
## 7 Caribe
## 8 Caribe
## 9 Caribe
## 10 Caribe
## 11 Charleston
## 12 Charleston
## 13 Charleston
## 14 Charleston
## 15 Charleston
## 16 De Camerón
## 17 De Camerón
## 18 De Camerón
## 19 De Camerón
## 20 De Camerón
## 21 De Camerón
## 22 De Camerón
## 23 De Camerón
## 24 De Camerón
## 25 De Camerón
## 26 De Camerón
## 27 De Camerón
## 28 Hilton
## 29 Hilton
## 30 Hilton
## 31 Hilton
## 32 Hilton
## 33 Hilton
## 34 Las Américas
## 35 Las Américas
## 36 Las Américas
## 37 Las Américas
## 38 Las Américas
## 39 Las Américas
## 40 Santa Clara
## 41 Santa Clara
## 42 Santa Clara
## 43 Santa Clara
## 44 Santa Clara
## 45 Santa Clara
## 46 Santa Clara
## 47 Santa Clara
PieChart(hoteles, hole = 0, values = "%", data = Datos,
fill = rainbow(7), main = "Hoteles de preferencia por los Turistas")
## >>> Note: hoteles is not in a data frame (table)
## >>> Suggestions
## PieChart(hoteles, hole=0) # traditional pie chart
## PieChart(hoteles, values="%") # display %'s on the chart
## PieChart(hoteles) # bar chart
## Plot(hoteles) # bubble plot
## Plot(hoteles, values="count") # lollipop plot
##
## --- hoteles ---
##
## hoteles Count Prop
## ----------------------------
## Capilla del Mar 4 0.085
## Caribe 6 0.128
## Charleston 5 0.106
## De Camerón 12 0.255
## Hilton 6 0.128
## Las Américas 6 0.128
## Santa Clara 8 0.170
## ----------------------------
## Total 47 1.000
##
## Chi-squared test of null hypothesis of equal probabilities
## Chisq = 6.170, df = 6, p-value = 0.404
PieChart(hoteles, hole = 0, values = "%", data = Datos,
fill = terrain.colors(7), main = "Hoteles de preferencia por los Turistas")
## >>> Note: hoteles is not in a data frame (table)
## >>> Suggestions
## PieChart(hoteles, hole=0) # traditional pie chart
## PieChart(hoteles, values="%") # display %'s on the chart
## PieChart(hoteles) # bar chart
## Plot(hoteles) # bubble plot
## Plot(hoteles, values="count") # lollipop plot
##
## --- hoteles ---
##
## hoteles Count Prop
## ----------------------------
## Capilla del Mar 4 0.085
## Caribe 6 0.128
## Charleston 5 0.106
## De Camerón 12 0.255
## Hilton 6 0.128
## Las Américas 6 0.128
## Santa Clara 8 0.170
## ----------------------------
## Total 47 1.000
##
## Chi-squared test of null hypothesis of equal probabilities
## Chisq = 6.170, df = 6, p-value = 0.404
PieChart(hoteles, hole = 0, values = "%", data = Datos,
fill = heat.colors(7), main = "Hoteles de preferencia por los Turistas")
## >>> Note: hoteles is not in a data frame (table)
## >>> Suggestions
## PieChart(hoteles, hole=0) # traditional pie chart
## PieChart(hoteles, values="%") # display %'s on the chart
## PieChart(hoteles) # bar chart
## Plot(hoteles) # bubble plot
## Plot(hoteles, values="count") # lollipop plot
##
## --- hoteles ---
##
## hoteles Count Prop
## ----------------------------
## Capilla del Mar 4 0.085
## Caribe 6 0.128
## Charleston 5 0.106
## De Camerón 12 0.255
## Hilton 6 0.128
## Las Américas 6 0.128
## Santa Clara 8 0.170
## ----------------------------
## Total 47 1.000
##
## Chi-squared test of null hypothesis of equal probabilities
## Chisq = 6.170, df = 6, p-value = 0.404
PieChart(hoteles, hole = 0, values = "%", data = Datos,
fill = topo.colors(7), main = "Hoteles de preferencia por los Turistas")
## >>> Note: hoteles is not in a data frame (table)
## >>> Suggestions
## PieChart(hoteles, hole=0) # traditional pie chart
## PieChart(hoteles, values="%") # display %'s on the chart
## PieChart(hoteles) # bar chart
## Plot(hoteles) # bubble plot
## Plot(hoteles, values="count") # lollipop plot
##
## --- hoteles ---
##
## hoteles Count Prop
## ----------------------------
## Capilla del Mar 4 0.085
## Caribe 6 0.128
## Charleston 5 0.106
## De Camerón 12 0.255
## Hilton 6 0.128
## Las Américas 6 0.128
## Santa Clara 8 0.170
## ----------------------------
## Total 47 1.000
##
## Chi-squared test of null hypothesis of equal probabilities
## Chisq = 6.170, df = 6, p-value = 0.404
PieChart(hoteles, hole = 0, values = "%", data = Datos,
fill = cm.colors(7), main = "Hoteles de preferencia por los Turistas")
## >>> Note: hoteles is not in a data frame (table)
## >>> Suggestions
## PieChart(hoteles, hole=0) # traditional pie chart
## PieChart(hoteles, values="%") # display %'s on the chart
## PieChart(hoteles) # bar chart
## Plot(hoteles) # bubble plot
## Plot(hoteles, values="count") # lollipop plot
##
## --- hoteles ---
##
## hoteles Count Prop
## ----------------------------
## Capilla del Mar 4 0.085
## Caribe 6 0.128
## Charleston 5 0.106
## De Camerón 12 0.255
## Hilton 6 0.128
## Las Américas 6 0.128
## Santa Clara 8 0.170
## ----------------------------
## Total 47 1.000
##
## Chi-squared test of null hypothesis of equal probabilities
## Chisq = 6.170, df = 6, p-value = 0.404
PieChart(hoteles, hole = 0, values = "%", data = Datos,
fill = c("#5F33FF","#FF33C1","#B633FF","#BDEC33","#174925","#050F75"), main = "Hoteles de preferencia por los Turistas")
## >>> Note: hoteles is not in a data frame (table)
## >>> Suggestions
## PieChart(hoteles, hole=0) # traditional pie chart
## PieChart(hoteles, values="%") # display %'s on the chart
## PieChart(hoteles) # bar chart
## Plot(hoteles) # bubble plot
## Plot(hoteles, values="count") # lollipop plot
##
## --- hoteles ---
##
## hoteles Count Prop
## ----------------------------
## Capilla del Mar 4 0.085
## Caribe 6 0.128
## Charleston 5 0.106
## De Camerón 12 0.255
## Hilton 6 0.128
## Las Américas 6 0.128
## Santa Clara 8 0.170
## ----------------------------
## Total 47 1.000
##
## Chi-squared test of null hypothesis of equal probabilities
## Chisq = 6.170, df = 6, p-value = 0.404
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.