Exercise 5.

Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of ˆpm1.

The x-axis should display ˆpm1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy.

p = seq(0, 1, 0.001)
gini = p * (1 - p) * 2
entropy = -(p * log(p) + (1 - p) * log(1 - p))
classification.error = 1 - pmax(p, 1 - p)
data = data.frame(p, gini, entropy, classification.error)
matplot(p, cbind(gini, entropy, classification.error), col = c("Blue", "red", "brown"), ylab = "Value", xlab = "p", main = "Plot of metrics as a function of p", pch = 20, lwd = 1, type = "p")

  • The Highest values for the three metrics is at 0.5.

Exercise 8.

(a) Split the data set into a training set and a test set.

attach(Carseats)
set.seed(1)

Train = sample(nrow(Carseats), nrow(Carseats)/2)
cseat_train = Carseats[Train, ]
cseat_test = Carseats[-Train, ]

(b) Fit a regression tree to the training set. Plot the tree, and interpret the results. What test MSE do you obtain?

carseat_tree = tree(Sales ~ ., data = cseat_train)
summary(carseat_tree)
## 
## Regression tree:
## tree(formula = Sales ~ ., data = cseat_train)
## Variables actually used in tree construction:
## [1] "ShelveLoc"   "Price"       "Age"         "Advertising" "CompPrice"  
## [6] "US"         
## Number of terminal nodes:  18 
## Residual mean deviance:  2.167 = 394.3 / 182 
## Distribution of residuals:
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -3.88200 -0.88200 -0.08712  0.00000  0.89590  4.09900
plot(carseat_tree)
text(carseat_tree, pretty = 0, cex=.55)

Predict and compute mse

carseat_pred = predict(carseat_tree, cseat_test)
carseat_mse<-mean((cseat_test$Sales - carseat_pred)^2)
carseat_mse
## [1] 4.922039
  • The test MSE is 4.022039

(c) Use cross-validation in order to determine the optimal level of tree complexity. Does pruning the tree improve the test MSE?

cv_carseat = cv.tree(carseat_tree, FUN = prune.tree)
par(mfrow = c(1, 2))
plot(cv_carseat$size, cv_carseat$dev, type = "b")
plot(cv_carseat$k, cv_carseat$dev, type = "b")

- The best size is 9

Use best = 9 to prune tree
carseat_prune = prune.tree(carseat_tree, best = 9)
par(mfrow = c(1, 1))
plot(carseat_prune)
text(carseat_prune, pretty = 0, cex=.55)

prune_pred = predict(carseat_prune, cseat_test)
prune_mse=mean((cseat_test$Sales - prune_pred)^2)
prune_mse
## [1] 4.918134

Pruning decreased the MSE error slightly.

(d) Use the bagging approach in order to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important.

car_bag = randomForest(Sales ~ ., data = cseat_train, mtry = 10, ntree = 100, importance = T)
pred_bag = predict(car_bag, cseat_test)
bag_mse=mean((cseat_test$Sales - pred_bag)^2)
bag_mse
## [1] 2.747535
importance(car_bag)
##                 %IncMSE IncNodePurity
## CompPrice   12.55183177    170.375825
## Income       0.93971125     90.503890
## Advertising  5.25205647    103.493698
## Population  -1.46213439     59.646975
## Price       24.29931798    497.717927
## ShelveLoc   20.34955441    367.886332
## Age          6.75952990    154.875691
## Education   -0.01964881     50.794521
## Urban       -2.22920227      7.587184
## US           1.64730860     16.342743

Price, ShelveLoc, CompPrice and Age are important variables in predicting sales.

(e) Use random forests to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important. Describe the effect of m, the number of variables considered at each split, on the error rate obtained.

set.seed(1)
carseat_rf = randomForest(Sales ~ ., data = cseat_train, mtry = 9, ntree = 1000, 
    importance = T)
pred_rf = predict(carseat_rf, cseat_test)
(rf_mse=mean((cseat_test$Sales - pred_rf)^2))
## [1] 2.604951
importance(carseat_rf)
##                %IncMSE IncNodePurity
## CompPrice   35.7427013    171.232879
## Income       7.9028240     92.450563
## Advertising 19.3708369    101.291431
## Population  -2.0231580     60.542328
## Price       77.4780930    503.635424
## ShelveLoc   69.3276236    367.336695
## Age         21.9503880    158.867412
## Education   -0.8694952     43.216765
## Urban       -0.9832457      8.928158
## US           7.9185075     17.933675

- once again Price, ShelveLoc, CompPrice and Age are important variables in predicting sales. Changing m changes the test RSE as well.

Problem 9.

This problem involves the OJ data set which is part of the ISLR package.

(a) Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.

set.seed(1)
ttrain = sample(nrow(OJ), 800)
OJ.train = OJ[ttrain,]
OJ.test = OJ[-ttrain,]

(b) Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?

OJ.tree = tree(Purchase ~ ., data = OJ.train)
summary(OJ.tree)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "SpecialCH"     "ListPriceDiff"
## [5] "PctDiscMM"    
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7432 = 587.8 / 791 
## Misclassification error rate: 0.1588 = 127 / 800
  • Variables actually used in tree construction: LoyalCH, PriceDiff, SpecialCH, ListPriceDiff, and PctDiscMM.
  • Training error rate, which is the misclassification error in summary, for the tree is 0.1588.
  • It has 7 terminal nodes.

(c) Type in the name of the tree object in order to get a detailed text output. Pick one of the terminal nodes, and interpret the information displayed.

OJ.tree
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 800 1073.00 CH ( 0.60625 0.39375 )  
##    2) LoyalCH < 0.5036 365  441.60 MM ( 0.29315 0.70685 )  
##      4) LoyalCH < 0.280875 177  140.50 MM ( 0.13559 0.86441 )  
##        8) LoyalCH < 0.0356415 59   10.14 MM ( 0.01695 0.98305 ) *
##        9) LoyalCH > 0.0356415 118  116.40 MM ( 0.19492 0.80508 ) *
##      5) LoyalCH > 0.280875 188  258.00 MM ( 0.44149 0.55851 )  
##       10) PriceDiff < 0.05 79   84.79 MM ( 0.22785 0.77215 )  
##         20) SpecialCH < 0.5 64   51.98 MM ( 0.14062 0.85938 ) *
##         21) SpecialCH > 0.5 15   20.19 CH ( 0.60000 0.40000 ) *
##       11) PriceDiff > 0.05 109  147.00 CH ( 0.59633 0.40367 ) *
##    3) LoyalCH > 0.5036 435  337.90 CH ( 0.86897 0.13103 )  
##      6) LoyalCH < 0.764572 174  201.00 CH ( 0.73563 0.26437 )  
##       12) ListPriceDiff < 0.235 72   99.81 MM ( 0.50000 0.50000 )  
##         24) PctDiscMM < 0.196197 55   73.14 CH ( 0.61818 0.38182 ) *
##         25) PctDiscMM > 0.196197 17   12.32 MM ( 0.11765 0.88235 ) *
##       13) ListPriceDiff > 0.235 102   65.43 CH ( 0.90196 0.09804 ) *
##      7) LoyalCH > 0.764572 261   91.20 CH ( 0.95785 0.04215 ) *

Terminal node “20”. The splitting variable at this node is SpecialCH. The splitting value of this node is 0.5. There are 64 points in the subtree below this node.The deviance for all points contained in region below this node is 51.98. It is a terminal node denoted by the astrix sign.The prediction at this node is Sales = MM. 40.4% points in this node have CH as value of Sales. Remaining 59.6% points have MM as value of Sales.

(d) Create a plot of the tree, and interpret the results.

plot(OJ.tree)
text(OJ.tree, pretty = 0,cex=0.55)

- LoyalCH is the most important variable of the tree. If LoyalCH< 0.28, the tree predicts MM. If LoyalCH>0.76, the tree predicts CH. For intermediate values of LoyalCH, the decision also depends on the value of the PriceDiff, SpecialCH, ListPriceDiff and PctDiscMM variables.

(e) Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels. What is the test error rate?

pred.oj= predict(OJ.tree, OJ.test, type = "class")
caret:: confusionMatrix(OJ.test$Purchase, pred.oj)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  CH  MM
##         CH 160   8
##         MM  38  64
##                                           
##                Accuracy : 0.8296          
##                  95% CI : (0.7794, 0.8725)
##     No Information Rate : 0.7333          
##     P-Value [Acc > NIR] : 0.0001259       
##                                           
##                   Kappa : 0.6154          
##                                           
##  Mcnemar's Test P-Value : 1.904e-05       
##                                           
##             Sensitivity : 0.8081          
##             Specificity : 0.8889          
##          Pos Pred Value : 0.9524          
##          Neg Pred Value : 0.6275          
##              Prevalence : 0.7333          
##          Detection Rate : 0.5926          
##    Detection Prevalence : 0.6222          
##       Balanced Accuracy : 0.8485          
##                                           
##        'Positive' Class : CH              
## 

(f) Apply the cv.tree() function to the training set in order to determine the optimal tree size.

cv.oj = cv.tree(OJ.tree, FUN = prune.tree)

(g) Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.

plot(cv.oj$size, cv.oj$dev, type = "b", xlab = "Tree Size", ylab = "Deviance")

(h) Which tree size corresponds to the lowest cross-validated classification error rate?

- Size of 9 gives lowest cross-validation error.

(i) Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.

OJ.prune = prune.tree(OJ.tree, best = 9)

####(j) Compare the training error rates between the pruned and unpruned trees. Which is higher?

summary(OJ.prune)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "SpecialCH"     "ListPriceDiff"
## [5] "PctDiscMM"    
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7432 = 587.8 / 791 
## Misclassification error rate: 0.1588 = 127 / 800

The results are exactly the same the original tree.

(k) Compare the test error rates between the pruned and unpruned trees. Which is higher?

unpruned_pred = predict(OJ.tree, OJ.test, type = "class")
unpruned_error = sum(OJ.test$Purchase != unpruned_pred)
unpruned_error/length(unpruned_pred)
## [1] 0.1703704
pruned_pred = predict(OJ.prune, OJ.test, type = "class")
pruned_error = sum(OJ.test$Purchase != pruned_pred)
pruned_error/length(pruned_pred)
## [1] 0.1703704

The same result here as well.