R Markdown

3.Consider the Gini index, classification error, and entropy in a simple classification setting with two classes.Create a single plot that displays each of these quantities as a function of ˆpm1. The x-axis should display ˆpm1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy.Hint: In a setting with two classes, pˆm1 = 1 − pˆm2. You could make this plot by hand, but it will be much easier to make in R.

p <- seq(0,1,0.01)
#Classification error rate

class.error= 1-pmax(p,1-p)

#Gini index
gini= p*(1-p)*2

#Entropy

entropy = -(p*log(p) + (1-p)*log(1-p))

matplot(p, cbind(gini, entropy, class.error), col = c("green", "red", "purple"))

8. In the lab, a classification tree was applied to the Carseats data set after converting Sales into a qualitative response variable. Now we will seek to predict Sales using regression trees and related approaches,treating the response as a quantitative variable.

library(ISLR)
Carseats <- read.csv("C:/Users/kksha/OneDrive/coursework/Statistics/assignment/Carseats.csv")
Carseats$Urban <-as.factor(Carseats$Urban)
Carseats$US <-as.factor(Carseats$US)
Carseats$ShelveLoc<-as.factor(Carseats$ShelveLoc)
Carseats$CompPrice<-as.numeric(Carseats$CompPrice)
Carseats$Income<-as.numeric(Carseats$Income)
Carseats$Advertising<-as.numeric(Carseats$Advertising)
Carseats$Population<-as.numeric(Carseats$Population)
Carseats$Price<-as.numeric(Carseats$Price)
Carseats$Age<-as.numeric(Carseats$Age)
Carseats$Education<-as.numeric(Carseats$Education)
str(Carseats)
## 'data.frame':    400 obs. of  11 variables:
##  $ Sales      : num  9.5 11.22 10.06 7.4 4.15 ...
##  $ CompPrice  : num  138 111 113 117 141 124 115 136 132 132 ...
##  $ Income     : num  73 48 35 100 64 113 105 81 110 113 ...
##  $ Advertising: num  11 16 10 4 3 13 0 15 0 0 ...
##  $ Population : num  276 260 269 466 340 501 45 425 108 131 ...
##  $ Price      : num  120 83 80 97 128 72 108 120 124 124 ...
##  $ ShelveLoc  : Factor w/ 3 levels "Bad","Good","Medium": 1 2 3 3 1 1 3 2 3 3 ...
##  $ Age        : num  42 65 59 55 38 78 71 67 76 76 ...
##  $ Education  : num  17 10 12 14 13 16 15 10 10 17 ...
##  $ Urban      : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 2 2 1 1 ...
##  $ US         : Factor w/ 2 levels "No","Yes": 2 2 2 2 1 2 1 2 1 2 ...

(a) Split the data set into a training set and a test set.

set.seed(1)

#Splitting into training and test dataset

train = sample(dim(Carseats)[1], dim(Carseats)[1]/2)
ctrain = Carseats[train, ]
ctest = Carseats[-train, ]

(b) Fit a regression tree to the training set. Plot the tree, and interpret the results. What test MSE do you obtain?

library(MASS)
library(tree)
## Warning: package 'tree' was built under R version 4.1.3
set.seed(1)

tree.car=tree(Sales~.,ctrain)
summary(tree.car)
## 
## Regression tree:
## tree(formula = Sales ~ ., data = ctrain)
## Variables actually used in tree construction:
## [1] "ShelveLoc"   "Price"       "Age"         "Advertising" "CompPrice"  
## [6] "US"         
## Number of terminal nodes:  18 
## Residual mean deviance:  2.167 = 394.3 / 182 
## Distribution of residuals:
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -3.88200 -0.88200 -0.08712  0.00000  0.89590  4.09900

Six variables have been used in the tree: “ShelveLoc”,“Price”,“Age”,“Advertising”,“CompPrice” and “US”. Residual mean devaiance is the sum of squared errors for the tree, which is 2.167.

Plotting the regression tree

 plot(tree.car)
text(tree.car , pretty =0)

pred.car = predict(tree.car, ctest)
mean((ctest$Sales - pred.car)^2)
## [1] 4.922039

The mean squared error is 4.922039

(c) Use cross-validation in order to determine the optimal level of tree complexity. Does pruning the tree improve the test MSE?

#using cv.tree to check if pruning the tree will improve performance

cv.car=cv.tree(tree.car)
plot(cv.car$size ,cv.car$dev ,type='b')

prune.car=prune.tree(tree.car ,best=9)
plot(prune.car)
text(prune.car , pretty =0)

pred.pruned = predict(prune.car, ctest)
mean((ctest$Sales - pred.pruned)^2)
## [1] 4.918134

The mean squared error has now reduced to 4.918134.

(d) Use the bagging approach in order to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important.

library( randomForest)
## Warning: package 'randomForest' was built under R version 4.1.3
## randomForest 4.7-1
## Type rfNews() to see new features/changes/bug fixes.
set.seed(1)
bag.car= randomForest(Sales~.,data=ctrain,mtry=10,importance =TRUE)
bag.car
## 
## Call:
##  randomForest(formula = Sales ~ ., data = ctrain, mtry = 10, importance = TRUE) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 10
## 
##           Mean of squared residuals: 2.889221
##                     % Var explained: 63.26
bag.pred = predict(bag.car, ctest)
mean((ctest$Sales - bag.pred)^2)
## [1] 2.605253

Bagging reduced the MSE to 2.605253.

importance(bag.car)
##                %IncMSE IncNodePurity
## CompPrice   24.8888481    170.182937
## Income       4.7121131     91.264880
## Advertising 12.7692401     97.164338
## Population  -1.8074075     58.244596
## Price       56.3326252    502.903407
## ShelveLoc   48.8886689    380.032715
## Age         17.7275460    157.846774
## Education    0.5962186     44.598731
## Urban        0.1728373      9.822082
## US           4.2172102     18.073863

“Price”,“ShelveLoc”,“CompPrice” and “Age” are important variables.

(e) Use random forests to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important. Describe the effect of m, the number of variables considered at each split, on the error rate obtained.

#Random forest is same as bagging, but uses less number of predictors. Here we use mtry as 5
library( randomForest)
set.seed(1)
rf.car= randomForest(Sales~.,data=ctrain,mtry=5,importance =TRUE)
rf.car
## 
## Call:
##  randomForest(formula = Sales ~ ., data = ctrain, mtry = 5, importance = TRUE) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##           Mean of squared residuals: 3.060785
##                     % Var explained: 61.08
rf.pred = predict(rf.car, ctest)
mean((ctest$Sales - rf.pred)^2)
## [1] 2.714168

Random Forest worsens the test MSE compared to Bagging.

importance(rf.car)
##                %IncMSE IncNodePurity
## CompPrice   17.4126238     157.53631
## Income       2.9969399     110.40731
## Advertising 11.0485672     105.75049
## Population  -1.5321044      80.73318
## Price       43.3572135     452.02367
## ShelveLoc   44.4474163     331.64508
## Age         14.5322339     176.64252
## Education    0.8237454      55.91141
## Urban       -2.7805788      11.07321
## US           3.7773881      23.75322

“Price”, “ShelveLoc” and “Age” are three important variables.

**9. This problem involves the OJ data set which is part of the ISLR package.

library(ISLR)
View(OJ)

(a) Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.

library(ISLR)
attach(OJ)
dim(OJ)
## [1] 1070   18
train = sample(dim(OJ)[1],800)
OJtrain = OJ[train,]
OJtest = OJ[-train,]

(b) Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?

library(MASS)
library(tree)
set.seed(1)

tree.OJ=tree(Purchase~.,OJtrain)
summary(tree.OJ)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = OJtrain)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "ListPriceDiff"
## Number of terminal nodes:  8 
## Residual mean deviance:  0.7543 = 597.4 / 792 
## Misclassification error rate: 0.1725 = 138 / 800

The number of terminal nodes are 8. The training error rate is 0.1725 The tree has three variables: “LoyalCH”,“PriceDiff” and “ListPriceDiff”.

(c) Type in the name of the tree object in order to get a detailed text output. Pick one of the terminal nodes, and interpret the information displayed.

tree.OJ
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 800 1063.00 CH ( 0.61875 0.38125 )  
##    2) LoyalCH < 0.5036 355  432.90 MM ( 0.29859 0.70141 )  
##      4) LoyalCH < 0.275386 170  138.40 MM ( 0.14118 0.85882 )  
##        8) LoyalCH < 0.0356415 59   10.14 MM ( 0.01695 0.98305 ) *
##        9) LoyalCH > 0.0356415 111  113.30 MM ( 0.20721 0.79279 ) *
##      5) LoyalCH > 0.275386 185  254.10 MM ( 0.44324 0.55676 )  
##       10) PriceDiff < 0.05 77   83.74 MM ( 0.23377 0.76623 ) *
##       11) PriceDiff > 0.05 108  146.00 CH ( 0.59259 0.40741 ) *
##    3) LoyalCH > 0.5036 445  336.80 CH ( 0.87416 0.12584 )  
##      6) LoyalCH < 0.764572 185  207.50 CH ( 0.75135 0.24865 )  
##       12) PriceDiff < 0.265 111  148.20 CH ( 0.61261 0.38739 )  
##         24) ListPriceDiff < 0.235 64   88.47 MM ( 0.46875 0.53125 ) *
##         25) ListPriceDiff > 0.235 47   45.91 CH ( 0.80851 0.19149 ) *
##       13) PriceDiff > 0.265 74   25.11 CH ( 0.95946 0.04054 ) *
##      7) LoyalCH > 0.764572 260   84.77 CH ( 0.96154 0.03846 ) *

Let us take terminal node label (10). The splitting node label is ‘PriceDiff’. The splitting value of this node is ‘0.05’.There are 77 points in the subtree below this node. A * denotes that it is a terminal node. Prediction of this node is Sales - MM.About 23.377 % points in the node have ‘CH’ as the value for Sales, rest 76.623% have the value ‘MM’ for Sales.

(d) Create a plot of the tree, and interpret the results.

 plot(tree.OJ)
text(tree.OJ, pretty =0)

‘LoyalCH’ is a most important variable in the tree. If ‘LoyalCH’ is below 0.0356415, it predicts Sales as ‘MM’. If ‘LoyalCH’ is above 0.764572, it predicts ‘CH’. For the intermediate values of ‘LoyalCH’, it prediction of Sales depends on ‘PriceDiff’.

(e) Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels.What is the test error rate?

set.seed(1)
pred.OJ = predict(tree.OJ, OJtest, type = "class")
pred.unpruned = pred.OJ
table(OJtest$Purchase,pred.OJ)
##     pred.OJ
##       CH  MM
##   CH 138  20
##   MM  29  83

Test error rate is (20+29)/(20+29+138+83) = 0.1814

(f) Apply the cv.tree() function to the training set in order to determine the optimal tree size.

#using cv.tree to check if pruning the tree will improve performance

cv.OJ=cv.tree(tree.OJ)
cv.OJ
## $size
## [1] 8 7 6 5 4 3 2 1
## 
## $dev
## [1]  712.9841  714.8318  714.8318  720.2176  748.5357  771.2814  776.5165
## [8] 1066.6902
## 
## $k
## [1]      -Inf  13.81949  15.00203  24.33767  34.20403  40.37572  44.49681
## [8] 293.83140
## 
## $method
## [1] "deviance"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"

(g) Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.

#using cv.tree to check if pruning the tree will improve performance

plot(cv.OJ$size ,cv.OJ$dev ,type='b')

(h) Which tree size corresponds to the lowest cross-validated classification error rate?

The size of 6 shows lowest cross-validation error.

(i) Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.

prune.OJ=prune.tree(tree.OJ ,best=6)
plot(prune.OJ)
text(prune.OJ , pretty =0)

(j) Compare the training error rates between the pruned and unpruned trees. Which is higher?

summary(prune.OJ)
## 
## Classification tree:
## snip.tree(tree = tree.OJ, nodes = c(12L, 4L))
## Variables actually used in tree construction:
## [1] "LoyalCH"   "PriceDiff"
## Number of terminal nodes:  6 
## Residual mean deviance:  0.7887 = 626.2 / 794 
## Misclassification error rate: 0.1775 = 142 / 800

The training error rate of the pruned data is 0.1775.The training error rate is reduced after pruning.

(k) Compare the test error rates between the pruned and unpruned trees. Which is higher?

pred.pruned1 = predict(prune.OJ, OJtest, type = "class")
misclass.pruned = sum(OJtest$Purchase != pred.pruned1)
misclass.pruned/length(pred.pruned1)
## [1] 0.1814815
pred.unpruned = predict(tree.OJ, OJtest, type = "class")
misclass.unpruned = sum(OJtest$Purchase != pred.unpruned)
misclass.unpruned/length(pred.unpruned)
## [1] 0.1814815

The test error rates for both pruned and unpruned trees is the same.