sss_fak

Dakle Skala stava o tjelesnom kažnjavanju - 9 čestica. CFI, TLI, SRMR ok, RMSEA nije i ne znam zašto…

Vidi saturacije kak su lijepe :), fakat je jasna priča i PCA kaže 72% varijance objašnjeno

library(tidyverse)
library(lavaan)
baza=sjlabelled::read_spss("data/baza.sav")

model='
att_cp =~ SSSTK1 + SSSTK2 + SSSTK3 + SSSTK4 + SSSTK5 + SSSTK6 + SSSTK7 + SSSTK8 + SSSTK9
'
fit=cfa(model= model, data=baza, estimator="ML")
knitr::kable(fitmeasures(fit, fit.measures = c("chisq", "df", "pvalue", "cfi", "tli", "rmsea", "srmr" )))
x
chisq 291.2951826
df 27.0000000
pvalue 0.0000000
cfi 0.9625316
tli 0.9500422
rmsea 0.1065637
srmr 0.0302977
knitr::kable(parameterestimates(fit, standardized=T))
lhs op rhs est se z pvalue ci.lower ci.upper std.lv std.all std.nox
att_cp =~ SSSTK1 1.0000000 0.0000000 NA NA 1.0000000 1.0000000 1.2824467 0.8745054 0.8745054
att_cp =~ SSSTK2 1.0023468 0.0285553 35.10201 0 0.9463795 1.0583141 1.2854563 0.8592434 0.8592434
att_cp =~ SSSTK3 1.0604706 0.0274677 38.60789 0 1.0066348 1.1143063 1.3599969 0.8990098 0.8990098
att_cp =~ SSSTK4 1.0282832 0.0295088 34.84671 0 0.9704471 1.0861193 1.3187184 0.8561169 0.8561169
att_cp =~ SSSTK5 -0.8091070 0.0285243 -28.36558 0 -0.8650135 -0.7532005 -1.0376366 -0.7643168 -0.7643168
att_cp =~ SSSTK6 -0.6659470 0.0265285 -25.10310 0 -0.7179419 -0.6139521 -0.8540415 -0.7077238 -0.7077238
att_cp =~ SSSTK7 -0.9842795 0.0272125 -36.17010 0 -1.0376151 -0.9309440 -1.2622860 -0.8719681 -0.8719681
att_cp =~ SSSTK8 0.9703914 0.0253707 38.24855 0 0.9206658 1.0201170 1.2444752 0.8951872 0.8951872
att_cp =~ SSSTK9 -0.7116721 0.0278872 -25.51971 0 -0.7663299 -0.6570143 -0.9126815 -0.7153828 -0.7153828
SSSTK1 ~~ SSSTK1 0.5059006 0.0282934 17.88051 0 0.4504465 0.5613547 0.5059006 0.2352402 0.2352402
SSSTK2 ~~ SSSTK2 0.5857163 0.0320686 18.26449 0 0.5228630 0.6485695 0.5857163 0.2617008 0.2617008
SSSTK3 ~~ SSSTK3 0.4388879 0.0257876 17.01935 0 0.3883452 0.4894306 0.4388879 0.1917814 0.1917814
SSSTK4 ~~ SSSTK4 0.6336556 0.0345637 18.33298 0 0.5659120 0.7013992 0.6336556 0.2670639 0.2670639
SSSTK5 ~~ SSSTK5 0.7663886 0.0392545 19.52357 0 0.6894511 0.8433261 0.7663886 0.4158199 0.4158199
SSSTK6 ~~ SSSTK6 0.7268442 0.0365648 19.87824 0 0.6551785 0.7985100 0.7268442 0.4991270 0.4991270
SSSTK7 ~~ SSSTK7 0.5022626 0.0279800 17.95076 0 0.4474227 0.5571024 0.5022626 0.2396716 0.2396716
SSSTK8 ~~ SSSTK8 0.3838940 0.0223452 17.18015 0 0.3400982 0.4276898 0.3838940 0.1986399 0.1986399
SSSTK9 ~~ SSSTK9 0.7946644 0.0400561 19.83877 0 0.7161558 0.8731730 0.7946644 0.4882275 0.4882275
att_cp ~~ att_cp 1.6446694 0.1017036 16.17120 0 1.4453340 1.8440049 1.0000000 1.0000000 1.0000000

Korelacije

Nemam pojma jel u ovome problem, iako je to razumno za jednofaktorsku skalu

b2=baza %>% select(SSSTK1, SSSTK2, SSSTK3, SSSTK4, SSSTK5, SSSTK6,  SSSTK7, SSSTK8, SSSTK9)
rajter.flex::cor.flex(b2)$matrix

Br.

Varijabla

1

2

3

4

5

6

7

8

1

SSSTK1

1.000

2

SSSTK2

0.720***

1.000

3

SSSTK3

0.802***

0.796***

1.000

4

SSSTK4

0.793***

0.726***

0.764***

1.000

5

SSSTK5

-0.700***

-0.628***

-0.651***

-0.684***

1.000

6

SSSTK6

-0.564***

-0.614***

-0.630***

-0.566***

0.544***

1.000

7

SSSTK7

-0.761***

-0.730***

-0.773***

-0.739***

0.691***

0.648***

1.000

8

SSSTK8

0.776***

0.808***

0.787***

0.768***

-0.679***

-0.642***

-0.784***

1.000

9

SSSTK9

-0.587***

-0.598***

-0.693***

-0.558***

0.533***

0.632***

0.651***

-0.615***