load("~/Downloads/datamatch.RData")
head(datamatch)
##                                polling.place EV age.group educ male tech
## 1 Escuela de Comercio Juan Manuel de Estrada  1         4    4    1    2
## 2 Escuela de Comercio Juan Manuel de Estrada  1         2    3    1    2
## 3 Escuela de Comercio Juan Manuel de Estrada  1         4    1    1    2
## 4 Escuela de Comercio Juan Manuel de Estrada  1         3    7    1    3
## 5 Escuela de Comercio Juan Manuel de Estrada  1         4    3    1    3
## 6 Escuela de Comercio Juan Manuel de Estrada  1         3    2    0    3
##   pol.info white.collar not.full.time capable.auth eval.voting easy.voting
## 1        2            0             0            1           1           0
## 2        1            0             1            0           1           0
## 3        1            1             0            1           0           0
## 4        3            0             0            0           1           0
## 5        2            0             0            1           0           0
## 6        1            0             1            1           0           0
##   sure.counted conf.secret how.clean speed agree.evoting eselect.cand
## 1            1           1         1     1             1            1
## 2            1           0        NA     1             1            1
## 3            1           1         0     1             0            1
## 4            0           1         0     1             1            1
## 5            1           1         1     1             1            1
## 6           NA           0         0     1             1            1
# 1502 observations
# load necessary libraries
library(MatchIt)
library(Matching)
## Loading required package: MASS
## ## 
## ##  Matching (Version 4.9-11, Build Date: 2021-10-18)
## ##  See http://sekhon.berkeley.edu/matching for additional documentation.
## ##  Please cite software as:
## ##   Jasjeet S. Sekhon. 2011. ``Multivariate and Propensity Score Matching
## ##   Software with Automated Balance Optimization: The Matching package for R.''
## ##   Journal of Statistical Software, 42(7): 1-52. 
## ##
library(rgenoud)
## ##  rgenoud (Version 5.8-3.0, Build Date: 2019-01-22)
## ##  See http://sekhon.berkeley.edu/rgenoud for additional documentation.
## ##  Please cite software as:
## ##   Walter Mebane, Jr. and Jasjeet S. Sekhon. 2011.
## ##   ``Genetic Optimization Using Derivatives: The rgenoud package for R.''
## ##   Journal of Statistical Software, 42(11): 1-26. 
## ##
# only get necessary columns - covariates + treatment + 1 outcome
data_new <- datamatch[, c(2, 3, 4, 5, 6, 7, 8, 9, 17)]
head(data_new)
##   EV age.group educ male tech pol.info white.collar not.full.time agree.evoting
## 1  1         4    4    1    2        2            0             0             1
## 2  1         2    3    1    2        1            0             1             1
## 3  1         4    1    1    2        1            1             0             0
## 4  1         3    7    1    3        3            0             0             1
## 5  1         4    3    1    3        2            0             0             1
## 6  1         3    2    0    3        1            0             1             1
# drop missing values
data_omit <- na.omit(data_new)
head(data_omit)
##   EV age.group educ male tech pol.info white.collar not.full.time agree.evoting
## 1  1         4    4    1    2        2            0             0             1
## 2  1         2    3    1    2        1            0             1             1
## 3  1         4    1    1    2        1            1             0             0
## 4  1         3    7    1    3        3            0             0             1
## 5  1         4    3    1    3        2            0             0             1
## 6  1         3    2    0    3        1            0             1             1
# 1409 observations
### REPLICATION: Table 2 - Pre-Matching

datamatch[, 10:18][is.na(datamatch[, 10:18]) == "TRUE"] <- 99999
datamatch <- na.omit(datamatch)

EV <- datamatch[2]

covariates <- datamatch[c("age.group", "educ", "white.collar", "not.full.time", "male", "tech", "pol.info")]
covariate.lbls <- names(covariates)

n.covariates <- dim(covariates)[2]

tab2.pre <- matrix(NA, nrow = n.covariates, ncol = 4)
rownames(tab2.pre) <- covariate.lbls
colnames(tab2.pre) <- c("ev", "tv", "diff", "pvalue")

tab2.pre[, 1:2] <- cbind(apply(covariates[EV == 1,], 2, mean), apply(covariates[EV == 0,], 2, mean))
tab2.pre[, 3] <- tab2.pre[, 1] - tab2.pre[, 2]

for (i in c(1, 2, 6, 7)){
  tab2.pre[i, 4] <- ks.boot(covariates[, i][EV == 1], covariates[, i][EV == 0], nboots = 500)$ks.boot.pvalue
}
for (i in c(3, 4, 5)){
  tab2.pre[i, 4] <- prop.test(table(covariates[, i], EV$EV), n = apply(table(covariates[,i],EV$EV),2, sum))$p.value
}
print(tab2.pre)
##                      ev        tv         diff     pvalue
## age.group     2.4757506 2.4433498  0.032400824 0.54600000
## educ          4.7713626 4.1428571  0.628505444 0.00000000
## white.collar  0.3025404 0.2758621  0.026678347 0.29287524
## not.full.time 0.2771363 0.3349754 -0.057839111 0.01998267
## male          0.4965358 0.4909688  0.005566995 0.87472467
## tech          4.1836028 3.9096880  0.273914758 0.00000000
## pol.info      1.4745958 1.3103448  0.164251015 0.00000000
# REPLICATION: Propensity Score Matching

# logistical regression - propensity scores
logit <- glm(EV ~ age.group + I(age.group^2) + I(age.group^3) + age.group:educ + age.group:tech + educ + I(educ^2) + tech + I(tech^2) + pol.info + educ:pol.info + age.group:pol.info + tech:pol.info + white.collar + not.full.time + male, data = datamatch, family = "binomial")

# matching
X <- logit$fitted
Y <- datamatch$agree.evoting
Tr <- datamatch$EV

rr0 <- Match(Y=Y, Tr=Tr, X=X, caliper = 0.05)

# check covariate balance
mb_psm0 <- MatchBalance(EV ~ age.group + educ + white.collar + not.full.time + male + tech + pol.info, data = datamatch, match.out = rr0)
## 
## ***** (V1) age.group *****
##                        Before Matching        After Matching
## mean treatment........     2.4758             2.4713 
## mean control..........     2.4433             2.4289 
## std mean diff.........     2.4035             3.1461 
## 
## mean raw eQQ diff.....   0.065681           0.040388 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.013296          0.0080777 
## med  eCDF diff........   0.017038          0.0062136 
## max  eCDF diff........   0.026754           0.017864 
## 
## var ratio (Tr/Co).....      1.048             1.0415 
## T-test p-value........    0.64508            0.38493 
## KS Bootstrap p-value..      0.538              0.346 
## KS Naive p-value......    0.96005            0.80582 
## KS Statistic..........   0.026754           0.017864 
## 
## 
## ***** (V2) educ *****
##                        Before Matching        After Matching
## mean treatment........     4.7714             4.7544 
## mean control..........     4.1429             4.7574 
## std mean diff.........     27.294           -0.13037 
## 
## mean raw eQQ diff.....    0.62397           0.050874 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          2                  2 
## 
## mean eCDF diff........   0.070303          0.0063107 
## med  eCDF diff........   0.085505          0.0013592 
## max  eCDF diff........     0.1307           0.018641 
## 
## var ratio (Tr/Co).....     1.3199             1.0132 
## T-test p-value........ 3.0007e-08             0.9616 
## KS Bootstrap p-value.. < 2.22e-16              0.372 
## KS Naive p-value...... 9.9039e-06            0.76224 
## KS Statistic..........     0.1307           0.018641 
## 
## 
## ***** (V3) white.collar *****
##                        Before Matching        After Matching
## mean treatment........    0.30254            0.30526 
## mean control..........    0.27586            0.29773 
## std mean diff.........     5.8044             1.6338 
## 
## mean raw eQQ diff.....   0.026273          0.0066019 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.013339           0.003301 
## med  eCDF diff........   0.013339           0.003301 
## max  eCDF diff........   0.026678          0.0066019 
## 
## var ratio (Tr/Co).....     1.0558             1.0143 
## T-test p-value........    0.26506            0.67536 
## 
## 
## ***** (V4) not.full.time *****
##                        Before Matching        After Matching
## mean treatment........    0.27714            0.27485 
## mean control..........    0.33498            0.25578 
## std mean diff.........    -12.915              4.269 
## 
## mean raw eQQ diff.....   0.059113           0.020194 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........    0.02892           0.010097 
## med  eCDF diff........    0.02892           0.010097 
## max  eCDF diff........   0.057839           0.020194 
## 
## var ratio (Tr/Co).....    0.89885              1.047 
## T-test p-value........   0.018169             0.2582 
## 
## 
## ***** (V5) male *****
##                        Before Matching        After Matching
## mean treatment........    0.49654             0.4924 
## mean control..........    0.49097            0.47806 
## std mean diff.........     1.1128             2.8658 
## 
## mean raw eQQ diff.....  0.0049261          0.0007767 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........  0.0027835         0.00038835 
## med  eCDF diff........  0.0027835         0.00038835 
## max  eCDF diff........   0.005567          0.0007767 
## 
## var ratio (Tr/Co).....    0.99979             1.0017 
## T-test p-value........    0.83338             0.4814 
## 
## 
## ***** (V6) tech *****
##                        Before Matching        After Matching
## mean treatment........     4.1836             4.1906 
## mean control..........     3.9097             4.2089 
## std mean diff.........     16.549            -1.1048 
## 
## mean raw eQQ diff.....    0.26929            0.04932 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.045652          0.0082201 
## med  eCDF diff........   0.041212          0.0054369 
## max  eCDF diff........    0.10917           0.024854 
## 
## var ratio (Tr/Co).....     1.0529             1.0165 
## T-test p-value........  0.0015253            0.75787 
## KS Bootstrap p-value.. < 2.22e-16              0.124 
## KS Naive p-value......  0.0003975            0.40413 
## KS Statistic..........    0.10917           0.024854 
## 
## 
## ***** (V7) pol.info *****
##                        Before Matching        After Matching
## mean treatment........     1.4746             1.4713 
## mean control..........     1.3103             1.4336 
## std mean diff.........     20.451              4.719 
## 
## mean raw eQQ diff.....    0.16256           0.025243 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.041063          0.0063107 
## med  eCDF diff........   0.035125          0.0021359 
## max  eCDF diff........   0.094002           0.020971 
## 
## var ratio (Tr/Co).....       1.44             1.0445 
## T-test p-value........ 2.0928e-05            0.13163 
## KS Bootstrap p-value.. < 2.22e-16              0.032 
## KS Naive p-value......  0.0036036            0.62301 
## KS Statistic..........   0.094002           0.020971 
## 
## 
## Before Matching Minimum p.value: < 2.22e-16 
## Variable Name(s): educ tech pol.info  Number(s): 2 6 7 
## 
## After Matching Minimum p.value: 0.032 
## Variable Name(s): pol.info  Number(s): 7
summary(rr0)
## 
## Estimate...  483.32 
## AI SE......  1348.4 
## T-stat.....  0.35845 
## p.val......  0.72001 
## 
## Original number of observations..............  1475 
## Original number of treated obs...............  866 
## Matched number of observations...............  855 
## Matched number of observations  (unweighted).  2575 
## 
## Caliper (SDs)........................................   0.05 
## Number of obs dropped by 'exact' or 'caliper'  11
# REPEAT with simpler model! And newly cleaned data!
# logistical regression - propensity scores
logit1 <- glm(EV ~ age.group + educ + tech  + pol.info + white.collar + not.full.time + male, data = data_omit, family = "binomial")

# matching
X1 <- logit1$fitted
Y1 <- data_omit$agree.evoting
Tr1 <- data_omit$EV

rr1 <- Match(Y=Y1, Tr=Tr1, X=X1, caliper = 0.01, BiasAdjust = TRUE)

# check covariate balance
mb_psm1 <- MatchBalance(EV ~ age.group + educ + white.collar + not.full.time + male + tech + pol.info, data = data_omit, match.out = rr1, nboots = 2000)
## 
## ***** (V1) age.group *****
##                        Before Matching        After Matching
## mean treatment........     2.4673              2.435 
## mean control..........      2.446             2.4645 
## std mean diff.........     1.5948            -2.1903 
## 
## mean raw eQQ diff.....   0.063465           0.038749 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.012531          0.0077498 
## med  eCDF diff........   0.017628                  0 
## max  eCDF diff........   0.024371           0.019608 
## 
## var ratio (Tr/Co).....     1.0361            0.97536 
## T-test p-value........    0.76583            0.61124 
## KS Bootstrap p-value..     0.6615             0.3485 
## KS Naive p-value......    0.98724            0.80476 
## KS Statistic..........   0.024371           0.019608 
## 
## 
## ***** (V2) educ *****
##                        Before Matching        After Matching
## mean treatment........     4.7615             4.3771 
## mean control..........     4.0909             4.3839 
## std mean diff.........     29.258           -0.32584 
## 
## mean raw eQQ diff.....    0.66724             0.0831 
## med  raw eQQ diff.....          1                  0 
## max  raw eQQ diff.....          2                  2 
## 
## mean eCDF diff........   0.075703           0.010154 
## med  eCDF diff........    0.08996          0.0065359 
## max  eCDF diff........    0.14546           0.026611 
## 
## var ratio (Tr/Co).....     1.3492             1.0394 
## T-test p-value........ 5.3884e-09            0.88181 
## KS Bootstrap p-value.. < 2.22e-16             0.1535 
## KS Naive p-value......  1.047e-06            0.43419 
## KS Statistic..........    0.14546           0.026611 
## 
## 
## ***** (V3) white.collar *****
##                        Before Matching        After Matching
## mean treatment........    0.30508            0.29661 
## mean control..........     0.2813            0.30149 
## std mean diff.........     5.1617            -1.0673 
## 
## mean raw eQQ diff.....   0.024014           0.020542 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.011891           0.010271 
## med  eCDF diff........   0.011891           0.010271 
## max  eCDF diff........   0.023781           0.020542 
## 
## var ratio (Tr/Co).....     1.0481            0.99069 
## T-test p-value........    0.33355            0.82806 
## 
## 
## ***** (V4) not.full.time *****
##                        Before Matching        After Matching
## mean treatment........    0.27603             0.2839 
## mean control..........    0.33448            0.28468 
## std mean diff.........    -13.067           -0.17363 
## 
## mean raw eQQ diff.....   0.058319          0.0098039 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.029224           0.004902 
## med  eCDF diff........   0.029224           0.004902 
## max  eCDF diff........   0.058448          0.0098039 
## 
## var ratio (Tr/Co).....    0.89728            0.99834 
## T-test p-value........   0.019525            0.96409 
## 
## 
## ***** (V5) male *****
##                        Before Matching        After Matching
## mean treatment........    0.49879            0.48729 
## mean control..........    0.49571            0.50022 
## std mean diff.........    0.61513            -2.5857 
## 
## mean raw eQQ diff.....  0.0017153           0.011204 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........  0.0015388          0.0056022 
## med  eCDF diff........  0.0015388          0.0056022 
## max  eCDF diff........  0.0030775           0.011204 
## 
## var ratio (Tr/Co).....    0.99956            0.99935 
## T-test p-value........    0.90949            0.56068 
## 
## 
## ***** (V6) tech *****
##                        Before Matching        After Matching
## mean treatment........     4.1949             4.0636 
## mean control..........      3.916             4.0685 
## std mean diff.........     17.053            -0.3004 
## 
## mean raw eQQ diff.....    0.27616           0.045285 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.046494          0.0075475 
## med  eCDF diff........   0.044928          0.0051354 
## max  eCDF diff........     0.1073           0.024743 
## 
## var ratio (Tr/Co).....     1.0308             1.0023 
## T-test p-value........  0.0015052            0.93936 
## KS Bootstrap p-value.. < 2.22e-16             0.2005 
## KS Naive p-value...... 0.00076398            0.52836 
## KS Statistic..........     0.1073           0.024743 
## 
## 
## ***** (V7) pol.info *****
##                        Before Matching        After Matching
## mean treatment........     1.4685             1.3376 
## mean control..........     1.3053             1.3286 
## std mean diff.........     20.407             1.3482 
## 
## mean raw eQQ diff.....    0.16295           0.020075 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.040801          0.0050187 
## med  eCDF diff........   0.035003          0.0014006 
## max  eCDF diff........     0.0932           0.017274 
## 
## var ratio (Tr/Co).....     1.4448             1.0089 
## T-test p-value........ 3.2741e-05            0.70849 
## KS Bootstrap p-value.. < 2.22e-16             0.1385 
## KS Naive p-value......  0.0052778            0.90664 
## KS Statistic..........     0.0932           0.017274 
## 
## 
## Before Matching Minimum p.value: < 2.22e-16 
## Variable Name(s): educ tech pol.info  Number(s): 2 6 7 
## 
## After Matching Minimum p.value: 0.1385 
## Variable Name(s): pol.info  Number(s): 7
summary(rr1)
## 
## Estimate...  0.18273 
## AI SE......  0.023639 
## T-stat.....  7.7301 
## p.val......  1.0658e-14 
## 
## Original number of observations..............  1409 
## Original number of treated obs...............  826 
## Matched number of observations...............  708 
## Matched number of observations  (unweighted).  2142 
## 
## Caliper (SDs)........................................   0.01 
## Number of obs dropped by 'exact' or 'caliper'  118
# EXTENSION: Genetic Matching
set.seed(34664)
# the model like the original paper
genout <- GenMatch(Tr = data_omit$EV, X = cbind(data_omit$age.group, data_omit$educ, data_omit$male, data_omit$tech, data_omit$pol.info, data_omit$white.collar, data_omit$not.full.time), pop.size = 20, nboots = 500) # increase the number of bootstraps to increase the quality of matching
## 
## 
## Fri Apr 22 18:54:35 2022
## Domains:
##  0.000000e+00   <=  X1   <=    1.000000e+03 
##  0.000000e+00   <=  X2   <=    1.000000e+03 
##  0.000000e+00   <=  X3   <=    1.000000e+03 
##  0.000000e+00   <=  X4   <=    1.000000e+03 
##  0.000000e+00   <=  X5   <=    1.000000e+03 
##  0.000000e+00   <=  X6   <=    1.000000e+03 
##  0.000000e+00   <=  X7   <=    1.000000e+03 
## 
## Data Type: Floating Point
## Operators (code number, name, population) 
##  (1) Cloning...........................  5
##  (2) Uniform Mutation..................  2
##  (3) Boundary Mutation.................  2
##  (4) Non-Uniform Mutation..............  2
##  (5) Polytope Crossover................  2
##  (6) Simple Crossover..................  2
##  (7) Whole Non-Uniform Mutation........  2
##  (8) Heuristic Crossover...............  2
##  (9) Local-Minimum Crossover...........  0
## 
## SOFT Maximum Number of Generations: 100
## Maximum Nonchanging Generations: 4
## Population size       : 20
## Convergence Tolerance: 1.000000e-03
## 
## Not Using the BFGS Derivative Based Optimizer on the Best Individual Each Generation.
## Not Checking Gradients before Stopping.
## Using Out of Bounds Individuals.
## 
## Maximization Problem.
## GENERATION: 0 (initializing the population)
## Lexical Fit..... 1.045862e-01  1.045862e-01  2.400000e-01  3.173108e-01  3.173108e-01  3.173108e-01  3.230868e-01  8.720000e-01  8.953393e-01  9.597300e-01  9.660000e-01  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 20, #Total UniqueCount: 20
## var 1:
## best............ 2.825860e+01
## mean............ 3.339641e+02
## variance........ 6.450582e+04
## var 2:
## best............ 8.035248e+02
## mean............ 4.941728e+02
## variance........ 8.645013e+04
## var 3:
## best............ 3.069706e+02
## mean............ 4.384428e+02
## variance........ 1.011329e+05
## var 4:
## best............ 8.780492e+02
## mean............ 4.598639e+02
## variance........ 9.014094e+04
## var 5:
## best............ 8.866684e+02
## mean............ 5.452365e+02
## variance........ 8.401963e+04
## var 6:
## best............ 4.663642e+02
## mean............ 3.831739e+02
## variance........ 9.354026e+04
## var 7:
## best............ 6.018247e+01
## mean............ 3.950401e+02
## variance........ 7.549191e+04
## 
## GENERATION: 1
## Lexical Fit..... 2.960000e-01  3.173108e-01  3.173108e-01  3.701437e-01  3.701437e-01  4.120290e-01  5.271645e-01  5.271645e-01  5.827818e-01  8.737061e-01  9.660000e-01  9.980000e-01  1.000000e+00  1.000000e+00  
## #unique......... 13, #Total UniqueCount: 33
## var 1:
## best............ 1.579388e+01
## mean............ 2.380219e+02
## variance........ 4.647217e+04
## var 2:
## best............ 8.068548e+02
## mean............ 5.581849e+02
## variance........ 6.920607e+04
## var 3:
## best............ 3.115044e+02
## mean............ 4.005003e+02
## variance........ 4.743333e+04
## var 4:
## best............ 8.926560e+02
## mean............ 4.773902e+02
## variance........ 1.139004e+05
## var 5:
## best............ 8.872365e+02
## mean............ 8.341435e+02
## variance........ 1.564155e+04
## var 6:
## best............ 4.693840e+02
## mean............ 3.829471e+02
## variance........ 5.323550e+04
## var 7:
## best............ 3.313543e+01
## mean............ 2.967744e+02
## variance........ 9.878792e+04
## 
## GENERATION: 2
## Lexical Fit..... 3.060000e-01  3.173108e-01  3.173108e-01  3.701437e-01  3.701437e-01  4.120290e-01  5.271645e-01  5.271645e-01  5.827818e-01  8.737061e-01  9.660000e-01  9.960000e-01  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 45
## var 1:
## best............ 8.501244e+00
## mean............ 6.194932e+01
## variance........ 1.138634e+04
## var 2:
## best............ 8.068548e+02
## mean............ 7.565826e+02
## variance........ 1.653447e+04
## var 3:
## best............ 3.115044e+02
## mean............ 3.129946e+02
## variance........ 1.074162e+04
## var 4:
## best............ 8.926560e+02
## mean............ 6.971718e+02
## variance........ 7.259912e+04
## var 5:
## best............ 8.872365e+02
## mean............ 8.460005e+02
## variance........ 1.015081e+04
## var 6:
## best............ 4.693840e+02
## mean............ 4.181505e+02
## variance........ 2.155755e+04
## var 7:
## best............ 3.313543e+01
## mean............ 2.721703e+02
## variance........ 1.216237e+05
## 
## GENERATION: 3
## Lexical Fit..... 3.173108e-01  3.173108e-01  3.300000e-01  3.701437e-01  3.701437e-01  4.120290e-01  5.271645e-01  5.271645e-01  5.827818e-01  8.737061e-01  9.720000e-01  9.980000e-01  1.000000e+00  1.000000e+00  
## #unique......... 10, #Total UniqueCount: 55
## var 1:
## best............ 1.579388e+01
## mean............ 1.561801e+01
## variance........ 3.113896e+01
## var 2:
## best............ 8.068548e+02
## mean............ 8.141974e+02
## variance........ 6.784355e+02
## var 3:
## best............ 3.115044e+02
## mean............ 3.153912e+02
## variance........ 4.152574e+02
## var 4:
## best............ 8.926560e+02
## mean............ 8.295218e+02
## variance........ 2.315411e+04
## var 5:
## best............ 8.872365e+02
## mean............ 8.659688e+02
## variance........ 8.260440e+03
## var 6:
## best............ 3.549239e+02
## mean............ 4.252438e+02
## variance........ 4.923746e+03
## var 7:
## best............ 3.313543e+01
## mean............ 1.724074e+02
## variance........ 8.139028e+04
## 
## GENERATION: 4
## Lexical Fit..... 3.173108e-01  3.173108e-01  3.300000e-01  3.701437e-01  3.701437e-01  4.120290e-01  5.271645e-01  5.271645e-01  5.827818e-01  8.737061e-01  9.720000e-01  9.980000e-01  1.000000e+00  1.000000e+00  
## #unique......... 11, #Total UniqueCount: 66
## var 1:
## best............ 1.579388e+01
## mean............ 2.808238e+01
## variance........ 1.915818e+03
## var 2:
## best............ 8.068548e+02
## mean............ 7.575442e+02
## variance........ 2.100367e+04
## var 3:
## best............ 3.115044e+02
## mean............ 3.092786e+02
## variance........ 2.548205e+03
## var 4:
## best............ 8.926560e+02
## mean............ 8.954764e+02
## variance........ 7.263628e+01
## var 5:
## best............ 8.872365e+02
## mean............ 8.877601e+02
## variance........ 8.330646e+02
## var 6:
## best............ 3.549239e+02
## mean............ 4.347976e+02
## variance........ 9.407492e+03
## var 7:
## best............ 3.313543e+01
## mean............ 7.299991e+01
## variance........ 1.512679e+04
## 
## GENERATION: 5
## Lexical Fit..... 3.173108e-01  3.173108e-01  3.300000e-01  3.701437e-01  3.701437e-01  4.120290e-01  5.271645e-01  5.271645e-01  5.827818e-01  8.737061e-01  9.720000e-01  9.980000e-01  1.000000e+00  1.000000e+00  
## #unique......... 10, #Total UniqueCount: 76
## var 1:
## best............ 1.579388e+01
## mean............ 1.424302e+01
## variance........ 8.437568e+00
## var 2:
## best............ 8.068548e+02
## mean............ 8.033015e+02
## variance........ 1.614088e+03
## var 3:
## best............ 3.115044e+02
## mean............ 3.283206e+02
## variance........ 3.645326e+03
## var 4:
## best............ 8.926560e+02
## mean............ 8.931657e+02
## variance........ 2.775267e+00
## var 5:
## best............ 8.872365e+02
## mean............ 8.924514e+02
## variance........ 1.589678e+02
## var 6:
## best............ 3.549239e+02
## mean............ 4.157515e+02
## variance........ 2.112952e+04
## var 7:
## best............ 3.313543e+01
## mean............ 4.373805e+01
## variance........ 1.662836e+03
## 
## GENERATION: 6
## Lexical Fit..... 3.173108e-01  3.173108e-01  3.300000e-01  3.701437e-01  3.701437e-01  4.120290e-01  5.271645e-01  5.271645e-01  5.827818e-01  8.737061e-01  9.720000e-01  9.980000e-01  1.000000e+00  1.000000e+00  
## #unique......... 8, #Total UniqueCount: 84
## var 1:
## best............ 1.579388e+01
## mean............ 4.052015e+01
## variance........ 6.770649e+03
## var 2:
## best............ 8.068548e+02
## mean............ 8.029304e+02
## variance........ 1.123459e+03
## var 3:
## best............ 3.115044e+02
## mean............ 3.241346e+02
## variance........ 3.560530e+03
## var 4:
## best............ 8.926560e+02
## mean............ 8.707818e+02
## variance........ 4.661095e+03
## var 5:
## best............ 8.872365e+02
## mean............ 8.882447e+02
## variance........ 8.386752e+01
## var 6:
## best............ 3.549239e+02
## mean............ 3.725770e+02
## variance........ 5.414634e+03
## var 7:
## best............ 3.313543e+01
## mean............ 5.212469e+01
## variance........ 3.797123e+03
## 
## GENERATION: 7
## Lexical Fit..... 3.173108e-01  3.173108e-01  3.300000e-01  3.701437e-01  3.701437e-01  4.120290e-01  5.271645e-01  5.271645e-01  5.827818e-01  8.737061e-01  9.720000e-01  9.980000e-01  1.000000e+00  1.000000e+00  
## #unique......... 6, #Total UniqueCount: 90
## var 1:
## best............ 1.579388e+01
## mean............ 3.926465e+01
## variance........ 6.727968e+03
## var 2:
## best............ 8.068548e+02
## mean............ 8.027507e+02
## variance........ 1.161955e+02
## var 3:
## best............ 3.115044e+02
## mean............ 3.113771e+02
## variance........ 2.862367e+02
## var 4:
## best............ 8.926560e+02
## mean............ 8.934560e+02
## variance........ 2.492677e+01
## var 5:
## best............ 8.872365e+02
## mean............ 8.749845e+02
## variance........ 2.172842e+03
## var 6:
## best............ 3.549239e+02
## mean............ 3.508345e+02
## variance........ 2.522213e+02
## var 7:
## best............ 3.313543e+01
## mean............ 5.940284e+01
## variance........ 1.137567e+04
## 
## GENERATION: 8
## Lexical Fit..... 3.173108e-01  3.173108e-01  3.300000e-01  3.701437e-01  3.701437e-01  4.120290e-01  5.271645e-01  5.271645e-01  5.827818e-01  8.737061e-01  9.720000e-01  9.980000e-01  1.000000e+00  1.000000e+00  
## #unique......... 7, #Total UniqueCount: 97
## var 1:
## best............ 1.579388e+01
## mean............ 2.439233e+01
## variance........ 7.679483e+02
## var 2:
## best............ 8.068548e+02
## mean............ 7.793968e+02
## variance........ 1.651973e+04
## var 3:
## best............ 3.115044e+02
## mean............ 3.011862e+02
## variance........ 3.000053e+03
## var 4:
## best............ 8.926560e+02
## mean............ 8.558825e+02
## variance........ 1.054064e+04
## var 5:
## best............ 8.872365e+02
## mean............ 8.647865e+02
## variance........ 9.941736e+03
## var 6:
## best............ 3.549239e+02
## mean............ 3.522310e+02
## variance........ 5.081417e+02
## var 7:
## best............ 3.313543e+01
## mean............ 1.084554e+02
## variance........ 3.938919e+04
## 
## 'wait.generations' limit reached.
## No significant improvement in 4 generations.
## 
## Solution Lexical Fitness Value:
## 3.173108e-01  3.173108e-01  3.300000e-01  3.701437e-01  3.701437e-01  4.120290e-01  5.271645e-01  5.271645e-01  5.827818e-01  8.737061e-01  9.720000e-01  9.980000e-01  1.000000e+00  1.000000e+00  
## 
## Parameters at the Solution:
## 
##  X[ 1] : 1.579388e+01
##  X[ 2] : 8.068548e+02
##  X[ 3] : 3.115044e+02
##  X[ 4] : 8.926560e+02
##  X[ 5] : 8.872365e+02
##  X[ 6] : 3.549239e+02
##  X[ 7] : 3.313543e+01
## 
## Solution Found Generation 3
## Number of Generations Run 8
## 
## Fri Apr 22 18:55:59 2022
## Total run time : 0 hours 1 minutes and 24 seconds
mout <- Match(Y = data_omit$agree.evoting, Tr = data_omit$EV, X = cbind(data_omit$age.group, data_omit$educ, data_omit$male, data_omit$tech, data_omit$pol.info, data_omit$white.collar, data_omit$not.full.time), Weight.matrix = genout)
mb_gm <- MatchBalance(EV ~ age.group + educ + male + tech + pol.info + white.collar + not.full.time, data = data_omit, match.out = mout)
## 
## ***** (V1) age.group *****
##                        Before Matching        After Matching
## mean treatment........     2.4673             2.4673 
## mean control..........      2.446             2.4368 
## std mean diff.........     1.5948             2.2766 
## 
## mean raw eQQ diff.....   0.063465           0.074074 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.012531           0.014815 
## med  eCDF diff........   0.017628           0.019157 
## max  eCDF diff........   0.024371           0.024904 
## 
## var ratio (Tr/Co).....     1.0361             1.0932 
## T-test p-value........    0.76583            0.41203 
## KS Bootstrap p-value..       0.62              0.314 
## KS Naive p-value......    0.98724            0.71643 
## KS Statistic..........   0.024371           0.024904 
## 
## 
## ***** (V2) educ *****
##                        Before Matching        After Matching
## mean treatment........     4.7615             4.7615 
## mean control..........     4.0909             4.7518 
## std mean diff.........     29.258            0.42256 
## 
## mean raw eQQ diff.....    0.66724            0.03576 
## med  raw eQQ diff.....          1                  0 
## max  raw eQQ diff.....          2                  2 
## 
## mean eCDF diff........   0.075703          0.0039911 
## med  eCDF diff........    0.08996          0.0047893 
## max  eCDF diff........    0.14546          0.0063857 
## 
## var ratio (Tr/Co).....     1.3492             1.0329 
## T-test p-value........ 5.3884e-09            0.58278 
## KS Bootstrap p-value.. < 2.22e-16              0.998 
## KS Naive p-value......  1.047e-06                  1 
## KS Statistic..........    0.14546          0.0063857 
## 
## 
## ***** (V3) male *****
##                        Before Matching        After Matching
## mean treatment........    0.49879            0.49879 
## mean control..........    0.49571            0.49637 
## std mean diff.........    0.61513            0.48397 
## 
## mean raw eQQ diff.....  0.0017153          0.0012771 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........  0.0015388         0.00063857 
## med  eCDF diff........  0.0015388         0.00063857 
## max  eCDF diff........  0.0030775          0.0012771 
## 
## var ratio (Tr/Co).....    0.99956                  1 
## T-test p-value........    0.90949            0.52716 
## 
## 
## ***** (V4) tech *****
##                        Before Matching        After Matching
## mean treatment........     4.1949             4.1949 
## mean control..........      3.916             4.1931 
## std mean diff.........     17.053            0.11101 
## 
## mean raw eQQ diff.....    0.27616           0.018519 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.046494          0.0030864 
## med  eCDF diff........   0.044928          0.0031928 
## max  eCDF diff........     0.1073          0.0083014 
## 
## var ratio (Tr/Co).....     1.0308             1.0325 
## T-test p-value........  0.0015052            0.87371 
## KS Bootstrap p-value.. < 2.22e-16              0.972 
## KS Naive p-value...... 0.00076398                  1 
## KS Statistic..........     0.1073          0.0083014 
## 
## 
## ***** (V5) pol.info *****
##                        Before Matching        After Matching
## mean treatment........     1.4685             1.4685 
## mean control..........     1.3053             1.4685 
## std mean diff.........     20.407                  0 
## 
## mean raw eQQ diff.....    0.16295                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  0 
## 
## mean eCDF diff........   0.040801                  0 
## med  eCDF diff........   0.035003                  0 
## max  eCDF diff........     0.0932                  0 
## 
## var ratio (Tr/Co).....     1.4448                  1 
## T-test p-value........ 3.2741e-05                  1 
## KS Bootstrap p-value.. < 2.22e-16                  1 
## KS Naive p-value......  0.0052778                  1 
## KS Statistic..........     0.0932                  0 
## 
## 
## ***** (V6) white.collar *****
##                        Before Matching        After Matching
## mean treatment........    0.30508            0.30508 
## mean control..........     0.2813            0.30387 
## std mean diff.........     5.1617            0.26277 
## 
## mean raw eQQ diff.....   0.024014         0.00063857 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.011891         0.00031928 
## med  eCDF diff........   0.011891         0.00031928 
## max  eCDF diff........   0.023781         0.00063857 
## 
## var ratio (Tr/Co).....     1.0481             1.0022 
## T-test p-value........    0.33355            0.31731 
## 
## 
## ***** (V7) not.full.time *****
##                        Before Matching        After Matching
## mean treatment........    0.27603            0.27603 
## mean control..........    0.33448            0.26755 
## std mean diff.........    -13.067             1.8946 
## 
## mean raw eQQ diff.....   0.058319          0.0083014 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.029224          0.0041507 
## med  eCDF diff........   0.029224          0.0041507 
## max  eCDF diff........   0.058448          0.0083014 
## 
## var ratio (Tr/Co).....    0.89728             1.0197 
## T-test p-value........   0.019525            0.37014 
## 
## 
## Before Matching Minimum p.value: < 2.22e-16 
## Variable Name(s): educ tech pol.info  Number(s): 2 4 5 
## 
## After Matching Minimum p.value: 0.314 
## Variable Name(s): age.group  Number(s): 1
summary(mout)
## 
## Estimate...  0.18634 
## AI SE......  0.029299 
## T-stat.....  6.3598 
## p.val......  2.0205e-10 
## 
## Original number of observations..............  1409 
## Original number of treated obs...............  826 
## Matched number of observations...............  826 
## Matched number of observations  (unweighted).  1566
# EXACT MATCHING ON BINARY VARIABLE
set.seed(34664)
# we impose EXACT Matching on Male, White Collar and Not Full Time!
genout1 <- GenMatch(Tr = data_omit$EV, X = cbind(data_omit$age.group, data_omit$educ, data_omit$male, data_omit$tech, data_omit$pol.info, data_omit$white.collar, data_omit$not.full.time), exact = c(FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE), pop.size = 20, nboots = 500) # increase the number of bootstraps to increase the quality of matching
## 
## 
## Fri Apr 22 18:56:02 2022
## Domains:
##  0.000000e+00   <=  X1   <=    1.000000e+03 
##  0.000000e+00   <=  X2   <=    1.000000e+03 
##  0.000000e+00   <=  X3   <=    1.000000e+03 
##  0.000000e+00   <=  X4   <=    1.000000e+03 
##  0.000000e+00   <=  X5   <=    1.000000e+03 
##  0.000000e+00   <=  X6   <=    1.000000e+03 
##  0.000000e+00   <=  X7   <=    1.000000e+03 
## 
## Data Type: Floating Point
## Operators (code number, name, population) 
##  (1) Cloning...........................  5
##  (2) Uniform Mutation..................  2
##  (3) Boundary Mutation.................  2
##  (4) Non-Uniform Mutation..............  2
##  (5) Polytope Crossover................  2
##  (6) Simple Crossover..................  2
##  (7) Whole Non-Uniform Mutation........  2
##  (8) Heuristic Crossover...............  2
##  (9) Local-Minimum Crossover...........  0
## 
## SOFT Maximum Number of Generations: 100
## Maximum Nonchanging Generations: 4
## Population size       : 20
## Convergence Tolerance: 1.000000e-03
## 
## Not Using the BFGS Derivative Based Optimizer on the Best Individual Each Generation.
## Not Checking Gradients before Stopping.
## Using Out of Bounds Individuals.
## 
## Maximization Problem.
## GENERATION: 0 (initializing the population)
## Lexical Fit..... 4.836045e-03  8.307797e-02  1.485014e-01  3.100000e-01  6.960000e-01  7.570985e-01  9.000000e-01  9.860000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 20, #Total UniqueCount: 20
## var 1:
## best............ 1.379989e+02
## mean............ 3.339641e+02
## variance........ 6.450582e+04
## var 2:
## best............ 1.428679e+02
## mean............ 4.941728e+02
## variance........ 8.645013e+04
## var 3:
## best............ 6.925637e+02
## mean............ 4.384428e+02
## variance........ 1.011329e+05
## var 4:
## best............ 5.295281e+01
## mean............ 4.598639e+02
## variance........ 9.014094e+04
## var 5:
## best............ 9.974096e+02
## mean............ 5.452365e+02
## variance........ 8.401963e+04
## var 6:
## best............ 9.609640e+01
## mean............ 3.831739e+02
## variance........ 9.354026e+04
## var 7:
## best............ 7.630937e+01
## mean............ 3.950401e+02
## variance........ 7.549191e+04
## 
## GENERATION: 1
## Lexical Fit..... 1.186951e-02  8.307797e-02  3.685363e-01  3.783936e-01  5.740000e-01  6.940000e-01  8.740000e-01  9.920000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 13, #Total UniqueCount: 33
## var 1:
## best............ 1.286089e+02
## mean............ 1.888537e+02
## variance........ 2.376633e+04
## var 2:
## best............ 2.018664e+02
## mean............ 3.329961e+02
## variance........ 6.466280e+04
## var 3:
## best............ 3.336807e+02
## mean............ 6.226979e+02
## variance........ 5.277562e+04
## var 4:
## best............ 1.094720e+02
## mean............ 2.729393e+02
## variance........ 6.349704e+04
## var 5:
## best............ 9.403113e+02
## mean............ 7.753558e+02
## variance........ 3.775796e+04
## var 6:
## best............ 1.632464e+02
## mean............ 3.562311e+02
## variance........ 7.861835e+04
## var 7:
## best............ 1.676028e+02
## mean............ 3.485271e+02
## variance........ 1.137334e+05
## 
## GENERATION: 2
## Lexical Fit..... 2.181549e-02  8.307797e-02  1.984772e-01  5.220000e-01  5.669920e-01  8.260000e-01  9.840000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 45
## var 1:
## best............ 1.286089e+02
## mean............ 1.297390e+02
## variance........ 1.900780e+02
## var 2:
## best............ 2.018664e+02
## mean............ 1.933430e+02
## variance........ 1.952607e+04
## var 3:
## best............ 3.336807e+02
## mean............ 5.529596e+02
## variance........ 3.499129e+04
## var 4:
## best............ 1.798559e+02
## mean............ 8.576332e+01
## variance........ 2.570888e+03
## var 5:
## best............ 9.403113e+02
## mean............ 9.313420e+02
## variance........ 6.893506e+03
## var 6:
## best............ 1.632464e+02
## mean............ 1.322592e+02
## variance........ 6.042703e+03
## var 7:
## best............ 1.676028e+02
## mean............ 1.635550e+02
## variance........ 2.327517e+04
## 
## GENERATION: 3
## Lexical Fit..... 4.698195e-02  8.307797e-02  1.469536e-01  4.833818e-01  6.000000e-01  8.340000e-01  9.900000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 10, #Total UniqueCount: 55
## var 1:
## best............ 1.012600e+02
## mean............ 1.219728e+02
## variance........ 4.576029e+02
## var 2:
## best............ 1.835195e+02
## mean............ 2.166273e+02
## variance........ 1.253460e+04
## var 3:
## best............ 3.290847e+02
## mean............ 3.661672e+02
## variance........ 5.650683e+03
## var 4:
## best............ 1.026700e+02
## mean............ 1.543721e+02
## variance........ 1.080190e+04
## var 5:
## best............ 9.463827e+02
## mean............ 9.337782e+02
## variance........ 1.626057e+03
## var 6:
## best............ 1.436520e+02
## mean............ 1.396995e+02
## variance........ 1.556008e+03
## var 7:
## best............ 2.282243e+02
## mean............ 2.080455e+02
## variance........ 7.776701e+03
## 
## GENERATION: 4
## Lexical Fit..... 4.698195e-02  8.307797e-02  1.469536e-01  4.833818e-01  6.000000e-01  8.340000e-01  9.900000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 10, #Total UniqueCount: 65
## var 1:
## best............ 1.012600e+02
## mean............ 1.592652e+02
## variance........ 1.732290e+04
## var 2:
## best............ 1.835195e+02
## mean............ 2.239877e+02
## variance........ 1.116085e+04
## var 3:
## best............ 3.290847e+02
## mean............ 3.269583e+02
## variance........ 9.356424e+03
## var 4:
## best............ 1.026700e+02
## mean............ 1.697697e+02
## variance........ 1.775181e+04
## var 5:
## best............ 9.463827e+02
## mean............ 9.243144e+02
## variance........ 8.381441e+03
## var 6:
## best............ 1.436520e+02
## mean............ 1.694995e+02
## variance........ 8.824852e+03
## var 7:
## best............ 2.282243e+02
## mean............ 2.149256e+02
## variance........ 3.378055e+03
## 
## GENERATION: 5
## Lexical Fit..... 4.698195e-02  8.307797e-02  1.469536e-01  4.833818e-01  6.000000e-01  8.340000e-01  9.900000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 6, #Total UniqueCount: 71
## var 1:
## best............ 1.012600e+02
## mean............ 1.037672e+02
## variance........ 2.212374e+02
## var 2:
## best............ 1.835195e+02
## mean............ 2.087744e+02
## variance........ 1.836008e+04
## var 3:
## best............ 3.290847e+02
## mean............ 3.182633e+02
## variance........ 4.147378e+03
## var 4:
## best............ 1.026700e+02
## mean............ 1.421198e+02
## variance........ 8.688824e+03
## var 5:
## best............ 9.463827e+02
## mean............ 9.468128e+02
## variance........ 1.546689e+01
## var 6:
## best............ 1.436520e+02
## mean............ 1.825567e+02
## variance........ 8.310971e+03
## var 7:
## best............ 2.282243e+02
## mean............ 2.247847e+02
## variance........ 1.127122e+03
## 
## GENERATION: 6
## Lexical Fit..... 4.698195e-02  8.307797e-02  1.469536e-01  4.833818e-01  6.000000e-01  8.340000e-01  9.900000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 7, #Total UniqueCount: 78
## var 1:
## best............ 1.012600e+02
## mean............ 1.125381e+02
## variance........ 1.613987e+03
## var 2:
## best............ 1.835195e+02
## mean............ 1.893524e+02
## variance........ 7.873928e+02
## var 3:
## best............ 3.290847e+02
## mean............ 3.158317e+02
## variance........ 1.664312e+03
## var 4:
## best............ 1.026700e+02
## mean............ 1.170266e+02
## variance........ 1.910750e+03
## var 5:
## best............ 9.463827e+02
## mean............ 9.287002e+02
## variance........ 5.436280e+03
## var 6:
## best............ 1.436520e+02
## mean............ 1.356895e+02
## variance........ 3.308251e+02
## var 7:
## best............ 2.282243e+02
## mean............ 2.301199e+02
## variance........ 9.634211e+02
## 
## GENERATION: 7
## Lexical Fit..... 4.698195e-02  8.307797e-02  1.469536e-01  4.833818e-01  6.020000e-01  8.580000e-01  9.900000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 8, #Total UniqueCount: 86
## var 1:
## best............ 1.012600e+02
## mean............ 1.753295e+02
## variance........ 3.864865e+04
## var 2:
## best............ 1.835195e+02
## mean............ 2.336020e+02
## variance........ 1.309365e+04
## var 3:
## best............ 3.290847e+02
## mean............ 3.495206e+02
## variance........ 1.052046e+04
## var 4:
## best............ 1.026700e+02
## mean............ 1.737563e+02
## variance........ 4.039109e+04
## var 5:
## best............ 9.463827e+02
## mean............ 9.350146e+02
## variance........ 1.379404e+03
## var 6:
## best............ 1.436520e+02
## mean............ 1.622761e+02
## variance........ 9.767151e+03
## var 7:
## best............ 1.762649e+02
## mean............ 2.505425e+02
## variance........ 1.009147e+04
## 
## GENERATION: 8
## Lexical Fit..... 4.698195e-02  8.307797e-02  1.469536e-01  4.833818e-01  6.020000e-01  8.580000e-01  9.900000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 11, #Total UniqueCount: 97
## var 1:
## best............ 1.012600e+02
## mean............ 1.142494e+02
## variance........ 1.264141e+03
## var 2:
## best............ 1.835195e+02
## mean............ 2.000427e+02
## variance........ 7.560549e+03
## var 3:
## best............ 3.290847e+02
## mean............ 3.204486e+02
## variance........ 9.064791e+03
## var 4:
## best............ 1.026700e+02
## mean............ 1.420088e+02
## variance........ 9.640964e+03
## var 5:
## best............ 9.463827e+02
## mean............ 9.238820e+02
## variance........ 3.465513e+03
## var 6:
## best............ 1.436520e+02
## mean............ 1.464330e+02
## variance........ 2.790972e+02
## var 7:
## best............ 1.762649e+02
## mean............ 2.601278e+02
## variance........ 2.059823e+04
## 
## GENERATION: 9
## Lexical Fit..... 4.698195e-02  8.307797e-02  1.469536e-01  4.833818e-01  6.020000e-01  8.580000e-01  9.900000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 8, #Total UniqueCount: 105
## var 1:
## best............ 1.012600e+02
## mean............ 9.926508e+01
## variance........ 7.561707e+01
## var 2:
## best............ 1.835195e+02
## mean............ 1.834320e+02
## variance........ 2.802076e+01
## var 3:
## best............ 3.290847e+02
## mean............ 3.331346e+02
## variance........ 1.117152e+03
## var 4:
## best............ 1.026700e+02
## mean............ 1.018587e+02
## variance........ 1.150102e+01
## var 5:
## best............ 9.463827e+02
## mean............ 9.247192e+02
## variance........ 4.507005e+03
## var 6:
## best............ 1.436520e+02
## mean............ 1.741293e+02
## variance........ 1.391250e+04
## var 7:
## best............ 1.762649e+02
## mean............ 2.123327e+02
## variance........ 5.239741e+03
## 
## GENERATION: 10
## Lexical Fit..... 4.698195e-02  8.307797e-02  1.469536e-01  4.833818e-01  6.020000e-01  8.580000e-01  9.900000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 6, #Total UniqueCount: 111
## var 1:
## best............ 1.012600e+02
## mean............ 1.468670e+02
## variance........ 1.302637e+04
## var 2:
## best............ 1.835195e+02
## mean............ 2.474826e+02
## variance........ 3.651518e+04
## var 3:
## best............ 3.290847e+02
## mean............ 3.483456e+02
## variance........ 4.147389e+03
## var 4:
## best............ 1.026700e+02
## mean............ 1.157850e+02
## variance........ 1.716581e+03
## var 5:
## best............ 9.463827e+02
## mean............ 9.261408e+02
## variance........ 3.734761e+03
## var 6:
## best............ 1.436520e+02
## mean............ 2.048016e+02
## variance........ 2.847460e+04
## var 7:
## best............ 1.762649e+02
## mean............ 2.108481e+02
## variance........ 7.565286e+03
## 
## GENERATION: 11
## Lexical Fit..... 4.698195e-02  8.307797e-02  1.469536e-01  4.833818e-01  6.020000e-01  8.580000e-01  9.900000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 9, #Total UniqueCount: 120
## var 1:
## best............ 1.012600e+02
## mean............ 1.330931e+02
## variance........ 9.695272e+03
## var 2:
## best............ 1.835195e+02
## mean............ 1.818152e+02
## variance........ 1.843684e+02
## var 3:
## best............ 3.290847e+02
## mean............ 3.541779e+02
## variance........ 2.037047e+04
## var 4:
## best............ 1.026700e+02
## mean............ 1.057149e+02
## variance........ 8.397803e+01
## var 5:
## best............ 9.463827e+02
## mean............ 9.128774e+02
## variance........ 1.886419e+04
## var 6:
## best............ 1.436520e+02
## mean............ 1.665790e+02
## variance........ 1.338681e+04
## var 7:
## best............ 1.762649e+02
## mean............ 1.744509e+02
## variance........ 5.130763e+01
## 
## GENERATION: 12
## Lexical Fit..... 4.698195e-02  8.307797e-02  1.469536e-01  4.833818e-01  6.020000e-01  8.580000e-01  9.900000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 6, #Total UniqueCount: 126
## var 1:
## best............ 1.012600e+02
## mean............ 1.130725e+02
## variance........ 2.763320e+03
## var 2:
## best............ 1.835195e+02
## mean............ 1.822327e+02
## variance........ 2.699412e+02
## var 3:
## best............ 3.290847e+02
## mean............ 3.385277e+02
## variance........ 2.233328e+03
## var 4:
## best............ 1.026700e+02
## mean............ 1.613277e+02
## variance........ 2.961529e+04
## var 5:
## best............ 9.463827e+02
## mean............ 9.234178e+02
## variance........ 5.025230e+03
## var 6:
## best............ 1.436520e+02
## mean............ 1.455169e+02
## variance........ 7.204419e+01
## var 7:
## best............ 1.762649e+02
## mean............ 1.861917e+02
## variance........ 1.929544e+03
## 
## 'wait.generations' limit reached.
## No significant improvement in 4 generations.
## 
## Solution Lexical Fitness Value:
## 4.698195e-02  8.307797e-02  1.469536e-01  4.833818e-01  6.020000e-01  8.580000e-01  9.900000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## 
## Parameters at the Solution:
## 
##  X[ 1] : 1.012600e+02
##  X[ 2] : 1.835195e+02
##  X[ 3] : 3.290847e+02
##  X[ 4] : 1.026700e+02
##  X[ 5] : 9.463827e+02
##  X[ 6] : 1.436520e+02
##  X[ 7] : 1.762649e+02
## 
## Solution Found Generation 7
## Number of Generations Run 12
## 
## Fri Apr 22 18:57:49 2022
## Total run time : 0 hours 1 minutes and 47 seconds
mout1 <- Match(Y = data_omit$agree.evoting, Tr = data_omit$EV, X = cbind(data_omit$age.group, data_omit$educ, data_omit$male, data_omit$tech, data_omit$pol.info, data_omit$white.collar, data_omit$not.full.time), Weight.matrix = genout1)
mb_gm1 <- MatchBalance(EV ~ age.group + educ + male + tech + pol.info + white.collar + not.full.time, data = data_omit, match.out = mout1)
## 
## ***** (V1) age.group *****
##                        Before Matching        After Matching
## mean treatment........     2.4673             2.4673 
## mean control..........      2.446              2.458 
## std mean diff.........     1.5948            0.69354 
## 
## mean raw eQQ diff.....   0.063465           0.032692 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.012531          0.0065385 
## med  eCDF diff........   0.017628          0.0083333 
## max  eCDF diff........   0.024371           0.010897 
## 
## var ratio (Tr/Co).....     1.0361              1.073 
## T-test p-value........    0.76583            0.63388 
## KS Bootstrap p-value..       0.66              0.844 
## KS Naive p-value......    0.98724            0.99999 
## KS Statistic..........   0.024371           0.010897 
## 
## 
## ***** (V2) educ *****
##                        Before Matching        After Matching
## mean treatment........     4.7615             4.7615 
## mean control..........     4.0909             4.7378 
## std mean diff.........     29.258             1.0353 
## 
## mean raw eQQ diff.....    0.66724           0.058974 
## med  raw eQQ diff.....          1                  0 
## max  raw eQQ diff.....          2                  2 
## 
## mean eCDF diff........   0.075703          0.0061699 
## med  eCDF diff........    0.08996          0.0044872 
## max  eCDF diff........    0.14546           0.015385 
## 
## var ratio (Tr/Co).....     1.3492             1.0871 
## T-test p-value........ 5.3884e-09            0.39236 
## KS Bootstrap p-value.. < 2.22e-16              0.774 
## KS Naive p-value......  1.047e-06            0.99269 
## KS Statistic..........    0.14546           0.015385 
## 
## 
## ***** (V3) male *****
##                        Before Matching        After Matching
## mean treatment........    0.49879            0.49879 
## mean control..........    0.49571            0.49879 
## std mean diff.........    0.61513                  0 
## 
## mean raw eQQ diff.....  0.0017153                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  0 
## 
## mean eCDF diff........  0.0015388                  0 
## med  eCDF diff........  0.0015388                  0 
## max  eCDF diff........  0.0030775                  0 
## 
## var ratio (Tr/Co).....    0.99956                  1 
## T-test p-value........    0.90949                  1 
## 
## 
## ***** (V4) tech *****
##                        Before Matching        After Matching
## mean treatment........     4.1949             4.1949 
## mean control..........      3.916             4.2324 
## std mean diff.........     17.053            -2.2943 
## 
## mean raw eQQ diff.....    0.27616           0.016026 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.046494          0.0026709 
## med  eCDF diff........   0.044928          0.0019231 
## max  eCDF diff........     0.1073          0.0064103 
## 
## var ratio (Tr/Co).....     1.0308             1.0617 
## T-test p-value........  0.0015052           0.068985 
## KS Bootstrap p-value.. < 2.22e-16               0.99 
## KS Naive p-value...... 0.00076398                  1 
## KS Statistic..........     0.1073          0.0064103 
## 
## 
## ***** (V5) pol.info *****
##                        Before Matching        After Matching
## mean treatment........     1.4685             1.4685 
## mean control..........     1.3053             1.4673 
## std mean diff.........     20.407            0.15138 
## 
## mean raw eQQ diff.....    0.16295         0.00064103 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.040801         0.00016026 
## med  eCDF diff........   0.035003                  0 
## max  eCDF diff........     0.0932         0.00064103 
## 
## var ratio (Tr/Co).....     1.4448             1.0078 
## T-test p-value........ 3.2741e-05            0.31731 
## KS Bootstrap p-value.. < 2.22e-16                  1 
## KS Naive p-value......  0.0052778                  1 
## KS Statistic..........     0.0932         0.00064103 
## 
## 
## ***** (V6) white.collar *****
##                        Before Matching        After Matching
## mean treatment........    0.30508            0.30508 
## mean control..........     0.2813            0.29903 
## std mean diff.........     5.1617             1.3139 
## 
## mean raw eQQ diff.....   0.024014          0.0032051 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.011891          0.0016026 
## med  eCDF diff........   0.011891          0.0016026 
## max  eCDF diff........   0.023781          0.0032051 
## 
## var ratio (Tr/Co).....     1.0481             1.0114 
## T-test p-value........    0.33355            0.02517 
## 
## 
## ***** (V7) not.full.time *****
##                        Before Matching        After Matching
## mean treatment........    0.27603            0.27603 
## mean control..........    0.33448             0.2724 
## std mean diff.........    -13.067            0.81197 
## 
## mean raw eQQ diff.....   0.058319          0.0019231 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.029224         0.00096154 
## med  eCDF diff........   0.029224         0.00096154 
## max  eCDF diff........   0.058448          0.0019231 
## 
## var ratio (Tr/Co).....    0.89728             1.0083 
## T-test p-value........   0.019525           0.083078 
## 
## 
## Before Matching Minimum p.value: < 2.22e-16 
## Variable Name(s): educ tech pol.info  Number(s): 2 4 5 
## 
## After Matching Minimum p.value: 0.02517 
## Variable Name(s): white.collar  Number(s): 6
summary(mout1)
## 
## Estimate...  0.1928 
## AI SE......  0.028555 
## T-stat.....  6.7517 
## p.val......  1.461e-11 
## 
## Original number of observations..............  1409 
## Original number of treated obs...............  826 
## Matched number of observations...............  826 
## Matched number of observations  (unweighted).  1560