Burkov, Andriy. n.d. “The Hundred-Page Machine Learning Book. Andriy Burkov (2019).”
Densmore, James. 2021. Data Pipelines Pocket Reference. " O’Reilly Media, Inc.".
Dobson, Annette J, and Adrian G Barnett. 2018. An Introduction to Generalized Linear Models. Chapman; Hall/CRC.
Fox, John. 2016. Using the r Commander: A Point-and-Click Interface for r. Chapman; Hall/CRC.
———. 2019. Regression Diagnostics: An Introduction. Sage publications.
Gelman, Andrew, and Jennifer Hill. 2006. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge university press.
Gelman, Andrew, Jennifer Hill, and Aki Vehtari. 2020. Regression and Other Stories. Cambridge University Press.
Kerns, G Jay. 2010. Introduction to Probability and Statistics Using r. Lulu. com.
Kleppmann, Martin. 2017. Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems. " O’Reilly Media, Inc.".
Matloff, Norman. 2011. The Art of r Programming: A Tour of Statistical Software Design. No Starch Press.
———. 2017. Statistical Regression and Classification: From Linear Models to Machine Learning. Chapman; Hall/CRC.
———. 2019. Probability and Statistics for Data Science: Math+ r+ Data. CRC Press.
Sheather, Simon. 2009. A Modern Approach to Regression with r. Springer Science & Business Media.
Ward, Michael D, and John S Ahlquist. 2018. Maximum Likelihood for Social Science: Strategies for Analysis. Cambridge University Press.