library(ISLR)
library(tree)
library(dplyr)
library(randomForest)

Problem 3

Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of p̂ m1. The xaxis should display p̂ m1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy.

Hint: In a setting with two classes, p̂ m1 = 1 - p̂ m2. You could make this plot by hand, but it will be much easier to make in R.

p = seq(0, 1, 0.01)
gini = p * (1 - p) * 2
entropy = -(p * log(p) + (1 - p) * log(1 - p))
class.err = 1 - pmax(p, 1 - p)
matplot(p, cbind(gini, entropy, class.err), col = c("pink", "red", "purple"))

# Problem 8 In the lab, a classification tree was applied to the Carseats data set after converting Sales into a qualitative response variable. Now we will seek to predict Sales using regression trees and related approaches, treating the response as a quantitative variable. A. Split the data set into a training set and a test set.

set.seed(24)
c<-Carseats
train<-sample(1:nrow(c), nrow(c)/2)

c.tr<-c[train,]
c.te<-c[-train,]

B.Fit a regression tree to the training set. Plot the tree, and interpret the results. What test MSE do you obtain?

tree.c=tree(Sales~., data=c.tr)
plot(tree.c)
text(tree.c, pretty=0)

pred.tree=predict(tree.c, c.te)
obs.sales<-c.te$Sales
mean((pred.tree-obs.sales)^2)
## [1] 4.541017

C.Use cross-validation in order to determine the optimal level of tree complexity. Does pruning the tree improve the test MSE?

cv.c = cv.tree(tree.c, FUN = prune.tree)
par(mfrow = c(1, 2))
plot(cv.c$size, cv.c$dev, type = "b")
plot(cv.c$k, cv.c$dev, type = "b")

# Best size = 7
pruned.c = prune.tree(tree.c, best = 7)
par(mfrow = c(1, 1))
plot(pruned.c)
text(pruned.c, pretty = 0)

pred.pruned = predict(pruned.c, c.te)
mean((c.te$Sales - pred.pruned)^2)
## [1] 4.886626

D.Use the bagging approach in order to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important.

set.seed(1)
bag.c<-randomForest(Sales~., data = c.tr, mtry = 10, importance = TRUE)

yhat.bag<-predict(bag.c, newdata = c.te)
mean((yhat.bag - c.te$Sales)^2)
## [1] 2.730285
importance(bag.c)
##               %IncMSE IncNodePurity
## CompPrice   24.469745    169.299552
## Income       3.243752     84.351895
## Advertising 13.544325     99.588388
## Population   2.880161     78.093002
## Price       54.280757    466.183454
## ShelveLoc   53.819809    439.484997
## Age         21.119729    201.544314
## Education    3.882171     34.191473
## Urban       -3.192860      5.634045
## US           1.813198      5.186044

Problem 9

This problem involves the OJ data set which is part of the ISLR package. A. Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.

set.seed(1)
samp<-sample(1:nrow(OJ), 800)

oj.tr<-OJ[samp,]
oj.te<-OJ[-samp,]

B. Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?

tree.oj<-tree(Purchase~., data = oj.tr)
summary(tree.oj)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = oj.tr)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "SpecialCH"     "ListPriceDiff"
## [5] "PctDiscMM"    
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7432 = 587.8 / 791 
## Misclassification error rate: 0.1588 = 127 / 800

C. Type in the name of the tree object in order to get a detailed text output. Pick one of the terminal nodes, and interpret the information displayed.

tree.oj
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 800 1073.00 CH ( 0.60625 0.39375 )  
##    2) LoyalCH < 0.5036 365  441.60 MM ( 0.29315 0.70685 )  
##      4) LoyalCH < 0.280875 177  140.50 MM ( 0.13559 0.86441 )  
##        8) LoyalCH < 0.0356415 59   10.14 MM ( 0.01695 0.98305 ) *
##        9) LoyalCH > 0.0356415 118  116.40 MM ( 0.19492 0.80508 ) *
##      5) LoyalCH > 0.280875 188  258.00 MM ( 0.44149 0.55851 )  
##       10) PriceDiff < 0.05 79   84.79 MM ( 0.22785 0.77215 )  
##         20) SpecialCH < 0.5 64   51.98 MM ( 0.14062 0.85938 ) *
##         21) SpecialCH > 0.5 15   20.19 CH ( 0.60000 0.40000 ) *
##       11) PriceDiff > 0.05 109  147.00 CH ( 0.59633 0.40367 ) *
##    3) LoyalCH > 0.5036 435  337.90 CH ( 0.86897 0.13103 )  
##      6) LoyalCH < 0.764572 174  201.00 CH ( 0.73563 0.26437 )  
##       12) ListPriceDiff < 0.235 72   99.81 MM ( 0.50000 0.50000 )  
##         24) PctDiscMM < 0.196196 55   73.14 CH ( 0.61818 0.38182 ) *
##         25) PctDiscMM > 0.196196 17   12.32 MM ( 0.11765 0.88235 ) *
##       13) ListPriceDiff > 0.235 102   65.43 CH ( 0.90196 0.09804 ) *
##      7) LoyalCH > 0.764572 261   91.20 CH ( 0.95785 0.04215 ) *

D. Create a plot of the tree, and interpret the results

plot(tree.oj)
text(tree.oj, pretty = 0)

* LoyalCH is the most important variable of the tree, in fact top 5 nodes contain LoyalCH. If LoyalCH<0.28, the tree predicts MM. If LoyalCH>0.76, the tree predicts CH. For intermediate values of LoyalCH, the decision also depends on the value of PriceDiff.

Part E Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels. What is the test error rate?

tree.predz<-predict(tree.oj, oj.te, type = 'class')
obs.purch<-oj.te$Purchase
caret::confusionMatrix(tree.predz, obs.purch)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  CH  MM
##         CH 160  38
##         MM   8  64
##                                           
##                Accuracy : 0.8296          
##                  95% CI : (0.7794, 0.8725)
##     No Information Rate : 0.6222          
##     P-Value [Acc > NIR] : 8.077e-14       
##                                           
##                   Kappa : 0.6154          
##                                           
##  Mcnemar's Test P-Value : 1.904e-05       
##                                           
##             Sensitivity : 0.9524          
##             Specificity : 0.6275          
##          Pos Pred Value : 0.8081          
##          Neg Pred Value : 0.8889          
##              Prevalence : 0.6222          
##          Detection Rate : 0.5926          
##    Detection Prevalence : 0.7333          
##       Balanced Accuracy : 0.7899          
##                                           
##        'Positive' Class : CH              
## 

F. Apply the cv.tree() function to the training set in order to determine the optimal tree size.

cv.oj<-cv.tree(tree.oj, FUN = prune.misclass)

G. Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.

plot(cv.oj$size,cv.oj$dev, type ="b", xlab = "tree size", ylab = 'Deviance', main = 'CV Error Rate')

H. Which tree size corresponds to the lowest cross-validated classification error rate?

I. Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.

prune.oj<-prune.misclass(tree.oj, best = 7)

J. Compare the test error rates between the pruned and unpruned trees. Which is higher?

summary(prune.oj)
## 
## Classification tree:
## snip.tree(tree = tree.oj, nodes = c(4L, 10L))
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "ListPriceDiff" "PctDiscMM"    
## Number of terminal nodes:  7 
## Residual mean deviance:  0.7748 = 614.4 / 793 
## Misclassification error rate: 0.1625 = 130 / 800