Este cuaderno tiene como objetivo clasificar e identificar los dos cultivos con mayor producción en el departamento de Boyacá y sus respectivos municipios productores, utilizando una base de datos de la Unidad de Planificación Agropecuaria (UPRA).
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(readxl)
(archivos = list.files(pattern='xls'))
## [1] "20210624_BaseSIPRA2020.xlsx"
(hojas = readxl::excel_sheets("20210624_BaseSIPRA2020.xlsx"))
## [1] "Agrícola_SIPRA_AGRONET" "InventarioBovino"
## [3] "InventarioPorcino" "InvBufalosCaprinoOvinoEquino"
## [5] "InvAves"
eva2020 = readxl::read_excel("20210624_BaseSIPRA2020.xlsx", sheet = "Agrícola_SIPRA_AGRONET")
eva2020
J.ber2020 = dplyr::filter(eva2020, Departamento == "Boyacá")
J.ber2020
J.ber2020.tmp <- J.ber2020 %>% select('Código del Municipio':'Ciclo del cultivo')
J.ber2020.tmp
J.ber2020.tmp %>% rename(Cod_Mun = 'Código del Municipio',
Grupo = 'Grupo cultivo según especie',
Subgrupo = 'Subgrupo cultivo según especie',
AreaSiembra = 'Area Sembrada (ha)',
AreaCosecha = 'Area Cosechada (ha)',
Produccion = 'Producción (t)',
Rendimiento = 'Rendimiento (t/ha)', Ciclo='Ciclo del cultivo') -> nJ.ber2020
nJ.ber2020
nJ.ber2020 %>% mutate(AreaSiembra = as.numeric(AreaSiembra),
AreaCosecha = as.numeric(AreaCosecha),
Produccion = as.numeric(Produccion),
Rendimiento = as.numeric(Rendimiento)) -> nJ.ber2020
nJ.ber2020
nJ.ber2020 %>%
filter(Produccion > 0) %>%
group_by(Cultivo) %>%
summarize(total_produccion = sum(Produccion)) %>%
arrange(desc(total_produccion))
nJ.ber2020 %>%
group_by(Cultivo, Municipio) %>%
summarize(max_prod = max(Produccion, na.rm = TRUE)) %>%
slice(which.max(max_prod)) %>%
arrange(desc(max_prod))
## `summarise()` has grouped output by 'Cultivo'. You can override using the
## `.groups` argument.
nJ.ber2020 %>%
group_by(Grupo,Municipio) %>%
summarize(max_prod = max(Produccion, na.rm = TRUE)) %>%
slice(which.max(max_prod)) %>%
arrange(desc(max_prod))
## `summarise()` has grouped output by 'Grupo'. You can override using the
## `.groups` argument.
nJ.ber2020 %>%
group_by(Cod_Mun, Municipio, Grupo) %>%
filter(Grupo=='Tubérculos Y Plátanos') %>%
summarize(max_prod = max(Produccion, na.rm = TRUE)) %>%
arrange(desc(max_prod)) -> Tuberculos2020
## `summarise()` has grouped output by 'Cod_Mun', 'Municipio'. You can override
## using the `.groups` argument.
Tuberculos2020
nJ.ber2020 %>%
group_by(Cod_Mun, Municipio, Grupo) %>%
filter(Grupo=='Hortalizas') %>%
summarize(max_prod = max(Produccion, na.rm = TRUE)) %>%
arrange(desc(max_prod)) -> Hortalizas2020
## `summarise()` has grouped output by 'Cod_Mun', 'Municipio'. You can override
## using the `.groups` argument.
Hortalizas2020
write_csv(Hortalizas2020, "./J.ber_Hort_2020.csv")
write_csv(Tuberculos2020, "./J.ber_Tuber_2020.csv")
“Lizarazo, I. Reading and processing municipal agricultural statistics for 2020. Available at: https://rpubs.com/ials2un/readingEVAv1.”
“Unidad de planificación agropecuaria UPRA: https://www.upra.gov.co/”
sessionInfo()
## R version 4.1.3 (2022-03-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19043)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Spanish_Colombia.1252 LC_CTYPE=Spanish_Colombia.1252
## [3] LC_MONETARY=Spanish_Colombia.1252 LC_NUMERIC=C
## [5] LC_TIME=Spanish_Colombia.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] readxl_1.4.0 forcats_0.5.1 stringr_1.4.0 dplyr_1.0.8
## [5] purrr_0.3.4 readr_2.1.2 tidyr_1.2.0 tibble_3.1.6
## [9] ggplot2_3.3.5 tidyverse_1.3.1
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.1.2 xfun_0.30 bslib_0.3.1 haven_2.4.3
## [5] colorspace_2.0-3 vctrs_0.3.8 generics_0.1.2 htmltools_0.5.2
## [9] yaml_2.3.5 utf8_1.2.2 rlang_1.0.2 jquerylib_0.1.4
## [13] pillar_1.7.0 withr_2.5.0 glue_1.6.2 DBI_1.1.2
## [17] bit64_4.0.5 dbplyr_2.1.1 modelr_0.1.8 lifecycle_1.0.1
## [21] munsell_0.5.0 gtable_0.3.0 cellranger_1.1.0 rvest_1.0.2
## [25] evaluate_0.15 knitr_1.38 tzdb_0.2.0 fastmap_1.1.0
## [29] parallel_4.1.3 fansi_1.0.3 broom_0.7.12 backports_1.4.1
## [33] scales_1.1.1 vroom_1.5.7 jsonlite_1.8.0 bit_4.0.4
## [37] fs_1.5.2 hms_1.1.1 digest_0.6.29 stringi_1.7.6
## [41] grid_4.1.3 cli_3.2.0 tools_4.1.3 magrittr_2.0.2
## [45] sass_0.4.1 crayon_1.5.1 pkgconfig_2.0.3 ellipsis_0.3.2
## [49] xml2_1.3.3 reprex_2.0.1 lubridate_1.8.0 assertthat_0.2.1
## [53] rmarkdown_2.13 httr_1.4.2 rstudioapi_0.13 R6_2.5.1
## [57] compiler_4.1.3