library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(sf)
## Linking to GEOS 3.9.1, GDAL 3.2.1, PROJ 7.2.1; sf_use_s2() is TRUE
library(dplyr)
library(readr)
library(ggplot2)
library(ggrepel)
library(classInt)
library(knitr)
library(rmarkdown)
list.files("./DATOS", pattern=c('csv'))
## [1] "cauca_platanos_2020.csv" "cauca_tropicales_2020.csv"
## [3] "cauca_tuberculos_2020.csv" "co.csv"
list.files("./COLOMBIA-CAUCA")
## [1] "Cauca.pdf" "Cauca.png" "COLOMBIA-CAUCA.0.tif"
## [4] "COLOMBIA-CAUCA.vrt" "DATOS" "PROYECTOS"
list.files("./COLOMBIA-CAUCA/DATOS", pattern = 'shp')
## [1] "Cauca.shp" "departamentoCAUCA.shp"
(tropicales = read.csv("./DATOS/cauca_tropicales_2020.csv"))
(mun.tmp = st_read("./COLOMBIA-CAUCA/DATOS/Cauca.shp"))
## Reading layer `Cauca' from data source
## `F:\CuadernosR 2\COLOMBIA-CAUCA\DATOS\Cauca.shp' using driver `ESRI Shapefile'
## Simple feature collection with 42 features and 11 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -77.92834 ymin: 0.9580285 xmax: -75.74782 ymax: 3.328941
## Geodetic CRS: WGS 84
(mun.tmp %>% dplyr::select(MPIO_CCDGO, MPIO_CCNCT, MPIO_NAREA) -> municipios)
municipios
(ciudades= readr::read_csv("./DATOS/co.csv"))
(sfciudades = st_as_sf(x = ciudades, coords = c("lng","lat")))
st_crs(sfciudades) <- 4326
(sfciudades.joined <- st_join(sfciudades, municipios, join = st_within))
(cauca.ciudades = filter(sfciudades.joined, admin_name == 'Cauca'))
class(tropicales$Cod_Mun)
## [1] "integer"
class(municipios$MPIO_CCNCT)
## [1] "character"
tropicales$Cod_Mun = as.factor(tropicales$Cod_Mun)
(munic_tropicales = left_join(municipios, tropicales, by = c("MPIO_CCNCT" = "Cod_Mun"), na.rm = TRUE))
``{r}
breaks <- classIntervals(munic_frutales$max_prod, n = 6, style = ‘fisher’)
#label breaks lab_vec <- vector(length = length(breaks\(brks)-1) rounded_breaks <- round(breaks\)brks,2) lab_vec[1] <- paste0(‘[’, rounded_breaks[1],’ - ’, rounded_breaks[2],’]’) for(i in 2:(length(breaks$brks) - 1)){ lab_vec[i] <- paste0(‘(’,rounded_breaks[i], ’ - ‘, rounded_breaks[i+1],’]’) }
```r
munic_tropicales$mid <- sf::st_centroid(munic_tropicales$geometry)
LONG = sf::st_coordinates(munic_tropicales$mid)[,1]
LAT = st_coordinates(munic_tropicales$mid)[,2]
ggplot(data = munic_tropicales) +
geom_sf(aes(fill = max_prod)) +
geom_label_repel(aes(x = LONG, y = LAT, label = Municipio),
label.padding = unit(0.05,"lines"),
label.r = unit(0.025, "lines"),
label.size = 0.05)
## Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
(platano = read_csv("./DATOS/cauca_platanos_2020.csv"))
## Rows: 36 Columns: 4
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (2): Municipio, Grupo
## dbl (2): Cod_Mun, max_prod
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
municipios
platano$Cod_Mun = as.factor(platano$Cod_Mun)
municipios$MPIO_CCNCT = as.factor(municipios$MPIO_CCNCT)
(munic_platano = left_join(municipios, platano, by = c("MPIO_CCNCT" = "Cod_Mun")))
``{r} facet = “max_prod” oleag_map =
tm_shape(munic_oleag) + tm_polygons(facet) + tm_text(text =
“MPIO_CNMBR”, size = 0.7, fontfamily = “sans”) + tm_shape(stder.cities)
+ tm_symbols(shape = 2, col = “red”, size = 0.20) + tm_credits(“Data
source: UPRA (2020)”, fontface = “bold”) + tm_layout(main.title =
“Produccion de oleaginosas en 2020”, main.title.fontface =
“bold.italic”, legend.title.fontfamily = “monospace”) +
tm_scale_bar(position = c(“left”, “bottom”))
```r
#tmap_mode("view")
#oleag_map
grafica de produccion de otros permanentes (2008-2014)
sessionInfo()
## R version 4.1.3 (2022-03-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19044)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Spanish_Colombia.1252 LC_CTYPE=Spanish_Colombia.1252
## [3] LC_MONETARY=Spanish_Colombia.1252 LC_NUMERIC=C
## [5] LC_TIME=Spanish_Colombia.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] rmarkdown_2.13 knitr_1.38 classInt_0.4-3 ggrepel_0.9.1
## [5] sf_1.0-7 forcats_0.5.1 stringr_1.4.0 dplyr_1.0.8
## [9] purrr_0.3.4 readr_2.1.2 tidyr_1.2.0 tibble_3.1.6
## [13] ggplot2_3.3.5 tidyverse_1.3.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.8.3 lubridate_1.8.0 class_7.3-20 assertthat_0.2.1
## [5] digest_0.6.29 utf8_1.2.2 R6_2.5.1 cellranger_1.1.0
## [9] backports_1.4.1 reprex_2.0.1 evaluate_0.15 e1071_1.7-9
## [13] highr_0.9 httr_1.4.2 pillar_1.7.0 rlang_1.0.2
## [17] readxl_1.3.1 rstudioapi_0.13 jquerylib_0.1.4 labeling_0.4.2
## [21] bit_4.0.4 munsell_0.5.0 proxy_0.4-26 broom_0.7.12
## [25] compiler_4.1.3 modelr_0.1.8 xfun_0.30 pkgconfig_2.0.3
## [29] htmltools_0.5.2 tidyselect_1.1.2 fansi_1.0.3 crayon_1.5.1
## [33] tzdb_0.3.0 dbplyr_2.1.1 withr_2.5.0 wk_0.6.0
## [37] grid_4.1.3 jsonlite_1.8.0 gtable_0.3.0 lifecycle_1.0.1
## [41] DBI_1.1.2 magrittr_2.0.2 units_0.8-0 scales_1.1.1
## [45] KernSmooth_2.23-20 vroom_1.5.7 cli_3.2.0 stringi_1.7.6
## [49] farver_2.1.0 fs_1.5.2 xml2_1.3.3 bslib_0.3.1
## [53] ellipsis_0.3.2 generics_0.1.2 vctrs_0.3.8 s2_1.0.7
## [57] tools_4.1.3 bit64_4.0.5 glue_1.6.2 hms_1.1.1
## [61] parallel_4.1.3 fastmap_1.1.0 yaml_2.3.5 colorspace_2.0-3
## [65] rvest_1.0.2 haven_2.4.3 sass_0.4.1