En este libro de r se planea filtrar datos de las evaluaciones agropecuarias del Cauca, esto con el fin de identificar cultivos mas importantes o mas representativos del Cauca, dando importancia a los respectivos municipios en los cuales se cultivan, con esta informacion se pueden hacer analisis de comportamiento de las politicas agropecucarias de cada region del Cauca o identificar oportunidades en el campo agricola.
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(dplyr)
library(readr)
library(ggplot2)
library(knitr)
library(rmarkdown)
list.files("./datos", pattern=c('csv'))
## [1] "Evaluaciones_Agropecuarias_Municipales_EVA.csv"
(eva = read_csv("./datos/Evaluaciones_Agropecuarias_Municipales_EVA.csv", col_names = TRUE,
show_col_types = NULL))
## Rows: 8385 Columns: 17
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (10): DEPARTAMENTO, MUNICIPIO, GRUPO
## DE CULTIVO, SUBGRUPO
## DE CULTIVO, ...
## dbl (7): CÓD.
## DEP., CÓD. MUN., AÑO, Área Sembrada
## (ha), Área Cosechada
## (ha...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
names(eva)
## [1] "CÓD. \nDEP."
## [2] "DEPARTAMENTO"
## [3] "CÓD. MUN."
## [4] "MUNICIPIO"
## [5] "GRUPO \nDE CULTIVO"
## [6] "SUBGRUPO \nDE CULTIVO"
## [7] "CULTIVO"
## [8] "DESAGREGACIÓN REGIONAL Y/O SISTEMA PRODUCTIVO"
## [9] "AÑO"
## [10] "PERIODO"
## [11] "Área Sembrada\n(ha)"
## [12] "Área Cosechada\n(ha)"
## [13] "Producción\n(t)"
## [14] "Rendimiento\n(t/ha)"
## [15] "ESTADO FISICO PRODUCCION"
## [16] "NOMBRE \nCIENTIFICO"
## [17] "CICLO DE CULTIVO"
## [1] "CÓD. \nDEP."
## [2] "DEPARTAMENTO"
## [3] "CÓD. MUN."
## [4] "MUNICIPIO"
## [5] "GRUPO \nDE CULTIVO"
## [6] "SUBGRUPO \nDE CULTIVO"
## [7] "CULTIVO"
## [8] "DESAGREGACIÓN REGIONAL Y/O SISTEMA PRODUCTIVO"
## [9] "AÑO"
## [10] "PERIODO"
## [11] "Área Sembrada\n(ha)"
## [12] "Área Cosechada\n(ha)"
## [13] "Producción\n(t)"
## [14] "Rendimiento\n(t/ha)"
## [15] "ESTADO FISICO PRODUCCION"
## [16] "NOMBRE \nCIENTIFICO"
## [17] "CICLO DE CULTIVO"
# check the objet output in the last chunk and
# change attribute names according to your own data
eva %>% dplyr::select('CÓD. MUN.':'ESTADO FISICO PRODUCCION') -> eva.tmp
# make sure to use the column names that are in your eva.tmp object
eva.tmp %>% dplyr::rename('Cod_Mun' = 'CÓD. MUN.',
'Grupo' = 'GRUPO \nDE CULTIVO',
'Subgrupo' = 'SUBGRUPO \nDE CULTIVO',
'Year' = 'AÑO',
'AreaSembrada' = 'Área Sembrada\n(ha)',
'AreaCosechada' = 'Área Sembrada\n(ha)',
'Produccion' = 'Producción\n(t)', 'Rendimiento' = 'Rendimiento\n(t/ha)',
'Sistema' = 'DESAGREGACIÓN REGIONAL Y/O SISTEMA PRODUCTIVO',
'Estado' = 'ESTADO FISICO PRODUCCION') -> new_eva
new_eva %>%
##filter(Produccion > 0) %>%
group_by(Grupo) %>%
summarize(total_produccion = sum(Produccion)) %>%
arrange(desc(total_produccion))
new_eva %>%
group_by(Grupo) %>%
summarize(total_produccion = sum(Produccion)) -> PT
PT %>%
filter(total_produccion > 1000000) -> main.groups
(value = sum(main.groups$total_produccion))
## [1] 52493160
main.groups$percent = main.groups$total_produccion/value
library(ggplot2)
# Barplot
bp<- ggplot(main.groups, aes(x="", y=percent, fill=Grupo))+
geom_bar(width = 1, stat = "identity")
# Piechart
pie <- bp + coord_polar("y", start=0)
pie
new_eva %>%
group_by(Grupo, MUNICIPIO) %>%
summarize(total_prod = sum(Produccion, na.rm = TRUE)) %>%
slice(which.max(total_prod)) %>%
arrange(desc(total_prod))
## `summarise()` has grouped output by 'Grupo'. You can override using the
## `.groups` argument.
new_eva %>%
group_by(Grupo, MUNICIPIO) %>%
summarize(total_prod = sum(Produccion, na.rm = TRUE)) %>%
slice(which.max(total_prod)) -> leaders
## `summarise()` has grouped output by 'Grupo'. You can override using the
## `.groups` argument.
leaders %>%
filter(total_prod > 50000) -> main.leaders
# Basic barplot
p<-ggplot(data=main.leaders, aes(x=MUNICIPIO, y=total_prod)) +
geom_bar(stat="identity")
p
grafica de produccion de otros permanentes (2008-2014)
###Bibliography cite this work as Lizarazo, I., 2022. Understanding dynamic productivity of crops. Available at https://rpubs.com/ials2un/production_dyn_v1.
sessionInfo()
## R version 4.1.3 (2022-03-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19044)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Spanish_Colombia.1252 LC_CTYPE=Spanish_Colombia.1252
## [3] LC_MONETARY=Spanish_Colombia.1252 LC_NUMERIC=C
## [5] LC_TIME=Spanish_Colombia.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] rmarkdown_2.13 knitr_1.38 forcats_0.5.1 stringr_1.4.0
## [5] dplyr_1.0.8 purrr_0.3.4 readr_2.1.2 tidyr_1.2.0
## [9] tibble_3.1.6 ggplot2_3.3.5 tidyverse_1.3.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.8.3 lubridate_1.8.0 assertthat_0.2.1 digest_0.6.29
## [5] utf8_1.2.2 R6_2.5.1 cellranger_1.1.0 backports_1.4.1
## [9] reprex_2.0.1 evaluate_0.15 highr_0.9 httr_1.4.2
## [13] pillar_1.7.0 rlang_1.0.2 readxl_1.3.1 rstudioapi_0.13
## [17] jquerylib_0.1.4 labeling_0.4.2 bit_4.0.4 munsell_0.5.0
## [21] broom_0.7.12 compiler_4.1.3 modelr_0.1.8 xfun_0.30
## [25] pkgconfig_2.0.3 htmltools_0.5.2 tidyselect_1.1.2 fansi_1.0.3
## [29] crayon_1.5.1 tzdb_0.3.0 dbplyr_2.1.1 withr_2.5.0
## [33] grid_4.1.3 jsonlite_1.8.0 gtable_0.3.0 lifecycle_1.0.1
## [37] DBI_1.1.2 magrittr_2.0.2 scales_1.1.1 cli_3.2.0
## [41] stringi_1.7.6 vroom_1.5.7 farver_2.1.0 fs_1.5.2
## [45] xml2_1.3.3 bslib_0.3.1 ellipsis_0.3.2 generics_0.1.2
## [49] vctrs_0.3.8 tools_4.1.3 bit64_4.0.5 glue_1.6.2
## [53] hms_1.1.1 parallel_4.1.3 fastmap_1.1.0 yaml_2.3.5
## [57] colorspace_2.0-3 rvest_1.0.2 haven_2.4.3 sass_0.4.1