Results

Q3

a.Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of pˆm1. The x- axis should display pˆm1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy.

p = seq(0, 1, 0.001)
gini.index = 2 * p * (1 - p)
class.error = 1 - pmax(p, 1 - p)
cross.entropy = - (p * log(p) + (1 - p) * log(1 - p))
matplot(p, cbind(gini.index, class.error, cross.entropy), ylab = "gini.index, class.error, cross.entropy", col = c("red", "green", "blue"))

Q8

a.Split the data set into a training set and a test set.

library(ISLR)
library(randomForest)
library(caret)
b1 = Carseats
set.seed(1)
tr_ind = sample(nrow(b1),.8*nrow(b1), replace = F)
b1train = b1[tr_ind,]
b1test = b1[-tr_ind,]

b.Fit a regression tree to the training set. Plot the tree, and interpret the results. What test MSE do you obtain?

tree.seats = tree::tree(Sales ~ ., data = b1train)
## Registered S3 method overwritten by 'tree':
##   method     from
##   print.tree cli
summary(tree.seats)
## 
## Regression tree:
## tree::tree(formula = Sales ~ ., data = b1train)
## Variables actually used in tree construction:
## [1] "ShelveLoc"   "Price"       "Age"         "Income"      "CompPrice"  
## [6] "Advertising"
## Number of terminal nodes:  16 
## Residual mean deviance:  2.572 = 781.9 / 304 
## Distribution of residuals:
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -4.45400 -1.07000 -0.05544  0.00000  1.14500  4.69600
plot(tree.seats)
text(tree.seats, pretty = 0)

treeseat.pred = predict(tree.seats, newdata = b1test)
mean((treeseat.pred - b1test$Sales)^2)
## [1] 4.936081

c.Use cross-validation in order to determine the optimal level of tree complexity. Does pruning the tree improve the test MSE?

set.seed(1)
cv.seats = tree::cv.tree(tree.seats)
plot(cv.seats$size, cv.seats$dev, type = "b")

prune.car = tree::prune.tree(tree.seats, best = 10)
plot(prune.car)
text(prune.car,pretty=0)

treeseat.pred = predict(prune.car, newdata = b1test)
mean((treeseat.pred - b1test$Sales)^2)
## [1] 5.088731

In this situation pruning did not improve the MSE of my data set as it went up from 4.93 to 5.08.

d.Use the bagging approach in order to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important.

set.seed(1)
bag.seats = randomForest(Sales~., data = b1train, mtry = 10, ntree = 551, importance = TRUE)
bagseat.pred = predict(bag.seats, newdata = b1test)
mean((bagseat.pred - b1test$Sales)^2)
## [1] 2.94674
importance(bag.seats)
##               %IncMSE IncNodePurity
## CompPrice   40.223153     260.94508
## Income      12.662829     138.23658
## Advertising 23.611579     190.71765
## Population  -2.386952      73.81902
## Price       80.660141     744.61378
## ShelveLoc   78.381654     692.52750
## Age         26.637401     232.40567
## Education    2.557387      62.04542
## Urban       -2.563052      10.15531
## US           3.486152      12.13078

e.Use random forests to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important. Describe the effect of m, the number of variables considered at each split, on the error rate obtained.

set.seed(1)
rando.seats = randomForest(Sales~., data = b1train, mtry = 10, importance = TRUE)
randseat.pred = predict(rando.seats, newdata = b1test)
mean((randseat.pred - b1test$Sales)^2)
## [1] 2.945423
importance(rando.seats)
##               %IncMSE IncNodePurity
## CompPrice   38.143176     259.77221
## Income      11.839999     138.20846
## Advertising 22.964249     191.25839
## Population  -2.309923      74.13451
## Price       76.903940     744.20064
## ShelveLoc   73.841154     692.64875
## Age         25.449768     231.66005
## Education    2.547928      61.58542
## Urban       -2.600879      10.15212
## US           3.572899      12.28877

Q9

a.Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.

set.seed(1)
train = sample(1:nrow(OJ), 800)
OJtrain = OJ[train, ]
OJtest = OJ[-train, ]

b.Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?

The tree had 5 variables in it with 9 different nodes. The training error rate of my tree was .1588.

tree.OJ = tree::tree(Purchase ~ ., data = OJtrain)
summary(tree.OJ)
## 
## Classification tree:
## tree::tree(formula = Purchase ~ ., data = OJtrain)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "SpecialCH"     "ListPriceDiff"
## [5] "PctDiscMM"    
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7432 = 587.8 / 791 
## Misclassification error rate: 0.1588 = 127 / 800
plot(tree.OJ)
text(tree.OJ, pretty = 0)

c.Type in the name of the tree object in order to get a detailed text output. Pick one of the terminal nodes, and interpret the information displayed.

tree.OJ
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 800 1073.00 CH ( 0.60625 0.39375 )  
##    2) LoyalCH < 0.5036 365  441.60 MM ( 0.29315 0.70685 )  
##      4) LoyalCH < 0.280875 177  140.50 MM ( 0.13559 0.86441 )  
##        8) LoyalCH < 0.0356415 59   10.14 MM ( 0.01695 0.98305 ) *
##        9) LoyalCH > 0.0356415 118  116.40 MM ( 0.19492 0.80508 ) *
##      5) LoyalCH > 0.280875 188  258.00 MM ( 0.44149 0.55851 )  
##       10) PriceDiff < 0.05 79   84.79 MM ( 0.22785 0.77215 )  
##         20) SpecialCH < 0.5 64   51.98 MM ( 0.14062 0.85938 ) *
##         21) SpecialCH > 0.5 15   20.19 CH ( 0.60000 0.40000 ) *
##       11) PriceDiff > 0.05 109  147.00 CH ( 0.59633 0.40367 ) *
##    3) LoyalCH > 0.5036 435  337.90 CH ( 0.86897 0.13103 )  
##      6) LoyalCH < 0.764572 174  201.00 CH ( 0.73563 0.26437 )  
##       12) ListPriceDiff < 0.235 72   99.81 MM ( 0.50000 0.50000 )  
##         24) PctDiscMM < 0.196196 55   73.14 CH ( 0.61818 0.38182 ) *
##         25) PctDiscMM > 0.196196 17   12.32 MM ( 0.11765 0.88235 ) *
##       13) ListPriceDiff > 0.235 102   65.43 CH ( 0.90196 0.09804 ) *
##      7) LoyalCH > 0.764572 261   91.20 CH ( 0.95785 0.04215 ) *

Line 10 has a total of 79 observations. Over 77.21% of the observations take the value of MM and 22.78% take the value of CH.

d.Create a plot of the tree, and interpret the results.

The most important variables shown are LoyalCH, SpecialCH, PriceDiff, PctDiscMM, and ListPriceDiff.

plot(tree.OJ)
text(tree.OJ)

e. Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels. What is the test error rate?

treeOJ.pred = predict(tree.OJ, newdata = OJtest, type = "class")
table(treeOJ.pred, OJtest$Purchase)
##            
## treeOJ.pred  CH  MM
##          CH 160  38
##          MM   8  64
(38 + 8) / 270
## [1] 0.1703704

The test error rate .17037.

f. Apply the cv.tree() function to the training set in order to determine the optimal tree size.

OJcv = tree::cv.tree(tree.OJ, FUN = prune.misclass)
OJcv
## $size
## [1] 9 8 7 4 2 1
## 
## $dev
## [1] 150 150 149 158 172 315
## 
## $k
## [1]       -Inf   0.000000   3.000000   4.333333  10.500000 151.000000
## 
## $method
## [1] "misclass"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"

g.Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.

plot(OJcv$size, OJcv$dev, type = "b", xlab = "Tree Size", ylab = "cv classification error rate")

h.Which tree size corresponds to the lowest cross-validated classification error rate?

The tree size with 7 nodes corresponds to the lowest error rate.

i.Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.

prune.OJ=tree::prune.tree(tree.OJ,best=7)

j.Compare the training error rates between the pruned and un-pruned trees. Which is higher?

The pruned tree has a higher error rate of .1625 than the unpruned tree which had a rate of .1588.

summary(tree.OJ)
## 
## Classification tree:
## tree::tree(formula = Purchase ~ ., data = OJtrain)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "SpecialCH"     "ListPriceDiff"
## [5] "PctDiscMM"    
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7432 = 587.8 / 791 
## Misclassification error rate: 0.1588 = 127 / 800
summary(prune.OJ)
## 
## Classification tree:
## snip.tree(tree = tree.OJ, nodes = c(10L, 4L))
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "ListPriceDiff" "PctDiscMM"    
## Number of terminal nodes:  7 
## Residual mean deviance:  0.7748 = 614.4 / 793 
## Misclassification error rate: 0.1625 = 130 / 800

k.Compare the test error rates between the pruned and unpruned trees. Which is higher?

treeOJ.pred = predict(tree.OJ, newdata = OJtest, type = "class")
table(treeOJ.pred, OJtest$Purchase)
##            
## treeOJ.pred  CH  MM
##          CH 160  38
##          MM   8  64
unprunedOJvalerr = (38 + 8) / 270
unprunedOJvalerr
## [1] 0.1703704
pruneOJ.pred = predict(prune.OJ, newdata = OJtest, type = "class")
table(pruneOJ.pred, OJtest$Purchase)
##             
## pruneOJ.pred  CH  MM
##           CH 160  36
##           MM   8  66
prunedOJvalerr = (36 + 8) / 270
prunedOJvalerr
## [1] 0.162963