Los componentes del crecimiento demografico pueden dividirse en dos partes. Por un lado, el crecimiento vegetativo o natural que es el incremento de la población durante un período determinado, a causa exclusivamente de la diferencia entre los nacimientos y las defunciones acaecidas en la población en estudio y por otro lado, el crecimiento migratorio por el que se entiende al incremento de la población durante un período determinado, a causa de la diferencia entre los inmigrantes y los emigrantes. Por lo cual, la ecuacion compensadora se podria definir como:
En donde para obtener la poblacion final en un momento “t” se suma la poblacion inicial en el momento “o”, nacimientos ocurridos entre “o” y “t, defunciones ocurridas entre”o" y “t”, inmigrantes entre “o” y “t” y emigrantes entre “o” y “t”.
Partiendo de esta ecuacion se puede pensar entonces que el crecimiento absoluto de una poblacion puede ser entonces calculado como la cantidad de nacimientos menos la cantidad de defunciones sumado a la cantidad de inmigrantes menos la cantidad de emigrantes en un ano determinado.
Cz= Bz - Dz + Iz - Ez
siendo:
Bz: los nacimientos en el año “z” Dz: las defunciones en el año “z” Iz: los inmigrantes en el año “z” Ez: los emigrantes en el año “z”
Para analizar el ritmo del crecimiento demográfico es necesario recurrir a medidas que permitan eliminar el efecto del tamaño inicial de la población y del intervalo de medición. Para ello se calculan: tasas anuales medias de crecimiento.
Uilizando las tasas anuales medias de crecimiento podemos calcular el crecimiento de una poblacion. Para ello podemos utilizar las funciones de :
Para abordar este problema recurriremos a utilizar del CENSO NACIONAL. Este provee informacion sobre la poblacion total por jurisdiccion y ano censal y nor permitira aplicar las funciones a problemas especificos.
#Importamos la base en excel
library(readxl)#Importamos la base de excel
## Warning: package 'readxl' was built under R version 4.1.1
library(dplyr)#Paquete utilizado para limpiar la base
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
censos<- read_excel("C:\\Users\\jonat\\OneDrive\\Escritorio\\Maestria generacion y analisis de informacion estadistica\\Estructura y dinamica de la poblacion\\TP1\\TP1_-_JONATHAN ROUGIER.xlsx", sheet = 1, range ="A3:G48")
#Analizamos si hay NA en las jurisdicciones
is.na(censos$Jurisdicción)
## [1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#Removemos NA
`%notin%` <- Negate(`%in%`) #Negamos el operador %in% para crear un objeto cuya funcion es la opuesta
censos<- censos %>% filter(Jurisdicción %notin% NA) #Filtramos por aquellos que no sean NA
La funcion de crecimiento lineal parte del supuesto de que el crecimiento de la población es uniforme en el tiempo. Cada período se incorpora (o se pierde) un número constante de personas. El efectivo de población observado período a período sigue una progresión aritmética. La función que representa la evolución de la población es una función lineal.El gráfico asociado a la función descripta es una recta. Tiene su paralelismo en matemática financiera con el régimen simple de interés y de descuento. Su formula se compone de los siguientes elementos:
Nt = No * (1+r*t)
En donde: - Nt es la poblacion al momento t. - No es la poblacion al momento inicial o. - t es el tiempo transcurrido entre el momento inicial y el momento de observacion. Usualmente en anos. - r es la tasa periodica media de crecimiento lineal.
Si se quisiera conocer el numero de periodos que deben transcurrir(tiempo de espera) hasta alcanzar un numero de habitantes. Usaremos la siguiente formula que simplemente es el despeje de la incognita de la funcion de crecimiento lineal.
t= (Nt/No) - 1) / r
Si se quisiera conocer la tasa periódica media de crecimiento que permite obtener un número determinado de habitantes para un plazo definido utilizariamos la misma logica:
r= (Nt/No) -1) / t
En nuestra base censos
tenemos la informacion correspondiente para los relevamientos realizados desde 1960 en adelante. Para poder llevar adelante los calculos correspondientes es necesario primero determinar el valor de t entre cada edicion del censo. Para ello definimos las fechas de cada uno de los censos.
#Cargamos el paquete para trabajar con fechas
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
#Introducimos las fechas exactas de cada censo
fechas_censos <- c("30/09/1960", "30/09/1970", "22/10/1980", "15/05/1991", "17/11/2001", "27/10/2010", "18/05/2021") %>% dmy()
#Definimos el tiempo entre cada fecha
Int_1960_1970 <- fechas_censos[2] - fechas_censos[1]
Int_1970_1980 <- fechas_censos[3] - fechas_censos[2]
Int_1980_1991 <- fechas_censos[4] - fechas_censos[3]
Int_1991_2001 <- fechas_censos[5] - fechas_censos[4]
Int_2001_2010 <- fechas_censos[6] - fechas_censos[5]
Int_2010_2021 <- fechas_censos[7] - fechas_censos[6]
Intervalos<- c(Int_1960_1970, Int_1970_1980, Int_1980_1991, Int_1991_2001, Int_2001_2010, Int_2010_2021)
#Calculamos los anos pasando la cantidad de dias a anos
t <- Intervalos/365
t <- as.numeric(t)
Una vez definidos los periodos t, podemos pasar a calcular la tasa media anual de crecimiento para cada periodo intercensal utilizando la base censos
.
r= (Nt/No) -1) / t
#Creamos una nueva variable para la tasa de crecimiento medio anual lineal
censos<- censos %>% mutate(Tasa_1960_1970= ((`1970`/`1960`)-1)/t[1],
Tasa_1970_1980= ((`1980`/`1970`)-1)/t[2],
Tasa_1980_1991= ((`1991`/`1980`)-1)/t[3],
Tasa_1991_2001= ((`2001`/`1991`)-1)/t[4],
Tasa_2001_2010= ((`2010`/`2001`)-1)/t[5])
Jurisdicción | 1960 | 1970 | 1980 | 1991 | 2001 | 2010 | Tasa_1960_1970 | Tasa_1970_1980 | Tasa_1980_1991 | Tasa_1991_2001 | Tasa_2001_2010 |
---|---|---|---|---|---|---|---|---|---|---|---|
Total | 20013793 | 23364331 | 27949480 | 32615528 | 36260130 | 40117096 | 0.0167320 | 0.0194911 | 0.0157986 | 0.0106243 | 0.0118876 |
CABA | 2966634 | 2972453 | 2922829 | 2965403 | 2776138 | 2890151 | 0.0001960 | -0.0016581 | 0.0013784 | -0.0060682 | 0.0045898 |
Buenos Aires | 6766108 | 8774529 | 10865408 | 12594974 | 13827203 | 15625084 | 0.0296673 | 0.0236669 | 0.0150638 | 0.0093018 | 0.0145313 |
Almirante Brown | 136924 | 245017 | 331919 | 450698 | 515556 | 552902 | 0.0789006 | 0.0352265 | 0.0338650 | 0.0136821 | 0.0080955 |
Avellaneda | 326531 | 337538 | 334145 | 344991 | 328980 | 342677 | 0.0033690 | -0.0009984 | 0.0030717 | -0.0044125 | 0.0046530 |
Florencio Varela | 41707 | 98446 | 173452 | 254997 | 348970 | 426005 | 0.1359674 | 0.0756717 | 0.0444899 | 0.0350383 | 0.0246704 |
General Pueyrredón | 224824 | 317444 | 434160 | 532845 | 564056 | 618989 | 0.0411741 | 0.0365173 | 0.0215102 | 0.0055691 | 0.0108840 |
General San Martín | 278751 | 360573 | 385625 | 406809 | 403107 | 414196 | 0.0293370 | 0.0069006 | 0.0051986 | -0.0008652 | 0.0030743 |
La Matanza | 401738 | 659193 | 949566 | 1121298 | 1255288 | 1775816 | 0.0640502 | 0.0437501 | 0.0171147 | 0.0113612 | 0.0463423 |
Lanús | 375428 | 449824 | 466980 | 468561 | 453082 | 459263 | 0.0198055 | 0.0037880 | 0.0003204 | -0.0031409 | 0.0015246 |
Lomas de Zamora | 272116 | 410806 | 510130 | 574330 | 591345 | 616279 | 0.0509393 | 0.0240134 | 0.0119096 | 0.0028167 | 0.0047122 |
Merlo | 100146 | 188868 | 292587 | 390858 | 469985 | 528494 | 0.0885441 | 0.0545426 | 0.0317844 | 0.0192478 | 0.0139128 |
Moreno | 59338 | 114041 | 194440 | 287715 | 380503 | 452505 | 0.0921383 | 0.0700205 | 0.0453966 | 0.0306623 | 0.0211477 |
Quilmes | 317783 | 355265 | 446587 | 511234 | 518788 | 582943 | 0.0117884 | 0.0255305 | 0.0136989 | 0.0014049 | 0.0138203 |
San Fernando | 92302 | 119565 | 133624 | 144763 | 151131 | 163240 | 0.0295206 | 0.0116785 | 0.0078887 | 0.0041823 | 0.0089543 |
San Nicolás | 64050 | 82925 | 114241 | 132918 | 137867 | 145857 | 0.0294530 | 0.0375073 | 0.0154714 | 0.0035400 | 0.0064768 |
San Isidro | 188065 | 250008 | 289170 | 299023 | 291505 | 292878 | 0.0329190 | 0.0155577 | 0.0032245 | -0.0023904 | 0.0005264 |
Tigre | 91725 | 152335 | 206349 | 257922 | 301223 | 376381 | 0.0660418 | 0.0352162 | 0.0236517 | 0.0159619 | 0.0278846 |
Tres de febrero | 263391 | 313460 | 345424 | 349376 | 336467 | 340071 | 0.0189990 | 0.0101278 | 0.0010827 | -0.0035130 | 0.0011971 |
Vicente López | 247656 | 285178 | 291072 | 289505 | 274082 | 269420 | 0.0151426 | 0.0020527 | -0.0005095 | -0.0050651 | -0.0019009 |
Resto de la provincia | 3283633 | 4034043 | 4965937 | 5777131 | 6505268 | 7267168 | 0.0228405 | 0.0229436 | 0.0154585 | 0.0119833 | 0.0130891 |
Catamarca | 168231 | 172323 | 207717 | 264234 | 334568 | 367828 | 0.0024310 | 0.0203996 | 0.0257484 | 0.0253076 | 0.0111100 |
Córdoba | 1753840 | 2060065 | 2407754 | 2766683 | 3066801 | 3308876 | 0.0174507 | 0.0167628 | 0.0141072 | 0.0103135 | 0.0088215 |
Corrientes | 533201 | 564147 | 661454 | 795594 | 930991 | 992595 | 0.0058006 | 0.0171312 | 0.0191912 | 0.0161805 | 0.0073950 |
Chaco | 543331 | 566613 | 701392 | 839677 | 984446 | 1055259 | 0.0042827 | 0.0236250 | 0.0186577 | 0.0163922 | 0.0080389 |
Chubut | 142412 | 189920 | 263116 | 357189 | 413237 | 509108 | 0.0333413 | 0.0382783 | 0.0338346 | 0.0149189 | 0.0259277 |
Entre Ríos | 805357 | 811691 | 908313 | 1020257 | 1158147 | 1235994 | 0.0007861 | 0.0118228 | 0.0116630 | 0.0128498 | 0.0075120 |
Formosa | 178526 | 234075 | 295887 | 398413 | 486559 | 530162 | 0.0310983 | 0.0262273 | 0.0327908 | 0.0210351 | 0.0100152 |
Jujuy | 241462 | 302436 | 410008 | 512329 | 611888 | 673307 | 0.0252382 | 0.0353266 | 0.0236165 | 0.0184759 | 0.0112178 |
La Pampa | 158746 | 172029 | 208260 | 259996 | 299294 | 318951 | 0.0083629 | 0.0209177 | 0.0235088 | 0.0143707 | 0.0073400 |
La Rioja | 128220 | 136237 | 164217 | 220729 | 289983 | 333642 | 0.0062491 | 0.0203980 | 0.0325661 | 0.0298305 | 0.0168259 |
Mendoza | 824036 | 973075 | 1196228 | 1412481 | 1579651 | 1738929 | 0.0180766 | 0.0227768 | 0.0171077 | 0.0112525 | 0.0112686 |
Misiones | 361440 | 443020 | 588977 | 788915 | 965522 | 1101593 | 0.0225585 | 0.0327218 | 0.0321248 | 0.0212840 | 0.0157500 |
Neuquén | 109890 | 154470 | 243850 | 388833 | 474155 | 551266 | 0.0405456 | 0.0574687 | 0.0562649 | 0.0208628 | 0.0181749 |
Río Negro | 193292 | 262622 | 383354 | 506772 | 552822 | 638645 | 0.0358484 | 0.0456590 | 0.0304664 | 0.0086396 | 0.0173498 |
Salta | 412854 | 509803 | 662870 | 866153 | 1079051 | 1214441 | 0.0234698 | 0.0298205 | 0.0290212 | 0.0233696 | 0.0140224 |
San Juan | 352387 | 384284 | 465976 | 528715 | 620023 | 681055 | 0.0090467 | 0.0211136 | 0.0127414 | 0.0164196 | 0.0110009 |
San Luis | 174316 | 183460 | 214416 | 286458 | 367933 | 432310 | 0.0052428 | 0.0167586 | 0.0317959 | 0.0270420 | 0.0195541 |
Santa Cruz | 52908 | 84457 | 114941 | 159839 | 196958 | 273964 | 0.0595973 | 0.0358486 | 0.0369654 | 0.0220795 | 0.0436946 |
Santa Fe | 1884918 | 2135583 | 2465546 | 2798422 | 3000701 | 3194537 | 0.0132912 | 0.0153456 | 0.0127765 | 0.0068725 | 0.0072192 |
Stgo.del Estero | 476503 | 495419 | 594920 | 671988 | 804457 | 874006 | 0.0039676 | 0.0199476 | 0.0122591 | 0.0187425 | 0.0096619 |
Tierra del Fuego | 11209 | 15658 | 29392 | 69369 | 101079 | 127205 | 0.0396696 | 0.0871157 | 0.1287136 | 0.0434616 | 0.0288861 |
Tucumán | 773972 | 765962 | 972655 | 1142105 | 1338523 | 1448188 | -0.0010344 | 0.0268012 | 0.0164864 | 0.0163512 | 0.0091563 |
Si quisieramos calcular la poblacion con la funcion lineal tomando como fecha el proximo censo simplemente deberiamos modificar t y tomamos como constante la ultima medicion de r(tasa media anual)
Nt = No * (1+r*t)
#Agregamos la proyeccion al 2022 tomando como fecha el 18 de Mayo de 2020
t_2022<- (Int_2010_2021/365) %>% as.numeric()
#Calculamos la proyeccion de poblacion para el 2022
censos<- censos %>% mutate(Proyeccion_2022= `2010` * (1 + (`Tasa_2001_2010` * t_2022 )))
Jurisdicción | 1960 | 1970 | 1980 | 1991 | 2001 | 2010 | Tasa_1960_1970 | Tasa_1970_1980 | Tasa_1980_1991 | Tasa_1991_2001 | Tasa_2001_2010 | Proyeccion_2022 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | 20013793 | 23364331 | 27949480 | 32615528 | 36260130 | 40117096 | 0.0167320 | 0.0194911 | 0.0157986 | 0.0106243 | 0.0118876 | 45155196.0 |
CABA | 2966634 | 2972453 | 2922829 | 2965403 | 2776138 | 2890151 | 0.0001960 | -0.0016581 | 0.0013784 | -0.0060682 | 0.0045898 | 3030288.6 |
Buenos Aires | 6766108 | 8774529 | 10865408 | 12594974 | 13827203 | 15625084 | 0.0296673 | 0.0236669 | 0.0150638 | 0.0093018 | 0.0145313 | 18023750.2 |
Almirante Brown | 136924 | 245017 | 331919 | 450698 | 515556 | 552902 | 0.0789006 | 0.0352265 | 0.0338650 | 0.0136821 | 0.0080955 | 600188.5 |
Avellaneda | 326531 | 337538 | 334145 | 344991 | 328980 | 342677 | 0.0033690 | -0.0009984 | 0.0030717 | -0.0044125 | 0.0046530 | 359521.6 |
Florencio Varela | 41707 | 98446 | 173452 | 254997 | 348970 | 426005 | 0.1359674 | 0.0756717 | 0.0444899 | 0.0350383 | 0.0246704 | 537033.8 |
General Pueyrredón | 224824 | 317444 | 434160 | 532845 | 564056 | 618989 | 0.0411741 | 0.0365173 | 0.0215102 | 0.0055691 | 0.0108840 | 690161.9 |
General San Martín | 278751 | 360573 | 385625 | 406809 | 403107 | 414196 | 0.0293370 | 0.0069006 | 0.0051986 | -0.0008652 | 0.0030743 | 427648.4 |
La Matanza | 401738 | 659193 | 949566 | 1121298 | 1255288 | 1775816 | 0.0640502 | 0.0437501 | 0.0171147 | 0.0113612 | 0.0463423 | 2645215.8 |
Lanús | 375428 | 449824 | 466980 | 468561 | 453082 | 459263 | 0.0198055 | 0.0037880 | 0.0003204 | -0.0031409 | 0.0015246 | 466660.1 |
Lomas de Zamora | 272116 | 410806 | 510130 | 574330 | 591345 | 616279 | 0.0509393 | 0.0240134 | 0.0119096 | 0.0028167 | 0.0047122 | 646958.6 |
Merlo | 100146 | 188868 | 292587 | 390858 | 469985 | 528494 | 0.0885441 | 0.0545426 | 0.0317844 | 0.0192478 | 0.0139128 | 606172.3 |
Moreno | 59338 | 114041 | 194440 | 287715 | 380503 | 452505 | 0.0921383 | 0.0700205 | 0.0453966 | 0.0306623 | 0.0211477 | 553600.2 |
Quilmes | 317783 | 355265 | 446587 | 511234 | 518788 | 582943 | 0.0117884 | 0.0255305 | 0.0136989 | 0.0014049 | 0.0138203 | 668054.4 |
San Fernando | 92302 | 119565 | 133624 | 144763 | 151131 | 163240 | 0.0295206 | 0.0116785 | 0.0078887 | 0.0041823 | 0.0089543 | 178682.0 |
San Nicolás | 64050 | 82925 | 114241 | 132918 | 137867 | 145857 | 0.0294530 | 0.0375073 | 0.0154714 | 0.0035400 | 0.0064768 | 155837.1 |
San Isidro | 188065 | 250008 | 289170 | 299023 | 291505 | 292878 | 0.0329190 | 0.0155577 | 0.0032245 | -0.0023904 | 0.0005264 | 294506.7 |
Tigre | 91725 | 152335 | 206349 | 257922 | 301223 | 376381 | 0.0660418 | 0.0352162 | 0.0236517 | 0.0159619 | 0.0278846 | 487256.5 |
Tres de febrero | 263391 | 313460 | 345424 | 349376 | 336467 | 340071 | 0.0189990 | 0.0101278 | 0.0010827 | -0.0035130 | 0.0011971 | 344371.6 |
Vicente López | 247656 | 285178 | 291072 | 289505 | 274082 | 269420 | 0.0151426 | 0.0020527 | -0.0005095 | -0.0050651 | -0.0019009 | 264009.4 |
Resto de la provincia | 3283633 | 4034043 | 4965937 | 5777131 | 6505268 | 7267168 | 0.0228405 | 0.0229436 | 0.0154585 | 0.0119833 | 0.0130891 | 8272058.7 |
Catamarca | 168231 | 172323 | 207717 | 264234 | 334568 | 367828 | 0.0024310 | 0.0203996 | 0.0257484 | 0.0253076 | 0.0111100 | 411000.1 |
Córdoba | 1753840 | 2060065 | 2407754 | 2766683 | 3066801 | 3308876 | 0.0174507 | 0.0167628 | 0.0141072 | 0.0103135 | 0.0088215 | 3617241.4 |
Corrientes | 533201 | 564147 | 661454 | 795594 | 930991 | 992595 | 0.0058006 | 0.0171312 | 0.0191912 | 0.0161805 | 0.0073950 | 1070140.5 |
Chaco | 543331 | 566613 | 701392 | 839677 | 984446 | 1055259 | 0.0042827 | 0.0236250 | 0.0186577 | 0.0163922 | 0.0080389 | 1144878.2 |
Chubut | 142412 | 189920 | 263116 | 357189 | 413237 | 509108 | 0.0333413 | 0.0382783 | 0.0338346 | 0.0149189 | 0.0259277 | 648558.1 |
Entre Ríos | 805357 | 811691 | 908313 | 1020257 | 1158147 | 1235994 | 0.0007861 | 0.0118228 | 0.0116630 | 0.0128498 | 0.0075120 | 1334081.9 |
Formosa | 178526 | 234075 | 295887 | 398413 | 486559 | 530162 | 0.0310983 | 0.0262273 | 0.0327908 | 0.0210351 | 0.0100152 | 586255.2 |
Jujuy | 241462 | 302436 | 410008 | 512329 | 611888 | 673307 | 0.0252382 | 0.0353266 | 0.0236165 | 0.0184759 | 0.0112178 | 753100.0 |
La Pampa | 158746 | 172029 | 208260 | 259996 | 299294 | 318951 | 0.0083629 | 0.0209177 | 0.0235088 | 0.0143707 | 0.0073400 | 343683.3 |
La Rioja | 128220 | 136237 | 164217 | 220729 | 289983 | 333642 | 0.0062491 | 0.0203980 | 0.0325661 | 0.0298305 | 0.0168259 | 392948.6 |
Mendoza | 824036 | 973075 | 1196228 | 1412481 | 1579651 | 1738929 | 0.0180766 | 0.0227768 | 0.0171077 | 0.0112525 | 0.0112686 | 1945941.9 |
Misiones | 361440 | 443020 | 588977 | 788915 | 965522 | 1101593 | 0.0225585 | 0.0327218 | 0.0321248 | 0.0212840 | 0.0157500 | 1284885.8 |
Neuquén | 109890 | 154470 | 243850 | 388833 | 474155 | 551266 | 0.0405456 | 0.0574687 | 0.0562649 | 0.0208628 | 0.0181749 | 657112.9 |
Río Negro | 193292 | 262622 | 383354 | 506772 | 552822 | 638645 | 0.0358484 | 0.0456590 | 0.0304664 | 0.0086396 | 0.0173498 | 755702.4 |
Salta | 412854 | 509803 | 662870 | 866153 | 1079051 | 1214441 | 0.0234698 | 0.0298205 | 0.0290212 | 0.0233696 | 0.0140224 | 1394345.4 |
San Juan | 352387 | 384284 | 465976 | 528715 | 620023 | 681055 | 0.0090467 | 0.0211136 | 0.0127414 | 0.0164196 | 0.0110009 | 760205.3 |
San Luis | 174316 | 183460 | 214416 | 286458 | 367933 | 432310 | 0.0052428 | 0.0167586 | 0.0317959 | 0.0270420 | 0.0195541 | 521615.5 |
Santa Cruz | 52908 | 84457 | 114941 | 159839 | 196958 | 273964 | 0.0595973 | 0.0358486 | 0.0369654 | 0.0220795 | 0.0436946 | 400427.5 |
Santa Fe | 1884918 | 2135583 | 2465546 | 2798422 | 3000701 | 3194537 | 0.0132912 | 0.0153456 | 0.0127765 | 0.0068725 | 0.0072192 | 3438172.5 |
Stgo.del Estero | 476503 | 495419 | 594920 | 671988 | 804457 | 874006 | 0.0039676 | 0.0199476 | 0.0122591 | 0.0187425 | 0.0096619 | 963218.0 |
Tierra del Fuego | 11209 | 15658 | 29392 | 69369 | 101079 | 127205 | 0.0396696 | 0.0871157 | 0.1287136 | 0.0434616 | 0.0288861 | 166023.3 |
Tucumán | 773972 | 765962 | 972655 | 1142105 | 1338523 | 1448188 | -0.0010344 | 0.0268012 | 0.0164864 | 0.0163512 | 0.0091563 | 1588271.8 |
La funcion de crecimiento geometrico de la poblacion parte del supuesto de que el crecimiento de la población es proporcional en el tiempo. Cada período se incorpora (o se pierde) una misma fracción de la población alcanzada. El efectivo de población observado período a período sigue una progresión geométrica.La función que representa la evolución de la población es una función exponencial. El gráfico asociado a la función descripta es una curva exponencial. Tiene su paralelismo en matemática financiera con el régimen compuesto de interés y de descuento. Este supuesto es equivalente, como se verá más adelante, al de crecimiento exponencial. Su formula se compone de los siguientes elementos:
Nt= No * (1 + r) ^ t
En donde: - Nt es la poblacion al momento t. - No es la poblacion al momento inicial o. - t es el tiempo transcurrido entre el momento inicial y el momento de observacion. Usualmente en anos. - r es la tasa periodica media de crecimiento lineal.
Si se quisiera conocer el número de períodos que deben transcurrir (tiempo de espera) hasta alcanzar un número determinado de habitantes:
t= (Ln (Nt/No)) / Ln (1 + r)
Donde Ln es el logaritmo natural.
Si se quisiera conocer la tasa periódica media de crecimiento que permite obtener un número determinado de habitantes para un plazo definido.
r= ((Nt/No)^(1/t)) - 1
Tomando la bases censos
aplicamos las formulas. Primero, para determinar la tasa de crecimiento media anual.
#Tasa media anual de crecimiento geometrico
censos <- censos %>% mutate(tasa_geometrica_1960_1970 = ((`1970`/`1960`)^(1/t[1])) -1,
tasa_geometrica_1970_1980 = ((`1980`/`1970`)^(1/t[2])) -1,
tasa_geometrica_1980_1991 = ((`1991`/`1980`)^(1/t[3])) -1,
tasa_geometrica_1991_2001 = ((`2001`/`1991`)^(1/t[4])) -1,
tasa_geometrica_2001_2010 = ((`2010`/`2001`)^(1/t[5])) -1)
Jurisdicción | 1960 | 1970 | 1980 | 1991 | 2001 | 2010 | Tasa_1960_1970 | Tasa_1970_1980 | Tasa_1980_1991 | Tasa_1991_2001 | Tasa_2001_2010 | Proyeccion_2022 | tasa_geometrica_1960_1970 | tasa_geometrica_1970_1980 | tasa_geometrica_1980_1991 | tasa_geometrica_1991_2001 | tasa_geometrica_2001_2010 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | 20013793 | 23364331 | 27949480 | 32615528 | 36260130 | 40117096 | 0.0167320 | 0.0194911 | 0.0157986 | 0.0106243 | 0.0118876 | 45155196.0 | 0.0155907 | 0.0179562 | 0.0147177 | 0.0101224 | 0.0113609 |
CABA | 2966634 | 2972453 | 2922829 | 2965403 | 2776138 | 2890151 | 0.0001960 | -0.0016581 | 0.0013784 | -0.0060682 | 0.0045898 | 3030288.6 | 0.0001959 | -0.0016707 | 0.0013694 | -0.0062509 | 0.0045081 |
Buenos Aires | 6766108 | 8774529 | 10865408 | 12594974 | 13827203 | 15625084 | 0.0296673 | 0.0236669 | 0.0150638 | 0.0093018 | 0.0145313 | 18023750.2 | 0.0263189 | 0.0214546 | 0.0140768 | 0.0089140 | 0.0137549 |
Almirante Brown | 136924 | 245017 | 331919 | 450698 | 515556 | 552902 | 0.0789006 | 0.0352265 | 0.0338650 | 0.0136821 | 0.0080955 | 600188.5 | 0.0598828 | 0.0306089 | 0.0293720 | 0.0128650 | 0.0078464 |
Avellaneda | 326531 | 337538 | 334145 | 344991 | 328980 | 342677 | 0.0033690 | -0.0009984 | 0.0030717 | -0.0044125 | 0.0046530 | 359521.6 | 0.0033190 | -0.0010029 | 0.0030275 | -0.0045080 | 0.0045691 |
Florencio Varela | 41707 | 98446 | 173452 | 254997 | 348970 | 426005 | 0.1359674 | 0.0756717 | 0.0444899 | 0.0350383 | 0.0246704 | 537033.8 | 0.0896286 | 0.0578663 | 0.0371400 | 0.0302782 | 0.0225420 |
General Pueyrredón | 224824 | 317444 | 434160 | 532845 | 564056 | 618989 | 0.0411741 | 0.0365173 | 0.0215102 | 0.0055691 | 0.0108840 | 690161.9 | 0.0350808 | 0.0315868 | 0.0195716 | 0.0054267 | 0.0104402 |
General San Martín | 278751 | 360573 | 385625 | 406809 | 403107 | 414196 | 0.0293370 | 0.0069006 | 0.0051986 | -0.0008652 | 0.0030743 | 427648.4 | 0.0260572 | 0.0066937 | 0.0050737 | -0.0008688 | 0.0030374 |
La Matanza | 401738 | 659193 | 949566 | 1121298 | 1255288 | 1775816 | 0.0640502 | 0.0437501 | 0.0171147 | 0.0113612 | 0.0463423 | 2645215.8 | 0.0507398 | 0.0369156 | 0.0158559 | 0.0107899 | 0.0395294 |
Lanús | 375428 | 449824 | 466980 | 468561 | 453082 | 459263 | 0.0198055 | 0.0037880 | 0.0003204 | -0.0031409 | 0.0015246 | 466660.1 | 0.0182333 | 0.0037245 | 0.0003199 | -0.0031888 | 0.0015155 |
Lomas de Zamora | 272116 | 410806 | 510130 | 574330 | 591345 | 616279 | 0.0509393 | 0.0240134 | 0.0119096 | 0.0028167 | 0.0047122 | 646958.6 | 0.0420258 | 0.0217401 | 0.0112808 | 0.0027797 | 0.0046263 |
Merlo | 100146 | 188868 | 292587 | 390858 | 469985 | 528494 | 0.0885441 | 0.0545426 | 0.0317844 | 0.0192478 | 0.0139128 | 606172.3 | 0.0654606 | 0.0444324 | 0.0277830 | 0.0176825 | 0.0131989 |
Moreno | 59338 | 114041 | 194440 | 287715 | 380503 | 452505 | 0.0921383 | 0.0700205 | 0.0453966 | 0.0306623 | 0.0211477 | 553600.2 | 0.0674739 | 0.0544229 | 0.0377778 | 0.0269325 | 0.0195569 |
Quilmes | 317783 | 355265 | 446587 | 511234 | 518788 | 582943 | 0.0117884 | 0.0255305 | 0.0136989 | 0.0014049 | 0.0138203 | 668054.4 | 0.0112057 | 0.0229815 | 0.0128759 | 0.0013956 | 0.0131155 |
San Fernando | 92302 | 119565 | 133624 | 144763 | 151131 | 163240 | 0.0295206 | 0.0116785 | 0.0078887 | 0.0041823 | 0.0089543 | 178682.0 | 0.0262027 | 0.0111025 | 0.0076059 | 0.0041014 | 0.0086509 |
San Nicolás | 64050 | 82925 | 114241 | 132918 | 137867 | 145857 | 0.0294530 | 0.0375073 | 0.0154714 | 0.0035400 | 0.0064768 | 155837.1 | 0.0261492 | 0.0323311 | 0.0144327 | 0.0034818 | 0.0063160 |
San Isidro | 188065 | 250008 | 289170 | 299023 | 291505 | 292878 | 0.0329190 | 0.0155577 | 0.0032245 | -0.0023904 | 0.0005264 | 294506.7 | 0.0288636 | 0.0145581 | 0.0031758 | -0.0024180 | 0.0005253 |
Tigre | 91725 | 152335 | 206349 | 257922 | 301223 | 376381 | 0.0660418 | 0.0352162 | 0.0236517 | 0.0159619 | 0.0278846 | 487256.5 | 0.0520082 | 0.0306011 | 0.0213360 | 0.0148647 | 0.0252065 |
Tres de febrero | 263391 | 313460 | 345424 | 349376 | 336467 | 340071 | 0.0189990 | 0.0101278 | 0.0010827 | -0.0035130 | 0.0011971 | 344371.6 | 0.0175458 | 0.0096907 | 0.0010771 | -0.0035731 | 0.0011914 |
Vicente López | 247656 | 285178 | 291072 | 289505 | 274082 | 269420 | 0.0151426 | 0.0020527 | -0.0005095 | -0.0050651 | -0.0019009 | 264009.4 | 0.0141994 | 0.0020339 | -0.0005107 | -0.0051915 | -0.0019155 |
Resto de la provincia | 3283633 | 4034043 | 4965937 | 5777131 | 6505268 | 7267168 | 0.0228405 | 0.0229436 | 0.0154585 | 0.0119833 | 0.0130891 | 8272058.7 | 0.0207836 | 0.0208564 | 0.0144215 | 0.0113500 | 0.0124546 |
Catamarca | 168231 | 172323 | 207717 | 264234 | 334568 | 367828 | 0.0024310 | 0.0203996 | 0.0257484 | 0.0253076 | 0.0111100 | 411000.1 | 0.0024048 | 0.0187267 | 0.0230356 | 0.0226923 | 0.0106481 |
Córdoba | 1753840 | 2060065 | 2407754 | 2766683 | 3066801 | 3308876 | 0.0174507 | 0.0167628 | 0.0141072 | 0.0103135 | 0.0088215 | 3617241.4 | 0.0162142 | 0.0156102 | 0.0132366 | 0.0098397 | 0.0085268 |
Corrientes | 533201 | 564147 | 661454 | 795594 | 930991 | 992595 | 0.0058006 | 0.0171312 | 0.0191912 | 0.0161805 | 0.0073950 | 1070140.5 | 0.0056545 | 0.0159299 | 0.0176274 | 0.0150545 | 0.0071864 |
Chaco | 543331 | 566613 | 701392 | 839677 | 984446 | 1055259 | 0.0042827 | 0.0236250 | 0.0186577 | 0.0163922 | 0.0080389 | 1144878.2 | 0.0042023 | 0.0214201 | 0.0171751 | 0.0152380 | 0.0077932 |
Chubut | 142412 | 189920 | 263116 | 357189 | 413237 | 509108 | 0.0333413 | 0.0382783 | 0.0338346 | 0.0149189 | 0.0259277 | 648558.1 | 0.0291900 | 0.0329073 | 0.0293490 | 0.0139545 | 0.0235909 |
Entre Ríos | 805357 | 811691 | 908313 | 1020257 | 1158147 | 1235994 | 0.0007861 | 0.0118228 | 0.0116630 | 0.0128498 | 0.0075120 | 1334081.9 | 0.0007833 | 0.0112330 | 0.0110590 | 0.0121255 | 0.0072968 |
Formosa | 178526 | 234075 | 295887 | 398413 | 486559 | 530162 | 0.0310983 | 0.0262273 | 0.0327908 | 0.0210351 | 0.0100152 | 586255.2 | 0.0274458 | 0.0235472 | 0.0285545 | 0.0191846 | 0.0096377 |
Jujuy | 241462 | 302436 | 410008 | 512329 | 611888 | 673307 | 0.0252382 | 0.0353266 | 0.0236165 | 0.0184759 | 0.0112178 | 753100.0 | 0.0227585 | 0.0306851 | 0.0213072 | 0.0170273 | 0.0107472 |
La Pampa | 158746 | 172029 | 208260 | 259996 | 299294 | 318951 | 0.0083629 | 0.0209177 | 0.0235088 | 0.0143707 | 0.0073400 | 343683.3 | 0.0080637 | 0.0191637 | 0.0212191 | 0.0134730 | 0.0071343 |
La Rioja | 128220 | 136237 | 164217 | 220729 | 289983 | 333642 | 0.0062491 | 0.0203980 | 0.0325661 | 0.0298305 | 0.0168259 | 392948.6 | 0.0060799 | 0.0187254 | 0.0283828 | 0.0262847 | 0.0157970 |
Mendoza | 824036 | 973075 | 1196228 | 1412481 | 1579651 | 1738929 | 0.0180766 | 0.0227768 | 0.0171077 | 0.0112525 | 0.0112686 | 1945941.9 | 0.0167544 | 0.0207180 | 0.0158499 | 0.0106917 | 0.0107939 |
Misiones | 361440 | 443020 | 588977 | 788915 | 965522 | 1101593 | 0.0225585 | 0.0327218 | 0.0321248 | 0.0212840 | 0.0157500 | 1284885.8 | 0.0205490 | 0.0286873 | 0.0280446 | 0.0193921 | 0.0148436 |
Neuquén | 109890 | 154470 | 243850 | 388833 | 474155 | 551266 | 0.0405456 | 0.0574687 | 0.0562649 | 0.0208628 | 0.0181749 | 657112.9 | 0.0346191 | 0.0463885 | 0.0451449 | 0.0190408 | 0.0169826 |
Río Negro | 193292 | 262622 | 383354 | 506772 | 552822 | 638645 | 0.0358484 | 0.0456590 | 0.0304664 | 0.0086396 | 0.0173498 | 755702.4 | 0.0311087 | 0.0382816 | 0.0267642 | 0.0083036 | 0.0162588 |
Salta | 412854 | 509803 | 662870 | 866153 | 1079051 | 1214441 | 0.0234698 | 0.0298205 | 0.0290212 | 0.0233696 | 0.0140224 | 1394345.4 | 0.0213053 | 0.0264198 | 0.0256358 | 0.0211154 | 0.0132976 |
San Juan | 352387 | 384284 | 465976 | 528715 | 620023 | 681055 | 0.0090467 | 0.0211136 | 0.0127414 | 0.0164196 | 0.0110009 | 760205.3 | 0.0086981 | 0.0193285 | 0.0120254 | 0.0152617 | 0.0105478 |
San Luis | 174316 | 183460 | 214416 | 286458 | 367933 | 432310 | 0.0052428 | 0.0167586 | 0.0317959 | 0.0270420 | 0.0195541 | 521615.5 | 0.0051230 | 0.0156066 | 0.0277919 | 0.0240840 | 0.0181834 |
Santa Cruz | 52908 | 84457 | 114941 | 159839 | 196958 | 273964 | 0.0595973 | 0.0358486 | 0.0369654 | 0.0220795 | 0.0436946 | 400427.5 | 0.0478529 | 0.0310812 | 0.0316971 | 0.0200527 | 0.0375692 |
Santa Fe | 1884918 | 2135583 | 2465546 | 2798422 | 3000701 | 3194537 | 0.0132912 | 0.0153456 | 0.0127765 | 0.0068725 | 0.0072192 | 3438172.5 | 0.0125569 | 0.0143719 | 0.0120567 | 0.0066575 | 0.0070201 |
Stgo.del Estero | 476503 | 495419 | 594920 | 671988 | 804457 | 874006 | 0.0039676 | 0.0199476 | 0.0122591 | 0.0187425 | 0.0096619 | 963218.0 | 0.0038984 | 0.0183440 | 0.0115943 | 0.0172541 | 0.0093100 |
Tierra del Fuego | 11209 | 15658 | 29392 | 69369 | 101079 | 127205 | 0.0396696 | 0.0871157 | 0.1287136 | 0.0434616 | 0.0288861 | 166023.3 | 0.0339725 | 0.0645431 | 0.0846563 | 0.0364411 | 0.0260257 |
Tucumán | 773972 | 765962 | 972655 | 1142105 | 1338523 | 1448188 | -0.0010344 | 0.0268012 | 0.0164864 | 0.0163512 | 0.0091563 | 1588271.8 | -0.0010392 | 0.0240109 | 0.0153141 | 0.0152025 | 0.0088393 |
Si quisieramos calcular la poblacion con la funcion geometrica tomando como fecha el proximo censo simplemente deberiamos modificar t colocandola como exponenete de uno mas la ultima medicion de r(tasa media anual)
Nt= No * (1 + r) ^ t
#Agregamos la proyeccion al 2022 tomando como fecha el 18 de Mayo de 2020
t_2022<- (Int_2010_2021/365) %>% as.numeric()
#Calculamos la proyeccion de poblacion para el 2022
censos<- censos %>% mutate(Proyeccion_geometrica_2022= `2010` * (1 + `tasa_geometrica_2001_2010`)^`t_2022`)
Jurisdicción | 1960 | 1970 | 1980 | 1991 | 2001 | 2010 | Tasa_1960_1970 | Tasa_1970_1980 | Tasa_1980_1991 | Tasa_1991_2001 | Tasa_2001_2010 | Proyeccion_2022 | tasa_geometrica_1960_1970 | tasa_geometrica_1970_1980 | tasa_geometrica_1980_1991 | tasa_geometrica_1991_2001 | tasa_geometrica_2001_2010 | Proyeccion_geometrica_2022 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | 20013793 | 23364331 | 27949480 | 32615528 | 36260130 | 40117096 | 0.0167320 | 0.0194911 | 0.0157986 | 0.0106243 | 0.0118876 | 45155196.0 | 0.0155907 | 0.0179562 | 0.0147177 | 0.0101224 | 0.0113609 | 45202258.9 |
CABA | 2966634 | 2972453 | 2922829 | 2965403 | 2776138 | 2890151 | 0.0001960 | -0.0016581 | 0.0013784 | -0.0060682 | 0.0045898 | 3030288.6 | 0.0001959 | -0.0016707 | 0.0013694 | -0.0062509 | 0.0045081 | 3030802.7 |
Buenos Aires | 6766108 | 8774529 | 10865408 | 12594974 | 13827203 | 15625084 | 0.0296673 | 0.0236669 | 0.0150638 | 0.0093018 | 0.0145313 | 18023750.2 | 0.0263189 | 0.0214546 | 0.0140768 | 0.0089140 | 0.0137549 | 18050975.9 |
Almirante Brown | 136924 | 245017 | 331919 | 450698 | 515556 | 552902 | 0.0789006 | 0.0352265 | 0.0338650 | 0.0136821 | 0.0080955 | 600188.5 | 0.0598828 | 0.0306089 | 0.0293720 | 0.0128650 | 0.0078464 | 600492.0 |
Avellaneda | 326531 | 337538 | 334145 | 344991 | 328980 | 342677 | 0.0033690 | -0.0009984 | 0.0030717 | -0.0044125 | 0.0046530 | 359521.6 | 0.0033190 | -0.0010029 | 0.0030275 | -0.0045080 | 0.0045691 | 359584.3 |
Florencio Varela | 41707 | 98446 | 173452 | 254997 | 348970 | 426005 | 0.1359674 | 0.0756717 | 0.0444899 | 0.0350383 | 0.0246704 | 537033.8 | 0.0896286 | 0.0578663 | 0.0371400 | 0.0302782 | 0.0225420 | 539126.1 |
General Pueyrredón | 224824 | 317444 | 434160 | 532845 | 564056 | 618989 | 0.0411741 | 0.0365173 | 0.0215102 | 0.0055691 | 0.0108840 | 690161.9 | 0.0350808 | 0.0315868 | 0.0195716 | 0.0054267 | 0.0104402 | 690772.1 |
General San Martín | 278751 | 360573 | 385625 | 406809 | 403107 | 414196 | 0.0293370 | 0.0069006 | 0.0051986 | -0.0008652 | 0.0030743 | 427648.4 | 0.0260572 | 0.0066937 | 0.0050737 | -0.0008688 | 0.0030374 | 427681.5 |
La Matanza | 401738 | 659193 | 949566 | 1121298 | 1255288 | 1775816 | 0.0640502 | 0.0437501 | 0.0171147 | 0.0113612 | 0.0463423 | 2645215.8 | 0.0507398 | 0.0369156 | 0.0158559 | 0.0107899 | 0.0395294 | 2674657.5 |
Lanús | 375428 | 449824 | 466980 | 468561 | 453082 | 459263 | 0.0198055 | 0.0037880 | 0.0003204 | -0.0031409 | 0.0015246 | 466660.1 | 0.0182333 | 0.0037245 | 0.0003199 | -0.0031888 | 0.0015155 | 466669.2 |
Lomas de Zamora | 272116 | 410806 | 510130 | 574330 | 591345 | 616279 | 0.0509393 | 0.0240134 | 0.0119096 | 0.0028167 | 0.0047122 | 646958.6 | 0.0420258 | 0.0217401 | 0.0112808 | 0.0027797 | 0.0046263 | 647074.1 |
Merlo | 100146 | 188868 | 292587 | 390858 | 469985 | 528494 | 0.0885441 | 0.0545426 | 0.0317844 | 0.0192478 | 0.0139128 | 606172.3 | 0.0654606 | 0.0444324 | 0.0277830 | 0.0176825 | 0.0131989 | 607017.6 |
Moreno | 59338 | 114041 | 194440 | 287715 | 380503 | 452505 | 0.0921383 | 0.0700205 | 0.0453966 | 0.0306623 | 0.0211477 | 553600.2 | 0.0674739 | 0.0544229 | 0.0377778 | 0.0269325 | 0.0195569 | 555245.8 |
Quilmes | 317783 | 355265 | 446587 | 511234 | 518788 | 582943 | 0.0117884 | 0.0255305 | 0.0136989 | 0.0014049 | 0.0138203 | 668054.4 | 0.0112057 | 0.0229815 | 0.0128759 | 0.0013956 | 0.0131155 | 668974.6 |
San Fernando | 92302 | 119565 | 133624 | 144763 | 151131 | 163240 | 0.0295206 | 0.0116785 | 0.0078887 | 0.0041823 | 0.0089543 | 178682.0 | 0.0262027 | 0.0111025 | 0.0076059 | 0.0041014 | 0.0086509 | 178791.3 |
San Nicolás | 64050 | 82925 | 114241 | 132918 | 137867 | 145857 | 0.0294530 | 0.0375073 | 0.0154714 | 0.0035400 | 0.0064768 | 155837.1 | 0.0261492 | 0.0323311 | 0.0144327 | 0.0034818 | 0.0063160 | 155888.5 |
San Isidro | 188065 | 250008 | 289170 | 299023 | 291505 | 292878 | 0.0329190 | 0.0155577 | 0.0032245 | -0.0023904 | 0.0005264 | 294506.7 | 0.0288636 | 0.0145581 | 0.0031758 | -0.0024180 | 0.0005253 | 294507.4 |
Tigre | 91725 | 152335 | 206349 | 257922 | 301223 | 376381 | 0.0660418 | 0.0352162 | 0.0236517 | 0.0159619 | 0.0278846 | 487256.5 | 0.0520082 | 0.0306011 | 0.0213360 | 0.0148647 | 0.0252065 | 489602.0 |
Tres de febrero | 263391 | 313460 | 345424 | 349376 | 336467 | 340071 | 0.0189990 | 0.0101278 | 0.0010827 | -0.0035130 | 0.0011971 | 344371.6 | 0.0175458 | 0.0096907 | 0.0010771 | -0.0035731 | 0.0011914 | 344375.8 |
Vicente López | 247656 | 285178 | 291072 | 289505 | 274082 | 269420 | 0.0151426 | 0.0020527 | -0.0005095 | -0.0050651 | -0.0019009 | 264009.4 | 0.0141994 | 0.0020339 | -0.0005107 | -0.0051915 | -0.0019155 | 264017.8 |
Resto de la provincia | 3283633 | 4034043 | 4965937 | 5777131 | 6505268 | 7267168 | 0.0228405 | 0.0229436 | 0.0154585 | 0.0119833 | 0.0130891 | 8272058.7 | 0.0207836 | 0.0208564 | 0.0144215 | 0.0113500 | 0.0124546 | 8282366.2 |
Catamarca | 168231 | 172323 | 207717 | 264234 | 334568 | 367828 | 0.0024310 | 0.0203996 | 0.0257484 | 0.0253076 | 0.0111100 | 411000.1 | 0.0024048 | 0.0187267 | 0.0230356 | 0.0226923 | 0.0106481 | 411377.7 |
Córdoba | 1753840 | 2060065 | 2407754 | 2766683 | 3066801 | 3308876 | 0.0174507 | 0.0167628 | 0.0141072 | 0.0103135 | 0.0088215 | 3617241.4 | 0.0162142 | 0.0156102 | 0.0132366 | 0.0098397 | 0.0085268 | 3619394.2 |
Corrientes | 533201 | 564147 | 661454 | 795594 | 930991 | 992595 | 0.0058006 | 0.0171312 | 0.0191912 | 0.0161805 | 0.0073950 | 1070140.5 | 0.0056545 | 0.0159299 | 0.0176274 | 0.0150545 | 0.0071864 | 1070595.8 |
Chaco | 543331 | 566613 | 701392 | 839677 | 984446 | 1055259 | 0.0042827 | 0.0236250 | 0.0186577 | 0.0163922 | 0.0080389 | 1144878.2 | 0.0042023 | 0.0214201 | 0.0171751 | 0.0152380 | 0.0077932 | 1145449.4 |
Chubut | 142412 | 189920 | 263116 | 357189 | 413237 | 509108 | 0.0333413 | 0.0382783 | 0.0338346 | 0.0149189 | 0.0259277 | 648558.1 | 0.0291900 | 0.0329073 | 0.0293490 | 0.0139545 | 0.0235909 | 651312.5 |
Entre Ríos | 805357 | 811691 | 908313 | 1020257 | 1158147 | 1235994 | 0.0007861 | 0.0118228 | 0.0116630 | 0.0128498 | 0.0075120 | 1334081.9 | 0.0007833 | 0.0112330 | 0.0110590 | 0.0121255 | 0.0072968 | 1334666.8 |
Formosa | 178526 | 234075 | 295887 | 398413 | 486559 | 530162 | 0.0310983 | 0.0262273 | 0.0327908 | 0.0210351 | 0.0100152 | 586255.2 | 0.0274458 | 0.0235472 | 0.0285545 | 0.0191846 | 0.0096377 | 586698.6 |
Jujuy | 241462 | 302436 | 410008 | 512329 | 611888 | 673307 | 0.0252382 | 0.0353266 | 0.0236165 | 0.0184759 | 0.0112178 | 753100.0 | 0.0227585 | 0.0306851 | 0.0213072 | 0.0170273 | 0.0107472 | 753804.5 |
La Pampa | 158746 | 172029 | 208260 | 259996 | 299294 | 318951 | 0.0083629 | 0.0209177 | 0.0235088 | 0.0143707 | 0.0073400 | 343683.3 | 0.0080637 | 0.0191637 | 0.0212191 | 0.0134730 | 0.0071343 | 343827.4 |
La Rioja | 128220 | 136237 | 164217 | 220729 | 289983 | 333642 | 0.0062491 | 0.0203980 | 0.0325661 | 0.0298305 | 0.0168259 | 392948.6 | 0.0060799 | 0.0187254 | 0.0283828 | 0.0262847 | 0.0157970 | 393724.0 |
Mendoza | 824036 | 973075 | 1196228 | 1412481 | 1579651 | 1738929 | 0.0180766 | 0.0227768 | 0.0171077 | 0.0112525 | 0.0112686 | 1945941.9 | 0.0167544 | 0.0207180 | 0.0158499 | 0.0106917 | 0.0107939 | 1947777.6 |
Misiones | 361440 | 443020 | 588977 | 788915 | 965522 | 1101593 | 0.0225585 | 0.0327218 | 0.0321248 | 0.0212840 | 0.0157500 | 1284885.8 | 0.0205490 | 0.0286873 | 0.0280446 | 0.0193921 | 0.0148436 | 1287134.5 |
Neuquén | 109890 | 154470 | 243850 | 388833 | 474155 | 551266 | 0.0405456 | 0.0574687 | 0.0562649 | 0.0208628 | 0.0181749 | 657112.9 | 0.0346191 | 0.0463885 | 0.0451449 | 0.0190408 | 0.0169826 | 658603.3 |
Río Negro | 193292 | 262622 | 383354 | 506772 | 552822 | 638645 | 0.0358484 | 0.0456590 | 0.0304664 | 0.0086396 | 0.0173498 | 755702.4 | 0.0311087 | 0.0382816 | 0.0267642 | 0.0083036 | 0.0162588 | 757278.7 |
Salta | 412854 | 509803 | 662870 | 866153 | 1079051 | 1214441 | 0.0234698 | 0.0298205 | 0.0290212 | 0.0233696 | 0.0140224 | 1394345.4 | 0.0213053 | 0.0264198 | 0.0256358 | 0.0211154 | 0.0132976 | 1396318.2 |
San Juan | 352387 | 384284 | 465976 | 528715 | 620023 | 681055 | 0.0090467 | 0.0211136 | 0.0127414 | 0.0164196 | 0.0110009 | 760205.3 | 0.0086981 | 0.0193285 | 0.0120254 | 0.0152617 | 0.0105478 | 760891.0 |
San Luis | 174316 | 183460 | 214416 | 286458 | 367933 | 432310 | 0.0052428 | 0.0167586 | 0.0317959 | 0.0270420 | 0.0195541 | 521615.5 | 0.0051230 | 0.0156066 | 0.0277919 | 0.0240840 | 0.0181834 | 522964.3 |
Santa Cruz | 52908 | 84457 | 114941 | 159839 | 196958 | 273964 | 0.0595973 | 0.0358486 | 0.0369654 | 0.0220795 | 0.0436946 | 400427.5 | 0.0478529 | 0.0310812 | 0.0316971 | 0.0200527 | 0.0375692 | 404486.5 |
Santa Fe | 1884918 | 2135583 | 2465546 | 2798422 | 3000701 | 3194537 | 0.0132912 | 0.0153456 | 0.0127765 | 0.0068725 | 0.0072192 | 3438172.5 | 0.0125569 | 0.0143719 | 0.0120567 | 0.0066575 | 0.0070201 | 3439569.6 |
Stgo.del Estero | 476503 | 495419 | 594920 | 671988 | 804457 | 874006 | 0.0039676 | 0.0199476 | 0.0122591 | 0.0187425 | 0.0096619 | 963218.0 | 0.0038984 | 0.0183440 | 0.0115943 | 0.0172541 | 0.0093100 | 963898.8 |
Tierra del Fuego | 11209 | 15658 | 29392 | 69369 | 101079 | 127205 | 0.0396696 | 0.0871157 | 0.1287136 | 0.0434616 | 0.0288861 | 166023.3 | 0.0339725 | 0.0645431 | 0.0846563 | 0.0364411 | 0.0260257 | 166872.2 |
Tucumán | 773972 | 765962 | 972655 | 1142105 | 1338523 | 1448188 | -0.0010344 | 0.0268012 | 0.0164864 | 0.0163512 | 0.0091563 | 1588271.8 | -0.0010392 | 0.0240109 | 0.0153141 | 0.0152025 | 0.0088393 | 1589286.1 |
Para finalizar graficaremos las diferencias entre los cambios a traves del tiempo para la tasa de crecimiento lineal y la tasa de crecimiento geometrico de la poblacion cada mil habitantes para la ciudad autonoma de Buenos Aires .
#Reducimos la base a la poblacion
Tasas_CABA<- censos %>% filter(Jurisdicción == "CABA")
Tasas_CABA<- Tasas_CABA[,-c(2:7,19)] #Nos quedamos solo con las variables que necesitamos
#Cambiamos el formato de la tabla
library(tidyverse)
Tasas_CABA<- tidyr::gather(Tasas_CABA)
Tasas_CABA<- Tasas_CABA[-c(1,7),]
Etiquetas<- c(rep("Tasa lineal", 5 ),rep("Tasa geometrica",5))
#Multiplicamos por mil para facilitar el analisis
Tasas_CABA$value<- round(as.numeric(Tasas_CABA$value),5)
Tasas_CABA<- Tasas_CABA %>% mutate(value= value * 1000)
#Establecemos la fecha media entre cada intervalo.
fechas_medias <- c("30/09/1960", "04/09/1975", "07/10/1985", "28/07/1996", "21/01/2007") %>% dmy()
fechas_medias<- rep(fechas_medias,2)
#Creamos el data frame
Tasas_CABA<- data.frame(Tasas_CABA,Etiquetas, fechas_medias) %>% select(fechas_medias, Etiquetas, value)
#Comparamos las tasas para cada periodo
library(ggplot2)
ggplot(Tasas_CABA, aes(x=Etiquetas, y=value, fill=Etiquetas ))+
geom_col() +
facet_wrap(~fechas_medias)
#Reducimos la base a la poblacion
localidades <- c("Total","CABA", "La Matanza")
Tasas_localidades<- censos %>% filter(Jurisdicción == localidades)
## Warning in Jurisdicción == localidades: longer object length is not a multiple
## of shorter object length
Tasas_localidades<- Tasas_localidades[,-c(2:7,13,19)] #Nos quedamos solo con las variables que necesitamos
#Cambiamos el formato de la tabla
library(tidyverse)
Tasas_localidades<- tidyr::pivot_longer(Tasas_localidades, 2:11)
Etiquetas<- c(rep("Tasa lineal", 5 ),rep("Tasa geometrica",5))
Etiquetas<- rep(Etiquetas,3)
#Multiplicamos por mil para facilitar el analisis
Tasas_localidades$value<- round(as.numeric(Tasas_localidades$value),5)
Tasas_localidades<- Tasas_localidades %>% mutate(value= value * 1000)
#Establecemos la fecha media entre cada intervalo.
fechas_medias <- c("30/09/1960", "04/09/1975", "07/10/1985", "28/07/1996", "21/01/2007") %>% dmy()
fechas_medias<- rep(fechas_medias,6)
#Creamos el data frame
Tasas_localidades<- data.frame(Tasas_localidades,Etiquetas, fechas_medias) %>% select(fechas_medias, `Jurisdicción` , Etiquetas, value)
#Graficamos
ggplot(Tasas_localidades, aes(x=fechas_medias, y=value, color=`Jurisdicción`)) +
geom_line() +
facet_grid(~Etiquetas)