#Load some required packages
library(SIT)
library(quantmod)
library(quadprog)
library(lpSolve)
library(readxl)
library(xts)
library(openxlsx)
#Download data
X10_Industry_Portfolios <- read_excel("Downloads/10_Industry_Portfolios.xlsx", range = "A12:K1160")
str(X10_Industry_Portfolios)
## tibble [1,148 × 11] (S3: tbl_df/tbl/data.frame)
##  $ Date : num [1:1148] 192607 192608 192609 192610 192611 ...
##  $ NoDur: num [1:1148] 1.45 3.97 1.14 -1.24 5.2 0.82 -0.67 3.37 2.73 3.35 ...
##  $ Durbl: num [1:1148] 15.55 3.68 4.8 -8.23 -0.19 ...
##  $ Manuf: num [1:1148] 4.69 2.81 1.15 -3.63 4.1 3.74 -0.08 5.81 1.43 0.77 ...
##  $ Enrgy: num [1:1148] -1.18 3.47 -3.39 -0.78 0.01 2.82 1.29 1.47 -6.01 -5.17 ...
##  $ HiTec: num [1:1148] 2.9 2.66 -0.38 -4.58 4.71 -0.02 -1.13 4.45 1.45 5.4 ...
##  $ Telcm: num [1:1148] 0.83 2.17 2.41 -0.11 1.63 1.99 1.88 3.97 5.56 -2.13 ...
##  $ Shops: num [1:1148] 0.11 -0.71 0.21 -2.29 6.43 0.62 -2.55 3.61 -0.41 4.46 ...
##  $ Hlth : num [1:1148] 1.77 4.25 0.69 -0.57 5.42 0.11 5.05 1.71 1.01 2.74 ...
##  $ Utils: num [1:1148] 7.04 -1.69 2.04 -2.63 3.71 -0.17 -1.79 4.53 0.37 1.71 ...
##  $ Other: num [1:1148] 2.13 4.35 0.29 -2.84 2.11 3.47 1.5 5.05 1.22 0.83 ...
date <- seq(as.Date("1926-08-01"), length=1148, by="1 month") - 1
head(date)
## [1] "1926-07-31" "1926-08-31" "1926-09-30" "1926-10-31" "1926-11-30"
## [6] "1926-12-31"
tail(date)
## [1] "2021-09-30" "2021-10-31" "2021-11-30" "2021-12-31" "2022-01-31"
## [6] "2022-02-28"
class(date)
## [1] "Date"
X10_Industry_Portfolios <- xts(coredata(X10_Industry_Portfolios[, -1]/100), order.by = date)
head(X10_Industry_Portfolios)
##              NoDur   Durbl   Manuf   Enrgy   HiTec   Telcm   Shops    Hlth
## 1926-07-31  0.0145  0.1555  0.0469 -0.0118  0.0290  0.0083  0.0011  0.0177
## 1926-08-31  0.0397  0.0368  0.0281  0.0347  0.0266  0.0217 -0.0071  0.0425
## 1926-09-30  0.0114  0.0480  0.0115 -0.0339 -0.0038  0.0241  0.0021  0.0069
## 1926-10-31 -0.0124 -0.0823 -0.0363 -0.0078 -0.0458 -0.0011 -0.0229 -0.0057
## 1926-11-30  0.0520 -0.0019  0.0410  0.0001  0.0471  0.0163  0.0643  0.0542
## 1926-12-31  0.0082  0.0989  0.0374  0.0282 -0.0002  0.0199  0.0062  0.0011
##              Utils   Other
## 1926-07-31  0.0704  0.0213
## 1926-08-31 -0.0169  0.0435
## 1926-09-30  0.0204  0.0029
## 1926-10-31 -0.0263 -0.0284
## 1926-11-30  0.0371  0.0211
## 1926-12-31 -0.0017  0.0347
#turn data into time series

industry.price <- cumprod(X10_Industry_Portfolios+1)*100
industry.price.sample <- industry.price['2000-01/2020-03']

#create required input parameters in using SIT package

data <- new.env()

#create 3 required input elements in data

data$prices = data$weight = data$execution.price = industry.price.sample
data$execution.price[] <- NA
data$symbolnames <- colnames(data$prices)
prices <- data$prices
n <- ncol(prices)
names(data)
## [1] "prices"          "weight"          "symbolnames"     "execution.price"

Compute Equal weight portfolio return

data$weight <- ntop(prices, n)
models <- list()
models$equal.weight <- bt.run(data, trade.summary = T)
## Latest weights :
##            NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other
## 2020-03-31    10    10    10    10    10    10    10   10    10    10
## 
## Performance summary :
##  CAGR    Best    Worst   
##  6.4 12.2    -17.4   
bt.detail.summary(models$equal.weight)
## $System
## $System$Period
## [1] "Jan2000 - Mar2020"
## 
## $System$Cagr
## [1] 6.44
## 
## $System$Sharpe
## [1] 0.5
## 
## $System$DVR
##       [,1]
## NoDur 0.43
## 
## $System$Volatility
## [1] 14.48
## 
## $System$MaxDD
## [1] -48.19
## 
## $System$AvgDD
## [1] -6.74
## 
## $System$VaR
##    5% 
## -7.18 
## 
## $System$CVaR
## [1] -9.78
## 
## $System$Exposure
## [1] 99.59
## 
## 
## $Trade
## $Trade$Win.Percent
## [1] 100
## 
## $Trade$Avg.Trade
## [1] 24.5
## 
## $Trade$Avg.Win
## [1] 24.5
## 
## $Trade$Avg.Loss
## [1] NaN
## 
## $Trade$Best.Trade
## [1] 45.54
## 
## $Trade$Worst.Trade
## [1] 3.96
## 
## $Trade$WinLoss.Ratio
## [1] NaN
## 
## $Trade$Avg.Len
## [1] 242
## 
## $Trade$Num.Trades
## [1] 10
## 
## 
## $Period
## $Period$Win.Percent.Day
## [1] 64.2
## 
## $Period$Best.Day
## [1] 12.2
## 
## $Period$Worst.Day
## [1] -17.4
## 
## $Period$Win.Percent.Month
## [1] 64.2
## 
## $Period$Best.Month
## [1] 12.2
## 
## $Period$Worst.Month
## [1] -17.4
## 
## $Period$Win.Percent.Year
## [1] 66.7
## 
## $Period$Best.Year
## [1] 33.7
## 
## $Period$Worst.Year
## [1] -35.4

Compute MVP portfolio returns by rebalancing EACH month starting from 2000/01 to 2020/03

industry.price.sample <- industry.price['2000-01/2020-03']
data$prices = data$execution.price = data$weight = industry.price.sample
data$execution.price[] <- NA
data$symbolnames <- colnames(prices)
constraints = new.constraints(n, lb = -Inf, ub = +Inf)
constraints = add.constraints(rep(1, n), 1, type = "=", constraints) 
weight <- coredata(prices)
head(weight)
##         NoDur    Durbl    Manuf    Enrgy    HiTec    Telcm    Shops     Hlth
## [1,] 225714.9 310742.6 182511.9 232129.6 583276.5 278737.4 228728.2 697114.0
## [2,] 211743.2 285821.0 175320.9 218991.1 689374.4 269065.2 220173.7 676758.2
## [3,] 228174.4 315975.1 188434.9 245467.1 716535.8 289298.9 249500.9 678788.5
## [4,] 224021.6 345329.2 191167.2 240754.1 639938.1 266531.1 238348.2 714628.6
## [5,] 240196.0 299607.6 187993.9 263722.1 570568.8 238731.9 231745.9 742856.4
## [6,] 245936.7 271174.9 185625.1 249612.9 644971.0 248734.8 226392.6 828433.4
##         Utils    Other
## [1,] 58684.70 84089.12
## [2,] 54424.19 78101.98
## [3,] 57564.47 89098.73
## [4,] 61939.37 86318.85
## [5,] 64355.00 89253.69
## [6,] 61291.70 86629.64
weight[] <- NA
head(weight)
##      NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other
## [1,]    NA    NA    NA    NA    NA    NA    NA   NA    NA    NA
## [2,]    NA    NA    NA    NA    NA    NA    NA   NA    NA    NA
## [3,]    NA    NA    NA    NA    NA    NA    NA   NA    NA    NA
## [4,]    NA    NA    NA    NA    NA    NA    NA   NA    NA    NA
## [5,]    NA    NA    NA    NA    NA    NA    NA   NA    NA    NA
## [6,]    NA    NA    NA    NA    NA    NA    NA   NA    NA    NA
prices <- data$prices
ret <- prices / mlag(prices) - 1
head(ret)
##              NoDur   Durbl   Manuf   Enrgy   HiTec   Telcm   Shops    Hlth
## 2000-01-31      NA      NA      NA      NA      NA      NA      NA      NA
## 2000-02-29 -0.0619 -0.0802 -0.0394 -0.0566  0.1819 -0.0347 -0.0374 -0.0292
## 2000-03-31  0.0776  0.1055  0.0748  0.1209  0.0394  0.0752  0.1332  0.0030
## 2000-04-30 -0.0182  0.0929  0.0145 -0.0192 -0.1069 -0.0787 -0.0447  0.0528
## 2000-05-31  0.0722 -0.1324 -0.0166  0.0954 -0.1084 -0.1043 -0.0277  0.0395
## 2000-06-30  0.0239 -0.0949 -0.0126 -0.0535  0.1304  0.0419 -0.0231  0.1152
##              Utils   Other
## 2000-01-31      NA      NA
## 2000-02-29 -0.0726 -0.0712
## 2000-03-31  0.0577  0.1408
## 2000-04-30  0.0760 -0.0312
## 2000-05-31  0.0390  0.0340
## 2000-06-30 -0.0476 -0.0294
hist <- na.omit(ret[1:36,])
for( i in 36 : (dim(weight)[1]) )  {
  hist = ret[ (i- 36 +1):i, ]
  hist = na.omit(hist)
  ia = create.historical.ia(hist, 12)
  s0 = apply(coredata(hist),2,sd)     
  ia$cov = cor(coredata(hist), use='complete.obs',method='pearson') * (s0 %*% t(s0))
  
  weight[i,] = min.risk.portfolio(ia, constraints)
}
data$weight[] = weight 
capital = 100000
data$weight[] = (capital / prices) * data$weight
min.var = bt.run(data, type='share', capital=capital)
## Latest weights :
##            NoDur Durbl  Manuf  Enrgy HiTec Telcm  Shops Hlth Utils Other
## 2020-03-31 -0.72 -16.3 -16.07 -12.18 13.28 31.46 -16.08 39.1 56.35 21.16
## 
## Performance summary :
##  CAGR    Best    Worst   
##  8.1 8.8 -15.6   

Question 1: Based on HW05, you have to recalculate MVP portfolio returns with additional conditiion which requires all weights to be greater than zero (non-negative weights) in portfolio rebalancing. Plot three strategies side by side.

industry.price.sample <- industry.price['2000-01/2020-03']
data$prices = data$execution.price = data$weight = industry.price.sample
data$execution.price[] <- NA
data$symbolnames <- colnames(prices)
constraints = new.constraints(n, lb = 0, ub = +Inf)
constraints = add.constraints(rep(1, n), 1, type = "=", constraints) 
weight <- coredata(prices)
head(weight)
##         NoDur    Durbl    Manuf    Enrgy    HiTec    Telcm    Shops     Hlth
## [1,] 225714.9 310742.6 182511.9 232129.6 583276.5 278737.4 228728.2 697114.0
## [2,] 211743.2 285821.0 175320.9 218991.1 689374.4 269065.2 220173.7 676758.2
## [3,] 228174.4 315975.1 188434.9 245467.1 716535.8 289298.9 249500.9 678788.5
## [4,] 224021.6 345329.2 191167.2 240754.1 639938.1 266531.1 238348.2 714628.6
## [5,] 240196.0 299607.6 187993.9 263722.1 570568.8 238731.9 231745.9 742856.4
## [6,] 245936.7 271174.9 185625.1 249612.9 644971.0 248734.8 226392.6 828433.4
##         Utils    Other
## [1,] 58684.70 84089.12
## [2,] 54424.19 78101.98
## [3,] 57564.47 89098.73
## [4,] 61939.37 86318.85
## [5,] 64355.00 89253.69
## [6,] 61291.70 86629.64
weight[] <- NA
head(weight)
##      NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other
## [1,]    NA    NA    NA    NA    NA    NA    NA   NA    NA    NA
## [2,]    NA    NA    NA    NA    NA    NA    NA   NA    NA    NA
## [3,]    NA    NA    NA    NA    NA    NA    NA   NA    NA    NA
## [4,]    NA    NA    NA    NA    NA    NA    NA   NA    NA    NA
## [5,]    NA    NA    NA    NA    NA    NA    NA   NA    NA    NA
## [6,]    NA    NA    NA    NA    NA    NA    NA   NA    NA    NA
prices <- data$prices
ret <- prices / mlag(prices) - 1
head(ret)
##              NoDur   Durbl   Manuf   Enrgy   HiTec   Telcm   Shops    Hlth
## 2000-01-31      NA      NA      NA      NA      NA      NA      NA      NA
## 2000-02-29 -0.0619 -0.0802 -0.0394 -0.0566  0.1819 -0.0347 -0.0374 -0.0292
## 2000-03-31  0.0776  0.1055  0.0748  0.1209  0.0394  0.0752  0.1332  0.0030
## 2000-04-30 -0.0182  0.0929  0.0145 -0.0192 -0.1069 -0.0787 -0.0447  0.0528
## 2000-05-31  0.0722 -0.1324 -0.0166  0.0954 -0.1084 -0.1043 -0.0277  0.0395
## 2000-06-30  0.0239 -0.0949 -0.0126 -0.0535  0.1304  0.0419 -0.0231  0.1152
##              Utils   Other
## 2000-01-31      NA      NA
## 2000-02-29 -0.0726 -0.0712
## 2000-03-31  0.0577  0.1408
## 2000-04-30  0.0760 -0.0312
## 2000-05-31  0.0390  0.0340
## 2000-06-30 -0.0476 -0.0294
hist <- na.omit(ret[1:36,])
for( i in 36 : (dim(weight)[1]) )  {
  hist = ret[ (i- 36 +1):i, ]
  hist = na.omit(hist)
  ia = create.historical.ia(hist, 12)
  s0 = apply(coredata(hist),2,sd)     
  ia$cov = cor(coredata(hist), use='complete.obs',method='pearson') * (s0 %*% t(s0))
  
  weight[i,] = min.risk.portfolio(ia, constraints)
}
data$weight[] = weight 
capital = 100000
data$weight[] = (capital / prices) * data$weight
min.var.positive = bt.run(data, type='share', capital=capital)
## Latest weights :
##            NoDur Durbl Manuf Enrgy HiTec Telcm Shops  Hlth Utils Other
## 2020-03-31     0     0     0     0     0 22.98     0 24.53 52.49     0
## 
## Performance summary :
##  CAGR    Best    Worst   
##  7.2 7.3 -13 
plotbt.custom.report.part1(models$equal.weight, min.var, min.var.positive)

Question 2: Use the function: plotbt.strategy.sidebyside to show the summary of performance of three strategies: equal weighting, MVP and MVP with constraints of allowing only positive weights. Note: you just need to use monthly data to generate the results.

plotbt.strategy.sidebyside(models$equal.weight, min.var, min.var.positive)

Question 3: Please explain the meaning of the risk measures: a. Sharpeb. DVRc. MaxDDd. AvgDDe. VaRf. CVaRHint: you can google for the meaning of those terms. You can also check the function bt.detail.summary for the details of calculations.

a) Sharpe

b) DVR

C) MaxDD

d) AvgDD

e) VaR

VAR= [Rp- (z) (??)] Vp

Where, Rp = Return of the portfolio.

Z= Z value for level of confidence in a one-tailed test.

?? = Standard Deviation of the portfolio

Vp= Value of the portfolio

f) CVaR