Setting Up
#Import data
soybean_use <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-04-06/soybean_use.csv')
## Rows: 9897 Columns: 6
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (2): entity, code
## dbl (4): year, human_food, animal_feed, processed
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
as_tibble(soybean_use)
## # A tibble: 9,897 x 6
## entity code year human_food animal_feed processed
## <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Africa <NA> 1961 33000 6000 14000
## 2 Africa <NA> 1962 43000 7000 17000
## 3 Africa <NA> 1963 31000 7000 5000
## 4 Africa <NA> 1964 43000 6000 14000
## 5 Africa <NA> 1965 34000 6000 12000
## 6 Africa <NA> 1966 41000 6000 2000
## 7 Africa <NA> 1967 47000 6000 4000
## 8 Africa <NA> 1968 50000 7000 3000
## 9 Africa <NA> 1969 52000 6000 6000
## 10 Africa <NA> 1970 52000 6000 8000
## # ... with 9,887 more rows
soybean_use.csv Variable Table
| entity |
character |
Country |
| code |
character |
Country Code |
| year |
double |
Year |
| human_food |
double |
Use for human food (tempeh, tofu, etc) |
| animal_feed |
double |
Used for animal food |
| processed |
double |
Processed into vegetable oil, biofuel, processed animal feed |
Objective 1 - Global Comparisons
#Sums soybean production that is used directly for human food, for animal food, and that is processed into other items
soybean_use <- soybean_use|>
group_by(entity, code, year) |>
mutate(use_total = c_across(human_food:processed) |>
sum(na.rm = TRUE)) |>
ungroup()
#Filters by the most recent year (2013) and shows which entities had the greatest combined soybean production
soybean_use_2013 <- soybean_use |>
rowwise() |>
group_by(entity) |>
filter(year == 2013) |>
arrange(-use_total)
#Finding percentage of human food, animal food, and processed item usage from the total
soybean_use_2013 |>
group_by(entity) |>
mutate(
human_percent = (human_food / use_total) * 100,
animal_percent = (animal_feed / use_total) * 100,
processed_percent = (processed / use_total) * 100
)
## # A tibble: 200 x 10
## # Groups: entity [200]
## entity code year human_food animal_feed processed use_total human_percent
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 World OWID~ 2013 10649000 17478000 227311000 255438000 4.17
## 2 Americas <NA> 2013 970000 5599000 127032000 133601000 0.726
## 3 Asia <NA> 2013 8667000 10017000 80582000 99266000 8.73
## 4 Eastern~ <NA> 2013 6906000 9664000 64196000 80766000 8.55
## 5 South A~ <NA> 2013 819000 1926000 75405000 78150000 1.05
## 6 China CHN 2013 5072000 9530000 59162000 73764000 6.88
## 7 Norther~ <NA> 2013 45000 2707000 48776000 51528000 0.0873
## 8 United ~ USA 2013 12000 2240000 47189000 49441000 0.0243
## 9 Brazil BRA 2013 725000 637000 35513000 36875000 1.97
## 10 Argenti~ ARG 2013 0 986000 34041000 35027000 0
## # ... with 190 more rows, and 2 more variables: animal_percent <dbl>,
## # processed_percent <dbl>
kable(soybean_use_2013)
| World |
OWID_WRL |
2013 |
10649000 |
17478000 |
227311000 |
255438000 |
| Americas |
NA |
2013 |
970000 |
5599000 |
127032000 |
133601000 |
| Asia |
NA |
2013 |
8667000 |
10017000 |
80582000 |
99266000 |
| Eastern Asia |
NA |
2013 |
6906000 |
9664000 |
64196000 |
80766000 |
| South America |
NA |
2013 |
819000 |
1926000 |
75405000 |
78150000 |
| China |
CHN |
2013 |
5072000 |
9530000 |
59162000 |
73764000 |
| Northern America |
NA |
2013 |
45000 |
2707000 |
48776000 |
51528000 |
| United States |
USA |
2013 |
12000 |
2240000 |
47189000 |
49441000 |
| Brazil |
BRA |
2013 |
725000 |
637000 |
35513000 |
36875000 |
| Argentina |
ARG |
2013 |
0 |
986000 |
34041000 |
35027000 |
| Europe |
NA |
2013 |
139000 |
1732000 |
16672000 |
18543000 |
| European Union |
NA |
2013 |
118000 |
646000 |
13376000 |
14140000 |
| Low Income Food Deficit Countries |
NA |
2013 |
1259000 |
125000 |
9871000 |
11255000 |
| Southern Asia |
NA |
2013 |
580000 |
1000 |
9764000 |
10345000 |
| India |
IND |
2013 |
484000 |
NA |
9400000 |
9884000 |
| Europe, Western |
NA |
2013 |
100000 |
320000 |
6388000 |
6808000 |
| Southern Europe |
NA |
2013 |
10000 |
223000 |
6209000 |
6442000 |
| Land Locked Developing Countries |
NA |
2013 |
242000 |
507000 |
5345000 |
6094000 |
| South Eastern Asia |
NA |
2013 |
1047000 |
95000 |
4411000 |
5553000 |
| Eastern Europe |
NA |
2013 |
23000 |
1097000 |
2930000 |
4050000 |
| Africa |
NA |
2013 |
866000 |
127000 |
2948000 |
3941000 |
| Central America |
NA |
2013 |
34000 |
960000 |
2740000 |
3734000 |
| Net Food Importing Developing Countries |
NA |
2013 |
641000 |
63000 |
2921000 |
3625000 |
| Germany |
DEU |
2013 |
72000 |
80000 |
3282000 |
3434000 |
| Mexico |
MEX |
2013 |
2000 |
959000 |
2440000 |
3401000 |
| Spain |
ESP |
2013 |
1000 |
16000 |
3300000 |
3317000 |
| Paraguay |
PRY |
2013 |
0 |
301000 |
2940000 |
3241000 |
| Japan |
JPN |
2013 |
933000 |
104000 |
1911000 |
2948000 |
| Russia |
RUS |
2013 |
7000 |
600000 |
1930000 |
2537000 |
| Taiwan |
TWN |
2013 |
395000 |
NA |
2060000 |
2455000 |
| Netherlands |
NLD |
2013 |
2000 |
0 |
2440000 |
2442000 |
| Western Asia |
NA |
2013 |
133000 |
136000 |
2136000 |
2405000 |
| Indonesia |
IDN |
2013 |
279000 |
NA |
2109000 |
2388000 |
| Northern Africa |
NA |
2013 |
73000 |
2000 |
2168000 |
2243000 |
| Bolivia |
BOL |
2013 |
0 |
2000 |
2117000 |
2119000 |
| Canada |
CAN |
2013 |
33000 |
467000 |
1588000 |
2088000 |
| Italy |
ITA |
2013 |
1000 |
151000 |
1582000 |
1734000 |
| Egypt |
EGY |
2013 |
52000 |
NA |
1647000 |
1699000 |
| Thailand |
THA |
2013 |
143000 |
NA |
1428000 |
1571000 |
| Turkey |
TUR |
2013 |
128000 |
NA |
1160000 |
1288000 |
| South Korea |
KOR |
2013 |
411000 |
30000 |
814000 |
1255000 |
| Northern Europe |
NA |
2013 |
7000 |
91000 |
1144000 |
1242000 |
| Ukraine |
UKR |
2013 |
1000 |
444000 |
686000 |
1131000 |
| Least Developed Countries |
NA |
2013 |
430000 |
57000 |
352000 |
839000 |
| Portugal |
PRT |
2013 |
0 |
40000 |
708000 |
748000 |
| United Kingdom |
GBR |
2013 |
3000 |
37000 |
670000 |
710000 |
| Vietnam |
VNM |
2013 |
527000 |
95000 |
74000 |
696000 |
| Southern Africa |
NA |
2013 |
70000 |
8000 |
611000 |
689000 |
| South Africa |
ZAF |
2013 |
67000 |
8000 |
611000 |
686000 |
| France |
FRA |
2013 |
4000 |
99000 |
516000 |
619000 |
| Western Africa |
NA |
2013 |
478000 |
61000 |
35000 |
574000 |
| Saudi Arabia |
SAU |
2013 |
1000 |
84000 |
474000 |
559000 |
| Malaysia |
MYS |
2013 |
1000 |
NA |
539000 |
540000 |
| Nigeria |
NGA |
2013 |
451000 |
61000 |
20000 |
532000 |
| Tunisia |
TUN |
2013 |
21000 |
NA |
459000 |
480000 |
| Colombia |
COL |
2013 |
43000 |
NA |
386000 |
429000 |
| Norway |
NOR |
2013 |
1000 |
15000 |
404000 |
420000 |
| Eastern Africa |
NA |
2013 |
220000 |
55000 |
129000 |
404000 |
| Israel |
ISR |
2013 |
1000 |
34000 |
337000 |
372000 |
| North Korea |
PRK |
2013 |
73000 |
NA |
249000 |
322000 |
| Greece |
GRC |
2013 |
0 |
2000 |
287000 |
289000 |
| Iran |
IRN |
2013 |
0 |
NA |
288000 |
288000 |
| Venezuela |
VEN |
2013 |
0 |
NA |
265000 |
265000 |
| Costa Rica |
CRI |
2013 |
8000 |
NA |
244000 |
252000 |
| Serbia |
SRB |
2013 |
0 |
11000 |
230000 |
241000 |
| Asia, Central |
NA |
2013 |
1000 |
122000 |
75000 |
198000 |
| Small island developing States |
NA |
2013 |
77000 |
5000 |
114000 |
196000 |
| Caribbean |
NA |
2013 |
72000 |
5000 |
110000 |
187000 |
| Myanmar |
MMR |
2013 |
21000 |
NA |
165000 |
186000 |
| Kazakhstan |
KAZ |
2013 |
1000 |
115000 |
68000 |
184000 |
| United Arab Emirates |
ARE |
2013 |
1000 |
4000 |
165000 |
170000 |
| Cuba |
CUB |
2013 |
71000 |
5000 |
80000 |
156000 |
| Belgium |
BEL |
2013 |
1000 |
61000 |
91000 |
153000 |
| Austria |
AUT |
2013 |
17000 |
80000 |
43000 |
140000 |
| Romania |
ROU |
2013 |
0 |
20000 |
115000 |
135000 |
| Cambodia |
KHM |
2013 |
66000 |
NA |
65000 |
131000 |
| Zambia |
ZMB |
2013 |
106000 |
NA |
20000 |
126000 |
| Zimbabwe |
ZWE |
2013 |
8000 |
NA |
91000 |
99000 |
| Bangladesh |
BGD |
2013 |
95000 |
NA |
NA |
95000 |
| Croatia |
HRV |
2013 |
0 |
3000 |
87000 |
90000 |
| Hungary |
HUN |
2013 |
0 |
17000 |
72000 |
89000 |
| Oceania |
NA |
2013 |
7000 |
3000 |
77000 |
87000 |
| Australia & New Zealand |
NA |
2013 |
6000 |
3000 |
77000 |
86000 |
| Australia |
AUS |
2013 |
4000 |
3000 |
77000 |
84000 |
| Malawi |
MWI |
2013 |
29000 |
55000 |
NA |
84000 |
| Ecuador |
ECU |
2013 |
0 |
NA |
81000 |
81000 |
| Nepal |
NPL |
2013 |
0 |
NA |
64000 |
64000 |
| Morocco |
MAR |
2013 |
0 |
NA |
62000 |
62000 |
| Poland |
POL |
2013 |
2000 |
NA |
51000 |
53000 |
| Peru |
PER |
2013 |
48000 |
NA |
2000 |
50000 |
| Czechia |
CZE |
2013 |
9000 |
NA |
38000 |
47000 |
| Guatemala |
GTM |
2013 |
5000 |
1000 |
41000 |
47000 |
| Ethiopia |
ETH |
2013 |
42000 |
NA |
NA |
42000 |
| Finland |
FIN |
2013 |
0 |
NA |
41000 |
41000 |
| Uruguay |
URY |
2013 |
0 |
NA |
35000 |
35000 |
| Middle Africa |
NA |
2013 |
25000 |
NA |
6000 |
31000 |
| Moldova |
MDA |
2013 |
0 |
16000 |
14000 |
30000 |
| Philippines |
PHL |
2013 |
3000 |
NA |
26000 |
29000 |
| Chile |
CHL |
2013 |
1000 |
NA |
25000 |
26000 |
| Rwanda |
RWA |
2013 |
23000 |
NA |
NA |
23000 |
| Sweden |
SWE |
2013 |
1000 |
NA |
21000 |
22000 |
| Barbados |
BRB |
2013 |
0 |
NA |
21000 |
21000 |
| Burkina Faso |
BFA |
2013 |
21000 |
NA |
NA |
21000 |
| Switzerland |
CHE |
2013 |
4000 |
NA |
17000 |
21000 |
| Bosnia and Herzegovina |
BIH |
2013 |
6000 |
NA |
14000 |
20000 |
| Hong Kong |
HKG |
2013 |
20000 |
NA |
NA |
20000 |
| Slovakia |
SVK |
2013 |
0 |
NA |
19000 |
19000 |
| Uganda |
UGA |
2013 |
1000 |
NA |
18000 |
19000 |
| Ireland |
IRL |
2013 |
1000 |
12000 |
4000 |
17000 |
| Benin |
BEN |
2013 |
0 |
NA |
14000 |
14000 |
| Cameroon |
CMR |
2013 |
14000 |
NA |
NA |
14000 |
| Panama |
PAN |
2013 |
14000 |
NA |
NA |
14000 |
| Denmark |
DNK |
2013 |
0 |
13000 |
0 |
13000 |
| Sri Lanka |
LKA |
2013 |
0 |
1000 |
12000 |
13000 |
| Laos |
LAO |
2013 |
6000 |
NA |
6000 |
12000 |
| Angola |
AGO |
2013 |
11000 |
NA |
NA |
11000 |
| Azerbaijan |
AZE |
2013 |
0 |
11000 |
NA |
11000 |
| Kenya |
KEN |
2013 |
9000 |
NA |
NA |
9000 |
| Lithuania |
LTU |
2013 |
0 |
9000 |
NA |
9000 |
| Trinidad and Tobago |
TTO |
2013 |
0 |
NA |
9000 |
9000 |
| Uzbekistan |
UZB |
2013 |
NA |
2000 |
7000 |
9000 |
| Nicaragua |
NIC |
2013 |
0 |
NA |
7000 |
7000 |
| Bulgaria |
BGR |
2013 |
0 |
0 |
6000 |
6000 |
| Estonia |
EST |
2013 |
0 |
6000 |
NA |
6000 |
| Gabon |
GAB |
2013 |
0 |
NA |
6000 |
6000 |
| Honduras |
HND |
2013 |
0 |
NA |
6000 |
6000 |
| Belize |
BLZ |
2013 |
1000 |
0 |
4000 |
5000 |
| El Salvador |
SLV |
2013 |
5000 |
NA |
NA |
5000 |
| Kyrgyzstan |
KGZ |
2013 |
0 |
4000 |
NA |
4000 |
| Belarus |
BLR |
2013 |
3000 |
NA |
NA |
3000 |
| Georgia |
GEO |
2013 |
0 |
3000 |
NA |
3000 |
| Latvia |
LVA |
2013 |
0 |
0 |
3000 |
3000 |
| Liberia |
LBR |
2013 |
3000 |
NA |
NA |
3000 |
| Botswana |
BWA |
2013 |
2000 |
NA |
NA |
2000 |
| Mali |
MLI |
2013 |
2000 |
NA |
NA |
2000 |
| New Zealand |
NZL |
2013 |
2000 |
NA |
NA |
2000 |
| Slovenia |
SVN |
2013 |
2000 |
NA |
NA |
2000 |
| Sudan |
SDN |
2013 |
NA |
2000 |
NA |
2000 |
| Tanzania |
TZA |
2013 |
2000 |
NA |
NA |
2000 |
| Timor |
TLS |
2013 |
2000 |
NA |
NA |
2000 |
| Brunei |
BRN |
2013 |
1000 |
NA |
NA |
1000 |
| Cote d’Ivoire |
CIV |
2013 |
1000 |
NA |
NA |
1000 |
| Eswatini |
SWZ |
2013 |
1000 |
NA |
NA |
1000 |
| Guyana |
GUY |
2013 |
1000 |
NA |
NA |
1000 |
| Macao |
MAC |
2013 |
1000 |
NA |
NA |
1000 |
| Mozambique |
MOZ |
2013 |
1000 |
NA |
NA |
1000 |
| North Macedonia |
MKD |
2013 |
1000 |
NA |
NA |
1000 |
| Oman |
OMN |
2013 |
1000 |
NA |
NA |
1000 |
| Togo |
TGO |
2013 |
0 |
NA |
1000 |
1000 |
| Yemen |
YEM |
2013 |
1000 |
NA |
NA |
1000 |
| Albania |
ALB |
2013 |
0 |
NA |
0 |
0 |
| Algeria |
DZA |
2013 |
0 |
0 |
NA |
0 |
| Antigua and Barbuda |
ATG |
2013 |
0 |
NA |
NA |
0 |
| Armenia |
ARM |
2013 |
0 |
0 |
NA |
0 |
| Bahamas |
BHS |
2013 |
0 |
NA |
NA |
0 |
| Bermuda |
BMU |
2013 |
0 |
NA |
NA |
0 |
| Cape Verde |
CPV |
2013 |
0 |
NA |
NA |
0 |
| Congo |
COG |
2013 |
0 |
NA |
NA |
0 |
| Cyprus |
CYP |
2013 |
0 |
0 |
NA |
0 |
| Dominica |
DMA |
2013 |
0 |
NA |
NA |
0 |
| Dominican Republic |
DOM |
2013 |
NA |
NA |
0 |
0 |
| Fiji |
FJI |
2013 |
0 |
NA |
NA |
0 |
| French Polynesia |
PYF |
2013 |
0 |
NA |
NA |
0 |
| Gambia |
GMB |
2013 |
0 |
NA |
NA |
0 |
| Ghana |
GHA |
2013 |
0 |
NA |
NA |
0 |
| Grenada |
GRD |
2013 |
0 |
NA |
NA |
0 |
| Guinea |
GIN |
2013 |
0 |
0 |
NA |
0 |
| Haiti |
HTI |
2013 |
0 |
NA |
NA |
0 |
| Iceland |
ISL |
2013 |
0 |
0 |
NA |
0 |
| Iraq |
IRQ |
2013 |
NA |
NA |
0 |
0 |
| Jamaica |
JAM |
2013 |
0 |
NA |
0 |
0 |
| Jordan |
JOR |
2013 |
0 |
NA |
NA |
0 |
| Kiribati |
KIR |
2013 |
0 |
NA |
NA |
0 |
| Kuwait |
KWT |
2013 |
0 |
NA |
0 |
0 |
| Lebanon |
LBN |
2013 |
0 |
0 |
0 |
0 |
| Luxembourg |
LUX |
2013 |
0 |
0 |
0 |
0 |
| Madagascar |
MDG |
2013 |
0 |
NA |
NA |
0 |
| Maldives |
MDV |
2013 |
0 |
NA |
NA |
0 |
| Malta |
MLT |
2013 |
0 |
0 |
NA |
0 |
| Mauritania |
MRT |
2013 |
0 |
NA |
NA |
0 |
| Mauritius |
MUS |
2013 |
0 |
NA |
NA |
0 |
| Melanesia |
OWID_MNS |
2013 |
0 |
NA |
NA |
0 |
| Micronesia (region) |
NA |
2013 |
0 |
NA |
NA |
0 |
| Mongolia |
MNG |
2013 |
0 |
NA |
NA |
0 |
| Montenegro |
MNE |
2013 |
0 |
0 |
NA |
0 |
| Namibia |
NAM |
2013 |
0 |
NA |
NA |
0 |
| New Caledonia |
NCL |
2013 |
0 |
NA |
NA |
0 |
| Niger |
NER |
2013 |
0 |
NA |
NA |
0 |
| Pakistan |
PAK |
2013 |
0 |
NA |
0 |
0 |
| Polynesia |
OWID_PYA |
2013 |
0 |
NA |
NA |
0 |
| Saint Kitts and Nevis |
KNA |
2013 |
0 |
NA |
NA |
0 |
| Saint Lucia |
LCA |
2013 |
0 |
NA |
NA |
0 |
| Saint Vincent and the Grenadines |
VCT |
2013 |
0 |
NA |
NA |
0 |
| Samoa |
WSM |
2013 |
0 |
NA |
NA |
0 |
| Senegal |
SEN |
2013 |
0 |
NA |
NA |
0 |
| Sierra Leone |
SLE |
2013 |
0 |
NA |
NA |
0 |
| Solomon Islands |
SLB |
2013 |
0 |
NA |
NA |
0 |
| Suriname |
SUR |
2013 |
0 |
NA |
NA |
0 |
| Tajikistan |
TJK |
2013 |
NA |
0 |
NA |
0 |
| Vanuatu |
VUT |
2013 |
0 |
NA |
NA |
0 |
#2013's Top 10 countries in soybean production
top_countries_2013 <- soybean_use_2013 |>
filter(entity %in% c("China", "United States", "Brazil", "Argentina", "India", "Germany", "Mexico", "Spain", "Paraguay", "Japan"))
kable(top_countries_2013)
| China |
CHN |
2013 |
5072000 |
9530000 |
59162000 |
73764000 |
| United States |
USA |
2013 |
12000 |
2240000 |
47189000 |
49441000 |
| Brazil |
BRA |
2013 |
725000 |
637000 |
35513000 |
36875000 |
| Argentina |
ARG |
2013 |
0 |
986000 |
34041000 |
35027000 |
| India |
IND |
2013 |
484000 |
NA |
9400000 |
9884000 |
| Germany |
DEU |
2013 |
72000 |
80000 |
3282000 |
3434000 |
| Mexico |
MEX |
2013 |
2000 |
959000 |
2440000 |
3401000 |
| Spain |
ESP |
2013 |
1000 |
16000 |
3300000 |
3317000 |
| Paraguay |
PRY |
2013 |
0 |
301000 |
2940000 |
3241000 |
| Japan |
JPN |
2013 |
933000 |
104000 |
1911000 |
2948000 |
ggplot(data = top_countries_2013) +
aes(x = reorder(entity, -use_total),
y = use_total) +
geom_bar(stat = "identity",
color = "darkgreen",
fill = "darkgreen") +
scale_x_discrete(guide = guide_axis(angle = 45)) +
labs(title = "Top 10 Soybean-Producing Countries in 2013")

Objective 2 - Exploring the USA
#Developing respective soybean usage percent variables for human, animal, and processed products
usa_soybean_use <- soybean_use |>
group_by(entity) |>
mutate(
human_percent = (human_food / use_total) * 100,
animal_percent = (animal_feed / use_total) * 100,
processed_percent = (processed / use_total) * 100
) |>
filter(entity %in% "United States")
kable(usa_soybean_use)
| United States |
USA |
1961 |
0 |
36000 |
11050000 |
11086000 |
0.0000000 |
0.3247339 |
99.67527 |
| United States |
USA |
1962 |
0 |
31000 |
11730000 |
11761000 |
0.0000000 |
0.2635830 |
99.73642 |
| United States |
USA |
1963 |
0 |
24000 |
12873000 |
12897000 |
0.0000000 |
0.1860898 |
99.81391 |
| United States |
USA |
1964 |
0 |
23000 |
11893000 |
11916000 |
0.0000000 |
0.1930178 |
99.80698 |
| United States |
USA |
1965 |
0 |
24000 |
13036000 |
13060000 |
0.0000000 |
0.1837672 |
99.81623 |
| United States |
USA |
1966 |
0 |
24000 |
14616000 |
14640000 |
0.0000000 |
0.1639344 |
99.83607 |
| United States |
USA |
1967 |
0 |
26000 |
15214000 |
15240000 |
0.0000000 |
0.1706037 |
99.82940 |
| United States |
USA |
1968 |
0 |
25000 |
15676000 |
15701000 |
0.0000000 |
0.1592255 |
99.84077 |
| United States |
USA |
1969 |
0 |
24000 |
16493000 |
16517000 |
0.0000000 |
0.1453048 |
99.85470 |
| United States |
USA |
1970 |
0 |
24000 |
20058000 |
20082000 |
0.0000000 |
0.1195100 |
99.88049 |
| United States |
USA |
1971 |
0 |
29000 |
20684000 |
20713000 |
0.0000000 |
0.1400087 |
99.85999 |
| United States |
USA |
1972 |
0 |
29000 |
19623000 |
19652000 |
0.0000000 |
0.1475677 |
99.85243 |
| United States |
USA |
1973 |
0 |
30000 |
19650000 |
19680000 |
0.0000000 |
0.1524390 |
99.84756 |
| United States |
USA |
1974 |
0 |
33000 |
22344000 |
22377000 |
0.0000000 |
0.1474729 |
99.85253 |
| United States |
USA |
1975 |
0 |
27000 |
19078000 |
19105000 |
0.0000000 |
0.1413243 |
99.85868 |
| United States |
USA |
1976 |
0 |
33000 |
23542000 |
23575000 |
0.0000000 |
0.1399788 |
99.86002 |
| United States |
USA |
1977 |
0 |
27000 |
21506000 |
21533000 |
0.0000000 |
0.1253889 |
99.87461 |
| United States |
USA |
1978 |
0 |
27000 |
25221000 |
25248000 |
0.0000000 |
0.1069392 |
99.89306 |
| United States |
USA |
1979 |
0 |
27000 |
27701000 |
27728000 |
0.0000000 |
0.0973745 |
99.90263 |
| United States |
USA |
1980 |
0 |
27000 |
30573000 |
30600000 |
0.0000000 |
0.0882353 |
99.91176 |
| United States |
USA |
1981 |
0 |
43000 |
27774000 |
27817000 |
0.0000000 |
0.1545817 |
99.84542 |
| United States |
USA |
1982 |
0 |
47000 |
28033000 |
28080000 |
0.0000000 |
0.1673789 |
99.83262 |
| United States |
USA |
1983 |
3000 |
35000 |
30155000 |
30193000 |
0.0099361 |
0.1159209 |
99.87414 |
| United States |
USA |
1984 |
3000 |
40000 |
26753000 |
26796000 |
0.0111957 |
0.1492760 |
99.83953 |
| United States |
USA |
1985 |
4000 |
12000 |
28032000 |
28048000 |
0.0142613 |
0.0427838 |
99.94295 |
| United States |
USA |
1986 |
5000 |
55000 |
28658000 |
28718000 |
0.0174107 |
0.1915175 |
99.79107 |
| United States |
USA |
1987 |
5000 |
52000 |
32087000 |
32144000 |
0.0155550 |
0.1617720 |
99.82267 |
| United States |
USA |
1988 |
6000 |
44000 |
31952000 |
32002000 |
0.0187488 |
0.1374914 |
99.84376 |
| United States |
USA |
1989 |
7000 |
54000 |
28795000 |
28856000 |
0.0242584 |
0.1871361 |
99.78861 |
| United States |
USA |
1990 |
7000 |
55000 |
31189000 |
31251000 |
0.0223993 |
0.1759944 |
99.80161 |
| United States |
USA |
1991 |
8000 |
56000 |
32305000 |
32369000 |
0.0247150 |
0.1730050 |
99.80228 |
| United States |
USA |
1992 |
9000 |
62000 |
34130000 |
34201000 |
0.0263150 |
0.1812812 |
99.79240 |
| United States |
USA |
1993 |
10000 |
53000 |
34809000 |
34872000 |
0.0286763 |
0.1519844 |
99.81934 |
| United States |
USA |
1994 |
10000 |
71000 |
34728000 |
34809000 |
0.0287282 |
0.2039702 |
99.76730 |
| United States |
USA |
1995 |
10000 |
62000 |
38238000 |
38310000 |
0.0261028 |
0.1618376 |
99.81206 |
| United States |
USA |
1996 |
10000 |
67000 |
37286000 |
37363000 |
0.0267644 |
0.1793218 |
99.79391 |
| United States |
USA |
1997 |
10000 |
76000 |
39082000 |
39168000 |
0.0255310 |
0.1940359 |
99.78043 |
| United States |
USA |
1998 |
10000 |
78000 |
43464000 |
43552000 |
0.0229611 |
0.1790963 |
99.79794 |
| United States |
USA |
1999 |
11000 |
76000 |
43273000 |
43360000 |
0.0253690 |
0.1752768 |
99.79935 |
| United States |
USA |
2000 |
10000 |
76000 |
44625000 |
44711000 |
0.0223659 |
0.1699805 |
99.80765 |
| United States |
USA |
2001 |
11000 |
78000 |
46259000 |
46348000 |
0.0237335 |
0.1682921 |
99.80797 |
| United States |
USA |
2002 |
11000 |
77000 |
43948000 |
44036000 |
0.0249796 |
0.1748569 |
99.80016 |
| United States |
USA |
2003 |
11000 |
650000 |
41622000 |
42283000 |
0.0260152 |
1.5372608 |
98.43672 |
| United States |
USA |
2004 |
12000 |
2748000 |
46160000 |
48920000 |
0.0245298 |
5.6173344 |
94.35814 |
| United States |
USA |
2005 |
12000 |
1932000 |
47321000 |
49265000 |
0.0243581 |
3.9216482 |
96.05399 |
| United States |
USA |
2006 |
13000 |
2096000 |
49152000 |
51261000 |
0.0253604 |
4.0888785 |
95.88576 |
| United States |
USA |
2007 |
13000 |
900000 |
49070000 |
49983000 |
0.0260088 |
1.8006122 |
98.17338 |
| United States |
USA |
2008 |
12000 |
1960000 |
45233000 |
47205000 |
0.0254210 |
4.1521025 |
95.82248 |
| United States |
USA |
2009 |
10000 |
2205000 |
46131000 |
48346000 |
0.0206842 |
4.5608737 |
95.41844 |
| United States |
USA |
2010 |
11000 |
2205000 |
44852000 |
47068000 |
0.0233704 |
4.6847115 |
95.29192 |
| United States |
USA |
2011 |
12000 |
2205000 |
46349000 |
48566000 |
0.0247086 |
4.5402133 |
95.43508 |
| United States |
USA |
2012 |
11000 |
2014000 |
45964000 |
47989000 |
0.0229219 |
4.1967951 |
95.78028 |
| United States |
USA |
2013 |
12000 |
2240000 |
47189000 |
49441000 |
0.0242714 |
4.5306527 |
95.44508 |
#USA's Soybean Production Use Over Time
usa_production_history <- soybean_use |>
filter(entity %in% "United States")
#I truncated the following x-axis to begin at 1980 since soybeans were not used for human food until 1983
ggplot(data = usa_production_history) +
aes(x = year,
y = human_food) +
geom_line(stat = "identity") +
coord_cartesian(xlim = c(1980,2013)) +
labs(title = "USA Human Food Soybean Use from 1961-2013")

ggplot(data = usa_production_history) +
aes(x = year,
y = animal_feed) +
geom_line(stat = "identity") +
facet_zoom(xlim = c(2000, 2013)) +
labs(title = "USA Animal Food Soybean Use from 1961-2013")

ggplot(data = usa_production_history) +
aes(x = year,
y = processed) +
geom_line(stat = "identity") +
labs(title = "USA Processed Soybean Use from 1961-2013")

ggplot(data = usa_production_history) +
aes(x = year,
y = use_total) +
geom_line(stat = "identity") +
facet_zoom(xlim = c(2000, 2013)) +
labs(title = "USA Total Soybean Production from 1961-2013")
