Soybean plant development

Introduction

Soybean is the key ingredient behind multiple household food items like tofu, edamame, tempeh, miso, soy sauce, and soy milk. However, most of the soybean that is produced is used to feed animals like cows (~70%). This is just one example of a resource that could be greatly conserved if humans ate at lower trophic levels (i.e., if we consumed soy products and other food items, like corn and grains, directly rather than feeding them to animals).

Objectives

  1. Identify which countries produced the most soybean in 2013 and what they used it for
  1. Explore how soybean production and usage in the United States have changed over time

Setting Up

#Import data

soybean_use <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-04-06/soybean_use.csv')
## Rows: 9897 Columns: 6
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (2): entity, code
## dbl (4): year, human_food, animal_feed, processed
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
as_tibble(soybean_use)
## # A tibble: 9,897 x 6
##    entity code   year human_food animal_feed processed
##    <chr>  <chr> <dbl>      <dbl>       <dbl>     <dbl>
##  1 Africa <NA>   1961      33000        6000     14000
##  2 Africa <NA>   1962      43000        7000     17000
##  3 Africa <NA>   1963      31000        7000      5000
##  4 Africa <NA>   1964      43000        6000     14000
##  5 Africa <NA>   1965      34000        6000     12000
##  6 Africa <NA>   1966      41000        6000      2000
##  7 Africa <NA>   1967      47000        6000      4000
##  8 Africa <NA>   1968      50000        7000      3000
##  9 Africa <NA>   1969      52000        6000      6000
## 10 Africa <NA>   1970      52000        6000      8000
## # ... with 9,887 more rows

soybean_use.csv Variable Table

variable class description
entity character Country
code character Country Code
year double Year
human_food double Use for human food (tempeh, tofu, etc)
animal_feed double Used for animal food
processed double Processed into vegetable oil, biofuel, processed animal feed

Objective 1 - Global Comparisons

#Sums soybean production that is used directly for human food, for animal food, and that is processed into other items

soybean_use <- soybean_use|> 
  group_by(entity, code, year) |> 
  mutate(use_total = c_across(human_food:processed) |> 
         sum(na.rm = TRUE)) |> 
  ungroup()

#Filters by the most recent year (2013) and shows which entities had the greatest combined soybean production

soybean_use_2013 <- soybean_use |> 
  rowwise() |> 
  group_by(entity)  |>
  filter(year == 2013) |> 
  arrange(-use_total) 
 
#Finding percentage of human food, animal food, and processed item usage from the total

soybean_use_2013 |> 
  group_by(entity) |> 
  mutate(
    human_percent = (human_food / use_total) * 100,
    animal_percent = (animal_feed / use_total) * 100,
    processed_percent = (processed / use_total) * 100
    )
## # A tibble: 200 x 10
## # Groups:   entity [200]
##    entity   code   year human_food animal_feed processed use_total human_percent
##    <chr>    <chr> <dbl>      <dbl>       <dbl>     <dbl>     <dbl>         <dbl>
##  1 World    OWID~  2013   10649000    17478000 227311000 255438000        4.17  
##  2 Americas <NA>   2013     970000     5599000 127032000 133601000        0.726 
##  3 Asia     <NA>   2013    8667000    10017000  80582000  99266000        8.73  
##  4 Eastern~ <NA>   2013    6906000     9664000  64196000  80766000        8.55  
##  5 South A~ <NA>   2013     819000     1926000  75405000  78150000        1.05  
##  6 China    CHN    2013    5072000     9530000  59162000  73764000        6.88  
##  7 Norther~ <NA>   2013      45000     2707000  48776000  51528000        0.0873
##  8 United ~ USA    2013      12000     2240000  47189000  49441000        0.0243
##  9 Brazil   BRA    2013     725000      637000  35513000  36875000        1.97  
## 10 Argenti~ ARG    2013          0      986000  34041000  35027000        0     
## # ... with 190 more rows, and 2 more variables: animal_percent <dbl>,
## #   processed_percent <dbl>
kable(soybean_use_2013)
entity code year human_food animal_feed processed use_total
World OWID_WRL 2013 10649000 17478000 227311000 255438000
Americas NA 2013 970000 5599000 127032000 133601000
Asia NA 2013 8667000 10017000 80582000 99266000
Eastern Asia NA 2013 6906000 9664000 64196000 80766000
South America NA 2013 819000 1926000 75405000 78150000
China CHN 2013 5072000 9530000 59162000 73764000
Northern America NA 2013 45000 2707000 48776000 51528000
United States USA 2013 12000 2240000 47189000 49441000
Brazil BRA 2013 725000 637000 35513000 36875000
Argentina ARG 2013 0 986000 34041000 35027000
Europe NA 2013 139000 1732000 16672000 18543000
European Union NA 2013 118000 646000 13376000 14140000
Low Income Food Deficit Countries NA 2013 1259000 125000 9871000 11255000
Southern Asia NA 2013 580000 1000 9764000 10345000
India IND 2013 484000 NA 9400000 9884000
Europe, Western NA 2013 100000 320000 6388000 6808000
Southern Europe NA 2013 10000 223000 6209000 6442000
Land Locked Developing Countries NA 2013 242000 507000 5345000 6094000
South Eastern Asia NA 2013 1047000 95000 4411000 5553000
Eastern Europe NA 2013 23000 1097000 2930000 4050000
Africa NA 2013 866000 127000 2948000 3941000
Central America NA 2013 34000 960000 2740000 3734000
Net Food Importing Developing Countries NA 2013 641000 63000 2921000 3625000
Germany DEU 2013 72000 80000 3282000 3434000
Mexico MEX 2013 2000 959000 2440000 3401000
Spain ESP 2013 1000 16000 3300000 3317000
Paraguay PRY 2013 0 301000 2940000 3241000
Japan JPN 2013 933000 104000 1911000 2948000
Russia RUS 2013 7000 600000 1930000 2537000
Taiwan TWN 2013 395000 NA 2060000 2455000
Netherlands NLD 2013 2000 0 2440000 2442000
Western Asia NA 2013 133000 136000 2136000 2405000
Indonesia IDN 2013 279000 NA 2109000 2388000
Northern Africa NA 2013 73000 2000 2168000 2243000
Bolivia BOL 2013 0 2000 2117000 2119000
Canada CAN 2013 33000 467000 1588000 2088000
Italy ITA 2013 1000 151000 1582000 1734000
Egypt EGY 2013 52000 NA 1647000 1699000
Thailand THA 2013 143000 NA 1428000 1571000
Turkey TUR 2013 128000 NA 1160000 1288000
South Korea KOR 2013 411000 30000 814000 1255000
Northern Europe NA 2013 7000 91000 1144000 1242000
Ukraine UKR 2013 1000 444000 686000 1131000
Least Developed Countries NA 2013 430000 57000 352000 839000
Portugal PRT 2013 0 40000 708000 748000
United Kingdom GBR 2013 3000 37000 670000 710000
Vietnam VNM 2013 527000 95000 74000 696000
Southern Africa NA 2013 70000 8000 611000 689000
South Africa ZAF 2013 67000 8000 611000 686000
France FRA 2013 4000 99000 516000 619000
Western Africa NA 2013 478000 61000 35000 574000
Saudi Arabia SAU 2013 1000 84000 474000 559000
Malaysia MYS 2013 1000 NA 539000 540000
Nigeria NGA 2013 451000 61000 20000 532000
Tunisia TUN 2013 21000 NA 459000 480000
Colombia COL 2013 43000 NA 386000 429000
Norway NOR 2013 1000 15000 404000 420000
Eastern Africa NA 2013 220000 55000 129000 404000
Israel ISR 2013 1000 34000 337000 372000
North Korea PRK 2013 73000 NA 249000 322000
Greece GRC 2013 0 2000 287000 289000
Iran IRN 2013 0 NA 288000 288000
Venezuela VEN 2013 0 NA 265000 265000
Costa Rica CRI 2013 8000 NA 244000 252000
Serbia SRB 2013 0 11000 230000 241000
Asia, Central NA 2013 1000 122000 75000 198000
Small island developing States NA 2013 77000 5000 114000 196000
Caribbean NA 2013 72000 5000 110000 187000
Myanmar MMR 2013 21000 NA 165000 186000
Kazakhstan KAZ 2013 1000 115000 68000 184000
United Arab Emirates ARE 2013 1000 4000 165000 170000
Cuba CUB 2013 71000 5000 80000 156000
Belgium BEL 2013 1000 61000 91000 153000
Austria AUT 2013 17000 80000 43000 140000
Romania ROU 2013 0 20000 115000 135000
Cambodia KHM 2013 66000 NA 65000 131000
Zambia ZMB 2013 106000 NA 20000 126000
Zimbabwe ZWE 2013 8000 NA 91000 99000
Bangladesh BGD 2013 95000 NA NA 95000
Croatia HRV 2013 0 3000 87000 90000
Hungary HUN 2013 0 17000 72000 89000
Oceania NA 2013 7000 3000 77000 87000
Australia & New Zealand NA 2013 6000 3000 77000 86000
Australia AUS 2013 4000 3000 77000 84000
Malawi MWI 2013 29000 55000 NA 84000
Ecuador ECU 2013 0 NA 81000 81000
Nepal NPL 2013 0 NA 64000 64000
Morocco MAR 2013 0 NA 62000 62000
Poland POL 2013 2000 NA 51000 53000
Peru PER 2013 48000 NA 2000 50000
Czechia CZE 2013 9000 NA 38000 47000
Guatemala GTM 2013 5000 1000 41000 47000
Ethiopia ETH 2013 42000 NA NA 42000
Finland FIN 2013 0 NA 41000 41000
Uruguay URY 2013 0 NA 35000 35000
Middle Africa NA 2013 25000 NA 6000 31000
Moldova MDA 2013 0 16000 14000 30000
Philippines PHL 2013 3000 NA 26000 29000
Chile CHL 2013 1000 NA 25000 26000
Rwanda RWA 2013 23000 NA NA 23000
Sweden SWE 2013 1000 NA 21000 22000
Barbados BRB 2013 0 NA 21000 21000
Burkina Faso BFA 2013 21000 NA NA 21000
Switzerland CHE 2013 4000 NA 17000 21000
Bosnia and Herzegovina BIH 2013 6000 NA 14000 20000
Hong Kong HKG 2013 20000 NA NA 20000
Slovakia SVK 2013 0 NA 19000 19000
Uganda UGA 2013 1000 NA 18000 19000
Ireland IRL 2013 1000 12000 4000 17000
Benin BEN 2013 0 NA 14000 14000
Cameroon CMR 2013 14000 NA NA 14000
Panama PAN 2013 14000 NA NA 14000
Denmark DNK 2013 0 13000 0 13000
Sri Lanka LKA 2013 0 1000 12000 13000
Laos LAO 2013 6000 NA 6000 12000
Angola AGO 2013 11000 NA NA 11000
Azerbaijan AZE 2013 0 11000 NA 11000
Kenya KEN 2013 9000 NA NA 9000
Lithuania LTU 2013 0 9000 NA 9000
Trinidad and Tobago TTO 2013 0 NA 9000 9000
Uzbekistan UZB 2013 NA 2000 7000 9000
Nicaragua NIC 2013 0 NA 7000 7000
Bulgaria BGR 2013 0 0 6000 6000
Estonia EST 2013 0 6000 NA 6000
Gabon GAB 2013 0 NA 6000 6000
Honduras HND 2013 0 NA 6000 6000
Belize BLZ 2013 1000 0 4000 5000
El Salvador SLV 2013 5000 NA NA 5000
Kyrgyzstan KGZ 2013 0 4000 NA 4000
Belarus BLR 2013 3000 NA NA 3000
Georgia GEO 2013 0 3000 NA 3000
Latvia LVA 2013 0 0 3000 3000
Liberia LBR 2013 3000 NA NA 3000
Botswana BWA 2013 2000 NA NA 2000
Mali MLI 2013 2000 NA NA 2000
New Zealand NZL 2013 2000 NA NA 2000
Slovenia SVN 2013 2000 NA NA 2000
Sudan SDN 2013 NA 2000 NA 2000
Tanzania TZA 2013 2000 NA NA 2000
Timor TLS 2013 2000 NA NA 2000
Brunei BRN 2013 1000 NA NA 1000
Cote d’Ivoire CIV 2013 1000 NA NA 1000
Eswatini SWZ 2013 1000 NA NA 1000
Guyana GUY 2013 1000 NA NA 1000
Macao MAC 2013 1000 NA NA 1000
Mozambique MOZ 2013 1000 NA NA 1000
North Macedonia MKD 2013 1000 NA NA 1000
Oman OMN 2013 1000 NA NA 1000
Togo TGO 2013 0 NA 1000 1000
Yemen YEM 2013 1000 NA NA 1000
Albania ALB 2013 0 NA 0 0
Algeria DZA 2013 0 0 NA 0
Antigua and Barbuda ATG 2013 0 NA NA 0
Armenia ARM 2013 0 0 NA 0
Bahamas BHS 2013 0 NA NA 0
Bermuda BMU 2013 0 NA NA 0
Cape Verde CPV 2013 0 NA NA 0
Congo COG 2013 0 NA NA 0
Cyprus CYP 2013 0 0 NA 0
Dominica DMA 2013 0 NA NA 0
Dominican Republic DOM 2013 NA NA 0 0
Fiji FJI 2013 0 NA NA 0
French Polynesia PYF 2013 0 NA NA 0
Gambia GMB 2013 0 NA NA 0
Ghana GHA 2013 0 NA NA 0
Grenada GRD 2013 0 NA NA 0
Guinea GIN 2013 0 0 NA 0
Haiti HTI 2013 0 NA NA 0
Iceland ISL 2013 0 0 NA 0
Iraq IRQ 2013 NA NA 0 0
Jamaica JAM 2013 0 NA 0 0
Jordan JOR 2013 0 NA NA 0
Kiribati KIR 2013 0 NA NA 0
Kuwait KWT 2013 0 NA 0 0
Lebanon LBN 2013 0 0 0 0
Luxembourg LUX 2013 0 0 0 0
Madagascar MDG 2013 0 NA NA 0
Maldives MDV 2013 0 NA NA 0
Malta MLT 2013 0 0 NA 0
Mauritania MRT 2013 0 NA NA 0
Mauritius MUS 2013 0 NA NA 0
Melanesia OWID_MNS 2013 0 NA NA 0
Micronesia (region) NA 2013 0 NA NA 0
Mongolia MNG 2013 0 NA NA 0
Montenegro MNE 2013 0 0 NA 0
Namibia NAM 2013 0 NA NA 0
New Caledonia NCL 2013 0 NA NA 0
Niger NER 2013 0 NA NA 0
Pakistan PAK 2013 0 NA 0 0
Polynesia OWID_PYA 2013 0 NA NA 0
Saint Kitts and Nevis KNA 2013 0 NA NA 0
Saint Lucia LCA 2013 0 NA NA 0
Saint Vincent and the Grenadines VCT 2013 0 NA NA 0
Samoa WSM 2013 0 NA NA 0
Senegal SEN 2013 0 NA NA 0
Sierra Leone SLE 2013 0 NA NA 0
Solomon Islands SLB 2013 0 NA NA 0
Suriname SUR 2013 0 NA NA 0
Tajikistan TJK 2013 NA 0 NA 0
Vanuatu VUT 2013 0 NA NA 0
#2013's Top 10 countries in soybean production 

top_countries_2013 <- soybean_use_2013 |> 
  filter(entity %in% c("China", "United States", "Brazil", "Argentina", "India", "Germany", "Mexico", "Spain", "Paraguay", "Japan")) 


kable(top_countries_2013)
entity code year human_food animal_feed processed use_total
China CHN 2013 5072000 9530000 59162000 73764000
United States USA 2013 12000 2240000 47189000 49441000
Brazil BRA 2013 725000 637000 35513000 36875000
Argentina ARG 2013 0 986000 34041000 35027000
India IND 2013 484000 NA 9400000 9884000
Germany DEU 2013 72000 80000 3282000 3434000
Mexico MEX 2013 2000 959000 2440000 3401000
Spain ESP 2013 1000 16000 3300000 3317000
Paraguay PRY 2013 0 301000 2940000 3241000
Japan JPN 2013 933000 104000 1911000 2948000
ggplot(data = top_countries_2013) +
  aes(x = reorder(entity, -use_total),
      y = use_total) +
  geom_bar(stat = "identity",
           color = "darkgreen",
           fill = "darkgreen") +
  scale_x_discrete(guide = guide_axis(angle = 45)) +
  labs(title = "Top 10 Soybean-Producing Countries in 2013")

Objective 2 - Exploring the USA

#Developing respective soybean usage percent variables for human, animal, and processed products

usa_soybean_use <- soybean_use |> 
  group_by(entity) |> 
  mutate(
    human_percent = (human_food / use_total) * 100,
    animal_percent = (animal_feed / use_total) * 100,
    processed_percent = (processed / use_total) * 100
    ) |> 
  filter(entity %in% "United States") 

kable(usa_soybean_use)
entity code year human_food animal_feed processed use_total human_percent animal_percent processed_percent
United States USA 1961 0 36000 11050000 11086000 0.0000000 0.3247339 99.67527
United States USA 1962 0 31000 11730000 11761000 0.0000000 0.2635830 99.73642
United States USA 1963 0 24000 12873000 12897000 0.0000000 0.1860898 99.81391
United States USA 1964 0 23000 11893000 11916000 0.0000000 0.1930178 99.80698
United States USA 1965 0 24000 13036000 13060000 0.0000000 0.1837672 99.81623
United States USA 1966 0 24000 14616000 14640000 0.0000000 0.1639344 99.83607
United States USA 1967 0 26000 15214000 15240000 0.0000000 0.1706037 99.82940
United States USA 1968 0 25000 15676000 15701000 0.0000000 0.1592255 99.84077
United States USA 1969 0 24000 16493000 16517000 0.0000000 0.1453048 99.85470
United States USA 1970 0 24000 20058000 20082000 0.0000000 0.1195100 99.88049
United States USA 1971 0 29000 20684000 20713000 0.0000000 0.1400087 99.85999
United States USA 1972 0 29000 19623000 19652000 0.0000000 0.1475677 99.85243
United States USA 1973 0 30000 19650000 19680000 0.0000000 0.1524390 99.84756
United States USA 1974 0 33000 22344000 22377000 0.0000000 0.1474729 99.85253
United States USA 1975 0 27000 19078000 19105000 0.0000000 0.1413243 99.85868
United States USA 1976 0 33000 23542000 23575000 0.0000000 0.1399788 99.86002
United States USA 1977 0 27000 21506000 21533000 0.0000000 0.1253889 99.87461
United States USA 1978 0 27000 25221000 25248000 0.0000000 0.1069392 99.89306
United States USA 1979 0 27000 27701000 27728000 0.0000000 0.0973745 99.90263
United States USA 1980 0 27000 30573000 30600000 0.0000000 0.0882353 99.91176
United States USA 1981 0 43000 27774000 27817000 0.0000000 0.1545817 99.84542
United States USA 1982 0 47000 28033000 28080000 0.0000000 0.1673789 99.83262
United States USA 1983 3000 35000 30155000 30193000 0.0099361 0.1159209 99.87414
United States USA 1984 3000 40000 26753000 26796000 0.0111957 0.1492760 99.83953
United States USA 1985 4000 12000 28032000 28048000 0.0142613 0.0427838 99.94295
United States USA 1986 5000 55000 28658000 28718000 0.0174107 0.1915175 99.79107
United States USA 1987 5000 52000 32087000 32144000 0.0155550 0.1617720 99.82267
United States USA 1988 6000 44000 31952000 32002000 0.0187488 0.1374914 99.84376
United States USA 1989 7000 54000 28795000 28856000 0.0242584 0.1871361 99.78861
United States USA 1990 7000 55000 31189000 31251000 0.0223993 0.1759944 99.80161
United States USA 1991 8000 56000 32305000 32369000 0.0247150 0.1730050 99.80228
United States USA 1992 9000 62000 34130000 34201000 0.0263150 0.1812812 99.79240
United States USA 1993 10000 53000 34809000 34872000 0.0286763 0.1519844 99.81934
United States USA 1994 10000 71000 34728000 34809000 0.0287282 0.2039702 99.76730
United States USA 1995 10000 62000 38238000 38310000 0.0261028 0.1618376 99.81206
United States USA 1996 10000 67000 37286000 37363000 0.0267644 0.1793218 99.79391
United States USA 1997 10000 76000 39082000 39168000 0.0255310 0.1940359 99.78043
United States USA 1998 10000 78000 43464000 43552000 0.0229611 0.1790963 99.79794
United States USA 1999 11000 76000 43273000 43360000 0.0253690 0.1752768 99.79935
United States USA 2000 10000 76000 44625000 44711000 0.0223659 0.1699805 99.80765
United States USA 2001 11000 78000 46259000 46348000 0.0237335 0.1682921 99.80797
United States USA 2002 11000 77000 43948000 44036000 0.0249796 0.1748569 99.80016
United States USA 2003 11000 650000 41622000 42283000 0.0260152 1.5372608 98.43672
United States USA 2004 12000 2748000 46160000 48920000 0.0245298 5.6173344 94.35814
United States USA 2005 12000 1932000 47321000 49265000 0.0243581 3.9216482 96.05399
United States USA 2006 13000 2096000 49152000 51261000 0.0253604 4.0888785 95.88576
United States USA 2007 13000 900000 49070000 49983000 0.0260088 1.8006122 98.17338
United States USA 2008 12000 1960000 45233000 47205000 0.0254210 4.1521025 95.82248
United States USA 2009 10000 2205000 46131000 48346000 0.0206842 4.5608737 95.41844
United States USA 2010 11000 2205000 44852000 47068000 0.0233704 4.6847115 95.29192
United States USA 2011 12000 2205000 46349000 48566000 0.0247086 4.5402133 95.43508
United States USA 2012 11000 2014000 45964000 47989000 0.0229219 4.1967951 95.78028
United States USA 2013 12000 2240000 47189000 49441000 0.0242714 4.5306527 95.44508
#USA's Soybean Production Use Over Time

usa_production_history <- soybean_use |> 
  filter(entity %in% "United States")

#I truncated the following x-axis to begin at 1980 since soybeans were not used for human food until 1983

ggplot(data = usa_production_history) +
  aes(x = year,
      y = human_food) +
  geom_line(stat = "identity") +
  coord_cartesian(xlim = c(1980,2013)) +
  labs(title = "USA Human Food Soybean Use from 1961-2013")

ggplot(data = usa_production_history) +
  aes(x = year,
      y = animal_feed) +
  geom_line(stat = "identity") +
  facet_zoom(xlim = c(2000, 2013)) +
  labs(title = "USA Animal Food Soybean Use from 1961-2013")

ggplot(data = usa_production_history) +
  aes(x = year,
      y = processed) +
  geom_line(stat = "identity") +
  labs(title = "USA Processed Soybean Use from 1961-2013")

ggplot(data = usa_production_history) +
  aes(x = year,
      y = use_total) +
  geom_line(stat = "identity") +
  facet_zoom(xlim = c(2000, 2013)) +
  labs(title = "USA Total Soybean Production from 1961-2013")

Resources