library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(readxl)
(archivos = list.files(pattern='xls'))
## [1] "20210624_BaseSIPRA2020.xlsx"
(hojas = readxl::excel_sheets("C:\\Users\\PERSONAL\\Documents\\cuaderno1y2\\20210624_BaseSIPRA2020.xlsx"))
## [1] "Agrícola_SIPRA_AGRONET" "InventarioBovino"
## [3] "InventarioPorcino" "InvBufalosCaprinoOvinoEquino"
## [5] "InvAves"
eva2020 = readxl::read_excel("C:\\Users\\PERSONAL\\Documents\\cuaderno1y2\\20210624_BaseSIPRA2020.xlsx", sheet = "Agrícola_SIPRA_AGRONET")
eva2020
meta2020 = dplyr::filter(eva2020, Departamento == "Meta")
meta2020
meta2020.tmp <- meta2020 %>% select('Código del Municipio':'Ciclo del cultivo')
meta2020.tmp
meta2020.tmp %>% rename(Cod_Mun = 'Código del Municipio',
Grupo = 'Grupo cultivo según especie',
Subgrupo = 'Subgrupo cultivo según especie',
AreaSiembra = 'Area Sembrada (ha)',
AreaCosecha = 'Area Cosechada (ha)',
Produccion = 'Producción (t)',
Rendimiento = 'Rendimiento (t/ha)', Ciclo='Ciclo del cultivo') -> nmeta2020
nmeta2020
nmeta2020 %>% mutate(AreaSiembra = as.numeric(AreaSiembra),
AreaCosecha = as.numeric(AreaCosecha),
Produccion = as.numeric(Produccion),
Rendimiento = as.numeric(Rendimiento)) -> nmeta2020
nmeta2020
nmeta2020 %>%
filter(Produccion > 0) %>%
group_by(Cultivo) %>%
summarize(total_produccion = sum(Produccion)) %>%
arrange(desc(total_produccion))
nmeta2020 %>%
group_by(Cultivo, Municipio) %>%
summarize(max_prod = max(Produccion, na.rm = TRUE)) %>%
slice(which.max(max_prod)) %>%
arrange(desc(max_prod))
## `summarise()` has grouped output by 'Cultivo'. You can override using the
## `.groups` argument.
nmeta2020 %>%
group_by(Grupo,Municipio) %>%
summarize(max_prod = max(Produccion, na.rm = TRUE)) %>%
slice(which.max(max_prod)) %>%
arrange(desc(max_prod))
## `summarise()` has grouped output by 'Grupo'. You can override using the
## `.groups` argument.
nmeta2020 %>%
group_by(Cod_Mun, Municipio, Grupo) %>%
filter(Grupo=='Plátanos') %>%
summarize(max_prod = max(Produccion, na.rm = TRUE)) %>%
arrange(desc(max_prod)) -> Platanos2020
## `summarise()` has grouped output by 'Cod_Mun', 'Municipio'. You can override
## using the `.groups` argument.
Platanos2020
nmeta2020 %>%
group_by(Cod_Mun, Municipio, Grupo) %>%
filter(Grupo=='Cereales') %>%
summarize(max_prod = max(Produccion, na.rm = TRUE)) %>%
arrange(desc(max_prod)) -> Cereales2020
## `summarise()` has grouped output by 'Cod_Mun', 'Municipio'. You can override
## using the `.groups` argument.
Cereales2020
#######7.obtenemos los archivos csv con la informacion requerida.
write.csv( Platanos2020, "./meta_Platanos_2020.csv")
write.csv( Cereales2020, "./meta_Cereales_2020.csv")