Spotify is a Swedish-based audio streaming and media services provider. Spotify was launched in October 2008 and it is one of the biggest streaming device in the world.
There are various factors responsible for making songs popular. Every person has their own liking towards the music. Music companies that can identify the person’s liking and suggest the best recommendations for their long drives, parties, ‘me time’ depending on the situation and mood wins the market. This is where our prediction model comes into the picture. Our goal is to perform an in-depth analysis of the Spotify dataset and build the best recommendation model.
Dataset has different variables such as loudness, energy, speechiness, liveness, etc. Our goal is to identify how these factors contribute to the popularity of a song by-
The following packages are used in the analysis:
Package Name | Purpose |
---|---|
library(kableExtra) | kableExtra |
library(spotifyr) | spotifyr |
library(knitr) | knitr |
library(tidyverse) | tidyverse |
library(plotly) | plotly |
library(imager) | imager |
library(readr) | readr |
library(ggcorrplot) | ggcorrplot |
Let’s install these packages.
<- getwd()
my_path .libPaths(my_path)
#install.packages("kableExtra",repos = "http://cran.us.r-project.org")
#install.packages("spotifyr",repos = "http://cran.us.r-project.org")
#install.packages("tidyverse",repos = "http://cran.us.r-project.org")
#install.packages("knitr",repos = "http://cran.us.r-project.org")
#install.packages("plotly",repos = "http://cran.us.r-project.org")
#install.packages("imager",repos = "http://cran.us.r-project.org")
#install.packages("readr",repos = "http://cran.us.r-project.org")
#install.packages("ggcorrplot",repos = "http://cran.us.r-project.org")
#install.packages("corpus",repos = "http://cran.us.r-project.org")
#install.packages("wordcloud",repos = "http://cran.us.r-project.org")
#install.packages("tm",repos = "http://cran.us.r-project.org")
#install.packages("randomForest",repos = "http://cran.us.r-project.org")
#install.packages("Metrics",repos = "http://cran.us.r-project.org")
#install.packages("cluster",repos = "http://cran.us.r-project.org")
#install.packages("factoextra",repos = "http://cran.us.r-project.org")
#install.packages("gridExtra",repos = "http://cran.us.r-project.org")
The data this week comes from Spotify via the spotifyr package. Charlie Thompson, Josiah Parry, Donal Phipps, and Tom Wolff authored this package to make it easier to get either your own data or general metadata arounds songs from Spotify’s API. Make sure to check out the spotifyr package website to see how you can collect your own data!
Kaylin Pavlik had a recent blogpost using the audio features to explore and classify songs. She used the spotifyr package to collect about 5000 songs from 6 main categories (EDM, Latin, Pop, R&B, Rap, & Rock).
#library(readr)
<- read.csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-01-21/spotify_songs.csv') spotify_songs_data
Variable | Class | Description |
---|---|---|
track_id | character | Song unique ID |
track_name | character | Song Name |
track_artist | character | Song Artist |
track_popularity | double | Song Popularity (0-100) where higher is better |
track_album_id | character | Album unique ID |
track_album_name | character | Song album name |
track_album_release_date | character | Date when album released |
playlist_name | character | Name of playlist |
playlist_id | character | Playlist ID |
playlist_genre | character | Playlist genre |
playlist_name | character | Name of playlist |
playlist_name | character | Name of playlist |
danceability | double | Danceability describes how suitable a track is for dancing based on a combination of musical elements including tempo, rhythm stability, beat strength, and overall regularity. A value of 0.0 is least danceable and 1.0 is most danceable. |
energy | double | Energy is a measure from 0.0 to 1.0 and represents a perceptual measure of intensity and activity. Typically, energetic tracks feel fast, loud, and noisy. For example, death metal has high energy, while a Bach prelude scores low on the scale. Perceptual features contributing to this attribute include dynamic range, perceived loudness, timbre, onset rate, and general entropy. |
key | double | The estimated overall key of the track. Integers map to pitches using standard Pitch Class notation . E.g. 0 = C, 1 = C♯/D♭, 2 = D, and so on. If no key was detected, the value is -1. |
loudness | double | The overall loudness of a track in decibels (dB). Loudness values are averaged across the entire track and are useful for comparing relative loudness of tracks. Loudness is the quality of a sound that is the primary psychological correlate of physical strength (amplitude). Values typical range between -60 and 0 db. |
mode | double | Mode indicates the modality (major or minor) of a track, the type of scale from which its melodic content is derived. Major is represented by 1 and minor is 0. |
speechiness | double | Speechiness detects the presence of spoken words in a track. The more exclusively speech-like the recording (e.g. talk show, audio book, poetry), the closer to 1.0 the attribute value. Values above 0.66 describe tracks that are probably made entirely of spoken words. Values between 0.33 and 0.66 describe tracks that may contain both music and speech, either in sections or layered, including such cases as rap music. Values below 0.33 most likely represent music and other non-speech-like tracks. |
acousticness | double | A confidence measure from 0.0 to 1.0 of whether the track is acoustic. 1.0 represents high confidence the track is acoustic. |
instrumentalness | double | Predicts whether a track contains no vocals. “Ooh” and “aah” sounds are treated as instrumental in this context. Rap or spoken word tracks are clearly “vocal”. The closer the instrumentalness value is to 1.0, the greater likelihood the track contains no vocal content. Values above 0.5 are intended to represent instrumental tracks, but confidence is higher as the value approaches 1.0. |
liveness | double | Detects the presence of an audience in the recording. Higher liveness values represent an increased probability that the track was performed live. A value above 0.8 provides strong likelihood that the track is live. |
valence | double | A measure from 0.0 to 1.0 describing the musical positiveness conveyed by a track. Tracks with high valence sound more positive (e.g. happy, cheerful, euphoric), while tracks with low valence sound more negative (e.g. sad, depressed, angry). |
tempo | double | The overall estimated tempo of a track in beats per minute (BPM). In musical terminology, tempo is the speed or pace of a given piece and derives directly from the average beat duration. |
duration_ms | double | Duration of song in milliseconds. |
Let’s look at the dimesions of the data set.
# Dimension of dataset
dim(spotify_songs_data)
## [1] 32833 23
The data set has 3 variables and 32833 observations.
Now let’s analyse the structure of the data set.
# Structure of Data
str(spotify_songs_data)
## 'data.frame': 32833 obs. of 23 variables:
## $ track_id : chr "6f807x0ima9a1j3VPbc7VN" "0r7CVbZTWZgbTCYdfa2P31" "1z1Hg7Vb0AhHDiEmnDE79l" "75FpbthrwQmzHlBJLuGdC7" ...
## $ track_name : chr "I Don't Care (with Justin Bieber) - Loud Luxury Remix" "Memories - Dillon Francis Remix" "All the Time - Don Diablo Remix" "Call You Mine - Keanu Silva Remix" ...
## $ track_artist : chr "Ed Sheeran" "Maroon 5" "Zara Larsson" "The Chainsmokers" ...
## $ track_popularity : int 66 67 70 60 69 67 62 69 68 67 ...
## $ track_album_id : chr "2oCs0DGTsRO98Gh5ZSl2Cx" "63rPSO264uRjW1X5E6cWv6" "1HoSmj2eLcsrR0vE9gThr4" "1nqYsOef1yKKuGOVchbsk6" ...
## $ track_album_name : chr "I Don't Care (with Justin Bieber) [Loud Luxury Remix]" "Memories (Dillon Francis Remix)" "All the Time (Don Diablo Remix)" "Call You Mine - The Remixes" ...
## $ track_album_release_date: chr "2019-06-14" "2019-12-13" "2019-07-05" "2019-07-19" ...
## $ playlist_name : chr "Pop Remix" "Pop Remix" "Pop Remix" "Pop Remix" ...
## $ playlist_id : chr "37i9dQZF1DXcZDD7cfEKhW" "37i9dQZF1DXcZDD7cfEKhW" "37i9dQZF1DXcZDD7cfEKhW" "37i9dQZF1DXcZDD7cfEKhW" ...
## $ playlist_genre : chr "pop" "pop" "pop" "pop" ...
## $ playlist_subgenre : chr "dance pop" "dance pop" "dance pop" "dance pop" ...
## $ danceability : num 0.748 0.726 0.675 0.718 0.65 0.675 0.449 0.542 0.594 0.642 ...
## $ energy : num 0.916 0.815 0.931 0.93 0.833 0.919 0.856 0.903 0.935 0.818 ...
## $ key : int 6 11 1 7 1 8 5 4 8 2 ...
## $ loudness : num -2.63 -4.97 -3.43 -3.78 -4.67 ...
## $ mode : int 1 1 0 1 1 1 0 0 1 1 ...
## $ speechiness : num 0.0583 0.0373 0.0742 0.102 0.0359 0.127 0.0623 0.0434 0.0565 0.032 ...
## $ acousticness : num 0.102 0.0724 0.0794 0.0287 0.0803 0.0799 0.187 0.0335 0.0249 0.0567 ...
## $ instrumentalness : num 0.00 4.21e-03 2.33e-05 9.43e-06 0.00 0.00 0.00 4.83e-06 3.97e-06 0.00 ...
## $ liveness : num 0.0653 0.357 0.11 0.204 0.0833 0.143 0.176 0.111 0.637 0.0919 ...
## $ valence : num 0.518 0.693 0.613 0.277 0.725 0.585 0.152 0.367 0.366 0.59 ...
## $ tempo : num 122 100 124 122 124 ...
## $ duration_ms : int 194754 162600 176616 169093 189052 163049 187675 207619 193187 253040 ...
Let’s summarize the data set to observe the min, median and maximum values of numerical variables and length of character variables.
# Summary
summary(spotify_songs_data)
## track_id track_name track_artist track_popularity
## Length:32833 Length:32833 Length:32833 Min. : 0.00
## Class :character Class :character Class :character 1st Qu.: 24.00
## Mode :character Mode :character Mode :character Median : 45.00
## Mean : 42.48
## 3rd Qu.: 62.00
## Max. :100.00
## track_album_id track_album_name track_album_release_date
## Length:32833 Length:32833 Length:32833
## Class :character Class :character Class :character
## Mode :character Mode :character Mode :character
##
##
##
## playlist_name playlist_id playlist_genre playlist_subgenre
## Length:32833 Length:32833 Length:32833 Length:32833
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## danceability energy key loudness
## Min. :0.0000 Min. :0.000175 Min. : 0.000 Min. :-46.448
## 1st Qu.:0.5630 1st Qu.:0.581000 1st Qu.: 2.000 1st Qu.: -8.171
## Median :0.6720 Median :0.721000 Median : 6.000 Median : -6.166
## Mean :0.6548 Mean :0.698619 Mean : 5.374 Mean : -6.720
## 3rd Qu.:0.7610 3rd Qu.:0.840000 3rd Qu.: 9.000 3rd Qu.: -4.645
## Max. :0.9830 Max. :1.000000 Max. :11.000 Max. : 1.275
## mode speechiness acousticness instrumentalness
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000000
## 1st Qu.:0.0000 1st Qu.:0.0410 1st Qu.:0.0151 1st Qu.:0.0000000
## Median :1.0000 Median :0.0625 Median :0.0804 Median :0.0000161
## Mean :0.5657 Mean :0.1071 Mean :0.1753 Mean :0.0847472
## 3rd Qu.:1.0000 3rd Qu.:0.1320 3rd Qu.:0.2550 3rd Qu.:0.0048300
## Max. :1.0000 Max. :0.9180 Max. :0.9940 Max. :0.9940000
## liveness valence tempo duration_ms
## Min. :0.0000 Min. :0.0000 Min. : 0.00 Min. : 4000
## 1st Qu.:0.0927 1st Qu.:0.3310 1st Qu.: 99.96 1st Qu.:187819
## Median :0.1270 Median :0.5120 Median :121.98 Median :216000
## Mean :0.1902 Mean :0.5106 Mean :120.88 Mean :225800
## 3rd Qu.:0.2480 3rd Qu.:0.6930 3rd Qu.:133.92 3rd Qu.:253585
## Max. :0.9960 Max. :0.9910 Max. :239.44 Max. :517810
Checking for missing or null values in the data set. Null values affect the analysis to a great extent if present in large percent.
# Null values
colSums(is.na(spotify_songs_data))
## track_id track_name track_artist
## 0 5 5
## track_popularity track_album_id track_album_name
## 0 0 5
## track_album_release_date playlist_name playlist_id
## 0 0 0
## playlist_genre playlist_subgenre danceability
## 0 0 0
## energy key loudness
## 0 0 0
## mode speechiness acousticness
## 0 0 0
## instrumentalness liveness valence
## 0 0 0
## tempo duration_ms
## 0 0
Track_name, track_album_name and track_artist variables contain 5 missing values out of 32833 rows. It is safe to remove these 5 rows without any significant impact on our data
<- na.omit(spotify_songs_data)
spotify_songs_data colSums(is.na(spotify_songs_data))
## track_id track_name track_artist
## 0 0 0
## track_popularity track_album_id track_album_name
## 0 0 0
## track_album_release_date playlist_name playlist_id
## 0 0 0
## playlist_genre playlist_subgenre danceability
## 0 0 0
## energy key loudness
## 0 0 0
## mode speechiness acousticness
## 0 0 0
## instrumentalness liveness valence
## 0 0 0
## tempo duration_ms
## 0 0
Playlist_genre, playlist_subgenre, mode and key are categorical columns hence they should be converted to factor from string for further data analysis.
library(dplyr)
<-spotify_songs_data %>%
spotify_songs_data mutate(playlist_genre=as.factor(spotify_songs_data$playlist_genre),
playlist_subgenre=as.factor(spotify_songs_data$playlist_subgenre),
mode=as.factor(mode),
key=as.factor(key))
Now we can see that categorical variables have factor as data type.
str(spotify_songs_data)
## 'data.frame': 32828 obs. of 23 variables:
## $ track_id : chr "6f807x0ima9a1j3VPbc7VN" "0r7CVbZTWZgbTCYdfa2P31" "1z1Hg7Vb0AhHDiEmnDE79l" "75FpbthrwQmzHlBJLuGdC7" ...
## $ track_name : chr "I Don't Care (with Justin Bieber) - Loud Luxury Remix" "Memories - Dillon Francis Remix" "All the Time - Don Diablo Remix" "Call You Mine - Keanu Silva Remix" ...
## $ track_artist : chr "Ed Sheeran" "Maroon 5" "Zara Larsson" "The Chainsmokers" ...
## $ track_popularity : int 66 67 70 60 69 67 62 69 68 67 ...
## $ track_album_id : chr "2oCs0DGTsRO98Gh5ZSl2Cx" "63rPSO264uRjW1X5E6cWv6" "1HoSmj2eLcsrR0vE9gThr4" "1nqYsOef1yKKuGOVchbsk6" ...
## $ track_album_name : chr "I Don't Care (with Justin Bieber) [Loud Luxury Remix]" "Memories (Dillon Francis Remix)" "All the Time (Don Diablo Remix)" "Call You Mine - The Remixes" ...
## $ track_album_release_date: chr "2019-06-14" "2019-12-13" "2019-07-05" "2019-07-19" ...
## $ playlist_name : chr "Pop Remix" "Pop Remix" "Pop Remix" "Pop Remix" ...
## $ playlist_id : chr "37i9dQZF1DXcZDD7cfEKhW" "37i9dQZF1DXcZDD7cfEKhW" "37i9dQZF1DXcZDD7cfEKhW" "37i9dQZF1DXcZDD7cfEKhW" ...
## $ playlist_genre : Factor w/ 6 levels "edm","latin",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ playlist_subgenre : Factor w/ 24 levels "album rock","big room",..: 4 4 4 4 4 4 4 4 4 4 ...
## $ danceability : num 0.748 0.726 0.675 0.718 0.65 0.675 0.449 0.542 0.594 0.642 ...
## $ energy : num 0.916 0.815 0.931 0.93 0.833 0.919 0.856 0.903 0.935 0.818 ...
## $ key : Factor w/ 12 levels "0","1","2","3",..: 7 12 2 8 2 9 6 5 9 3 ...
## $ loudness : num -2.63 -4.97 -3.43 -3.78 -4.67 ...
## $ mode : Factor w/ 2 levels "0","1": 2 2 1 2 2 2 1 1 2 2 ...
## $ speechiness : num 0.0583 0.0373 0.0742 0.102 0.0359 0.127 0.0623 0.0434 0.0565 0.032 ...
## $ acousticness : num 0.102 0.0724 0.0794 0.0287 0.0803 0.0799 0.187 0.0335 0.0249 0.0567 ...
## $ instrumentalness : num 0.00 4.21e-03 2.33e-05 9.43e-06 0.00 0.00 0.00 4.83e-06 3.97e-06 0.00 ...
## $ liveness : num 0.0653 0.357 0.11 0.204 0.0833 0.143 0.176 0.111 0.637 0.0919 ...
## $ valence : num 0.518 0.693 0.613 0.277 0.725 0.585 0.152 0.367 0.366 0.59 ...
## $ tempo : num 122 100 124 122 124 ...
## $ duration_ms : int 194754 162600 176616 169093 189052 163049 187675 207619 193187 253040 ...
## - attr(*, "na.action")= 'omit' Named int [1:5] 8152 9283 9284 19569 19812
## ..- attr(*, "names")= chr [1:5] "8152" "9283" "9284" "19569" ...
Now let’s identify if the dat aset has any duplicate records.
dim(spotify_songs_data)
## [1] 32828 23
length(unique(spotify_songs_data$track_id))
## [1] 28352
Number of unique track_id are 28352 however the total row count is 32828. We will remove these duplicate records.
<- spotify_songs_data[!duplicated(spotify_songs_data$track_id),]
spotify_songs_data dim(spotify_songs_data)
## [1] 28352 23
As we are analyzing track popularity depending on the features of the songs. Columns such as track_id, track_name,track_album_id, track_album_name, playlist_id, playlist_name are redundant columns.
<- spotify_songs_data %>% select(-c(track_id, track_name,track_album_id,track_album_name,playlist_id,playlist_name))
spotify_songs_data head(spotify_songs_data,2)
## track_artist track_popularity track_album_release_date playlist_genre
## 1 Ed Sheeran 66 2019-06-14 pop
## 2 Maroon 5 67 2019-12-13 pop
## playlist_subgenre danceability energy key loudness mode speechiness
## 1 dance pop 0.748 0.916 6 -2.634 1 0.0583
## 2 dance pop 0.726 0.815 11 -4.969 1 0.0373
## acousticness instrumentalness liveness valence tempo duration_ms
## 1 0.1020 0.00000 0.0653 0.518 122.036 194754
## 2 0.0724 0.00421 0.3570 0.693 99.972 162600
To analyze which type of songs are released in which year, we are manipulating track_album_release_date column. Separating month and year columns will help us to analyse data set in an efficient way.
$year <- substr(spotify_songs_data$track_album_release_date,1,4)
spotify_songs_data$month <- substr(spotify_songs_data$track_album_release_date,6,7) spotify_songs_data
Changing data type of month and year column from character to numeric.
$year <- as.numeric(spotify_songs_data$year)
spotify_songs_data$month <- as.numeric(spotify_songs_data$month) spotify_songs_data
Now that the data set is clean let’s have a look at it.
library(knitr)
<- head(spotify_songs_data, n = 2)
output_data kable(output_data, filter = 'top', options = list(pageLength = 25))
track_artist | track_popularity | track_album_release_date | playlist_genre | playlist_subgenre | danceability | energy | key | loudness | mode | speechiness | acousticness | instrumentalness | liveness | valence | tempo | duration_ms | year | month |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ed Sheeran | 66 | 2019-06-14 | pop | dance pop | 0.748 | 0.916 | 6 | -2.634 | 1 | 0.0583 | 0.1020 | 0.00000 | 0.0653 | 0.518 | 122.036 | 194754 | 2019 | 6 |
Maroon 5 | 67 | 2019-12-13 | pop | dance pop | 0.726 | 0.815 | 11 | -4.969 | 1 | 0.0373 | 0.0724 | 0.00421 | 0.3570 | 0.693 | 99.972 | 162600 | 2019 | 12 |
In statistics, exploratory data analysis is an approach of analyzing data sets to summarize their main characteristics, often using statistical graphics and other data visualization methods.
As of now we have the below columns in our dataset
str(spotify_songs_data)
## 'data.frame': 28352 obs. of 19 variables:
## $ track_artist : chr "Ed Sheeran" "Maroon 5" "Zara Larsson" "The Chainsmokers" ...
## $ track_popularity : int 66 67 70 60 69 67 62 69 68 67 ...
## $ track_album_release_date: chr "2019-06-14" "2019-12-13" "2019-07-05" "2019-07-19" ...
## $ playlist_genre : Factor w/ 6 levels "edm","latin",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ playlist_subgenre : Factor w/ 24 levels "album rock","big room",..: 4 4 4 4 4 4 4 4 4 4 ...
## $ danceability : num 0.748 0.726 0.675 0.718 0.65 0.675 0.449 0.542 0.594 0.642 ...
## $ energy : num 0.916 0.815 0.931 0.93 0.833 0.919 0.856 0.903 0.935 0.818 ...
## $ key : Factor w/ 12 levels "0","1","2","3",..: 7 12 2 8 2 9 6 5 9 3 ...
## $ loudness : num -2.63 -4.97 -3.43 -3.78 -4.67 ...
## $ mode : Factor w/ 2 levels "0","1": 2 2 1 2 2 2 1 1 2 2 ...
## $ speechiness : num 0.0583 0.0373 0.0742 0.102 0.0359 0.127 0.0623 0.0434 0.0565 0.032 ...
## $ acousticness : num 0.102 0.0724 0.0794 0.0287 0.0803 0.0799 0.187 0.0335 0.0249 0.0567 ...
## $ instrumentalness : num 0.00 4.21e-03 2.33e-05 9.43e-06 0.00 0.00 0.00 4.83e-06 3.97e-06 0.00 ...
## $ liveness : num 0.0653 0.357 0.11 0.204 0.0833 0.143 0.176 0.111 0.637 0.0919 ...
## $ valence : num 0.518 0.693 0.613 0.277 0.725 0.585 0.152 0.367 0.366 0.59 ...
## $ tempo : num 122 100 124 122 124 ...
## $ duration_ms : int 194754 162600 176616 169093 189052 163049 187675 207619 193187 253040 ...
## $ year : num 2019 2019 2019 2019 2019 ...
## $ month : num 6 12 7 7 3 7 7 8 6 6 ...
## - attr(*, "na.action")= 'omit' Named int [1:5] 8152 9283 9284 19569 19812
## ..- attr(*, "names")= chr [1:5] "8152" "9283" "9284" "19569" ...
Let’s analyze the number of unique artist in our data set.
length(unique(spotify_songs_data$track_artist))
## [1] 10692
We have 10692 unique artists in our data set.
Checking artist that has released most number of songs.
library(plotly)
<- spotify_songs_data %>% group_by(Artis_Name = track_artist) %>%
highest_tracks summarise(No_of_tracks = n()) %>%
arrange(desc(No_of_tracks)) %>%
top_n(15, wt = No_of_tracks) %>%
ggplot(aes(x = Artis_Name, y = No_of_tracks)) + geom_bar(stat = "identity") + coord_flip() + labs(title = "Top Artists having the most track releases", x = "Artist Name", y = "Number of Tracks")
ggplotly(highest_tracks)
Now we will summaries songs per Genre.
<- spotify_songs_data %>% group_by(Genre_of_song = playlist_genre) %>%
Genre_spotify_songs_summary summarise(No_of_tracks = n()) %>%
arrange(desc(No_of_tracks))
#library(utils)
print(Genre_spotify_songs_summary)
## # A tibble: 6 x 2
## Genre_of_song No_of_tracks
## <fct> <int>
## 1 rap 5398
## 2 pop 5132
## 3 edm 4877
## 4 r&b 4504
## 5 rock 4305
## 6 latin 4136
Now, lets analyze the average popularity of songs released every year.
<-spotify_songs_data%>%
spotify_yearly_popularity group_by(year)%>%
mutate(avg_popularity_year=mean(track_popularity))%>%
select(year,avg_popularity_year)%>%
unique()
ggplot(spotify_yearly_popularity,aes(x=year,y=avg_popularity_year))+geom_line()+ geom_smooth(method = "lm")+scale_x_continuous(breaks=seq(1950, 2020,5))
We can see that the average popularity year wise has shown decreasing trend till 2016.
Now plotting the correlation matrix to see how variables are related to each other.
library(ggcorrplot)
<- spotify_songs_data %>%
songs_corr select(track_popularity,danceability,energy,loudness,speechiness,acousticness,instrumentalness, liveness, valence, tempo)
<- round(cor(songs_corr), 1)
corr head(corr[, 1:6])
## track_popularity danceability energy loudness speechiness
## track_popularity 1.0 0.0 -0.1 0.0 0.0
## danceability 0.0 1.0 -0.1 0.0 0.2
## energy -0.1 -0.1 1.0 0.7 0.0
## loudness 0.0 0.0 0.7 1.0 0.0
## speechiness 0.0 0.2 0.0 0.0 1.0
## acousticness 0.1 0.0 -0.5 -0.4 0.0
## acousticness
## track_popularity 0.1
## danceability 0.0
## energy -0.5
## loudness -0.4
## speechiness 0.0
## acousticness 1.0
ggcorrplot(corr, hc.order = TRUE, type = "lower",lab = TRUE)
We can summarize below conclusions from the correlation matrix.
Now we will classify the data into three parts.
For this first we need to divide the data set into three parts depending on the track_popularity range. First let’s have a look at the number of songs corresponding to each track_popularity value.
<- spotify_songs_data %>% group_by(popularity_of_song = track_popularity) %>%
popularity_spotify_songs_summary summarise(No_songs = n()) %>%
arrange(desc(popularity_of_song))
print(popularity_spotify_songs_summary)
## # A tibble: 101 x 2
## popularity_of_song No_songs
## <int> <int>
## 1 100 1
## 2 99 1
## 3 98 5
## 4 97 3
## 5 96 1
## 6 95 2
## 7 94 5
## 8 93 7
## 9 92 5
## 10 91 10
## # ... with 91 more rows
There is a very small percentage of songs that have song popularity >90. However, large number of songs have 0 popularity. Let’s plot a box plot to understand where the majority of songs belongs to.
boxplot(spotify_songs_data$track_popularity, xlab="Box plot of Track popularity")
Looking at the box plot and the summary, we can roughly make the following assumptions:
<-c(-1,30,60,100)
partition <-c('Low','Medium','High')
classifier_tags$popularity_class<-cut(spotify_songs_data$track_popularity, breaks=partition, labels=classifier_tags)
spotify_songs_datastr(spotify_songs_data)
## 'data.frame': 28352 obs. of 20 variables:
## $ track_artist : chr "Ed Sheeran" "Maroon 5" "Zara Larsson" "The Chainsmokers" ...
## $ track_popularity : int 66 67 70 60 69 67 62 69 68 67 ...
## $ track_album_release_date: chr "2019-06-14" "2019-12-13" "2019-07-05" "2019-07-19" ...
## $ playlist_genre : Factor w/ 6 levels "edm","latin",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ playlist_subgenre : Factor w/ 24 levels "album rock","big room",..: 4 4 4 4 4 4 4 4 4 4 ...
## $ danceability : num 0.748 0.726 0.675 0.718 0.65 0.675 0.449 0.542 0.594 0.642 ...
## $ energy : num 0.916 0.815 0.931 0.93 0.833 0.919 0.856 0.903 0.935 0.818 ...
## $ key : Factor w/ 12 levels "0","1","2","3",..: 7 12 2 8 2 9 6 5 9 3 ...
## $ loudness : num -2.63 -4.97 -3.43 -3.78 -4.67 ...
## $ mode : Factor w/ 2 levels "0","1": 2 2 1 2 2 2 1 1 2 2 ...
## $ speechiness : num 0.0583 0.0373 0.0742 0.102 0.0359 0.127 0.0623 0.0434 0.0565 0.032 ...
## $ acousticness : num 0.102 0.0724 0.0794 0.0287 0.0803 0.0799 0.187 0.0335 0.0249 0.0567 ...
## $ instrumentalness : num 0.00 4.21e-03 2.33e-05 9.43e-06 0.00 0.00 0.00 4.83e-06 3.97e-06 0.00 ...
## $ liveness : num 0.0653 0.357 0.11 0.204 0.0833 0.143 0.176 0.111 0.637 0.0919 ...
## $ valence : num 0.518 0.693 0.613 0.277 0.725 0.585 0.152 0.367 0.366 0.59 ...
## $ tempo : num 122 100 124 122 124 ...
## $ duration_ms : int 194754 162600 176616 169093 189052 163049 187675 207619 193187 253040 ...
## $ year : num 2019 2019 2019 2019 2019 ...
## $ month : num 6 12 7 7 3 7 7 8 6 6 ...
## $ popularity_class : Factor w/ 3 levels "Low","Medium",..: 3 3 3 2 3 3 3 3 3 3 ...
## - attr(*, "na.action")= 'omit' Named int [1:5] 8152 9283 9284 19569 19812
## ..- attr(*, "names")= chr [1:5] "8152" "9283" "9284" "19569" ...
Now that we have classified the data set into three different parts depending on the popularity let’s plot a bar chart to have an understanding of songs across various classes.
ggplot(data=spotify_songs_data, aes(x=popularity_class, color = popularity_class)) +
geom_bar(stat="count", fill="white")
Multiple regression analysis technique is used when we have to analyze the relationship between a single target variable and serveral predictor variable.
Our goal is to predict track popularity based on various features. This analysis can be used by singers and music companies to make modifications in the song to ensure song gets popular. In order to achieve this goal we will divide our data set into two parts train dataset and test dataset.
<- round(0.8 * nrow(spotify_songs_data))
n_train
<- sample(1:nrow(spotify_songs_data), n_train)
train_indices
<- spotify_songs_data[train_indices, ]
spotify_train_data
<- spotify_songs_data[-train_indices, ] spotify_test_data
Now let’s build our first model for multi linear regression.
<- lm(track_popularity ~ danceability + speechiness + acousticness + instrumentalness+loudness+energy
Spotify_Recommendation_Model_v1 + liveness+ tempo , data = spotify_train_data)
summary(Spotify_Recommendation_Model_v1)
##
## Call:
## lm(formula = track_popularity ~ danceability + speechiness +
## acousticness + instrumentalness + loudness + energy + liveness +
## tempo, data = spotify_train_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -55.612 -17.509 3.163 18.397 65.593
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 56.915179 1.781999 31.939 < 2e-16 ***
## danceability 6.393076 1.114280 5.737 9.74e-09 ***
## speechiness -5.858648 1.543022 -3.797 0.000147 ***
## acousticness 6.176595 0.832394 7.420 1.21e-13 ***
## instrumentalness -9.878267 0.685509 -14.410 < 2e-16 ***
## loudness 1.240849 0.071552 17.342 < 2e-16 ***
## energy -22.693754 1.321738 -17.170 < 2e-16 ***
## liveness -4.154319 1.014844 -4.094 4.26e-05 ***
## tempo 0.031066 0.005897 5.268 1.39e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 23.18 on 22673 degrees of freedom
## Multiple R-squared: 0.04419, Adjusted R-squared: 0.04385
## F-statistic: 131 on 8 and 22673 DF, p-value: < 2.2e-16
Now let’s predict the track popularity of test data using this model and find out residuals.
<- summary(Spotify_Recommendation_Model_v1)$r.squared
r_sq_v1
<- predict(Spotify_Recommendation_Model_v1, newdata = spotify_test_data)
prediction_Spotify_Recommendation_Model_v1
<- spotify_test_data$track_popularity - prediction_Spotify_Recommendation_Model_v1
residuals_v1
<- sqrt(mean(residuals_v1^2, na.rm=TRUE)) rmse_v1
The first step in interpreting this spotify model for regression is to analyse p-value. In our case, p-value is < 2.2e-16 which is highly significant. This tell us that there is atleast one variable which is highly related to the target variable.
We can examine the coefficient table to understand which variable is most significant in this analysis.
summary(Spotify_Recommendation_Model_v1)$coefficient
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 56.91517857 1.781999201 31.938947 5.421502e-219
## danceability 6.39307558 1.114280382 5.737403 9.736349e-09
## speechiness -5.85864751 1.543022086 -3.796866 1.469189e-04
## acousticness 6.17659475 0.832393868 7.420279 1.209857e-13
## instrumentalness -9.87826653 0.685508589 -14.410128 7.201107e-47
## loudness 1.24084938 0.071552068 17.341908 6.142486e-67
## energy -22.69375445 1.321738396 -17.169626 1.166679e-65
## liveness -4.15431913 1.014843885 -4.093555 4.262805e-05
## tempo 0.03106607 0.005897201 5.267934 1.392270e-07
From the summary we can observe that the coefficient of tempo is not very significant whereas energy has very strong impact on the track popularity. Same goes for loudness(less significant). We will remove these two predictors from our version 2 model and check if it improves the accuracy.
Now let’s build our Second model for multi linear regression.
<- lm(track_popularity ~ danceability + speechiness + acousticness + instrumentalness +energy
Spotify_Recommendation_Model_v2 + liveness , data = spotify_train_data)
summary(Spotify_Recommendation_Model_v2)
##
## Call:
## lm(formula = track_popularity ~ danceability + speechiness +
## acousticness + instrumentalness + energy + liveness, data = spotify_train_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -50.597 -17.856 3.151 18.613 60.327
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 41.6585 1.1461 36.346 < 2e-16 ***
## danceability 6.9557 1.0969 6.341 2.32e-10 ***
## speechiness -5.0677 1.5496 -3.270 0.00108 **
## acousticness 6.1389 0.8372 7.333 2.33e-13 ***
## instrumentalness -12.6407 0.6697 -18.876 < 2e-16 ***
## energy -7.6860 1.0271 -7.483 7.51e-14 ***
## liveness -4.9040 1.0211 -4.803 1.58e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 23.35 on 22675 degrees of freedom
## Multiple R-squared: 0.03028, Adjusted R-squared: 0.03002
## F-statistic: 118 on 6 and 22675 DF, p-value: < 2.2e-16
Let’s predict the track popularity of test data using this model 2 and find out residuals.
<- summary(Spotify_Recommendation_Model_v2)$r.squared
r_sq_v2
<- predict(Spotify_Recommendation_Model_v2, newdata = spotify_test_data)
prediction_Spotify_Recommendation_Model_v2
<- spotify_test_data$track_popularity - prediction_Spotify_Recommendation_Model_v2
residuals_v2
<- sqrt(mean(residuals_v2^2, na.rm=TRUE)) rmse_v2
Summarizing the second model
summary(Spotify_Recommendation_Model_v2)$coefficient
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 41.658478 1.1461490 36.346477 3.412259e-281
## danceability 6.955656 1.0968560 6.341448 2.319080e-10
## speechiness -5.067726 1.5496091 -3.270326 1.075840e-03
## acousticness 6.138932 0.8371643 7.333008 2.325954e-13
## instrumentalness -12.640746 0.6696709 -18.876055 7.228455e-79
## energy -7.685996 1.0270713 -7.483411 7.505344e-14
## liveness -4.903993 1.0210851 -4.802727 1.575178e-06
Now that we have built these two models, lets compare these to see which one if performing better.
R-square tells us how good data fits for linear regression models. This statistic indicates the percentage of the variance in the dependent variable that the independent variables explain collectively.
Usually the larger the R-square is better the regression model fits our observations.
Root Mean Squared Error (RMSE) is a metrics used to evaluate a Regression Model. These metrics tell us how accurate our predictions are and, what is the amount of deviation from the actual values.
print(paste0("R-squared for first model: ", round(r_sq_v1, 4)," ", "R-squared for Second model: ", round(r_sq_v2, 4)))
## [1] "R-squared for first model: 0.0442 R-squared for Second model: 0.0303"
print(paste0("RMSE for first model: ", round(rmse_v1, 2)," ","RMSE for Second model: " , round(rmse_v2, 2)))
## [1] "RMSE for first model: 23.07 RMSE for Second model: 23.29"
As per the definitions of R-square and RMSE we select first model to be more accurate than the second.
Prediction
$prediction <- predict(Spotify_Recommendation_Model_v1, newdata = spotify_test_data)
spotify_test_dataggplot(spotify_test_data, aes(x = prediction, y = track_popularity)) +
geom_point(color = "blue", alpha = 0.7) +
geom_abline(color = "red") +
ggtitle("Prediction vs. Real values")
The more linear this graph is better should be the accuracy of the model.
Residuals are the measure of how far from the regression line the Data points are. Fitted values are models prediction of mean response value when you input the values of the predictors, factor levels or components into the model.
We have plotted the following graphs: 1. Residuals Vs Fitted values graph 2. Histogram of residuals
$prediction <- predict(Spotify_Recommendation_Model_v1, newdata = spotify_test_data)
spotify_test_data
$residuals <- spotify_test_data$track_popularity - spotify_test_data$prediction
spotify_test_dataggplot(data = spotify_test_data, aes(x = prediction, y = residuals)) +
geom_pointrange(aes(ymin = 0, ymax = residuals), color = "purple", alpha = 0.7) + geom_hline(yintercept = 0, linetype = 4, color = "red") +
ggtitle("Residuals vs. Linear model prediction")
ggplot(spotify_test_data, aes(x = residuals)) +
geom_histogram(bins = 15, fill = "light blue") +
ggtitle("Histogram of residuals")
From these two plots we can see that the residuals are not normally distributed and residual vs prediction graph has shown come concentrated and linear model pattern. This shows that we are missing on some coefficient or model is not very accurate.
We will try to fit data using Random forest Model.
library(randomForest)
<- randomForest(track_popularity~ danceability + speechiness + acousticness + instrumentalness +energy
Spotify_Recommendation_Model_v3 + liveness , data = spotify_test_data,mtry=, ntree=100 )
Spotify_Recommendation_Model_v3
##
## Call:
## randomForest(formula = track_popularity ~ danceability + speechiness + acousticness + instrumentalness + energy + liveness, data = spotify_test_data, mtry = , ntree = 100)
## Type of random forest: regression
## Number of trees: 100
## No. of variables tried at each split: 2
##
## Mean of squared residuals: 557.9803
## % Var explained: 0.45
Here is the summary of Random Forest Model.
summary(Spotify_Recommendation_Model_v3)
## Length Class Mode
## call 5 -none- call
## type 1 -none- character
## predicted 5670 -none- numeric
## mse 100 -none- numeric
## rsq 100 -none- numeric
## oob.times 5670 -none- numeric
## importance 6 -none- numeric
## importanceSD 0 -none- NULL
## localImportance 0 -none- NULL
## proximity 0 -none- NULL
## ntree 1 -none- numeric
## mtry 1 -none- numeric
## forest 11 -none- list
## coefs 0 -none- NULL
## y 5670 -none- numeric
## test 0 -none- NULL
## inbag 0 -none- NULL
## terms 3 terms call
Now we will predict the values using random forest model and find out rmse value.
= predict(Spotify_Recommendation_Model_v3,spotify_test_data )
randomForest_prediction_spotify
library(Metrics)
<- rmse(randomForest_prediction_spotify, spotify_test_data$track_popularity)/mean(spotify_test_data$track_popularity)
rmse_v3 rmse_v3
## [1] 0.2685903
The model has been improved to a great extent and we got very less rmse value which represents better accuracy. Below is the graph of predicted vs actual data points.
$prediction_random_forest <- predict(Spotify_Recommendation_Model_v3, newdata = spotify_test_data)
spotify_test_dataggplot(spotify_test_data, aes(x = prediction_random_forest, y = track_popularity)) +
geom_point(color = "blue", alpha = 0.7) +
ggtitle("Prediction vs. Real values")
K-means clustering is an algorithm that helps to group the data. K represents the number of groups.
<- spotify_songs_data[, c('instrumentalness', 'danceability' ,'loudness','valence','energy','liveness','tempo', 'speechiness', 'acousticness')]
cluster_spotify_data
<- scale(cluster_spotify_data[, c('instrumentalness', 'danceability' ,'loudness','valence','energy','liveness','tempo', 'speechiness', 'acousticness')]) cluster_spotify_data_v1
<- kmeans(cluster_spotify_data_v1, centers = 2, nstart = 25)
k_mean_2 <- kmeans(cluster_spotify_data_v1, centers = 3, nstart = 25)
k_mean_3 <- kmeans(cluster_spotify_data_v1, centers = 4, nstart = 25)
k_mean_4 <- kmeans(cluster_spotify_data_v1, centers = 5, nstart = 25)
k_mean_5 <- kmeans(cluster_spotify_data_v1, centers = 6, nstart = 25) k_mean_6
Now we need to find optimum value of k. Elbow method is one of the several method in determine the optimum value of k. It relies on the principle that select the value of k from where if we add one more cluster it does not improve the total sum square much.
set.seed(100)
library("factoextra")
fviz_nbclust(cluster_spotify_data[1:1000,], kmeans, method = "wss")
From the above graph we can say that the optimum value of k is 3. Now lets plot this cluster.
<- fviz_cluster(k_mean_3, geom = "point", data = cluster_spotify_data_v1) + ggtitle("k = 3")
plot_k_mean plot_k_mean
To check whether the cluster we created is good enough, we can see the value in the cluster. The goodness of the clustering results can be seen from 3 values:
Within Sum of Squares (\(withinss): sum of the distance squared from each observation to the centroid of each cluster. Between Sum of Squares (\)betweenss): the sum of the weighted square distances of each centroid to the global average. Weighted based on the number of observations in the cluster. Total Sum of Squares ($totss): the sum of the distances squared from each observation to the global average. Total within sum of square: the number of withinss for each cluster
$betweenss k_mean_3
## [1] 62979.39
$withinss k_mean_3
## [1] 48571.09 68635.25 74973.27
$totss k_mean_3
## [1] 255159
$tot.withinss k_mean_3
## [1] 192179.6
$betweenss/k_mean_3$tot.withinss k_mean_3
## [1] 0.3277111