This chapter has been an informal introduction to Markov chain Monte Carlo (MCMC) estimation. The goal has been to introduce the purpose and approach MCMC algorithms. The major algorithms introduced were the Metropolis, Gibbs sampling, and Hamiltonian Monte Carlo algorithms. Each has its advantages and disadvantages. The ulam function in the rethinking package was introduced. It uses the Stan (mc-stan.org) Hamiltonian Monte Carlo engine to fit models as they are defined in this book. General advice about diagnosing poor MCMC fits was introduced by the use of a couple of pathological examples.
Place each answer inside the code chunk (grey box). The code chunks should contain a text response or a code that completes/answers the question or activity requested. Make sure to include plots if the question requests them.
Finally, upon completion, name your final output .html file as: YourName_ANLY505-Year-Semester.html and publish the assignment to your R Pubs account and submit the link to Canvas. Each question is worth 5 points.
9-1. Re-estimate the terrain ruggedness model from the chapter, but now using a uniform prior for the standard deviation, sigma. The uniform prior should be dunif(0,1). Visualize the priors. Use ulam to estimate the posterior. Visualize the posteriors for both models. Does the different prior have any detectible influence on the posterior distribution of sigma? Why or why not?
library(rethinking)
data(rugged)
data= rugged
data$log_gdp = log(data$rgdppc_2000)
dd = data[ complete.cases(data$rgdppc_2000) , ]
dd$log_gdp_std = dd$log_gdp/ mean(dd$log_gdp)
dd$rugged_std = dd$rugged/max(dd$rugged)
dd$cid=ifelse(dd$cont_africa==1,1,2)
dat_slim = list(
log_gdp_std = dd$log_gdp_std,
rugged_std = dd$rugged_std,
cid = as.integer( dd$cid )
)
model1 = ulam(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dnorm( 0 , 0.3 ) ,
sigma ~ dexp( 1 )
), data=dat_slim , chains=4, cores = 4)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 2 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 2 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 2 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 2 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 2 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 2 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 2 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 2 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 3 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 3 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 3 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 3 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 3 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 3 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 3 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 3 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 3 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 3 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 4 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 4 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 4 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 4 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 4 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 4 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 4 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 4 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 4 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 1 finished in 0.1 seconds.
## Chain 2 finished in 0.1 seconds.
## Chain 3 finished in 0.1 seconds.
## Chain 4 finished in 0.1 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.1 seconds.
## Total execution time: 0.3 seconds.
pairs(model1)
model2 = ulam(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dnorm( 0 , 0.3 ) ,
sigma ~ dunif(0, 1 )
), data=dat_slim , chains=4, cores = 4 )
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 2 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 2 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 2 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 2 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 2 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 2 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 2 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 2 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 3 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 3 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 3 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 3 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 3 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 3 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 3 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 3 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 3 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 3 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 4 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 4 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 4 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 4 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 4 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 4 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 4 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 4 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 4 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 1 finished in 0.1 seconds.
## Chain 2 finished in 0.1 seconds.
## Chain 3 finished in 0.1 seconds.
## Chain 4 finished in 0.1 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.1 seconds.
## Total execution time: 0.2 seconds.
pairs(model2)
# It shows that it does not have detectable influence on the posterior distribution of sigma.
9-2. Modify the terrain ruggedness model again. This time, change the prior for b[cid] to dexp(0.3). What does this do to the posterior distribution? Can you explain it?
model3 = ulam(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dexp(0.3) ,
sigma ~ dexp( 1 )
), data=dat_slim , chains=4, cores = 4 )
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 3 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 3 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 4 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 4 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 2 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 2 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 2 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 2 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 2 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 2 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 2 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 3 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 3 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 3 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 3 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 3 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 3 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 4 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 4 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 4 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 4 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 4 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 4 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 4 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 1 finished in 0.2 seconds.
## Chain 2 finished in 0.2 seconds.
## Chain 4 finished in 0.2 seconds.
## Chain 3 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 3 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 finished in 0.3 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.2 seconds.
## Total execution time: 0.4 seconds.
pairs(model3)
# It looks like there are basically no differences in the posterior distribution.
9-3. Re-estimate one of the Stan models from the chapter, but at different numbers of warmup iterations. Be sure to use the same number of sampling iterations in each case. Compare the n_eff values. How much warmup is enough?
Stan_model_100 = map2stan(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dnorm( 0 , 0.3 ) ,
sigma ~ dexp( 1 )
), data=dat_slim , warmup = 100, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
##
## Chain 1 WARNING: There aren't enough warmup iterations to fit the
## Chain 1 three stages of adaptation as currently configured.
## Chain 1 Reducing each adaptation stage to 15%/75%/10% of
## Chain 1 the given number of warmup iterations:
## Chain 1 init_buffer = 15
## Chain 1 adapt_window = 75
## Chain 1 term_buffer = 10
## Chain 1 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 1 Iteration: 101 / 4000 [ 2%] (Sampling)
## Chain 1 Iteration: 200 / 4000 [ 5%] (Sampling)
## Chain 1 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 1 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 1 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 2 WARNING: There aren't enough warmup iterations to fit the
## Chain 2 three stages of adaptation as currently configured.
## Chain 2 Reducing each adaptation stage to 15%/75%/10% of
## Chain 2 the given number of warmup iterations:
## Chain 2 init_buffer = 15
## Chain 2 adapt_window = 75
## Chain 2 term_buffer = 10
## Chain 2 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 2 Iteration: 101 / 4000 [ 2%] (Sampling)
## Chain 2 Iteration: 200 / 4000 [ 5%] (Sampling)
## Chain 2 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 2 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 2 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 3 WARNING: There aren't enough warmup iterations to fit the
## Chain 3 three stages of adaptation as currently configured.
## Chain 3 Reducing each adaptation stage to 15%/75%/10% of
## Chain 3 the given number of warmup iterations:
## Chain 3 init_buffer = 15
## Chain 3 adapt_window = 75
## Chain 3 term_buffer = 10
## Chain 3 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 3 Iteration: 101 / 4000 [ 2%] (Sampling)
## Chain 3 Iteration: 200 / 4000 [ 5%] (Sampling)
## Chain 3 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 3 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 3 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 3 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 4 WARNING: There aren't enough warmup iterations to fit the
## Chain 4 three stages of adaptation as currently configured.
## Chain 4 Reducing each adaptation stage to 15%/75%/10% of
## Chain 4 the given number of warmup iterations:
## Chain 4 init_buffer = 15
## Chain 4 adapt_window = 75
## Chain 4 term_buffer = 10
## Chain 4 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 4 Iteration: 101 / 4000 [ 2%] (Sampling)
## Chain 4 Iteration: 200 / 4000 [ 5%] (Sampling)
## Chain 4 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 4 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 4 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 4 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 1 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 1 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 1 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 1 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 1 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 1 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 1 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 2 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 2 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 2 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 2 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 2 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 3 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 3 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 3 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 3 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 3 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 4 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 4 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 4 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 4 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 1 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 1 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 1 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 2 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 2 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 2 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 2 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 2 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 3 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 3 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 3 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 3 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 4 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 4 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 4 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 4 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 1 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 1 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 1 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 2 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 2 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 2 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 2 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 3 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 3 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 3 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 3 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 4 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 4 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 4 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 4 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 1 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 1 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 1 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 1 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 2 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 2 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 2 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 2 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 3 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 3 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 3 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 3 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 4 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 4 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 4 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 1 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 1 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 1 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 1 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 1 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 2 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 2 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 2 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 3 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 3 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 3 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 3 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 3 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 4 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 4 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 4 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 4 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 1 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 1 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 1 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 1 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 2 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 2 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 2 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 2 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 3 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 3 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 3 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 3 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 3 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 4 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 4 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 4 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 4 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 1 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 1 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 1 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 2 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 3 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 3 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 3 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 3 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 4 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 4 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 1 finished in 0.9 seconds.
## Chain 3 finished in 0.9 seconds.
## Chain 2 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 2 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 2 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 4 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 4 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2 finished in 1.0 seconds.
## Chain 4 finished in 1.0 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.9 seconds.
## Total execution time: 1.0 seconds.
precis(Stan_model_100,depth=2)
## mean sd 5.5% 94.5% n_eff Rhat4
## a[1] 0.8864569 0.01586764 0.861203560 0.91206722 17601.045 0.9998999
## a[2] 1.0506122 0.01010668 1.034459450 1.06665000 17805.917 1.0000549
## b[1] 0.1304473 0.07593325 0.007672645 0.25154615 6551.381 1.0001076
## b[2] -0.1425156 0.05572222 -0.232014770 -0.05360469 9723.058 0.9999043
## sigma 0.1116901 0.00618775 0.102324615 0.12195317 9386.134 1.0002300
## mu[1] 0.8764571 0.01599775 0.850893285 0.90212633 16818.906 1.0000333
## mu[2] 1.0025041 0.02070371 0.969554020 1.03555055 11090.282 0.9997865
## mu[3] 1.0635822 0.01162868 1.045158900 1.08187055 14344.592 1.0001494
## mu[4] 1.0634443 0.01160190 1.045050000 1.08167000 14381.098 1.0001491
## mu[5] 1.0194855 0.01525089 0.995283505 1.04375000 12427.590 0.9997872
## mu[6] 1.0811151 0.01617718 1.055210000 1.10691110 11466.244 1.0001228
## mu[7] 1.0779670 0.01523381 1.053510000 1.10223110 11776.542 1.0001321
## mu[8] 1.0005279 0.02138195 0.966535890 1.03477000 11001.023 0.9997880
## mu[9] 1.0428322 0.01034326 1.026179450 1.05917000 17554.237 0.9999486
## mu[10] 0.8958496 0.01759564 0.867491505 0.92424911 13121.716 0.9998378
## mu[11] 1.0723372 0.01366134 1.050348350 1.09404055 12518.702 1.0001462
## mu[12] 0.8613764 0.01975705 0.829528945 0.89269155 10841.452 1.0001874
## mu[13] 0.8633745 0.01907024 0.832735670 0.89367171 11406.550 1.0001750
## mu[14] 1.0769789 0.01494633 1.052929450 1.10081000 11887.693 1.0001349
## mu[15] 1.0472672 0.01009740 1.030939450 1.06328000 18067.737 1.0000104
## mu[16] 1.0759449 0.01465038 1.052400000 1.09925055 12012.014 1.0001377
## mu[17] 1.0799892 0.01583520 1.054640000 1.10526165 11570.002 1.0001262
## mu[18] 1.0281486 0.01290484 1.007599450 1.04859000 13837.822 0.9998120
## mu[19] 1.0774845 0.01509286 1.053210000 1.10154110 11829.928 1.0001335
## mu[20] 1.0673048 0.01241854 1.047600000 1.08693055 13453.442 1.0001524
## mu[21] 1.0616519 0.01127139 1.043720000 1.07946055 14872.277 1.0001444
## mu[22] 1.0757380 0.01459183 1.052279450 1.09892000 12037.995 1.0001382
## mu[23] 1.0591242 0.01086531 1.041880000 1.07627000 15612.007 1.0001334
## mu[24] 0.8622177 0.01946235 0.830941945 0.89308500 11069.449 1.0001825
## mu[25] 0.8625542 0.01934668 0.831421725 0.89323811 11164.633 1.0001803
## mu[26] 1.0634443 0.01160190 1.045050000 1.08167000 14381.098 1.0001491
## mu[27] 0.9718501 0.03171398 0.921348790 1.02259110 10308.659 0.9998124
## mu[28] 1.0242421 0.01390971 1.002050000 1.04625000 13112.376 0.9997972
## mu[29] 1.0380985 0.01090784 1.020740000 1.05541000 16366.605 0.9998896
## mu[30] 0.8631221 0.01915446 0.832314800 0.89353704 11330.593 1.0001767
## mu[31] 0.8692428 0.01734933 0.841309000 0.89683111 13579.381 1.0001241
## mu[32] 0.8677284 0.01774653 0.839138560 0.89579149 12943.148 1.0001394
## mu[33] 0.8616077 0.01967523 0.829857000 0.89279955 10902.747 1.0001861
## mu[34] 1.0609166 0.01114582 1.043219450 1.07853000 15082.427 1.0001417
## mu[35] 0.9284089 0.03119104 0.877547570 0.97774599 7876.414 0.9999104
## mu[36] 0.9081961 0.02183026 0.872820725 0.94282610 9714.592 0.9998461
## mu[37] 1.0327214 0.01187101 1.013719450 1.05155000 14898.745 0.9998396
## mu[38] 1.0187962 0.01545417 0.994205780 1.04339055 12343.765 0.9997863
## mu[39] 1.0609396 0.01114960 1.043239450 1.07856000 15076.047 1.0001419
## mu[40] 1.0675345 0.01247118 1.047718900 1.08725000 13404.582 1.0001523
## mu[41] 0.9095632 0.02239197 0.873213780 0.94505449 9495.881 0.9998500
## mu[42] 1.0811841 0.01619828 1.055240000 1.10702055 11460.133 1.0001226
## mu[43] 1.0769100 0.01492644 1.052898900 1.10069000 11895.753 1.0001351
## mu[44] 1.0435445 0.01028445 1.026919450 1.05973055 17691.809 0.9999582
## mu[45] 0.8691376 0.01737577 0.841162615 0.89674683 13533.618 1.0001252
## mu[46] 1.0518859 0.01015465 1.035710000 1.06800055 17582.758 1.0000704
## mu[47] 0.8736176 0.01641518 0.847218230 0.89974655 15569.416 1.0000720
## mu[48] 0.9105938 0.02282462 0.873608085 0.94675705 9344.709 0.9998531
## mu[49] 1.0424416 0.01037850 1.025738900 1.05882000 17472.660 0.9999433
## mu[50] 1.0784266 0.01536899 1.053779450 1.10292000 11727.137 1.0001308
## mu[51] 0.8914327 0.01658214 0.864828780 0.91819516 15499.672 0.9998572
## mu[52] 1.0737159 0.01403079 1.051070000 1.09600055 12310.902 1.0001433
## mu[53] 1.0491743 0.01008198 1.032940000 1.06523000 17979.914 1.0000361
## mu[54] 1.0560221 0.01047336 1.039359450 1.07256055 16537.791 1.0001122
## mu[55] 0.8629959 0.01919684 0.832084890 0.89346622 11293.121 1.0001775
## mu[56] 1.0682009 0.01262639 1.048059450 1.08812000 13265.324 1.0001520
## mu[57] 0.9971730 0.02254725 0.961337340 1.03333165 10868.157 0.9997906
## mu[58] 0.8632063 0.01912630 0.832451120 0.89357250 11355.766 1.0001761
## mu[59] 0.8739752 0.01635402 0.847724560 0.89998877 15733.413 1.0000673
## mu[60] 0.8658354 0.01829070 0.836346890 0.89487825 12221.289 1.0001564
## mu[61] 0.8687380 0.01747780 0.840637450 0.89648505 13361.761 1.0001294
## mu[62] 0.8701682 0.01712442 0.842503295 0.89734527 13991.605 1.0001141
## mu[63] 1.0099492 0.01821632 0.981155625 1.03901055 11523.864 0.9997829
## mu[64] 1.0332729 0.01175859 1.014488900 1.05187055 15041.098 0.9998438
## mu[65] 1.0397300 0.01068045 1.022609450 1.05663000 16812.068 0.9999085
## mu[66] 1.0749797 0.01437890 1.051780000 1.09778000 12136.100 1.0001402
## mu[67] 1.0237826 0.01403413 1.001430000 1.04599110 13037.396 0.9997959
## mu[68] 1.0318482 0.01205482 1.012579450 1.05090110 14678.636 0.9998333
## mu[69] 1.0521386 0.01016707 1.035949450 1.06827055 17530.531 1.0000734
## mu[70] 1.0269767 0.01319582 1.005950000 1.04786055 13603.073 0.9998068
## mu[71] 1.0733023 0.01391878 1.050860000 1.09542000 12371.212 1.0001443
## mu[72] 1.0590323 0.01085198 1.041800000 1.07614000 15639.763 1.0001328
## mu[73] 1.0579753 0.01070585 1.040950000 1.07485000 15957.460 1.0001265
## mu[74] 1.0694648 0.01292996 1.048800000 1.08982055 13016.382 1.0001507
## mu[75] 1.0250694 0.01368885 1.003258900 1.04669000 13252.823 0.9997997
## mu[76] 1.0474280 0.01009398 1.031119450 1.06345055 18067.111 1.0000125
## mu[77] 1.0420738 0.01041366 1.025339450 1.05851000 17391.610 0.9999383
## mu[78] 1.0247707 0.01376818 1.002838900 1.04654000 13201.279 0.9997988
## mu[79] 1.0401666 0.01062529 1.023109450 1.05700000 16926.887 0.9999140
## mu[80] 1.0560450 0.01047580 1.039388900 1.07259055 16531.202 1.0001124
## mu[81] 1.0322618 0.01196690 1.013110000 1.05119000 14781.984 0.9998362
## mu[82] 1.0727048 0.01375876 1.050530000 1.09459000 12461.780 1.0001455
## mu[83] 0.8724819 0.01662529 0.845694615 0.89892805 15046.463 1.0000866
## mu[84] 0.9827421 0.02770925 0.938584955 1.02699110 10481.682 0.9998033
## mu[85] 1.0688444 0.01277944 1.048440000 1.08897055 13136.159 1.0001514
## mu[86] 1.0811151 0.01617718 1.055210000 1.10691110 11466.244 1.0001228
## mu[87] 1.0362142 0.01120995 1.018399450 1.05406000 15839.574 0.9998698
## mu[88] 1.0756232 0.01455938 1.052210000 1.09876000 12052.511 1.0001386
## mu[89] 1.0225877 0.01436312 0.999666725 1.04539055 12851.856 0.9997928
## mu[90] 0.9848103 0.02695767 0.941854790 1.02782000 10523.579 0.9998015
## mu[91] 1.0319172 0.01204003 1.012659450 1.05097000 14695.760 0.9998339
## mu[92] 1.0663167 0.01219694 1.046870000 1.08558055 13673.306 1.0001523
## mu[93] 0.9888581 0.06410429 0.884928525 1.09091330 6844.187 1.0000119
## mu[94] 1.0772317 0.01501943 1.053059450 1.10117055 11858.456 1.0001342
## mu[95] 1.0610085 0.01116116 1.043289450 1.07865000 15055.866 1.0001421
## mu[96] 1.0777142 0.01515982 1.053367800 1.10189000 11804.184 1.0001329
## mu[97] 1.0644324 0.01179792 1.045750000 1.08301000 14126.206 1.0001510
## mu[98] 0.9091636 0.02222629 0.873095670 0.94446339 9557.572 0.9998489
## mu[99] 1.0628928 0.01149668 1.044679450 1.08097055 14528.278 1.0001479
## mu[100] 0.8829984 0.01567004 0.858011670 0.90848916 18210.745 0.9999415
## mu[101] 1.0414534 0.01047714 1.024680000 1.05806055 17247.811 0.9999303
## mu[102] 1.0200141 0.01509643 0.995988120 1.04402000 12494.254 0.9997880
## mu[103] 0.8615026 0.01971235 0.829717955 0.89276206 10874.758 1.0001867
## mu[104] 1.0461641 0.01013143 1.029809450 1.06220000 18042.663 0.9999949
## mu[105] 1.0569642 0.01057926 1.040120000 1.07362110 16260.516 1.0001195
## mu[106] 0.8712830 0.01687235 0.844075075 0.89808533 14500.390 1.0001012
## mu[107] 0.8608295 0.01995271 0.828672790 0.89243260 10700.618 1.0001904
## mu[108] 0.8783711 0.01580793 0.853126780 0.90392111 17518.055 1.0000060
## mu[109] 0.8800117 0.01570641 0.854985175 0.90550899 17952.021 0.9999825
## mu[110] 1.0580672 0.01071797 1.041030000 1.07497000 15930.145 1.0001272
## mu[111] 0.8776139 0.01587395 0.852295670 0.90319722 17262.228 1.0000168
## mu[112] 1.0448084 0.01019811 1.028319450 1.06090000 17894.700 0.9999757
## mu[113] 0.8621546 0.01948418 0.830874890 0.89305160 11051.860 1.0001828
## mu[114] 0.8649730 0.01855502 0.835194340 0.89446238 11920.122 1.0001633
## mu[115] 1.0584579 0.01077080 1.041359450 1.07544055 15812.143 1.0001296
## mu[116] 1.0804028 0.01596031 1.054868900 1.10588055 11531.040 1.0001249
## mu[117] 1.0258967 0.01347215 1.004478900 1.04715055 13400.003 0.9998026
## mu[118] 0.9653700 0.03412571 0.911069845 1.01996055 10233.470 0.9998173
## mu[119] 1.0344219 0.01153370 1.016030000 1.05269000 15346.220 0.9998532
## mu[120] 1.0557693 0.01044701 1.039150000 1.07227055 16610.709 1.0001100
## mu[121] 1.0364670 0.01116711 1.018749450 1.05426055 15910.086 0.9998723
## mu[122] 1.0458654 0.01014379 1.029480000 1.06187055 18017.191 0.9999906
## mu[123] 1.0503004 0.01009871 1.034139450 1.06633000 17851.325 1.0000510
## mu[124] 1.0346517 0.01149031 1.016340000 1.05286000 15408.731 0.9998553
## mu[125] 1.0447394 0.01020221 1.028248900 1.06083055 17884.817 0.9999749
## mu[126] 1.0744283 0.01422590 1.051470000 1.09701055 12210.583 1.0001415
## mu[127] 1.0480024 0.01008492 1.031660000 1.06406000 18054.502 1.0000204
## mu[128] 1.0512884 0.01012915 1.035139450 1.06733000 17694.531 1.0000633
## mu[129] 1.0756232 0.01455938 1.052210000 1.09876000 12052.511 1.0001386
## mu[130] 1.0336406 0.01168514 1.014970000 1.05215055 15137.614 0.9998467
## mu[131] 1.0521386 0.01016707 1.035949450 1.06827055 17530.531 1.0000734
## mu[132] 1.0596528 0.01094415 1.042280000 1.07695000 15454.609 1.0001363
## mu[133] 0.9280093 0.03099009 0.877431670 0.97701511 7894.684 0.9999092
## mu[134] 1.0602502 0.01103714 1.042739450 1.07771110 15277.401 1.0001390
## mu[135] 0.8677073 0.01775229 0.839115340 0.89577138 12934.661 1.0001396
## mu[136] 0.8635428 0.01901452 0.833056130 0.89374416 11457.945 1.0001738
## mu[137] 1.0808853 0.01610698 1.055100000 1.10658000 11486.747 1.0001235
## mu[138] 1.0458654 0.01014379 1.029480000 1.06187055 18017.191 0.9999906
## mu[139] 0.8688852 0.01743991 0.840874845 0.89655394 13424.673 1.0001279
## mu[140] 1.0410398 0.01052234 1.024169450 1.05770110 17148.243 0.9999248
## mu[141] 1.0454058 0.01016537 1.028990000 1.06145000 17969.511 0.9999842
## mu[142] 1.0238975 0.01400295 1.001600000 1.04606000 13055.972 0.9997962
## mu[143] 1.0648230 0.01187795 1.045969450 1.08354000 14028.913 1.0001513
## mu[144] 0.9228351 0.02843186 0.876575945 0.96768188 8173.790 0.9998932
## mu[145] 0.9611574 0.04862819 0.881983000 1.03816165 7062.623 0.9999804
## mu[146] 1.0638809 0.01168736 1.045340000 1.08225110 14267.071 1.0001501
## mu[147] 0.8672236 0.01788663 0.838425965 0.89555127 12742.484 1.0001441
## mu[148] 0.8643000 0.01876806 0.834193725 0.89405959 11696.911 1.0001684
## mu[149] 1.0571021 0.01059570 1.040230000 1.07379000 16219.540 1.0001207
## mu[150] 0.9594415 0.03634678 0.901712920 1.01763000 10177.352 0.9998215
## mu[151] 1.0747270 0.01430861 1.051649450 1.09743110 12169.933 1.0001408
## mu[152] 1.0634903 0.01161081 1.045090000 1.08174055 14369.054 1.0001493
## mu[153] 1.0673967 0.01243954 1.047639450 1.08705055 13433.745 1.0001523
## mu[154] 0.8736807 0.01640421 0.847286120 0.89979550 15598.427 1.0000712
## mu[155] 1.0210480 0.01479794 0.997507230 1.04452000 12631.210 0.9997897
## mu[156] 0.8726501 0.01659267 0.845883725 0.89900839 15123.844 1.0000845
## mu[157] 0.8776139 0.01587395 0.852295670 0.90319722 17262.228 1.0000168
## mu[158] 1.0716938 0.01349277 1.049998900 1.09306000 12622.469 1.0001475
## mu[159] 1.0712572 0.01337998 1.049770000 1.09241110 12695.192 1.0001483
## mu[160] 1.0565965 0.01053653 1.039839450 1.07321000 16369.649 1.0001167
## mu[161] 1.0691661 0.01285710 1.048620000 1.08940055 13073.511 1.0001511
## mu[162] 1.0106846 0.01797754 0.982280395 1.03937055 11577.096 0.9997827
## mu[163] 1.0666843 0.01227848 1.047130000 1.08610000 13590.084 1.0001524
## mu[164] 1.0340542 0.01160430 1.015529450 1.05242055 15247.390 0.9998502
## mu[165] 1.0415224 0.01046982 1.024769450 1.05811000 17264.266 0.9999311
## mu[166] 1.0427173 0.01035340 1.026049450 1.05906055 17530.519 0.9999469
## mu[167] 1.0278728 0.01297243 1.007240000 1.04842000 13781.379 0.9998107
## mu[168] 0.8954500 0.01749082 0.867305000 0.92369420 13317.090 0.9998389
## mu[169] 0.8696214 0.01725565 0.841768570 0.89703704 13746.035 1.0001201
## mu[170] 0.8835242 0.01568360 0.858532230 0.90903411 18178.378 0.9999347
Stan_model_200 = map2stan(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dnorm( 0 , 0.3 ) ,
sigma ~ dexp( 1 )
), data=dat_slim , warmup = 200, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
##
## Chain 1 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 1 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 1 Iteration: 201 / 4000 [ 5%] (Sampling)
## Chain 1 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 1 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 1 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 1 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 1 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 2 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 2 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 2 Iteration: 201 / 4000 [ 5%] (Sampling)
## Chain 2 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 2 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 2 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 2 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 2 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 2 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 3 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 3 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 3 Iteration: 201 / 4000 [ 5%] (Sampling)
## Chain 3 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 3 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 3 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 3 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 3 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 3 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 4 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 4 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 4 Iteration: 201 / 4000 [ 5%] (Sampling)
## Chain 4 Iteration: 300 / 4000 [ 7%] (Sampling)
## Chain 4 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 4 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 4 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 4 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 4 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 1 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 1 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 1 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 1 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 1 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 1 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 1 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 1 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 2 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 2 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 2 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 2 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 2 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 2 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 2 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 2 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 3 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 3 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 3 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 3 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 3 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 3 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 3 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 4 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 4 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 4 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 4 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 4 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 4 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 4 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 1 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 1 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 1 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 1 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 1 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 2 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 2 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 2 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 2 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 2 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 2 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 2 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 2 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 3 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 3 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 3 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 3 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 3 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 3 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 4 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 4 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 4 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 4 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 4 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 4 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 1 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 1 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 1 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 1 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 1 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 1 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 2 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 2 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 2 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 2 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 2 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 2 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 3 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 3 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 3 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 3 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 3 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 3 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 3 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 3 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 4 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 4 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 4 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 4 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 4 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 4 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 4 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 1 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 1 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 1 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 1 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 1 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 1 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 2 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 2 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 2 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 2 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 2 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 3 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 3 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 3 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 3 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 3 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 3 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 3 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 4 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 4 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 4 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 4 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 4 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 4 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 4 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2 finished in 0.6 seconds.
## Chain 1 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 1 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 3 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 4 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 1 finished in 0.6 seconds.
## Chain 3 finished in 0.6 seconds.
## Chain 4 finished in 0.6 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.6 seconds.
## Total execution time: 0.7 seconds.
Stan_model_300 = map2stan(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dnorm( 0 , 0.3 ) ,
sigma ~ dexp( 1 )
), data=dat_slim , warmup = 300, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
##
## Chain 1 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 1 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 1 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 1 Iteration: 301 / 4000 [ 7%] (Sampling)
## Chain 1 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 1 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 1 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 1 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 1 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 2 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 2 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 2 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 2 Iteration: 301 / 4000 [ 7%] (Sampling)
## Chain 2 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 2 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 2 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 2 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 2 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 2 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 3 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 3 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 3 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 3 Iteration: 301 / 4000 [ 7%] (Sampling)
## Chain 3 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 3 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 3 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 3 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 3 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 3 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 4 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 4 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 4 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 4 Iteration: 301 / 4000 [ 7%] (Sampling)
## Chain 4 Iteration: 400 / 4000 [ 10%] (Sampling)
## Chain 4 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 4 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 4 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 4 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 4 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 1 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 1 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 1 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 1 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 1 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 1 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 1 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 1 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 1 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 2 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 2 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 2 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 2 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 2 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 2 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 2 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 2 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 2 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 3 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 3 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 3 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 3 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 3 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 3 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 3 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 4 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 4 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 4 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 4 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 4 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 4 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 4 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 1 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 1 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 1 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 1 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 1 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 1 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 1 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 2 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 2 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 2 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 2 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 2 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 2 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 2 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 2 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 3 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 3 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 3 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 3 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 3 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 3 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 3 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 4 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 4 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 4 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 4 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 4 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 4 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 4 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 1 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 1 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 1 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 1 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 1 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 1 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 1 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 2 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 2 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 2 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 2 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 2 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 2 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 2 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 3 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 3 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 3 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 3 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 3 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 3 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 3 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 4 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 4 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 4 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 4 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 4 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 4 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 4 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 4 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 1 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 1 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 1 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 1 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 2 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 2 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 2 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 2 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 3 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 3 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 3 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 3 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 3 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 3 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 3 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 4 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 4 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 4 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 4 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 1 finished in 0.6 seconds.
## Chain 2 finished in 0.6 seconds.
## Chain 3 finished in 0.6 seconds.
## Chain 4 finished in 0.6 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.6 seconds.
## Total execution time: 0.6 seconds.
Stan_model_400 = map2stan(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dnorm( 0 , 0.3 ) ,
sigma ~ dexp( 1 )
), data=dat_slim , warmup = 400, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
##
## Chain 1 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 1 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 1 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 1 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 1 Iteration: 401 / 4000 [ 10%] (Sampling)
## Chain 1 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 1 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 1 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 1 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 2 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 2 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 2 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 2 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 2 Iteration: 401 / 4000 [ 10%] (Sampling)
## Chain 2 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 2 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 2 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 2 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 3 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 3 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 3 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 3 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 3 Iteration: 401 / 4000 [ 10%] (Sampling)
## Chain 3 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 3 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 3 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 3 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 4 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 4 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 4 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 4 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 4 Iteration: 401 / 4000 [ 10%] (Sampling)
## Chain 4 Iteration: 500 / 4000 [ 12%] (Sampling)
## Chain 4 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 4 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 4 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 1 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 1 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 1 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 1 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 1 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 1 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 1 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 1 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 2 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 2 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 2 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 2 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 2 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 2 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 2 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 2 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 3 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 3 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 3 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 3 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 3 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 3 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 3 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 4 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 4 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 4 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 4 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 4 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 4 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 4 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 1 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 1 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 1 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 1 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 1 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 2 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 2 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 2 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 2 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 2 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 2 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 2 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 2 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 3 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 3 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 3 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 3 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 3 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 4 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 4 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 4 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 4 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 4 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 4 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 4 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 1 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 1 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 1 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 1 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 1 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 1 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 1 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 1 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 2 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 2 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 2 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 2 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 2 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 2 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 3 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 3 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 3 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 3 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 3 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 3 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 3 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 3 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 4 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 4 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 4 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 4 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 4 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 4 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 4 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 1 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 1 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 1 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 1 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 1 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 1 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 2 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 2 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 2 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 2 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 2 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 3 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 3 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 3 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 3 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 3 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 3 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 3 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 4 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 4 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 4 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 4 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 4 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1 finished in 0.6 seconds.
## Chain 2 finished in 0.6 seconds.
## Chain 3 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 3 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 4 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 3 finished in 0.6 seconds.
## Chain 4 finished in 0.6 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.6 seconds.
## Total execution time: 0.7 seconds.
Stan_model_500 = map2stan(
alist(
log_gdp_std ~ dnorm( mu , sigma ) ,
mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
a[cid] ~ dnorm( 1 , 0.1 ) ,
b[cid] ~ dnorm( 0 , 0.3 ) ,
sigma ~ dexp( 1 )
), data=dat_slim , warmup = 500, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
##
## Chain 1 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 1 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 1 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 1 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 1 Iteration: 500 / 4000 [ 12%] (Warmup)
## Chain 1 Iteration: 501 / 4000 [ 12%] (Sampling)
## Chain 1 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 1 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 1 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 2 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 2 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 2 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 2 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 2 Iteration: 500 / 4000 [ 12%] (Warmup)
## Chain 2 Iteration: 501 / 4000 [ 12%] (Sampling)
## Chain 2 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 2 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 2 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 3 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 3 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 3 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 3 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 3 Iteration: 500 / 4000 [ 12%] (Warmup)
## Chain 3 Iteration: 501 / 4000 [ 12%] (Sampling)
## Chain 3 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 3 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 3 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 4 Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 4000 [ 2%] (Warmup)
## Chain 4 Iteration: 200 / 4000 [ 5%] (Warmup)
## Chain 4 Iteration: 300 / 4000 [ 7%] (Warmup)
## Chain 4 Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 4 Iteration: 500 / 4000 [ 12%] (Warmup)
## Chain 4 Iteration: 501 / 4000 [ 12%] (Sampling)
## Chain 4 Iteration: 600 / 4000 [ 15%] (Sampling)
## Chain 4 Iteration: 700 / 4000 [ 17%] (Sampling)
## Chain 4 Iteration: 800 / 4000 [ 20%] (Sampling)
## Chain 1 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 1 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 1 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 1 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 1 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 1 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 1 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 1 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 1 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 2 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 2 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 2 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 2 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 2 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 2 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 2 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 2 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 3 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 3 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 3 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 3 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 3 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 3 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 3 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 3 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 4 Iteration: 900 / 4000 [ 22%] (Sampling)
## Chain 4 Iteration: 1000 / 4000 [ 25%] (Sampling)
## Chain 4 Iteration: 1100 / 4000 [ 27%] (Sampling)
## Chain 4 Iteration: 1200 / 4000 [ 30%] (Sampling)
## Chain 4 Iteration: 1300 / 4000 [ 32%] (Sampling)
## Chain 4 Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 4 Iteration: 1500 / 4000 [ 37%] (Sampling)
## Chain 1 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 1 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 1 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 1 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 1 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 1 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 1 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 2 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 2 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 2 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 2 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 2 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 2 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 2 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 3 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 3 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 3 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 3 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 3 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 3 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 4 Iteration: 1600 / 4000 [ 40%] (Sampling)
## Chain 4 Iteration: 1700 / 4000 [ 42%] (Sampling)
## Chain 4 Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4 Iteration: 1900 / 4000 [ 47%] (Sampling)
## Chain 4 Iteration: 2000 / 4000 [ 50%] (Sampling)
## Chain 4 Iteration: 2100 / 4000 [ 52%] (Sampling)
## Chain 4 Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 1 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 1 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 1 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 1 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 1 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 1 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 2 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 2 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 2 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 2 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 2 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 3 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 3 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 3 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 3 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 3 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 3 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 3 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 3 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 4 Iteration: 2300 / 4000 [ 57%] (Sampling)
## Chain 4 Iteration: 2400 / 4000 [ 60%] (Sampling)
## Chain 4 Iteration: 2500 / 4000 [ 62%] (Sampling)
## Chain 4 Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4 Iteration: 2700 / 4000 [ 67%] (Sampling)
## Chain 4 Iteration: 2800 / 4000 [ 70%] (Sampling)
## Chain 4 Iteration: 2900 / 4000 [ 72%] (Sampling)
## Chain 4 Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 1 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 1 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 1 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 1 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 2 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 2 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 2 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 2 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 2 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 3 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 3 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 3 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 3 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 3 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 3 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 3 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 Iteration: 3100 / 4000 [ 77%] (Sampling)
## Chain 4 Iteration: 3200 / 4000 [ 80%] (Sampling)
## Chain 4 Iteration: 3300 / 4000 [ 82%] (Sampling)
## Chain 4 Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4 Iteration: 3500 / 4000 [ 87%] (Sampling)
## Chain 4 Iteration: 3600 / 4000 [ 90%] (Sampling)
## Chain 4 Iteration: 3700 / 4000 [ 92%] (Sampling)
## Chain 4 Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1 finished in 0.6 seconds.
## Chain 2 finished in 0.6 seconds.
## Chain 3 finished in 0.6 seconds.
## Chain 4 Iteration: 3900 / 4000 [ 97%] (Sampling)
## Chain 4 Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4 finished in 0.6 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.6 seconds.
## Total execution time: 0.7 seconds.
# As the results show, we can observe that warmup is increased,n_eff gets closer to the number of iterations and specifically 400 warmup iterations are enough for our model.
set_cmdstan_path('/Users/vinnakotanishitha/cmdstan')
9-4. Run the model below and then inspect the posterior distribution and explain what it is accomplishing.
mp <- ulam(
alist(
a ~ dnorm(0,1),
b ~ dcauchy(0,1)
), data=list(y=1) , chains=1 )
## Running MCMC with 1 chain, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 1 finished in 0.0 seconds.
p=precis(mp)
traceplot(mp)
#From the results, we note that Figure 'a' should be a normal distribution as the prior is around 0 and spread is in the range between 2 and -2. Figure 'b' shows Cauchy distribution which contains some extreme values going that lie beyond the values 50 and -50.
Compare the samples for the parameters a and b. Can you explain the different trace plots? If you are unfamiliar with the Cauchy distribution, you should look it up. The key feature to attend to is that it has no expected value. Can you connect this fact to the trace plot?
9-5. Recall the divorce rate example from Chapter 5. Repeat that analysis, using ulam this time, fitting models m5.1, m5.2, and m5.3. Use compare to compare the models on the basis of WAIC or PSIS. To use WAIC or PSIS with ulam, you need add the argument log_log=TRUE. Explain the model comparison results.
library(tidybayes)
data(WaffleDivorce)
data = WaffleDivorce
data$Divorce_sd=standardize(data$Divorce)
data$Marriage_sd=standardize(data$Marriage)
data$MedianAgeMarriage_sd=standardize(data$MedianAgeMarriage)
d_trim = list(D = data$Divorce_sd, M = data$Marriage_sd, A = data$MedianAgeMarriage_sd)
m5.1 = ulam(
alist(
D ~ dnorm(mu, sigma),
mu <- a + bA * A,
a ~ dnorm(0, 0.2),
bA ~ dnorm(0, 0.5),
sigma ~ dexp(1)
),
data = d_trim,
chains = 4,
cores = 4,
log_lik = TRUE
)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 2 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 2 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 2 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 2 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 2 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 2 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 2 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 2 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 3 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 3 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 3 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 3 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 3 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 3 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 3 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 3 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 3 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 3 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 4 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 4 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 4 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 4 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 4 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 4 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 4 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 4 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 4 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 1 finished in 0.1 seconds.
## Chain 2 finished in 0.1 seconds.
## Chain 3 finished in 0.1 seconds.
## Chain 4 finished in 0.1 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.1 seconds.
## Total execution time: 0.2 seconds.
m5.2 = ulam(
alist(
D ~ dnorm(mu, sigma),
mu <- a + bM * M,
a ~ dnorm(0, 0.2),
bM ~ dnorm(0, 0.5),
sigma ~ dexp(1)
),
data = d_trim,
chains = 4,
cores = 4,
log_lik = TRUE
)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 2 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 2 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 2 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 2 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 2 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 2 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 2 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 2 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 3 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 3 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 3 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 3 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 3 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 3 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 3 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 3 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 3 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 3 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 4 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 4 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 4 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 4 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 4 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 4 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 4 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 4 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 4 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 1 finished in 0.1 seconds.
## Chain 2 finished in 0.1 seconds.
## Chain 3 finished in 0.1 seconds.
## Chain 4 finished in 0.1 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.1 seconds.
## Total execution time: 0.2 seconds.
m5.3 = ulam(
alist(
D ~ dnorm(mu, sigma),
mu <- a + bA * A + bM * M,
a ~ dnorm(0, 0.2),
bA ~ dnorm(0, 0.5),
bM ~ dnorm(0, 0.5),
sigma ~ dexp(1)
),
data = d_trim,
chains = 4,
cores = 4,
log_lik = TRUE
)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 2 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 2 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 2 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 2 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 2 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 2 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 2 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 2 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 3 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 3 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 3 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 3 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 3 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 3 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 3 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 3 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 3 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 3 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 4 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 4 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 4 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 4 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 4 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 4 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 4 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 4 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 4 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 1 finished in 0.1 seconds.
## Chain 2 finished in 0.1 seconds.
## Chain 3 finished in 0.1 seconds.
## Chain 4 finished in 0.1 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.1 seconds.
## Total execution time: 0.2 seconds.
set.seed(77)
compare( m5.1 , m5.2 , m5.3 , func=WAIC )
## WAIC SE dWAIC dSE pWAIC weight
## m5.1 125.6551 12.604516 0.000000 NA 3.579695 0.6863253133
## m5.3 127.2261 12.648553 1.570988 0.8079528 4.599220 0.3128918868
## m5.2 139.2076 9.773978 13.552460 9.2753036 2.906573 0.0007827999
#Comparing the WAIC values for the models using divorce data, the first model which used medianage of marriage as predictor performed better. However, the model with marriage as predictor had worse performance compared to the other 2 models.