Chapter 9 - Markov Chain Monte Carlo

This chapter has been an informal introduction to Markov chain Monte Carlo (MCMC) estimation. The goal has been to introduce the purpose and approach MCMC algorithms. The major algorithms introduced were the Metropolis, Gibbs sampling, and Hamiltonian Monte Carlo algorithms. Each has its advantages and disadvantages. The ulam function in the rethinking package was introduced. It uses the Stan (mc-stan.org) Hamiltonian Monte Carlo engine to fit models as they are defined in this book. General advice about diagnosing poor MCMC fits was introduced by the use of a couple of pathological examples.

Place each answer inside the code chunk (grey box). The code chunks should contain a text response or a code that completes/answers the question or activity requested. Make sure to include plots if the question requests them.

Finally, upon completion, name your final output .html file as: YourName_ANLY505-Year-Semester.html and publish the assignment to your R Pubs account and submit the link to Canvas. Each question is worth 5 points.

Questions

9-1. Re-estimate the terrain ruggedness model from the chapter, but now using a uniform prior for the standard deviation, sigma. The uniform prior should be dunif(0,1). Visualize the priors. Use ulam to estimate the posterior. Visualize the posteriors for both models. Does the different prior have any detectible influence on the posterior distribution of sigma? Why or why not?

library(rethinking)
data(rugged)
data= rugged
data$log_gdp = log(data$rgdppc_2000)
dd = data[ complete.cases(data$rgdppc_2000) , ]

dd$log_gdp_std = dd$log_gdp/ mean(dd$log_gdp)
dd$rugged_std = dd$rugged/max(dd$rugged)

dd$cid=ifelse(dd$cont_africa==1,1,2)

dat_slim = list(
  log_gdp_std = dd$log_gdp_std,
  rugged_std = dd$rugged_std,
  cid = as.integer( dd$cid )
)

model1 = ulam(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dnorm( 0 , 0.3 ) ,
    sigma ~ dexp( 1 )
  ), data=dat_slim , chains=4, cores = 4)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 1 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 2 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 2 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 2 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 2 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 2 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 3 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 3 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 3 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 3 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 3 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 4 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 4 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 4 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 4 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 4 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 1 finished in 0.1 seconds.
## Chain 2 finished in 0.1 seconds.
## Chain 3 finished in 0.1 seconds.
## Chain 4 finished in 0.1 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.1 seconds.
## Total execution time: 0.3 seconds.
pairs(model1)

model2 = ulam(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dnorm( 0 , 0.3 ) ,
    sigma ~ dunif(0, 1 )
  ), data=dat_slim , chains=4, cores = 4 )
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 1 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 2 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 2 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 2 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 2 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 2 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 3 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 3 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 3 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 3 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 3 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 4 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 4 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 4 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 4 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 4 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 1 finished in 0.1 seconds.
## Chain 2 finished in 0.1 seconds.
## Chain 3 finished in 0.1 seconds.
## Chain 4 finished in 0.1 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.1 seconds.
## Total execution time: 0.2 seconds.
pairs(model2)

# It shows that it does not have detectable influence on the posterior distribution of sigma.

9-2. Modify the terrain ruggedness model again. This time, change the prior for b[cid] to dexp(0.3). What does this do to the posterior distribution? Can you explain it?

model3 = ulam(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dexp(0.3) ,
    sigma ~ dexp( 1 )
  ), data=dat_slim , chains=4, cores = 4 )
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 2 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 2 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 2 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 3 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 3 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 3 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 4 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 4 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 4 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 2 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 2 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 3 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 3 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 4 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 1 finished in 0.2 seconds.
## Chain 2 finished in 0.2 seconds.
## Chain 4 finished in 0.2 seconds.
## Chain 3 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 3 finished in 0.3 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.2 seconds.
## Total execution time: 0.4 seconds.
pairs(model3)

# It looks like there are basically no differences in the posterior distribution. 

9-3. Re-estimate one of the Stan models from the chapter, but at different numbers of warmup iterations. Be sure to use the same number of sampling iterations in each case. Compare the n_eff values. How much warmup is enough?

Stan_model_100 = map2stan(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dnorm( 0 , 0.3 )  ,
    sigma ~ dexp( 1 )
  ), data=dat_slim , warmup = 100, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
## 
## Chain 1 WARNING: There aren't enough warmup iterations to fit the 
## Chain 1          three stages of adaptation as currently configured. 
## Chain 1          Reducing each adaptation stage to 15%/75%/10% of 
## Chain 1          the given number of warmup iterations: 
## Chain 1            init_buffer = 15 
## Chain 1            adapt_window = 75 
## Chain 1            term_buffer = 10 
## Chain 1 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  101 / 4000 [  2%]  (Sampling) 
## Chain 1 Iteration:  200 / 4000 [  5%]  (Sampling) 
## Chain 1 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 1 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 1 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 2 WARNING: There aren't enough warmup iterations to fit the 
## Chain 2          three stages of adaptation as currently configured. 
## Chain 2          Reducing each adaptation stage to 15%/75%/10% of 
## Chain 2          the given number of warmup iterations: 
## Chain 2            init_buffer = 15 
## Chain 2            adapt_window = 75 
## Chain 2            term_buffer = 10 
## Chain 2 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 2 Iteration:  101 / 4000 [  2%]  (Sampling) 
## Chain 2 Iteration:  200 / 4000 [  5%]  (Sampling) 
## Chain 2 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 2 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 2 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 3 WARNING: There aren't enough warmup iterations to fit the 
## Chain 3          three stages of adaptation as currently configured. 
## Chain 3          Reducing each adaptation stage to 15%/75%/10% of 
## Chain 3          the given number of warmup iterations: 
## Chain 3            init_buffer = 15 
## Chain 3            adapt_window = 75 
## Chain 3            term_buffer = 10 
## Chain 3 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 3 Iteration:  101 / 4000 [  2%]  (Sampling) 
## Chain 3 Iteration:  200 / 4000 [  5%]  (Sampling) 
## Chain 3 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 3 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 3 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 3 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 4 WARNING: There aren't enough warmup iterations to fit the 
## Chain 4          three stages of adaptation as currently configured. 
## Chain 4          Reducing each adaptation stage to 15%/75%/10% of 
## Chain 4          the given number of warmup iterations: 
## Chain 4            init_buffer = 15 
## Chain 4            adapt_window = 75 
## Chain 4            term_buffer = 10 
## Chain 4 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 4 Iteration:  101 / 4000 [  2%]  (Sampling) 
## Chain 4 Iteration:  200 / 4000 [  5%]  (Sampling) 
## Chain 4 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 4 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 4 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 4 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 1 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 1 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 1 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 1 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 1 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 1 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 1 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 2 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 2 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 2 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 2 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 2 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 3 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 3 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 3 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 3 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 3 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 4 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 4 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 4 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 4 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 1 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 1 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 1 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 1 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 2 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 2 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 2 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 2 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 2 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 3 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 3 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 3 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 3 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 3 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 4 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 4 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 4 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 4 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 1 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 1 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 1 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 1 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 2 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 2 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 2 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 2 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 3 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 3 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 3 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 3 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 4 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 4 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 4 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 4 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 1 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 1 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 2 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 1 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 1 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 1 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 2 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 4 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 4 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 4 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 1 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 1 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 2 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 2 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 4 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 4 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 1 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 1 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 3 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 3 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 4 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 1 finished in 0.9 seconds.
## Chain 3 finished in 0.9 seconds.
## Chain 2 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 finished in 1.0 seconds.
## Chain 4 finished in 1.0 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.9 seconds.
## Total execution time: 1.0 seconds.
precis(Stan_model_100,depth=2)
##               mean         sd         5.5%       94.5%     n_eff     Rhat4
## a[1]     0.8864569 0.01586764  0.861203560  0.91206722 17601.045 0.9998999
## a[2]     1.0506122 0.01010668  1.034459450  1.06665000 17805.917 1.0000549
## b[1]     0.1304473 0.07593325  0.007672645  0.25154615  6551.381 1.0001076
## b[2]    -0.1425156 0.05572222 -0.232014770 -0.05360469  9723.058 0.9999043
## sigma    0.1116901 0.00618775  0.102324615  0.12195317  9386.134 1.0002300
## mu[1]    0.8764571 0.01599775  0.850893285  0.90212633 16818.906 1.0000333
## mu[2]    1.0025041 0.02070371  0.969554020  1.03555055 11090.282 0.9997865
## mu[3]    1.0635822 0.01162868  1.045158900  1.08187055 14344.592 1.0001494
## mu[4]    1.0634443 0.01160190  1.045050000  1.08167000 14381.098 1.0001491
## mu[5]    1.0194855 0.01525089  0.995283505  1.04375000 12427.590 0.9997872
## mu[6]    1.0811151 0.01617718  1.055210000  1.10691110 11466.244 1.0001228
## mu[7]    1.0779670 0.01523381  1.053510000  1.10223110 11776.542 1.0001321
## mu[8]    1.0005279 0.02138195  0.966535890  1.03477000 11001.023 0.9997880
## mu[9]    1.0428322 0.01034326  1.026179450  1.05917000 17554.237 0.9999486
## mu[10]   0.8958496 0.01759564  0.867491505  0.92424911 13121.716 0.9998378
## mu[11]   1.0723372 0.01366134  1.050348350  1.09404055 12518.702 1.0001462
## mu[12]   0.8613764 0.01975705  0.829528945  0.89269155 10841.452 1.0001874
## mu[13]   0.8633745 0.01907024  0.832735670  0.89367171 11406.550 1.0001750
## mu[14]   1.0769789 0.01494633  1.052929450  1.10081000 11887.693 1.0001349
## mu[15]   1.0472672 0.01009740  1.030939450  1.06328000 18067.737 1.0000104
## mu[16]   1.0759449 0.01465038  1.052400000  1.09925055 12012.014 1.0001377
## mu[17]   1.0799892 0.01583520  1.054640000  1.10526165 11570.002 1.0001262
## mu[18]   1.0281486 0.01290484  1.007599450  1.04859000 13837.822 0.9998120
## mu[19]   1.0774845 0.01509286  1.053210000  1.10154110 11829.928 1.0001335
## mu[20]   1.0673048 0.01241854  1.047600000  1.08693055 13453.442 1.0001524
## mu[21]   1.0616519 0.01127139  1.043720000  1.07946055 14872.277 1.0001444
## mu[22]   1.0757380 0.01459183  1.052279450  1.09892000 12037.995 1.0001382
## mu[23]   1.0591242 0.01086531  1.041880000  1.07627000 15612.007 1.0001334
## mu[24]   0.8622177 0.01946235  0.830941945  0.89308500 11069.449 1.0001825
## mu[25]   0.8625542 0.01934668  0.831421725  0.89323811 11164.633 1.0001803
## mu[26]   1.0634443 0.01160190  1.045050000  1.08167000 14381.098 1.0001491
## mu[27]   0.9718501 0.03171398  0.921348790  1.02259110 10308.659 0.9998124
## mu[28]   1.0242421 0.01390971  1.002050000  1.04625000 13112.376 0.9997972
## mu[29]   1.0380985 0.01090784  1.020740000  1.05541000 16366.605 0.9998896
## mu[30]   0.8631221 0.01915446  0.832314800  0.89353704 11330.593 1.0001767
## mu[31]   0.8692428 0.01734933  0.841309000  0.89683111 13579.381 1.0001241
## mu[32]   0.8677284 0.01774653  0.839138560  0.89579149 12943.148 1.0001394
## mu[33]   0.8616077 0.01967523  0.829857000  0.89279955 10902.747 1.0001861
## mu[34]   1.0609166 0.01114582  1.043219450  1.07853000 15082.427 1.0001417
## mu[35]   0.9284089 0.03119104  0.877547570  0.97774599  7876.414 0.9999104
## mu[36]   0.9081961 0.02183026  0.872820725  0.94282610  9714.592 0.9998461
## mu[37]   1.0327214 0.01187101  1.013719450  1.05155000 14898.745 0.9998396
## mu[38]   1.0187962 0.01545417  0.994205780  1.04339055 12343.765 0.9997863
## mu[39]   1.0609396 0.01114960  1.043239450  1.07856000 15076.047 1.0001419
## mu[40]   1.0675345 0.01247118  1.047718900  1.08725000 13404.582 1.0001523
## mu[41]   0.9095632 0.02239197  0.873213780  0.94505449  9495.881 0.9998500
## mu[42]   1.0811841 0.01619828  1.055240000  1.10702055 11460.133 1.0001226
## mu[43]   1.0769100 0.01492644  1.052898900  1.10069000 11895.753 1.0001351
## mu[44]   1.0435445 0.01028445  1.026919450  1.05973055 17691.809 0.9999582
## mu[45]   0.8691376 0.01737577  0.841162615  0.89674683 13533.618 1.0001252
## mu[46]   1.0518859 0.01015465  1.035710000  1.06800055 17582.758 1.0000704
## mu[47]   0.8736176 0.01641518  0.847218230  0.89974655 15569.416 1.0000720
## mu[48]   0.9105938 0.02282462  0.873608085  0.94675705  9344.709 0.9998531
## mu[49]   1.0424416 0.01037850  1.025738900  1.05882000 17472.660 0.9999433
## mu[50]   1.0784266 0.01536899  1.053779450  1.10292000 11727.137 1.0001308
## mu[51]   0.8914327 0.01658214  0.864828780  0.91819516 15499.672 0.9998572
## mu[52]   1.0737159 0.01403079  1.051070000  1.09600055 12310.902 1.0001433
## mu[53]   1.0491743 0.01008198  1.032940000  1.06523000 17979.914 1.0000361
## mu[54]   1.0560221 0.01047336  1.039359450  1.07256055 16537.791 1.0001122
## mu[55]   0.8629959 0.01919684  0.832084890  0.89346622 11293.121 1.0001775
## mu[56]   1.0682009 0.01262639  1.048059450  1.08812000 13265.324 1.0001520
## mu[57]   0.9971730 0.02254725  0.961337340  1.03333165 10868.157 0.9997906
## mu[58]   0.8632063 0.01912630  0.832451120  0.89357250 11355.766 1.0001761
## mu[59]   0.8739752 0.01635402  0.847724560  0.89998877 15733.413 1.0000673
## mu[60]   0.8658354 0.01829070  0.836346890  0.89487825 12221.289 1.0001564
## mu[61]   0.8687380 0.01747780  0.840637450  0.89648505 13361.761 1.0001294
## mu[62]   0.8701682 0.01712442  0.842503295  0.89734527 13991.605 1.0001141
## mu[63]   1.0099492 0.01821632  0.981155625  1.03901055 11523.864 0.9997829
## mu[64]   1.0332729 0.01175859  1.014488900  1.05187055 15041.098 0.9998438
## mu[65]   1.0397300 0.01068045  1.022609450  1.05663000 16812.068 0.9999085
## mu[66]   1.0749797 0.01437890  1.051780000  1.09778000 12136.100 1.0001402
## mu[67]   1.0237826 0.01403413  1.001430000  1.04599110 13037.396 0.9997959
## mu[68]   1.0318482 0.01205482  1.012579450  1.05090110 14678.636 0.9998333
## mu[69]   1.0521386 0.01016707  1.035949450  1.06827055 17530.531 1.0000734
## mu[70]   1.0269767 0.01319582  1.005950000  1.04786055 13603.073 0.9998068
## mu[71]   1.0733023 0.01391878  1.050860000  1.09542000 12371.212 1.0001443
## mu[72]   1.0590323 0.01085198  1.041800000  1.07614000 15639.763 1.0001328
## mu[73]   1.0579753 0.01070585  1.040950000  1.07485000 15957.460 1.0001265
## mu[74]   1.0694648 0.01292996  1.048800000  1.08982055 13016.382 1.0001507
## mu[75]   1.0250694 0.01368885  1.003258900  1.04669000 13252.823 0.9997997
## mu[76]   1.0474280 0.01009398  1.031119450  1.06345055 18067.111 1.0000125
## mu[77]   1.0420738 0.01041366  1.025339450  1.05851000 17391.610 0.9999383
## mu[78]   1.0247707 0.01376818  1.002838900  1.04654000 13201.279 0.9997988
## mu[79]   1.0401666 0.01062529  1.023109450  1.05700000 16926.887 0.9999140
## mu[80]   1.0560450 0.01047580  1.039388900  1.07259055 16531.202 1.0001124
## mu[81]   1.0322618 0.01196690  1.013110000  1.05119000 14781.984 0.9998362
## mu[82]   1.0727048 0.01375876  1.050530000  1.09459000 12461.780 1.0001455
## mu[83]   0.8724819 0.01662529  0.845694615  0.89892805 15046.463 1.0000866
## mu[84]   0.9827421 0.02770925  0.938584955  1.02699110 10481.682 0.9998033
## mu[85]   1.0688444 0.01277944  1.048440000  1.08897055 13136.159 1.0001514
## mu[86]   1.0811151 0.01617718  1.055210000  1.10691110 11466.244 1.0001228
## mu[87]   1.0362142 0.01120995  1.018399450  1.05406000 15839.574 0.9998698
## mu[88]   1.0756232 0.01455938  1.052210000  1.09876000 12052.511 1.0001386
## mu[89]   1.0225877 0.01436312  0.999666725  1.04539055 12851.856 0.9997928
## mu[90]   0.9848103 0.02695767  0.941854790  1.02782000 10523.579 0.9998015
## mu[91]   1.0319172 0.01204003  1.012659450  1.05097000 14695.760 0.9998339
## mu[92]   1.0663167 0.01219694  1.046870000  1.08558055 13673.306 1.0001523
## mu[93]   0.9888581 0.06410429  0.884928525  1.09091330  6844.187 1.0000119
## mu[94]   1.0772317 0.01501943  1.053059450  1.10117055 11858.456 1.0001342
## mu[95]   1.0610085 0.01116116  1.043289450  1.07865000 15055.866 1.0001421
## mu[96]   1.0777142 0.01515982  1.053367800  1.10189000 11804.184 1.0001329
## mu[97]   1.0644324 0.01179792  1.045750000  1.08301000 14126.206 1.0001510
## mu[98]   0.9091636 0.02222629  0.873095670  0.94446339  9557.572 0.9998489
## mu[99]   1.0628928 0.01149668  1.044679450  1.08097055 14528.278 1.0001479
## mu[100]  0.8829984 0.01567004  0.858011670  0.90848916 18210.745 0.9999415
## mu[101]  1.0414534 0.01047714  1.024680000  1.05806055 17247.811 0.9999303
## mu[102]  1.0200141 0.01509643  0.995988120  1.04402000 12494.254 0.9997880
## mu[103]  0.8615026 0.01971235  0.829717955  0.89276206 10874.758 1.0001867
## mu[104]  1.0461641 0.01013143  1.029809450  1.06220000 18042.663 0.9999949
## mu[105]  1.0569642 0.01057926  1.040120000  1.07362110 16260.516 1.0001195
## mu[106]  0.8712830 0.01687235  0.844075075  0.89808533 14500.390 1.0001012
## mu[107]  0.8608295 0.01995271  0.828672790  0.89243260 10700.618 1.0001904
## mu[108]  0.8783711 0.01580793  0.853126780  0.90392111 17518.055 1.0000060
## mu[109]  0.8800117 0.01570641  0.854985175  0.90550899 17952.021 0.9999825
## mu[110]  1.0580672 0.01071797  1.041030000  1.07497000 15930.145 1.0001272
## mu[111]  0.8776139 0.01587395  0.852295670  0.90319722 17262.228 1.0000168
## mu[112]  1.0448084 0.01019811  1.028319450  1.06090000 17894.700 0.9999757
## mu[113]  0.8621546 0.01948418  0.830874890  0.89305160 11051.860 1.0001828
## mu[114]  0.8649730 0.01855502  0.835194340  0.89446238 11920.122 1.0001633
## mu[115]  1.0584579 0.01077080  1.041359450  1.07544055 15812.143 1.0001296
## mu[116]  1.0804028 0.01596031  1.054868900  1.10588055 11531.040 1.0001249
## mu[117]  1.0258967 0.01347215  1.004478900  1.04715055 13400.003 0.9998026
## mu[118]  0.9653700 0.03412571  0.911069845  1.01996055 10233.470 0.9998173
## mu[119]  1.0344219 0.01153370  1.016030000  1.05269000 15346.220 0.9998532
## mu[120]  1.0557693 0.01044701  1.039150000  1.07227055 16610.709 1.0001100
## mu[121]  1.0364670 0.01116711  1.018749450  1.05426055 15910.086 0.9998723
## mu[122]  1.0458654 0.01014379  1.029480000  1.06187055 18017.191 0.9999906
## mu[123]  1.0503004 0.01009871  1.034139450  1.06633000 17851.325 1.0000510
## mu[124]  1.0346517 0.01149031  1.016340000  1.05286000 15408.731 0.9998553
## mu[125]  1.0447394 0.01020221  1.028248900  1.06083055 17884.817 0.9999749
## mu[126]  1.0744283 0.01422590  1.051470000  1.09701055 12210.583 1.0001415
## mu[127]  1.0480024 0.01008492  1.031660000  1.06406000 18054.502 1.0000204
## mu[128]  1.0512884 0.01012915  1.035139450  1.06733000 17694.531 1.0000633
## mu[129]  1.0756232 0.01455938  1.052210000  1.09876000 12052.511 1.0001386
## mu[130]  1.0336406 0.01168514  1.014970000  1.05215055 15137.614 0.9998467
## mu[131]  1.0521386 0.01016707  1.035949450  1.06827055 17530.531 1.0000734
## mu[132]  1.0596528 0.01094415  1.042280000  1.07695000 15454.609 1.0001363
## mu[133]  0.9280093 0.03099009  0.877431670  0.97701511  7894.684 0.9999092
## mu[134]  1.0602502 0.01103714  1.042739450  1.07771110 15277.401 1.0001390
## mu[135]  0.8677073 0.01775229  0.839115340  0.89577138 12934.661 1.0001396
## mu[136]  0.8635428 0.01901452  0.833056130  0.89374416 11457.945 1.0001738
## mu[137]  1.0808853 0.01610698  1.055100000  1.10658000 11486.747 1.0001235
## mu[138]  1.0458654 0.01014379  1.029480000  1.06187055 18017.191 0.9999906
## mu[139]  0.8688852 0.01743991  0.840874845  0.89655394 13424.673 1.0001279
## mu[140]  1.0410398 0.01052234  1.024169450  1.05770110 17148.243 0.9999248
## mu[141]  1.0454058 0.01016537  1.028990000  1.06145000 17969.511 0.9999842
## mu[142]  1.0238975 0.01400295  1.001600000  1.04606000 13055.972 0.9997962
## mu[143]  1.0648230 0.01187795  1.045969450  1.08354000 14028.913 1.0001513
## mu[144]  0.9228351 0.02843186  0.876575945  0.96768188  8173.790 0.9998932
## mu[145]  0.9611574 0.04862819  0.881983000  1.03816165  7062.623 0.9999804
## mu[146]  1.0638809 0.01168736  1.045340000  1.08225110 14267.071 1.0001501
## mu[147]  0.8672236 0.01788663  0.838425965  0.89555127 12742.484 1.0001441
## mu[148]  0.8643000 0.01876806  0.834193725  0.89405959 11696.911 1.0001684
## mu[149]  1.0571021 0.01059570  1.040230000  1.07379000 16219.540 1.0001207
## mu[150]  0.9594415 0.03634678  0.901712920  1.01763000 10177.352 0.9998215
## mu[151]  1.0747270 0.01430861  1.051649450  1.09743110 12169.933 1.0001408
## mu[152]  1.0634903 0.01161081  1.045090000  1.08174055 14369.054 1.0001493
## mu[153]  1.0673967 0.01243954  1.047639450  1.08705055 13433.745 1.0001523
## mu[154]  0.8736807 0.01640421  0.847286120  0.89979550 15598.427 1.0000712
## mu[155]  1.0210480 0.01479794  0.997507230  1.04452000 12631.210 0.9997897
## mu[156]  0.8726501 0.01659267  0.845883725  0.89900839 15123.844 1.0000845
## mu[157]  0.8776139 0.01587395  0.852295670  0.90319722 17262.228 1.0000168
## mu[158]  1.0716938 0.01349277  1.049998900  1.09306000 12622.469 1.0001475
## mu[159]  1.0712572 0.01337998  1.049770000  1.09241110 12695.192 1.0001483
## mu[160]  1.0565965 0.01053653  1.039839450  1.07321000 16369.649 1.0001167
## mu[161]  1.0691661 0.01285710  1.048620000  1.08940055 13073.511 1.0001511
## mu[162]  1.0106846 0.01797754  0.982280395  1.03937055 11577.096 0.9997827
## mu[163]  1.0666843 0.01227848  1.047130000  1.08610000 13590.084 1.0001524
## mu[164]  1.0340542 0.01160430  1.015529450  1.05242055 15247.390 0.9998502
## mu[165]  1.0415224 0.01046982  1.024769450  1.05811000 17264.266 0.9999311
## mu[166]  1.0427173 0.01035340  1.026049450  1.05906055 17530.519 0.9999469
## mu[167]  1.0278728 0.01297243  1.007240000  1.04842000 13781.379 0.9998107
## mu[168]  0.8954500 0.01749082  0.867305000  0.92369420 13317.090 0.9998389
## mu[169]  0.8696214 0.01725565  0.841768570  0.89703704 13746.035 1.0001201
## mu[170]  0.8835242 0.01568360  0.858532230  0.90903411 18178.378 0.9999347
Stan_model_200 = map2stan(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dnorm( 0 , 0.3 )  ,
    sigma ~ dexp( 1 )
  ), data=dat_slim , warmup = 200, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
## 
## Chain 1 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 1 Iteration:  201 / 4000 [  5%]  (Sampling) 
## Chain 1 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 1 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 1 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 1 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 1 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 2 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 2 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 2 Iteration:  201 / 4000 [  5%]  (Sampling) 
## Chain 2 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 2 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 2 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 2 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 2 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 2 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 3 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 3 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 3 Iteration:  201 / 4000 [  5%]  (Sampling) 
## Chain 3 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 3 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 3 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 3 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 3 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 3 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 4 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 4 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 4 Iteration:  201 / 4000 [  5%]  (Sampling) 
## Chain 4 Iteration:  300 / 4000 [  7%]  (Sampling) 
## Chain 4 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 4 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 4 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 4 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 4 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 1 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 1 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 1 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 1 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 1 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 1 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 1 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 1 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 1 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 2 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 2 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 2 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 2 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 2 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 2 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 2 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 2 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 3 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 3 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 3 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 3 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 3 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 3 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 3 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 3 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 4 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 4 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 4 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 4 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 4 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 4 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 4 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 1 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 1 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 1 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 1 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 1 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 2 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 2 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 2 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 2 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 3 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 3 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 3 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 3 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 4 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 4 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 4 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 4 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 1 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 2 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 2 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 2 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 2 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 4 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 4 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 4 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 4 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 1 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 1 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 1 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 2 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 3 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 3 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 4 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 4 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 2 finished in 0.6 seconds.
## Chain 1 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 1 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 3 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 1 finished in 0.6 seconds.
## Chain 3 finished in 0.6 seconds.
## Chain 4 finished in 0.6 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.6 seconds.
## Total execution time: 0.7 seconds.
Stan_model_300 = map2stan(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dnorm( 0 , 0.3 )  ,
    sigma ~ dexp( 1 )
  ), data=dat_slim , warmup = 300, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
## 
## Chain 1 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 1 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 1 Iteration:  301 / 4000 [  7%]  (Sampling) 
## Chain 1 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 1 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 1 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 1 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 1 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 2 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 2 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 2 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 2 Iteration:  301 / 4000 [  7%]  (Sampling) 
## Chain 2 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 2 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 2 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 2 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 2 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 2 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 3 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 3 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 3 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 3 Iteration:  301 / 4000 [  7%]  (Sampling) 
## Chain 3 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 3 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 3 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 3 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 3 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 3 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 4 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 4 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 4 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 4 Iteration:  301 / 4000 [  7%]  (Sampling) 
## Chain 4 Iteration:  400 / 4000 [ 10%]  (Sampling) 
## Chain 4 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 4 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 4 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 4 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 4 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 1 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 1 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 1 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 1 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 1 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 1 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 1 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 1 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 1 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 1 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 1 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 2 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 2 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 2 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 2 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 2 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 2 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 2 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 2 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 2 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 3 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 3 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 3 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 3 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 3 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 3 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 3 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 3 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 3 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 4 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 4 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 4 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 4 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 4 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 4 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 4 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 4 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 1 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 1 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 1 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 2 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 2 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 2 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 3 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 3 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 4 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 4 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 4 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 4 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 1 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 1 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 2 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 2 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 2 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 4 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 4 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 4 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 1 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 1 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 3 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 3 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 3 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 4 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 1 finished in 0.6 seconds.
## Chain 2 finished in 0.6 seconds.
## Chain 3 finished in 0.6 seconds.
## Chain 4 finished in 0.6 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.6 seconds.
## Total execution time: 0.6 seconds.
Stan_model_400 = map2stan(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dnorm( 0 , 0.3 )  ,
    sigma ~ dexp( 1 )
  ), data=dat_slim , warmup = 400, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
## 
## Chain 1 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 1 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 1 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  401 / 4000 [ 10%]  (Sampling) 
## Chain 1 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 1 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 1 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 1 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 2 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 2 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 2 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 2 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  401 / 4000 [ 10%]  (Sampling) 
## Chain 2 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 2 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 2 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 2 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 3 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 3 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 3 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 3 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  401 / 4000 [ 10%]  (Sampling) 
## Chain 3 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 3 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 3 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 3 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 4 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 4 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 4 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 4 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  401 / 4000 [ 10%]  (Sampling) 
## Chain 4 Iteration:  500 / 4000 [ 12%]  (Sampling) 
## Chain 4 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 4 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 4 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 1 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 1 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 1 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 1 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 1 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 1 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 1 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 1 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 1 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 2 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 2 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 2 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 2 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 2 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 2 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 2 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 2 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 3 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 3 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 3 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 3 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 3 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 3 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 3 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 3 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 4 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 4 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 4 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 4 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 4 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 4 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 4 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 1 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 1 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 1 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 1 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 1 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 2 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 2 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 2 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 2 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 3 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 3 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 3 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 3 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 4 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 4 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 4 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 4 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 4 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 1 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 1 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 1 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 2 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 2 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 2 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 2 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 4 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 4 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 4 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 4 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 1 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 1 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 1 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 1 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 2 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 3 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 3 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 4 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 1 finished in 0.6 seconds.
## Chain 2 finished in 0.6 seconds.
## Chain 3 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 3 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 3 finished in 0.6 seconds.
## Chain 4 finished in 0.6 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.6 seconds.
## Total execution time: 0.7 seconds.
Stan_model_500 = map2stan(
  alist(
    log_gdp_std ~ dnorm( mu , sigma ) ,
    mu <- a[cid] + b[cid]*( rugged_std - 0.215 ) ,
    a[cid] ~ dnorm( 1 , 0.1 ) ,
    b[cid] ~ dnorm( 0 , 0.3 )  ,
    sigma ~ dexp( 1 )
  ), data=dat_slim , warmup = 500, iter = 4000, chains=4, cores = 4 )
## Running MCMC with 4 parallel chains...
## 
## Chain 1 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 1 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 1 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 1 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 1 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 1 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 1 Iteration:  501 / 4000 [ 12%]  (Sampling) 
## Chain 1 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 1 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 1 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 2 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 2 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 2 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 2 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 2 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 2 Iteration:  501 / 4000 [ 12%]  (Sampling) 
## Chain 2 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 2 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 2 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 3 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 3 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 3 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 3 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 3 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 3 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 3 Iteration:  501 / 4000 [ 12%]  (Sampling) 
## Chain 3 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 3 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 3 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 4 Iteration:    1 / 4000 [  0%]  (Warmup) 
## Chain 4 Iteration:  100 / 4000 [  2%]  (Warmup) 
## Chain 4 Iteration:  200 / 4000 [  5%]  (Warmup) 
## Chain 4 Iteration:  300 / 4000 [  7%]  (Warmup) 
## Chain 4 Iteration:  400 / 4000 [ 10%]  (Warmup) 
## Chain 4 Iteration:  500 / 4000 [ 12%]  (Warmup) 
## Chain 4 Iteration:  501 / 4000 [ 12%]  (Sampling) 
## Chain 4 Iteration:  600 / 4000 [ 15%]  (Sampling) 
## Chain 4 Iteration:  700 / 4000 [ 17%]  (Sampling) 
## Chain 4 Iteration:  800 / 4000 [ 20%]  (Sampling) 
## Chain 1 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 1 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 1 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 1 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 1 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 1 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 1 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 1 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 1 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 1 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 2 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 2 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 2 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 2 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 2 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 2 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 2 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 2 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 3 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 3 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 3 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 3 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 3 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 3 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 3 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 3 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 3 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 4 Iteration:  900 / 4000 [ 22%]  (Sampling) 
## Chain 4 Iteration: 1000 / 4000 [ 25%]  (Sampling) 
## Chain 4 Iteration: 1100 / 4000 [ 27%]  (Sampling) 
## Chain 4 Iteration: 1200 / 4000 [ 30%]  (Sampling) 
## Chain 4 Iteration: 1300 / 4000 [ 32%]  (Sampling) 
## Chain 4 Iteration: 1400 / 4000 [ 35%]  (Sampling) 
## Chain 4 Iteration: 1500 / 4000 [ 37%]  (Sampling) 
## Chain 1 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 1 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 1 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 1 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 2 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 2 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 2 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 2 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 3 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 3 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 3 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 4 Iteration: 1600 / 4000 [ 40%]  (Sampling) 
## Chain 4 Iteration: 1700 / 4000 [ 42%]  (Sampling) 
## Chain 4 Iteration: 1800 / 4000 [ 45%]  (Sampling) 
## Chain 4 Iteration: 1900 / 4000 [ 47%]  (Sampling) 
## Chain 4 Iteration: 2000 / 4000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 2100 / 4000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 2200 / 4000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 1 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 1 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 1 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 2 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 2 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 2 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 2 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 2300 / 4000 [ 57%]  (Sampling) 
## Chain 4 Iteration: 2400 / 4000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 2500 / 4000 [ 62%]  (Sampling) 
## Chain 4 Iteration: 2600 / 4000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 2700 / 4000 [ 67%]  (Sampling) 
## Chain 4 Iteration: 2800 / 4000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 2900 / 4000 [ 72%]  (Sampling) 
## Chain 4 Iteration: 3000 / 4000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 1 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 1 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 1 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 2 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 2 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 2 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 3 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 3 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 3 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 Iteration: 3100 / 4000 [ 77%]  (Sampling) 
## Chain 4 Iteration: 3200 / 4000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 3300 / 4000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 3400 / 4000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 3500 / 4000 [ 87%]  (Sampling) 
## Chain 4 Iteration: 3600 / 4000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 3700 / 4000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 3800 / 4000 [ 95%]  (Sampling) 
## Chain 1 finished in 0.6 seconds.
## Chain 2 finished in 0.6 seconds.
## Chain 3 finished in 0.6 seconds.
## Chain 4 Iteration: 3900 / 4000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 4000 / 4000 [100%]  (Sampling) 
## Chain 4 finished in 0.6 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.6 seconds.
## Total execution time: 0.7 seconds.
# As the results show, we can observe that warmup is increased,n_eff gets closer to the number of iterations and specifically 400 warmup iterations are enough for our model.
set_cmdstan_path('/Users/vinnakotanishitha/cmdstan')

9-4. Run the model below and then inspect the posterior distribution and explain what it is accomplishing.

mp <- ulam(
 alist(
   a ~ dnorm(0,1),
   b ~ dcauchy(0,1)
 ), data=list(y=1) , chains=1 )
## Running MCMC with 1 chain, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 1 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 1 finished in 0.0 seconds.
p=precis(mp)

traceplot(mp)

#From the results, we note that Figure 'a' should be a normal distribution as the prior is around 0 and spread is in the range between 2 and -2. Figure 'b' shows Cauchy distribution which contains some extreme values going that lie beyond the values 50 and -50.

Compare the samples for the parameters a and b. Can you explain the different trace plots? If you are unfamiliar with the Cauchy distribution, you should look it up. The key feature to attend to is that it has no expected value. Can you connect this fact to the trace plot?

9-5. Recall the divorce rate example from Chapter 5. Repeat that analysis, using ulam this time, fitting models m5.1, m5.2, and m5.3. Use compare to compare the models on the basis of WAIC or PSIS. To use WAIC or PSIS with ulam, you need add the argument log_log=TRUE. Explain the model comparison results.

library(tidybayes)
data(WaffleDivorce)
data = WaffleDivorce

data$Divorce_sd=standardize(data$Divorce)
data$Marriage_sd=standardize(data$Marriage)
data$MedianAgeMarriage_sd=standardize(data$MedianAgeMarriage)

d_trim = list(D = data$Divorce_sd, M = data$Marriage_sd, A = data$MedianAgeMarriage_sd)

m5.1 = ulam(
  alist(
    D ~ dnorm(mu, sigma),
    mu <- a + bA * A,
    a ~ dnorm(0, 0.2),
    bA ~ dnorm(0, 0.5),
    sigma ~ dexp(1)
  ),
  data = d_trim,
  chains = 4, 
  cores = 4,
  log_lik = TRUE
)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 1 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 2 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 2 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 2 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 2 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 2 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 3 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 3 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 3 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 3 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 3 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 4 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 4 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 4 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 4 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 4 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 1 finished in 0.1 seconds.
## Chain 2 finished in 0.1 seconds.
## Chain 3 finished in 0.1 seconds.
## Chain 4 finished in 0.1 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.1 seconds.
## Total execution time: 0.2 seconds.
m5.2 = ulam(
  alist(
    D ~ dnorm(mu, sigma),
    mu <- a + bM * M,
    a ~ dnorm(0, 0.2),
    bM ~ dnorm(0, 0.5),
    sigma ~ dexp(1)
  ),
  data = d_trim,
  chains = 4, 
  cores = 4,
  log_lik = TRUE 
)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 1 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 2 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 2 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 2 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 2 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 2 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 3 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 3 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 3 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 3 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 3 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 4 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 4 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 4 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 4 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 4 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 1 finished in 0.1 seconds.
## Chain 2 finished in 0.1 seconds.
## Chain 3 finished in 0.1 seconds.
## Chain 4 finished in 0.1 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.1 seconds.
## Total execution time: 0.2 seconds.
m5.3 = ulam(
  alist(
    D ~ dnorm(mu, sigma),
    mu <- a + bA * A + bM * M,
    a ~ dnorm(0, 0.2),
    bA ~ dnorm(0, 0.5),
    bM ~ dnorm(0, 0.5),
    sigma ~ dexp(1)
  ),
  data = d_trim,
  chains = 4, 
  cores = 4,
  log_lik = TRUE 
)
## Running MCMC with 4 parallel chains, with 1 thread(s) per chain...
## 
## Chain 1 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 1 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 1 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 1 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 1 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 1 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 1 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 1 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 2 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 2 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 2 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 2 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 2 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 2 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 2 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 3 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 3 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 3 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 3 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 3 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 3 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 3 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 3 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 4 Iteration:   1 / 1000 [  0%]  (Warmup) 
## Chain 4 Iteration: 100 / 1000 [ 10%]  (Warmup) 
## Chain 4 Iteration: 200 / 1000 [ 20%]  (Warmup) 
## Chain 4 Iteration: 300 / 1000 [ 30%]  (Warmup) 
## Chain 4 Iteration: 400 / 1000 [ 40%]  (Warmup) 
## Chain 4 Iteration: 500 / 1000 [ 50%]  (Warmup) 
## Chain 4 Iteration: 501 / 1000 [ 50%]  (Sampling) 
## Chain 4 Iteration: 600 / 1000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 700 / 1000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 800 / 1000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 900 / 1000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 1000 / 1000 [100%]  (Sampling) 
## Chain 1 finished in 0.1 seconds.
## Chain 2 finished in 0.1 seconds.
## Chain 3 finished in 0.1 seconds.
## Chain 4 finished in 0.1 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 0.1 seconds.
## Total execution time: 0.2 seconds.
set.seed(77)
compare( m5.1 , m5.2 , m5.3 , func=WAIC )
##          WAIC        SE     dWAIC       dSE    pWAIC       weight
## m5.1 125.6551 12.604516  0.000000        NA 3.579695 0.6863253133
## m5.3 127.2261 12.648553  1.570988 0.8079528 4.599220 0.3128918868
## m5.2 139.2076  9.773978 13.552460 9.2753036 2.906573 0.0007827999
#Comparing the WAIC values for the models using divorce data, the first model which used medianage of marriage as predictor performed better. However, the model with marriage as predictor had worse performance compared to the other 2 models.