Computational Mathematics - Regression Analysis IV

Euclides Rodriguez

2022-04-17

Introduction

The who.csv dataset contains real-world data from 2008. The data set include multiple measured data points related to healthcare and life expectancy.

Libraries

library(tidyverse)

Data

The variables included follow.
Country: name of the country
LifeExp: average life expectancy for the country in years
InfantSurvival: proportion of those surviving to one year or more
Under5Survival: proportion of those surviving to five years or more
TBFree: proportion of the population without TB.
PropMD: proportion of the population who are MDs
PropRN: proportion of the population who are RNs
PersExp: mean personal expenditures on healthcare in US dollars at average exchange rate
GovtExp: mean government expenditures per capita on healthcare, US dollars at average exchange rate
TotExp: sum of personal and government expenditures.

who_df <- read.csv("https://raw.githubusercontent.com/engine2031/Data-Sets/main/who.csv")

head(who_df)
##               Country LifeExp InfantSurvival Under5Survival  TBFree      PropMD
## 1         Afghanistan      42          0.835          0.743 0.99769 0.000228841
## 2             Albania      71          0.985          0.983 0.99974 0.001143127
## 3             Algeria      71          0.967          0.962 0.99944 0.001060478
## 4             Andorra      82          0.997          0.996 0.99983 0.003297297
## 5              Angola      41          0.846          0.740 0.99656 0.000070400
## 6 Antigua and Barbuda      73          0.990          0.989 0.99991 0.000142857
##        PropRN PersExp GovtExp TotExp
## 1 0.000572294      20      92    112
## 2 0.004614439     169    3128   3297
## 3 0.002091362     108    5184   5292
## 4 0.003500000    2589  169725 172314
## 5 0.001146162      36    1620   1656
## 6 0.002773810     503   12543  13046
summary(who_df)
##    Country             LifeExp      InfantSurvival   Under5Survival  
##  Length:190         Min.   :40.00   Min.   :0.8350   Min.   :0.7310  
##  Class :character   1st Qu.:61.25   1st Qu.:0.9433   1st Qu.:0.9253  
##  Mode  :character   Median :70.00   Median :0.9785   Median :0.9745  
##                     Mean   :67.38   Mean   :0.9624   Mean   :0.9459  
##                     3rd Qu.:75.00   3rd Qu.:0.9910   3rd Qu.:0.9900  
##                     Max.   :83.00   Max.   :0.9980   Max.   :0.9970  
##      TBFree           PropMD              PropRN             PersExp       
##  Min.   :0.9870   Min.   :0.0000196   Min.   :0.0000883   Min.   :   3.00  
##  1st Qu.:0.9969   1st Qu.:0.0002444   1st Qu.:0.0008455   1st Qu.:  36.25  
##  Median :0.9992   Median :0.0010474   Median :0.0027584   Median : 199.50  
##  Mean   :0.9980   Mean   :0.0017954   Mean   :0.0041336   Mean   : 742.00  
##  3rd Qu.:0.9998   3rd Qu.:0.0024584   3rd Qu.:0.0057164   3rd Qu.: 515.25  
##  Max.   :1.0000   Max.   :0.0351290   Max.   :0.0708387   Max.   :6350.00  
##     GovtExp             TotExp      
##  Min.   :    10.0   Min.   :    13  
##  1st Qu.:   559.5   1st Qu.:   584  
##  Median :  5385.0   Median :  5541  
##  Mean   : 40953.5   Mean   : 41696  
##  3rd Qu.: 25680.2   3rd Qu.: 26331  
##  Max.   :476420.0   Max.   :482750

Excercise 1

Provide a scatter plot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.

Looking at the scatter plot of these two variables, it can be seen that there is no linear relationship between the variables.

ggplot(data = who_df, aes(x = TotExp, y = LifeExp)) +
  geom_point(color="steelblue")+
  theme_minimal()+
  geom_smooth(method = lm, se=FALSE)+
  labs(x = "Total Healthcare Expenditures", y = "Life Expectancy")

We create a linear regression model for these two variables and see what the summary statistics tell us. The P-value is close to zero and indicates that the Total Healthcare Expenditure is statistically significant. The Multiple R squared value is on the lower end of the scale from 0 to 1 indicating that the linear model does not describe the measure data well. We see that the slope estimate and the Total Healthcare Expenditure coefficients have little variability since the ratio of the coefficient to the standard error is high(above 5.)

who_lm <- lm(LifeExp ~ TotExp, data = who_df)
summary(who_lm)
## 
## Call:
## lm(formula = LifeExp ~ TotExp, data = who_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.764  -4.778   3.154   7.116  13.292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.475e+01  7.535e-01  85.933  < 2e-16 ***
## TotExp      6.297e-05  7.795e-06   8.079 7.71e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared:  0.2577, Adjusted R-squared:  0.2537 
## F-statistic: 65.26 on 1 and 188 DF,  p-value: 7.714e-14

Excercise 2

Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error,and p-values. Which model is “better?”

When performing the power transformation on our two variables we can see a improvement between the two variables on our scatterplot.

who_df$LifeExp <- who_df$LifeExp^4.6
who_df$TotExp <- who_df$TotExp^.06

ggplot(data = who_df, aes(x = TotExp, y = LifeExp)) +
  geom_point(color="steelblue")+
  theme_minimal()+
  geom_smooth(method = lm, se=FALSE)+
  labs(x = "Total Healthcare Expenditures", y = "Life Expectancy")
## `geom_smooth()` using formula 'y ~ x'

In our new linear model we see that our results improve. The p-value, and standard error remain favorable. The major improvement in this new model is the Multiple R-squared value. In this model we are above .5, indicating that the model describes the measured data well. The only remaining statistic is the F-statistic which is not relevant for our model since we have a one factor regression model.

who_lm <- lm(LifeExp ~ TotExp, data = who_df)
summary(who_lm)
## 
## Call:
## lm(formula = LifeExp ~ TotExp, data = who_df)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -308616089  -53978977   13697187   59139231  211951764 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -736527910   46817945  -15.73   <2e-16 ***
## TotExp       620060216   27518940   22.53   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared:  0.7298, Adjusted R-squared:  0.7283 
## F-statistic: 507.7 on 1 and 188 DF,  p-value: < 2.2e-16

Excercise 3

Using the results from 2, forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.

# Linear Model

LifeExp <- -736527910 + 620060216*1.5
LifeExp
## [1] 193562414
LifeExp <- -736527910 + 620060216*.06
LifeExp
## [1] -699324297

Excercise 4

Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model? LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp

In our new model we see that our ratio of coefficient to std. error are acceptable, the P-value is significant but our R-squared value is below .05. The r-squared value indicates that the model does not describe our measured data well. We see the our F-statistic is greater than our critical F-value. Indicating that at least one of our coefficients related to the predictor variables is non-zero for the alternate hypothesis.

who_df <- read.csv("https://raw.githubusercontent.com/engine2031/Data-Sets/main/who.csv")
who_lm <- lm(LifeExp ~ PropMD + TotExp + PropMD*TotExp, data = who_df)
summary(who_lm)
## 
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + PropMD * TotExp, data = who_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.320  -4.132   2.098   6.540  13.074 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    6.277e+01  7.956e-01  78.899  < 2e-16 ***
## PropMD         1.497e+03  2.788e+02   5.371 2.32e-07 ***
## TotExp         7.233e-05  8.982e-06   8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03  1.472e-03  -4.093 6.35e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared:  0.3574, Adjusted R-squared:  0.3471 
## F-statistic: 34.49 on 3 and 186 DF,  p-value: < 2.2e-16

Critical F Value

qf(p=.05, df1=3, df2=186, lower.tail=FALSE)
## [1] 2.653165

Excercise 5

Forecast LifeExp when PropMD =.03 and TotExp = 14. Does this forecast seem realistic? Why or why not? No, this forecast does not seem realistic. Our maximum life expectancy is 84 years in the base data set. The total expenditure of 14 is near the minimum for the data set. Given that total expenditure is a significant value predictor we would expect a low life expectancy. Instead this model generates a value higher than the max of the measured data.

PropMD <- .03
TotExp <- 14
LifeExp <- 6.277e+01 + 1.497e+03*PropMD + 7.233e-05*TotExp - 6.026e-03*PropMD*14
LifeExp
## [1] 107.6785