Exercises from Chapter 7 of textbook Applied Predictive Modeling by Kuhn & Johnson

Exercise 7.2

Friedman (1991) introduced several benchmark data sets create by simulation. One of these simulations used the following nonlinear equation to create data:

\(y = 10 sin(\pi x_1x_2) + 20(x_3 − 0.5)^2 + 10x_4 + 5x_5 + N(0, \sigma^2)\)

where the x values are random variables uniformly distributed between [0, 1] (there are also 5 other non-informative variables also created in the simulation). The package mlbench contains a function called mlbench.friedman1 that simulates these data:

#library(mlbench)
set.seed(200)
trainingData = mlbench.friedman1(200, sd = 1)
## We convert the 'x' data from a matrix to a data frame
## One reason is that this will give the columns names.
trainingData$x = data.frame(trainingData$x)
## Look at the data using
featurePlot(trainingData$x, trainingData$y)

## or other methods.
## This creates a list with a vector 'y' and a matrix
## of predictors 'x'. Also simulate a large test set to
## estimate the true error rate with good precision:
testData = mlbench.friedman1(5000, sd = 1)
testData$x = data.frame(testData$x)

(a) Tune several models on these data.

For example:

KNN

knnModel <- train(x = trainingData$x,
y = trainingData$y,
method = "knn",
preProc = c("center", "scale"), 
tuneLength = 10)

knnModel
## k-Nearest Neighbors 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  3.466085  0.5121775  2.816838
##    7  3.349428  0.5452823  2.727410
##    9  3.264276  0.5785990  2.660026
##   11  3.214216  0.6024244  2.603767
##   13  3.196510  0.6176570  2.591935
##   15  3.184173  0.6305506  2.577482
##   17  3.183130  0.6425367  2.567787
##   19  3.198752  0.6483184  2.592683
##   21  3.188993  0.6611428  2.588787
##   23  3.200458  0.6638353  2.604529
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 17.
knnPred <- predict(knnModel, newdata = testData$x)
## The function 'postResample' can be used to get the test set > ## perforamnce values
postResample(pred = knnPred, obs = testData$y)
##      RMSE  Rsquared       MAE 
## 3.2040595 0.6819919 2.5683461

Neural Network

library(nnet)
nnetModel <- nnet(trainingData$x, trainingData$y,
                  size = 5,
                  decay = 0.01,
                  linout = TRUE,
                  trace = FALSE,
                  maxit = 500,
                  maxNWts = 5*(ncol(trainingData$x) + 1) +5 +1)

nnetPred <- predict(nnetModel, testData$x)
postResample(pred = nnetPred, obs = testData$y)
##      RMSE  Rsquared       MAE 
## 2.8564065 0.7091704 1.9600728

SVM

svmRModel <- train(x=trainingData$x, y=trainingData$y, 
                  method="svmRadial", 
                  preProcess=c("center", "scale"), 
                  tuneLength=20)
svmRModel
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
## Resampling results across tuning parameters:
## 
##   C          RMSE      Rsquared   MAE     
##        0.25  2.428871  0.7804492  1.929638
##        0.50  2.238909  0.7955102  1.762495
##        1.00  2.132591  0.8087265  1.677426
##        2.00  2.069153  0.8184683  1.623414
##        4.00  2.040282  0.8232454  1.596516
##        8.00  2.023722  0.8260529  1.582890
##       16.00  2.023316  0.8261109  1.581729
##       32.00  2.023316  0.8261109  1.581729
##       64.00  2.023316  0.8261109  1.581729
##      128.00  2.023316  0.8261109  1.581729
##      256.00  2.023316  0.8261109  1.581729
##      512.00  2.023316  0.8261109  1.581729
##     1024.00  2.023316  0.8261109  1.581729
##     2048.00  2.023316  0.8261109  1.581729
##     4096.00  2.023316  0.8261109  1.581729
##     8192.00  2.023316  0.8261109  1.581729
##    16384.00  2.023316  0.8261109  1.581729
##    32768.00  2.023316  0.8261109  1.581729
##    65536.00  2.023316  0.8261109  1.581729
##   131072.00  2.023316  0.8261109  1.581729
## 
## Tuning parameter 'sigma' was held constant at a value of 0.05897103
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.05897103 and C = 16.
svmRPred <- predict(svmRModel, newdata=testData$x)
svmRPR <- postResample(pred=svmRPred, obs=testData$y)
svmRPR
##      RMSE  Rsquared       MAE 
## 2.0623398 0.8275173 1.5669732

MARS

marsFit <- earth(trainingData$x, trainingData$y)

marsGrid <-  expand.grid(.degree = 1:2, .nprune = 2:38) 
marsModel <-  train(x = trainingData$x, 
                  y = trainingData$y, 
                  method = "earth", 
                  tuneGrid = marsGrid, 
                  trControl = trainControl(method = "cv", 
                                           number = 10))

marsModel$finalModel
## Selected 16 of 18 terms, and 5 of 10 predictors (nprune=16)
## Termination condition: Reached nk 21
## Importance: X1, X4, X2, X5, X3, X6-unused, X7-unused, X8-unused, X9-unused, ...
## Number of terms at each degree of interaction: 1 11 4
## GCV 1.61518    RSS 210.6377    GRSq 0.934423    RSq 0.9568093
pred_mars <- predict(marsModel$finalModel, newdata = testData$x)
PR_mars <- postResample(pred = pred_mars, obs = testData$y)
PR_mars
##      RMSE  Rsquared       MAE 
## 1.1492504 0.9471145 0.9158382

(b) Which models appear to give the best performance? Does MARS select the informative predictors (those named X1–X5)?

From teh models above and comparing the R squared, I can see MARS appears to have the best performance, I can see MARS selected X1-X5 as it’s top 5 predictors and it appears to have the best performance.

Exercise 7.5

Exercise 6.3 describes data for a chemical manufacturing process. Use the same data imputation, data splitting, and pre-processing steps as before and train several nonlinear regression models.

(a) Which nonlinear regression model gives the optimal resampling and test set performance?

library(AppliedPredictiveModeling)
data(ChemicalManufacturingProcess)
dim(ChemicalManufacturingProcess)
## [1] 176  58
knn_model <- preProcess(ChemicalManufacturingProcess, "knnImpute")
df <- predict(knn_model, ChemicalManufacturingProcess)

df <- df%>%select_at(vars(-one_of(nearZeroVar(., names = TRUE))))

in_train <- createDataPartition(df$Yield, times = 1, p = 0.8, list = FALSE)
train_df <- df[in_train, ]
test_df <- df[-in_train, ]

KNN

knn_model <- train(
  Yield ~ ., data = train_df, method = "knn",
  center = TRUE,
  scale = TRUE,
  trControl = trainControl("cv", number = 10),
  tuneLength = 25
)
knn_model
## k-Nearest Neighbors 
## 
## 144 samples
##  56 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 131, 128, 130, 129, 129, 130, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE       Rsquared   MAE      
##    5  0.7552782  0.4628101  0.6057732
##    7  0.7534105  0.4850720  0.6127549
##    9  0.7616480  0.4742228  0.6171891
##   11  0.7486736  0.4896930  0.6100923
##   13  0.7425255  0.5191948  0.6083387
##   15  0.7474571  0.5129337  0.6159349
##   17  0.7581577  0.5081583  0.6251681
##   19  0.7592865  0.5101938  0.6280549
##   21  0.7653372  0.5018649  0.6323289
##   23  0.7720588  0.5005638  0.6343030
##   25  0.7823691  0.4868838  0.6418086
##   27  0.7877512  0.4853252  0.6485491
##   29  0.7985177  0.4735718  0.6558193
##   31  0.8077861  0.4556674  0.6619603
##   33  0.8140949  0.4470729  0.6642140
##   35  0.8239989  0.4420473  0.6699565
##   37  0.8322604  0.4283147  0.6778513
##   39  0.8359550  0.4272952  0.6810802
##   41  0.8382319  0.4293695  0.6831565
##   43  0.8421727  0.4291687  0.6881367
##   45  0.8466110  0.4268836  0.6935972
##   47  0.8519136  0.4197597  0.6974306
##   49  0.8540572  0.4203750  0.6983138
##   51  0.8594393  0.4140496  0.7031984
##   53  0.8625312  0.4120098  0.7078943
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 13.
knn_predictions <- predict(knn_model, test_df)
postResample(pred = knn_predictions, obs = test_df$Yield)
##      RMSE  Rsquared       MAE 
## 0.6885473 0.4418770 0.5485172

SVM

SVM_model <- train(
  Yield ~ ., data = train_df, method = "svmRadial",
  center = TRUE,
  scale = TRUE,
  trControl = trainControl(method = "cv"),
  tuneLength = 25
)
SVM_model
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 144 samples
##  56 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 129, 129, 130, 131, 129, 130, ... 
## Resampling results across tuning parameters:
## 
##   C           RMSE       Rsquared   MAE      
##         0.25  0.7654300  0.5237836  0.6191198
##         0.50  0.6967728  0.5751820  0.5598469
##         1.00  0.6359584  0.6351269  0.5035381
##         2.00  0.6121325  0.6600614  0.4768313
##         4.00  0.6009953  0.6730173  0.4702624
##         8.00  0.5965196  0.6792734  0.4657764
##        16.00  0.5953751  0.6803098  0.4642481
##        32.00  0.5953751  0.6803098  0.4642481
##        64.00  0.5953751  0.6803098  0.4642481
##       128.00  0.5953751  0.6803098  0.4642481
##       256.00  0.5953751  0.6803098  0.4642481
##       512.00  0.5953751  0.6803098  0.4642481
##      1024.00  0.5953751  0.6803098  0.4642481
##      2048.00  0.5953751  0.6803098  0.4642481
##      4096.00  0.5953751  0.6803098  0.4642481
##      8192.00  0.5953751  0.6803098  0.4642481
##     16384.00  0.5953751  0.6803098  0.4642481
##     32768.00  0.5953751  0.6803098  0.4642481
##     65536.00  0.5953751  0.6803098  0.4642481
##    131072.00  0.5953751  0.6803098  0.4642481
##    262144.00  0.5953751  0.6803098  0.4642481
##    524288.00  0.5953751  0.6803098  0.4642481
##   1048576.00  0.5953751  0.6803098  0.4642481
##   2097152.00  0.5953751  0.6803098  0.4642481
##   4194304.00  0.5953751  0.6803098  0.4642481
## 
## Tuning parameter 'sigma' was held constant at a value of 0.01427805
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.01427805 and C = 16.
svm_predictions <- predict(SVM_model, test_df)
postResample(pred = svm_predictions, obs = test_df$Yield)
##      RMSE  Rsquared       MAE 
## 0.5796161 0.5838355 0.4715688

Neural Network

nnet_grid <- expand.grid(.decay = c(0, 0.01, .1), .size = c(1:10), .bag = FALSE)
nnet_maxnwts <- 5 * ncol(train_df) + 5 + 1
nnet_model <- train(
  Yield ~ ., data = train_df, method = "avNNet",
  center = TRUE,
  scale = TRUE,
  tuneGrid = nnet_grid,
  trControl = trainControl(method = "cv"),
  linout = TRUE,
  trace = FALSE,
  MaxNWts = nnet_maxnwts,
  maxit = 500
)

nnet_model
## Model Averaged Neural Network 
## 
## 144 samples
##  56 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 128, 131, 129, 129, 131, 128, ... 
## Resampling results across tuning parameters:
## 
##   decay  size  RMSE       Rsquared   MAE      
##   0.00    1    0.7911611  0.4576647  0.6631840
##   0.00    2    0.7597567  0.5413880  0.6198021
##   0.00    3    0.7738294  0.5401306  0.6228561
##   0.00    4    0.8151203  0.5072658  0.6515518
##   0.00    5    0.7630283  0.5601924  0.6092753
##   0.00    6          NaN        NaN        NaN
##   0.00    7          NaN        NaN        NaN
##   0.00    8          NaN        NaN        NaN
##   0.00    9          NaN        NaN        NaN
##   0.00   10          NaN        NaN        NaN
##   0.01    1    0.8417799  0.5139426  0.6680004
##   0.01    2    0.8317788  0.5177218  0.6544578
##   0.01    3    0.7683433  0.5754437  0.6249086
##   0.01    4    0.7288591  0.6270687  0.5890148
##   0.01    5    0.6960698  0.6404665  0.5535684
##   0.01    6          NaN        NaN        NaN
##   0.01    7          NaN        NaN        NaN
##   0.01    8          NaN        NaN        NaN
##   0.01    9          NaN        NaN        NaN
##   0.01   10          NaN        NaN        NaN
##   0.10    1    0.7690293  0.5671247  0.6175350
##   0.10    2    0.6848541  0.6151229  0.5511681
##   0.10    3    0.7341391  0.6180884  0.5874503
##   0.10    4    0.6611062  0.6551770  0.5354342
##   0.10    5    0.6901760  0.6345200  0.5501578
##   0.10    6          NaN        NaN        NaN
##   0.10    7          NaN        NaN        NaN
##   0.10    8          NaN        NaN        NaN
##   0.10    9          NaN        NaN        NaN
##   0.10   10          NaN        NaN        NaN
## 
## Tuning parameter 'bag' was held constant at a value of FALSE
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 4, decay = 0.1 and bag = FALSE.
nnet_predictions <- predict(nnet_model, test_df)
postResample(pred = nnet_predictions, obs = test_df$Yield)
##      RMSE  Rsquared       MAE 
## 0.6251864 0.5198087 0.4823207

(b) Which predictors are most important in the optimal nonlinear regression model? Do either the biological or process variables dominate the list? How do the top ten important predictors compare to the top ten predictors from the optimal linear model?

varImp(knn_model, 10)
## loess r-squared variable importance
## 
##   only 20 most important variables shown (out of 56)
## 
##                        Overall
## ManufacturingProcess32  100.00
## ManufacturingProcess13   93.85
## BiologicalMaterial06     86.96
## BiologicalMaterial03     76.26
## ManufacturingProcess36   75.79
## ManufacturingProcess17   73.93
## BiologicalMaterial12     71.29
## ManufacturingProcess09   71.17
## BiologicalMaterial02     71.07
## ManufacturingProcess31   64.58
## ManufacturingProcess11   54.15
## ManufacturingProcess06   53.77
## ManufacturingProcess33   48.74
## BiologicalMaterial04     46.98
## BiologicalMaterial11     46.25
## ManufacturingProcess02   42.59
## ManufacturingProcess29   40.77
## ManufacturingProcess30   40.72
## BiologicalMaterial08     37.74
## BiologicalMaterial01     35.52
varImp(SVM_model, 10)
## loess r-squared variable importance
## 
##   only 20 most important variables shown (out of 56)
## 
##                        Overall
## ManufacturingProcess32  100.00
## ManufacturingProcess13   93.85
## BiologicalMaterial06     86.96
## BiologicalMaterial03     76.26
## ManufacturingProcess36   75.79
## ManufacturingProcess17   73.93
## BiologicalMaterial12     71.29
## ManufacturingProcess09   71.17
## BiologicalMaterial02     71.07
## ManufacturingProcess31   64.58
## ManufacturingProcess11   54.15
## ManufacturingProcess06   53.77
## ManufacturingProcess33   48.74
## BiologicalMaterial04     46.98
## BiologicalMaterial11     46.25
## ManufacturingProcess02   42.59
## ManufacturingProcess29   40.77
## ManufacturingProcess30   40.72
## BiologicalMaterial08     37.74
## BiologicalMaterial01     35.52
varImp(nnet_model, 10)
## loess r-squared variable importance
## 
##   only 20 most important variables shown (out of 56)
## 
##                        Overall
## ManufacturingProcess32  100.00
## ManufacturingProcess13   93.85
## BiologicalMaterial06     86.96
## BiologicalMaterial03     76.26
## ManufacturingProcess36   75.79
## ManufacturingProcess17   73.93
## BiologicalMaterial12     71.29
## ManufacturingProcess09   71.17
## BiologicalMaterial02     71.07
## ManufacturingProcess31   64.58
## ManufacturingProcess11   54.15
## ManufacturingProcess06   53.77
## ManufacturingProcess33   48.74
## BiologicalMaterial04     46.98
## BiologicalMaterial11     46.25
## ManufacturingProcess02   42.59
## ManufacturingProcess29   40.77
## ManufacturingProcess30   40.72
## BiologicalMaterial08     37.74
## BiologicalMaterial01     35.52

From the above I can see the SVM has the highest R-squared, followed by Neural Network. for SVB it shows it selected the first 2 process variables, then two biological materials. it shows its close to the optimal linear model.

(c) Explore the relationships between the top predictors and the response for the predictors that are unique to the optimal nonlinear regression model. Do these plots reveal intuition about the biological or process predictors and their relationship with yield?

ggplot(train_df, aes(ManufacturingProcess32, Yield)) +
  geom_point()

ggplot(train_df, aes(ManufacturingProcess13, Yield)) +
  geom_point()

ggplot(train_df, aes(BiologicalMaterial06, Yield)) +
  geom_point()

ggplot(train_df, aes(BiologicalMaterial03, Yield)) +
  geom_point()

Checking the top predictors in SVB as the below overall.

ManufacturingProcess32 100.00000 has positive correlation, ManufacturingProcess13 93.84888 has negative correlation,
BiologicalMaterial06 86.95832 has positive correlation,
BiologicalMaterial03 76.26035 has positive correlation,

therefore from the above I can see the manufacturing process they are correlated between negative and positive. while the biological ones are positively correlated.