We always watch for weather related events maybe flood, huracane, tornados, etc. However, we are no certain about the most common type of event most likely to happen and also the associated consequences. This study will analyze data from the National Oceanic and Atmospheric Administration (NOAA) in the USA and will provide details about the data analysis looking to get answers for the following questions:
Across the United States, which types of events are most harmful with respect to population health?
Across the United States, which types of events have the greatest economic consequences?
Consider writing your report as if it were to be read by a government or municipal manager who might be responsible for preparing for severe weather events and will need to prioritize resources for different types of
#EVTYPE Variable
storm_data <- read.csv(bzfile("StormData.csv.bz2"))
2.After loading the data, let’s take a quick look to the data set to find more about it’s structure
str(storm_data)
## 'data.frame': 902297 obs. of 37 variables:
## $ STATE__ : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_DATE : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
## $ BGN_TIME : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
## $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
## $ STATE : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ EVTYPE : Factor w/ 985 levels " HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
## $ BGN_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ BGN_AZI : Factor w/ 35 levels ""," N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_DATE : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_TIME : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 0 ...
## $ COUNTYENDN: logi NA NA NA NA NA NA ...
## $ END_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ END_AZI : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LENGTH : num 14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
## $ WIDTH : num 100 150 123 100 150 177 33 33 100 100 ...
## $ F : int 3 2 2 2 2 2 2 1 3 3 ...
## $ MAG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ FATALITIES: num 0 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG : num 25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
## $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ WFO : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ ZONENAMES : Factor w/ 25112 levels ""," "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ LATITUDE_E: num 3051 0 0 0 0 ...
## $ LONGITUDE_: num 8806 0 0 0 0 ...
## $ REMARKS : Factor w/ 436781 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
3.In order to be ready for analysis we need to make sure data can be aggreggated, the following code accomplish this task
# Validating all Fatalities are numbers
storm_data$FATALITIES <-as.numeric(storm_data$FATALITIES)
# Convert injuries also to numbers
storm_data$INJURIES <-as.numeric(storm_data$INJURIES)
#Transform to upper case, first
storm_data$EVTYPE <-toupper(storm_data$EVTYPE)
event_type <- sort(unique(storm_data$EVENTYPE))
## Warning in is.na(x): is.na() applied to non-(list or vector) of type
## 'NULL'
event_type[1:50]
## NULL
#In Order we could build the charts requested, we need to transfer the event types as factors
storm_data$EVTYPE <-as.factor(storm_data$EVTYPE)
Now let’s consolidate lethal events by aggregating the number of fatalities by event type
library(data.table)
## Warning: package 'data.table' was built under R version 3.1.2
fatalities <- as.data.table(subset(aggregate(FATALITIES ~ EVTYPE, data = storm_data, FUN="sum"), FATALITIES >0))
fatalities <- fatalities[order(-FATALITIES),]
top20 <- fatalities[order(-FATALITIES), ]
The chart summarizing these findings is posted below
top20 <- fatalities[1:20, ]
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.1.2
ggplot(data=top20, aes(EVTYPE, FATALITIES, fill = FATALITIES)) + geom_bar(stat="identity") + xlab("Event") + ylab("Fatalities") + ggtitle("Top 20 Fatalities caused by Events") +
coord_flip()
injuries <- as.data.table(subset(aggregate(INJURIES ~ EVTYPE, data = storm_data, FUN = "sum"), INJURIES > 0))
injuries <- injuries[order(-INJURIES), ]
top20i <- injuries[1:20, ]
The chart summarizing the injuries is posted below
ggplot(data = top20i, aes(EVTYPE, INJURIES, fill = INJURIES)) + geom_bar(stat = "identity") +
xlab("Event") + ylab("Injuries") + ggtitle("Top 20 Injuries caused by Events") +
coord_flip() + theme(legend.position = "none")
Since we have different exponents used on the economic impact figures, we need to consolidate the values. To help with this let’s create a table of unique exponents
storm_data$PROPDMGEXP <- toupper(storm_data$PROPDMGEXP)
unique(storm_data$PROPDMGEXP)
## [1] "K" "M" "" "B" "+" "0" "5" "6" "?" "4" "2" "3" "H" "7" "-" "1" "8"
table(storm_data$PROPDMGEXP)
##
## - ? + 0 1 2 3 4 5
## 465934 1 8 5 216 25 13 4 4 28
## 6 7 8 B H K M
## 4 5 1 40 7 424665 11337
After cleaning the exponents, we need to convert them into numerical figures:
# This functions converts each exponent into it's correspondent numeric figure
calculateExp <- function(x, exp = "") {
switch(exp, `-` = x * -1, `?` = x, `+` = x, `1` = x, `2` = x * (10^2), `3` = x *
(10^3), `4` = x * (10^4), `5` = x * (10^5), `6` = x * (10^6), `7` = x *
(10^7), `8` = x * (10^8), H = x * 100, K = x * 1000, M = x * 1e+06,
B = x * 1e+09, x)
}
applyCalculateExp <- function(vx, vexp) {
if (length(vx) != length(vexp))
stop("Not same size")
result <- rep(0, length(vx))
for (i in 1:length(vx)) {
result[i] <- calculateExp(vx[i], vexp[i])
}
result
}
Now we can calculate the economic costs caused by the events
storm_data$EconomicCosts <- applyCalculateExp(as.numeric(storm_data$PROPDMG), storm_data$PROPDMGEXP)
summary(storm_data$EconomicCosts)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.500e+01 0.000e+00 0.000e+00 4.746e+05 5.000e+02 1.150e+11
costs <- as.data.table(subset(aggregate(EconomicCosts ~ EVTYPE, data = storm_data, FUN = "sum"), EconomicCosts > 0))
costs <- costs[order(-EconomicCosts), ]
The graph for the top 20 could be generated from
library(scales)
## Warning: package 'scales' was built under R version 3.1.2
top20c <- costs[1:20, ]
ggplot(data = top20c, aes(EVTYPE, EconomicCosts, fill = EconomicCosts)) + geom_bar(stat = "identity") +
scale_y_continuous(labels = comma) + xlab("Event") + ylab("Economic costs in $") +
ggtitle("Economic costs from Top 20 Events ") + coord_flip() + theme(legend.position = "none")