\(\int 4 e^{-7x}dx\)
Move constant
\(4 \int e^{-7x}dx\)
Use u-substitution
\(u = -7x\)
Solve for dx
\(\frac{du}{dx} = -7\)
\(dx = -\frac{1}{7}du\)
Replace dx
\(4 \int -\frac{1}{7} e^{u}du\)
Substitute u back in and add constant
\(-\frac{4}{7}e^{-7x}+C\)
\(\frac{dN}{dt} = \frac{3150}{t^4} - 220\)
\(\int \frac{3150}{t^4} - 220 dt\)
\(N' = 3150 \frac{t^{-3}}{-3} -220t + c\)
Set equal to 6530 and substitute 1
\(6530 = -1050 (1^{-3}) -220(1) + c\)
\(6530 = -1270 + c\)
\(7800 = c\)
Therefore, the function is:
\(\frac{-1050}{t^3} -220t + 7800\)
func <- function(x) {2*x-9}
integrate(func, lower = 4.5, upper = 8.5)
## 16 with absolute error < 1.8e-13
Set equations equal to each other and solve for x:
\(x^2-2x-2=x+2\)
\(x^2-3x-4\)
\((x+1)(x-4)\)
Therefore, we integrate -1 to 4, the difference of the equations
func <- function(x) {x+2 - (x^2-2*x-2)}
integrate(func, lower = -1, upper = 4)
## 20.83333 with absolute error < 2.3e-13
Holding cost
\(H(x) = (holding-cost-per-unit) * \frac{x}{2}\)
\(3.75 * (x/2)\)
\(1.875x\)
Reorder cost
\(R(x) = (cost-per-order) * \frac{total-units}{x}\)
\(8.25 * (110/x)\)
\(\frac{907.5}{x}\)
Total inventory cost
\(C(x) = H(x) + R(x)\)
\(1.875x + \frac{907.5}{x}\)
Find first derivative of total inventory cost function:
f=expression(1.875*x + (907.5/x))
D(f,'x')
## 1.875 - 907.5/x^2
Set equal to zero and solve for x:
\(0 = 1.875 + \frac{907.5}{x^2}\)
\(x^2 = 484\)
\(x\pm22\)
Therefore, since -22 is not in our range, the lot size that will minimize costs is:
Lot size: 22
Which means the number of orders that minimizes costs is:
Orders: 5 (110/22)
\(\int ln(9x) * x^6 dx\)
\(u = ln(9x)\)
f=expression(log(9*x))
derv_1 <- D(f,'x')
Simplify(derv_1)
## 1/x
\(u' = \frac{1}{x}\)
\(v' = x^6\)
Integrating we get… \(v = \frac{x^7}{7}\)
Using the integration by parts formula: \(\int udv = uv - \int vdu\)
We get… \(ln(9x) \frac{x^7}{7} - \int \frac{1}{x} * \frac{x^7}{7} dx\)
yac_str("Integrate(x) (x^6)/7")
## [1] "x^7/49"
Simplified:
\(ln(9x) \frac{x^7}{7} - \frac{x^7}{49} + C\)
Let’s check if function:
\(f(x) = \frac{1}{6x}\)
Integrates to one over the range [1, \(e^6\)]
func <- function(x) {1/(6*x)}
integrate(func, lower = 1, upper = exp(6))
## 1 with absolute error < 9.3e-05
It is a probability density function on the interval!