Regression equation

This code creates the model

model.full <- lm(Criterion ~ CCTST + CSIT + Interview1, validdf)
summary(model.full)

Call:
lm(formula = Criterion ~ CCTST + CSIT + Interview1, data = validdf)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.4659 -0.8431  0.0402  0.9387  2.8396 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -6.34295    2.22540  -2.850  0.00535 ** 
CCTST        0.06851    0.02330   2.940  0.00411 ** 
CSIT         0.07703    0.03899   1.976  0.05107 .  
Interview1   0.71956    0.17047   4.221 5.52e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.402 on 96 degrees of freedom
Multiple R-squared:  0.2374,    Adjusted R-squared:  0.2135 
F-statistic: 9.959 on 3 and 96 DF,  p-value: 8.895e-06

The CSIT was found not to be significant so it was removed from the model. The revised model is the following:

\[ \begin{aligned} \operatorname{\widehat{Criterion}} &= -4.03 + 0.07(\operatorname{CCTST}) + 0.72(\operatorname{Interview1}) \end{aligned} \]


Call:
lm(formula = Criterion ~ CCTST + Interview1, data = validdf)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.1999 -0.9561 -0.0412  1.0142  2.7342 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -4.03104    1.92098  -2.098  0.03847 *  
CCTST        0.06587    0.02361   2.790  0.00635 ** 
Interview1   0.72387    0.17299   4.184 6.28e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.423 on 97 degrees of freedom
Multiple R-squared:  0.2064,    Adjusted R-squared:   0.19 
F-statistic: 12.61 on 2 and 97 DF,  p-value: 1.355e-05

Mean of the Criterion

mean(validdf$Criterion)

The mean of the the criterion is 3.81 which is the minimum value we want predicted for our job applicants.

Simple regressions for each predictor variables

CCTST

model.CCTST <- lm(Criterion ~ CCTST, validdf)
summary(model.CCTST)

Call:
lm(formula = Criterion ~ CCTST, data = validdf)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.4826 -1.0237  0.0007  1.1893  3.0418 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept) -1.15543    1.93908  -0.596   0.5526  
CCTST        0.06556    0.02552   2.569   0.0117 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.538 on 98 degrees of freedom
Multiple R-squared:  0.06309,   Adjusted R-squared:  0.05353 
F-statistic: 6.599 on 1 and 98 DF,  p-value: 0.01171

\[ \begin{aligned} \operatorname{\widehat{Criterion}} &= -1.155 + 0.066(\operatorname{CCTST}) \end{aligned} \]

The minimum score for the CCTST is 76 to be hired.

Interview

model.Interview <- lm(Criterion ~ Interview1, validdf)
summary(model.Interview)

Call:
lm(formula = Criterion ~ Interview1, data = validdf)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.8533 -0.8533  0.1467  1.1467  3.1467 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.9639     0.7200   1.339 0.183714    
Interview1    0.7224     0.1789   4.038 0.000107 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.471 on 98 degrees of freedom
Multiple R-squared:  0.1427,    Adjusted R-squared:  0.1339 
F-statistic: 16.31 on 1 and 98 DF,  p-value: 0.000107

\[ \begin{aligned} \operatorname{\widehat{Criterion}} &= 0.964 + 0.722(\operatorname{Interview1}) \end{aligned} \]

The minimum score for the Interview is 3.94 to be hired.

CSIT

Even though it was not a significant predictor of the criterion, I wanted to calculate the minimum score anyway.

model.CSIT <- lm(Criterion ~ CSIT, validdf)
summary(model.CSIT)

Call:
lm(formula = Criterion ~ CSIT, data = validdf)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.3443 -1.0721  0.2002  1.1820  3.0913 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept)   1.8034     1.2126   1.487   0.1402  
CSIT          0.0726     0.0435   1.669   0.0984 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.567 on 98 degrees of freedom
Multiple R-squared:  0.02763,   Adjusted R-squared:  0.01771 
F-statistic: 2.785 on 1 and 98 DF,  p-value: 0.09836

\[ \begin{aligned} \operatorname{\widehat{Criterion}} &= 1.803 + 0.073(\operatorname{CSIT}) \end{aligned} \]

The minimum score for the Interview is 27.64 to be hired.