ANALISIS DATA SAHAM AMAZON
library yang digunakan
library(readxl)
library(openxlsx)
library(astsa)
library(dynlm) #time series regression ## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(broom) #LM test
library(FinTS) #ARCH test
library(forecast)## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
##
## Attaching package: 'forecast'
## The following object is masked from 'package:FinTS':
##
## Acf
## The following object is masked from 'package:astsa':
##
## gas
library(tseries)
library(TTR)
library(TSA)## Registered S3 methods overwritten by 'TSA':
## method from
## fitted.Arima forecast
## plot.Arima forecast
##
## Attaching package: 'TSA'
## The following objects are masked from 'package:stats':
##
## acf, arima
## The following object is masked from 'package:utils':
##
## tar
library(graphics)
library(portes)## Loading required package: parallel
library(tseries)
library(car)## Loading required package: carData
library(rugarch)##
## Attaching package: 'rugarch'
## The following object is masked from 'package:stats':
##
## sigma
Data
Data yang digunakan adalah data Saham (Stock) dari perusahaan Amazon dimana data di peroleh dari website Kaggle dengan link: https://www.kaggle.com/datasets/szrlee/stock-time-series-20050101-to-20171231?resource=download&select=AMZN_2006-01-01_to_2018-01-01.csv
Data saham Amazon yang digunakan adalah data terdiri dari 13 Tahun data (2006-01-01 hingga 2018-01-01), dimana data berupa data harian saham yang terdiri dari :
Date - in format: yy-mm-dd
Open - harga awal di pasar saham (this is NYSE data so all in USD)
High - harga tertinggi pada hari itu
Low Close - harga terendah pada hari itu
Volume - Number of shares traded
Name - the stock’s ticker name
yang akan di lakukan dalam pengolahan data untuk model time series menguji efek arch/garch digunakan data “High Close” saja semua data yang terdiri dari 3019 data dari 1 Januari 2006 hingga 1 Januari 2018.
data_amazon<- read.csv("~/Documents/Amazon Stock.csv",sep=",")
head(data_amazon)## Date Open High Low Close Volume Name
## 1 2006-01-03 47.47 47.85 46.25 47.58 7582127 AMZN
## 2 2006-01-04 47.48 47.73 46.69 47.25 7440914 AMZN
## 3 2006-01-05 47.16 48.20 47.11 47.65 5417258 AMZN
## 4 2006-01-06 47.97 48.58 47.32 47.87 6154285 AMZN
## 5 2006-01-09 46.55 47.10 46.40 47.08 8945056 AMZN
## 6 2006-01-10 46.41 46.75 45.36 45.65 9686957 AMZN
data_amazon.ts <- ts(data_amazon[,"Close"],start=1,end=3019)
head(data_amazon.ts)## Time Series:
## Start = 1
## End = 6
## Frequency = 1
## [1] 47.58 47.25 47.65 47.87 47.08 45.65
Plot Data Time series
plot(data_amazon.ts, type="l",
main="Saham amazon 01/01/2006 - 01/01/2018",
xlab = "Hari ke -",
ylab = "Close Price")Memeriksa Pola musiman
seasonplot(data_amazon.ts,30,
main="Saham amazon 01/01/2006 - 01/01/2018",
xlab = "Hari ke -",
ylab = "Close Price",
year.labels = TRUE, col=rainbow(18))dilakukan pengujian pola musiman untuk memastikan apakah data memiliki pola musiman, walaupun secara plot time series tidak ditemukan pola tertentu pada data saham Google ini, dana setelah dilakukan pengujian pola musiman untuk beberapa kali seperti 7 hari, 14 hari dan 30 hari tidak terdapat pola tertentu dalam data (ditampilkan hanya pola untuk 30 hari), sehingga dapat disimpulkan bahwa data tidak memiliki pola musiman.
Membagi Data
Data yang terdiri dari 3019 data akan di bagi menjadi 2 bagian yaitu data training dan data testing, pembagian data dilakukan sekitar 80-20 antara training dan testing, sehingga data training sebanyak 2419 data dan 600 data testing sebagai berikut:
data_amazon.ts.train <- data_amazon.ts[1:2419]
data_amazon.ts.test <- data_amazon.ts[2420:3019]Plot antara data Train dan Testing
plot(data_amazon.ts.train, type="l",
main="Data Training Saham amazon 01/01/2006 - 01/01/2018",
xlab = "Hari ke -",
ylab = "Close Price")plot(data_amazon.ts.test, type="l",
main="Data Testing Saham amazon 01/01/2006 - 01/01/2018",
xlab = "Hari ke -",
ylab = "Close Price")Uji Stasioner data Training
acf(data_amazon.ts.train,lag.max = 30)adf.test(data_amazon.ts.train, alternative=c("stationary"),
k=trunc((length(data_amazon.ts.train)-1)^(1/3)))##
## Augmented Dickey-Fuller Test
##
## data: data_amazon.ts.train
## Dickey-Fuller = -1.437, Lag order = 13, p-value = 0.8167
## alternative hypothesis: stationary
dari hasil pengujian dengan plot ACF dan uji ADF untuk data training ddapat disimpulkan bahwa data belum stasioner dengan bentuk lag pada plot ACF yang turun lambat atau eksponensial dan pada uji ADF yang diperoleh nilai p-value yaitu 0.8167 lebih besar dari alpha=0.05.
Differencing Data
Karena data yang belum stasioner maka akan dilakukan differencing untuk membuat data stasioner sebagai berikut :
diff.1.amazon <- diff(data_amazon.ts.train,differences = 1)
plot(diff.1.amazon,type="l",
main="Differencing 1 Data Train Saham",
xlab = "Hari ke -",
ylab = "Close Price")lalu akan diuji stasioner pada data differencing :
acf(diff.1.amazon,lag.max = 30)adf.test(diff.1.amazon, alternative=c("stationary"),
k=trunc((length(diff.1.amazon)-1)^(1/3)))## Warning in adf.test(diff.1.amazon, alternative = c("stationary"), k =
## trunc((length(diff.1.amazon) - : p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: diff.1.amazon
## Dickey-Fuller = -13.462, Lag order = 13, p-value = 0.01
## alternative hypothesis: stationary
setelah dilihat dari plot ACF dan uji ADF pada data hasil differencing pertama diperoleh bahwa data telah stasioner dengan plot acf yang telah cut-off setelah lag-2 dan hasil nilai p-value = 0.01 yang lebih kecil dari alpa=0.05. lalu akan dicari model tentatif selanjutnya :
pacf(diff.1.amazon,lag.max = 30)eacf(diff.1.amazon)## AR/MA
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13
## 0 o x o o o o o o o o o o o o
## 1 x x o o o o o o o o o o o o
## 2 x x o o o o o o o o o o o o
## 3 x x x o o o o o o o o o o o
## 4 x x x x o o o o o o o o o o
## 5 x x x o o o o o o o o o o o
## 6 x x x o o x o o o o o o o o
## 7 x x o o o x x o o o o o o o
dari plot ACF, PACF dan EACF diperoleh modle tentatif yaitu : 1. Dari plot ACF diperoleh model ARIMA(0,1,2) 2. Dari plot PACF diperoleh model ARIMA(2,1,0) 3. Dari ECAF diperoleh model ARIMA(1,1,2), ARIMA(2,1,2)
Sehingga dari model tentatif diatas akan di pilih model terbaik yang memiliki nilai AIC terkecil yaitu :
Memilih Model Mean Terbaik
ARIMA012 <- arima(diff.1.amazon, order=c(0,0,2), method = "ML")
ARIMA210 <- arima(diff.1.amazon, order=c(2,0,0), method = "ML")
ARIMA112 <- arima(diff.1.amazon, order=c(1,0,2), method = "ML")
ARIMA212 <- arima(diff.1.amazon, order=c(2,0,2), method = "ML")
Model <- c("ARIMA(0,1,2)","ARIMA(2,1,0)","ARIMA(1,1,2)","ARIMA(2,1,2)")
AIC <- c(ARIMA012$aic,ARIMA210$aic,ARIMA112$aic,ARIMA212$aic)
perbandingan_AIC <- as.data.frame(cbind(Model,AIC))
perbandingan_AIC## Model AIC
## 1 ARIMA(0,1,2) 14049.1673390684
## 2 ARIMA(2,1,0) 14049.3359896749
## 3 ARIMA(1,1,2) 14051.1720611438
## 4 ARIMA(2,1,2) 14053.1037022913
Dari perbandingan model tentatif diatas diperoleh bahwa model terbaik dengan nilai AIC terkecil yaitu model ARIMA(0,1,2) yaitu 14049.167. Lalu, akan dilakukan pengujian signifikasni parameter model sebagai berikut :
Uji SIgnifikansi Parameter
printstatarima <- function (x, digits = 4,se=TRUE){ if (length(x$coef) > 0) {
cat("\nCoefficients:\n")
coef <- round(x$coef, digits = digits)
if (se && nrow(x$var.coef)) {
ses <- rep(0, length(coef))
ses[x$mask] <- round(sqrt(diag(x$var.coef)), digits = digits)
coef <- matrix(coef, 1, dimnames = list(NULL, names(coef)))
coef <- rbind(coef, s.e. = ses)
statt <- coef[1,]/ses
pval <- 2*pt(abs(statt), df=length(x$residuals)-1, lower.tail = FALSE)
coef <- rbind(coef, t=round(statt,digits=digits),sign.=round(pval,digits=digits))
coef <- t(coef)
}
print.default(coef, print.gap = 2)
}
}
printstatarima(ARIMA012)##
## Coefficients:
## s.e. t sign.
## ma1 -0.0242 0.0203 -1.1921 0.2333
## ma2 -0.0505 0.0204 -2.4755 0.0134
## intercept 0.1994 0.0831 2.3995 0.0165
dengan dilihat bahwa sebenarnya model ARIMA(0,1,2) yang memiliki nilai AIC terkecil namun parameternya MA(1) tidak signifikan, sehingga akan dicoba dengan model auto.arima sebagai berikut :
auto.arima(data_amazon.ts.train)## Series: data_amazon.ts.train
## ARIMA(0,1,0) with drift
##
## Coefficients:
## drift
## 0.1994
## s.e. 0.0899
##
## sigma^2 = 19.56: log likelihood = -7025.31
## AIC=14054.62 AICc=14054.62 BIC=14066.2
dengan bantuan fungsi auto.arima diperoleh model terbaik yaitu model ARIMA(0,1,0), namun jika dibandingkan nilai AIC kembali masih lebih kecil nilai AIC dari model ARIMA(0,1,2), sehingga disimpulkan model terbaik yaitu ARIMA(0,1,2)
Lalu, akan dilakukan pengujian dignostik model sebagai berikut :
Uji Diagnostik Model
sisaan <- ARIMA012$residuals
# Uji formal normalitas data
qqnorm(sisaan)
qqline(sisaan)# Uji nilai tengah sisaan
t.test(sisaan, mu = 0, alternative = "two.sided")##
## One Sample t-test
##
## data: sisaan
## t = -0.00086754, df = 2417, p-value = 0.9993
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.1761656 0.1760098
## sample estimates:
## mean of x
## -7.790235e-05
# Uji autokorelasi
Box.test(sisaan, lag = 23 ,type = "Ljung")##
## Box-Ljung test
##
## data: sisaan
## X-squared = 24.137, df = 23, p-value = 0.3962
Berdasarkan hasil uji dignostik untuk model terbaik ARIMA010 diperoleh sebagai berikut :
Hasil pengujian:
Normalitas Data
Berdasarkan pada Q-Q plot yang diperoleh bahwa residual menyabr pada mengikuti garis lurus, sehingga dapat dikatakan bahwa residual menyebar normal.
Nilai Tengah Sisaan
\(H_0:μ=0\) \(H_1:μ≠0\)
Hasil : \(p−value=0.9993 > α=0.05\) yang berarti TOLAK H0, Nilai tengah sisaan sama dengan 0
Autokorelasi
\(H_0\) : tidak ada autokorelasi \(H_1\) : terdapat autokorelasi
Hasil : \(p−value=0.3962 > α=0.05\) yang berarti TERIMA H0, Tidak terdapat gejala autokorelasi pada sisaan
Kesimpulan : Asumsi terpenuhi untuk residual pada model ARIMA(0,1,2)
Uji sisaan Mean Model
e_topi <- ts(sisaan)
plot.ts(e_topi)e_topisq <- ts(sisaan^2)
plot.ts(e_topisq)acf(e_topisq)pacf(e_topisq)Uji Efek ARCH
bydArchTest1 <- ArchTest(sisaan, lags=1, demean=TRUE)
bydArchTest1##
## ARCH LM-test; Null hypothesis: no ARCH effects
##
## data: sisaan
## Chi-squared = 9.8042, df = 1, p-value = 0.001741
bydArchTest2 <- ArchTest(sisaan, lags=2, demean=TRUE)
bydArchTest2##
## ARCH LM-test; Null hypothesis: no ARCH effects
##
## data: sisaan
## Chi-squared = 10.016, df = 2, p-value = 0.006683
bydArchTest3 <- ArchTest(sisaan, lags=3, demean=TRUE)
bydArchTest3##
## ARCH LM-test; Null hypothesis: no ARCH effects
##
## data: sisaan
## Chi-squared = 10.017, df = 3, p-value = 0.01842
bydArchTest4 <- ArchTest(sisaan, lags=4, demean=TRUE)
bydArchTest4##
## ARCH LM-test; Null hypothesis: no ARCH effects
##
## data: sisaan
## Chi-squared = 14.705, df = 4, p-value = 0.005355
bydArchTest5 <- ArchTest(sisaan, lags=5, demean=TRUE)
bydArchTest5##
## ARCH LM-test; Null hypothesis: no ARCH effects
##
## data: sisaan
## Chi-squared = 17.825, df = 5, p-value = 0.003174
bydArchTest6 <- ArchTest(sisaan, lags=6, demean=TRUE)
bydArchTest6##
## ARCH LM-test; Null hypothesis: no ARCH effects
##
## data: sisaan
## Chi-squared = 18.679, df = 6, p-value = 0.004742
setelah dilakukan uji efek ARCH untuk 5 lag awal, semua nia p-value menunjukkan signifikan, sehingga akan dicoba dengan GARCH.
#Menentukan model volatilitas jika efek ARCH secara statistik signifikan
#Pendugaan model ARCH/GARCH dengan function garch secara simultan
amazon.arch1 <- garch(data_amazon.ts.train,c(0,1)) #ordo ARCH(1)##
## ***** ESTIMATION WITH ANALYTICAL GRADIENT *****
##
##
## I INITIAL X(I) D(I)
##
## 1 1.325545e+04 1.000e+00
## 2 5.000000e-02 1.000e+00
##
## IT NF F RELDF PRELDF RELDX STPPAR D*STEP NPRELDF
## 0 1 1.468e+04
## 1 2 1.353e+04 7.87e-02 8.04e-01 3.8e-05 1.2e+04 1.0e+00 4.75e+03
## 2 3 1.352e+04 2.51e-04 1.27e-04 8.9e-07 0.0e+00 2.9e-02 1.27e-04
## 3 5 1.349e+04 2.12e-03 1.22e-03 8.9e-06 0.0e+00 2.9e-01 1.22e-03
## 4 7 1.348e+04 8.73e-04 1.87e-03 1.0e-05 2.5e+00 2.7e-01 2.11e-03
## 5 8 1.348e+04 2.22e-04 4.13e-04 4.2e-06 0.0e+00 1.1e-01 4.13e-04
## 6 9 1.348e+04 4.43e-05 3.70e-05 1.1e-06 0.0e+00 3.4e-02 3.70e-05
## 7 10 1.348e+04 1.40e-06 1.49e-06 1.0e-06 0.0e+00 2.8e-02 1.49e-06
## 8 11 1.348e+04 4.83e-08 2.72e-08 8.5e-07 0.0e+00 2.2e-02 2.72e-08
## 9 13 1.348e+04 2.68e-07 1.71e-07 7.1e-06 0.0e+00 1.9e-01 1.71e-07
## 10 15 1.348e+04 5.76e-07 3.51e-07 1.9e-05 0.0e+00 5.0e-01 3.51e-07
## 11 17 1.348e+04 1.63e-06 1.01e-06 6.0e-05 0.0e+00 1.6e+00 1.01e-06
## 12 19 1.348e+04 4.12e-06 2.54e-06 1.6e-04 0.0e+00 4.3e+00 2.54e-06
## 13 21 1.348e+04 1.08e-05 6.70e-06 4.4e-04 0.0e+00 1.2e+01 6.70e-06
## 14 23 1.348e+04 2.80e-05 1.72e-05 1.2e-03 0.0e+00 3.1e+01 1.72e-05
## 15 24 1.348e+04 7.22e-05 4.45e-05 3.1e-03 0.0e+00 8.2e+01 4.45e-05
## 16 25 1.348e+04 1.85e-04 1.14e-04 8.2e-03 0.0e+00 2.1e+02 1.14e-04
## 17 26 1.347e+04 4.75e-04 2.90e-04 2.2e-02 0.0e+00 5.6e+02 2.90e-04
## 18 27 1.345e+04 1.27e-03 7.56e-04 6.6e-02 0.0e+00 1.5e+03 7.56e-04
## 19 29 1.339e+04 4.81e-03 2.40e-03 3.1e-01 0.0e+00 5.2e+03 2.40e-03
## 20 31 1.334e+04 3.65e-03 2.81e-03 2.3e-01 1.8e+00 2.1e+03 3.38e-02
## 21 33 1.332e+04 1.55e-03 1.14e-03 6.2e-02 2.0e+00 4.1e+02 1.62e+00
## 22 35 1.324e+04 5.86e-03 3.95e-03 1.5e-01 2.0e+00 8.3e+02 6.55e+00
## 23 36 1.320e+04 2.82e-03 1.44e-02 5.5e-01 2.0e+00 1.7e+03 4.48e+01
## 24 38 1.313e+04 5.25e-03 2.56e-02 1.4e-01 2.0e+00 1.7e+02 6.88e+00
## 25 40 1.310e+04 2.65e-03 1.66e-03 2.0e-01 2.0e+00 1.7e+02 8.13e+00
## 26 48 1.308e+04 1.57e-03 2.73e-03 4.2e-04 2.7e+00 2.8e-01 2.01e+00
## 27 49 1.308e+04 1.45e-04 2.80e-04 4.0e-04 2.0e+00 2.8e-01 3.20e+00
## 28 50 1.308e+04 3.67e-05 3.23e-05 4.2e-04 2.0e+00 2.8e-01 3.17e+00
## 29 51 1.308e+04 9.69e-07 1.00e-06 4.3e-04 2.0e+00 2.8e-01 3.16e+00
## 30 57 1.307e+04 2.76e-04 4.45e-04 7.7e-01 2.0e+00 2.9e+02 3.16e+00
## 31 59 1.307e+04 2.91e-06 3.05e-06 6.3e-02 1.8e+00 5.1e+00 7.81e-06
## 32 61 1.307e+04 3.05e-06 3.43e-06 3.7e-01 7.3e-01 2.0e+01 5.17e-06
## 33 62 1.307e+04 5.93e-07 6.10e-07 6.7e-01 0.0e+00 1.4e+01 6.10e-07
## 34 63 1.307e+04 9.13e-10 9.31e-10 6.5e-02 0.0e+00 4.8e-01 9.31e-10
## 35 64 1.307e+04 3.57e-13 3.57e-13 1.1e-03 0.0e+00 8.7e-03 3.57e-13
##
## ***** RELATIVE FUNCTION CONVERGENCE *****
##
## FUNCTION 1.307164e+04 RELDX 1.115e-03
## FUNC. EVALS 64 GRAD. EVALS 36
## PRELDF 3.572e-13 NPRELDF 3.572e-13
##
## I FINAL X(I) D(I) G(I)
##
## 1 3.913179e+00 1.000e+00 7.630e-10
## 2 1.002753e+00 1.000e+00 2.932e-07
## Warning in sqrt(pred$e): NaNs produced
amazonarch1 <- summary(amazon.arch1)
amazonarch1##
## Call:
## garch(x = data_amazon.ts.train, order = c(0, 1))
##
## Model:
## GARCH(0,1)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0.7794 0.9872 0.9985 1.0118 1.2665
##
## Coefficient(s):
## Estimate Std. Error t value Pr(>|t|)
## a0 3.913 2916.842 0.001 0.999
## a1 1.003 1.020 0.983 0.326
##
## Diagnostic Tests:
## Jarque Bera Test
##
## data: Residuals
## X-squared = 28094, df = 2, p-value < 2.2e-16
##
##
## Box-Ljung test
##
## data: Squared.Residuals
## X-squared = 0.24086, df = 1, p-value = 0.6236
#str(sbydarch)
plot(amazon.arch1) hist(amazonarch1$residuals)qqnorm(amazonarch1$residuals)
qqline(amazonarch1$residuals, col = "red", lwd = 2)Model GARCH
#GARCH(1,1)
garchSpec11 <- ugarchspec(
variance.model=list(model="sGARCH",
garchOrder=c(1,1)),
mean.model=list(armaOrder=c(0,2)))
garchFit11 <- ugarchfit(spec=garchSpec11, data=diff.1.amazon)
coef(garchFit11)## mu ma1 ma2 omega alpha1 beta1
## 0.12463600 -0.03035405 -0.05831443 0.03763845 0.02575735 0.97324263
garchFit11##
## *---------------------------------*
## * GARCH Model Fit *
## *---------------------------------*
##
## Conditional Variance Dynamics
## -----------------------------------
## GARCH Model : sGARCH(1,1)
## Mean Model : ARFIMA(0,0,2)
## Distribution : norm
##
## Optimal Parameters
## ------------------------------------
## Estimate Std. Error t value Pr(>|t|)
## mu 0.124636 0.052939 2.3543 0.018556
## ma1 -0.030354 0.022738 -1.3349 0.181902
## ma2 -0.058314 0.023207 -2.5127 0.011979
## omega 0.037638 0.007578 4.9671 0.000001
## alpha1 0.025757 0.002732 9.4281 0.000000
## beta1 0.973243 0.002867 339.4052 0.000000
##
## Robust Standard Errors:
## Estimate Std. Error t value Pr(>|t|)
## mu 0.124636 0.058579 2.1276 0.033366
## ma1 -0.030354 0.027120 -1.1193 0.263031
## ma2 -0.058314 0.024251 -2.4047 0.016188
## omega 0.037638 0.033996 1.1071 0.268230
## alpha1 0.025757 0.008963 2.8737 0.004056
## beta1 0.973243 0.010706 90.9036 0.000000
##
## LogLikelihood : -6544.866
##
## Information Criteria
## ------------------------------------
##
## Akaike 5.4184
## Bayes 5.4328
## Shibata 5.4184
## Hannan-Quinn 5.4236
##
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.0001553 0.9901
## Lag[2*(p+q)+(p+q)-1][5] 0.2181728 1.0000
## Lag[4*(p+q)+(p+q)-1][9] 0.9518012 0.9998
## d.o.f=2
## H0 : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 1.766 0.1839
## Lag[2*(p+q)+(p+q)-1][5] 2.279 0.5541
## Lag[4*(p+q)+(p+q)-1][9] 2.500 0.8377
## d.o.f=2
##
## Weighted ARCH LM Tests
## ------------------------------------
## Statistic Shape Scale P-Value
## ARCH Lag[3] 0.4636 0.500 2.000 0.4959
## ARCH Lag[5] 0.5937 1.440 1.667 0.8557
## ARCH Lag[7] 0.6559 2.315 1.543 0.9622
##
## Nyblom stability test
## ------------------------------------
## Joint Statistic: 2.667
## Individual Statistics:
## mu 0.36018
## ma1 0.02986
## ma2 0.07162
## omega 0.16405
## alpha1 0.08142
## beta1 0.25034
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 1.49 1.68 2.12
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## ------------------------------------
## t-value prob sig
## Sign Bias 0.1930 0.84700
## Negative Sign Bias 0.5549 0.57903
## Positive Sign Bias 1.9471 0.05164 *
## Joint Effect 4.3432 0.22671
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
## group statistic p-value(g-1)
## 1 20 278.4 5.318e-48
## 2 30 305.4 6.866e-48
## 3 40 305.3 5.258e-43
## 4 50 325.2 2.036e-42
##
##
## Elapsed time : 0.103076
res<-garchFit11@fit$residuals
res.ts<-ts(res)
plot.ts(res.ts)#GARCH(1,2)
garchSpec12 <- ugarchspec(
variance.model=list(model="sGARCH",
garchOrder=c(1,2)),
mean.model=list(armaOrder=c(0,2)))
garchFit12 <- ugarchfit(spec=garchSpec12, data=diff.1.amazon)
coef(garchFit12)## mu ma1 ma2 omega alpha1 beta1
## 0.11124578 -0.03056320 -0.05340995 0.06020831 0.04846366 0.03072131
## beta2
## 0.91981503
garchFit12##
## *---------------------------------*
## * GARCH Model Fit *
## *---------------------------------*
##
## Conditional Variance Dynamics
## -----------------------------------
## GARCH Model : sGARCH(1,2)
## Mean Model : ARFIMA(0,0,2)
## Distribution : norm
##
## Optimal Parameters
## ------------------------------------
## Estimate Std. Error t value Pr(>|t|)
## mu 0.111246 0.051908 2.1431 0.032104
## ma1 -0.030563 0.023591 -1.2955 0.195138
## ma2 -0.053410 0.021149 -2.5254 0.011556
## omega 0.060208 0.012132 4.9629 0.000001
## alpha1 0.048464 0.004370 11.0893 0.000000
## beta1 0.030721 0.004594 6.6873 0.000000
## beta2 0.919815 0.004724 194.7209 0.000000
##
## Robust Standard Errors:
## Estimate Std. Error t value Pr(>|t|)
## mu 0.111246 0.058198 1.9115 0.055940
## ma1 -0.030563 0.027373 -1.1165 0.264189
## ma2 -0.053410 0.022868 -2.3356 0.019514
## omega 0.060208 0.059284 1.0156 0.309826
## alpha1 0.048464 0.012727 3.8081 0.000140
## beta1 0.030721 0.008440 3.6398 0.000273
## beta2 0.919815 0.011589 79.3729 0.000000
##
## LogLikelihood : -6532.755
##
## Information Criteria
## ------------------------------------
##
## Akaike 5.4092
## Bayes 5.4260
## Shibata 5.4092
## Hannan-Quinn 5.4153
##
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.01923 0.8897
## Lag[2*(p+q)+(p+q)-1][5] 0.16928 1.0000
## Lag[4*(p+q)+(p+q)-1][9] 0.90962 0.9999
## d.o.f=2
## H0 : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.5603 0.4541
## Lag[2*(p+q)+(p+q)-1][8] 1.2984 0.9490
## Lag[4*(p+q)+(p+q)-1][14] 1.5814 0.9968
## d.o.f=3
##
## Weighted ARCH LM Tests
## ------------------------------------
## Statistic Shape Scale P-Value
## ARCH Lag[4] 0.3338 0.500 2.000 0.5635
## ARCH Lag[6] 0.3546 1.461 1.711 0.9314
## ARCH Lag[8] 0.3795 2.368 1.583 0.9900
##
## Nyblom stability test
## ------------------------------------
## Joint Statistic: 3.3333
## Individual Statistics:
## mu 0.32710
## ma1 0.03703
## ma2 0.09091
## omega 0.15564
## alpha1 0.07438
## beta1 0.24861
## beta2 0.23574
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 1.69 1.9 2.35
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## ------------------------------------
## t-value prob sig
## Sign Bias 0.1040 0.9172
## Negative Sign Bias 0.3401 0.7338
## Positive Sign Bias 1.4091 0.1589
## Joint Effect 2.2906 0.5143
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
## group statistic p-value(g-1)
## 1 20 266.4 1.419e-45
## 2 30 282.2 2.571e-43
## 3 40 293.1 1.097e-40
## 4 50 302.5 3.262e-38
##
##
## Elapsed time : 0.135596
res2<-garchFit12@fit$residuals
res2.ts<-ts(res2)
plot.ts(res2.ts)#GARCH(1,3)
garchSpec13 <- ugarchspec(
variance.model=list(model="sGARCH",
garchOrder=c(1,3)),
mean.model=list(armaOrder=c(0,2)))
garchFit13 <- ugarchfit(spec=garchSpec13, data=diff.1.amazon)
coef(garchFit13)## mu ma1 ma2 omega alpha1
## 1.223706e-01 9.014122e-03 -6.434255e-02 1.123435e-01 9.469583e-02
## beta1 beta2 beta3
## 3.769533e-08 3.825771e-02 8.660464e-01
garchFit13##
## *---------------------------------*
## * GARCH Model Fit *
## *---------------------------------*
##
## Conditional Variance Dynamics
## -----------------------------------
## GARCH Model : sGARCH(1,3)
## Mean Model : ARFIMA(0,0,2)
## Distribution : norm
##
## Optimal Parameters
## ------------------------------------
## Estimate Std. Error t value Pr(>|t|)
## mu 0.122371 0.051302 2.385305 0.017065
## ma1 0.009014 0.024056 0.374719 0.707869
## ma2 -0.064343 0.019955 -3.224372 0.001262
## omega 0.112344 0.025785 4.356981 0.000013
## alpha1 0.094696 0.010768 8.794304 0.000000
## beta1 0.000000 0.008004 0.000005 0.999996
## beta2 0.038258 0.006945 5.508304 0.000000
## beta3 0.866046 0.014162 61.152209 0.000000
##
## Robust Standard Errors:
## Estimate Std. Error t value Pr(>|t|)
## mu 0.122371 0.057711 2.120411 0.033971
## ma1 0.009014 0.033655 0.267840 0.788823
## ma2 -0.064343 0.020050 -3.209166 0.001331
## omega 0.112344 0.120427 0.932876 0.350884
## alpha1 0.094696 0.034323 2.758997 0.005798
## beta1 0.000000 0.039482 0.000001 0.999999
## beta2 0.038258 0.021520 1.777776 0.075441
## beta3 0.866046 0.043094 20.096578 0.000000
##
## LogLikelihood : -6502.891
##
## Information Criteria
## ------------------------------------
##
## Akaike 5.3854
## Bayes 5.4045
## Shibata 5.3853
## Hannan-Quinn 5.3923
##
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 2.954 0.08567
## Lag[2*(p+q)+(p+q)-1][5] 3.443 0.23016
## Lag[4*(p+q)+(p+q)-1][9] 4.299 0.61973
## d.o.f=2
## H0 : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.05194 0.8197
## Lag[2*(p+q)+(p+q)-1][11] 1.08365 0.9953
## Lag[4*(p+q)+(p+q)-1][19] 1.53700 0.9999
## d.o.f=4
##
## Weighted ARCH LM Tests
## ------------------------------------
## Statistic Shape Scale P-Value
## ARCH Lag[5] 0.7949 0.500 2.000 0.3726
## ARCH Lag[7] 0.8648 1.473 1.746 0.7954
## ARCH Lag[9] 0.8837 2.402 1.619 0.9464
##
## Nyblom stability test
## ------------------------------------
## Joint Statistic: 5.1071
## Individual Statistics:
## mu 0.27741
## ma1 0.08201
## ma2 0.08932
## omega 0.22958
## alpha1 0.11516
## beta1 0.26917
## beta2 0.17574
## beta3 0.19232
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 1.89 2.11 2.59
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## ------------------------------------
## t-value prob sig
## Sign Bias 0.35998 0.7189
## Negative Sign Bias 0.07121 0.9432
## Positive Sign Bias 1.18966 0.2343
## Joint Effect 1.46857 0.6895
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
## group statistic p-value(g-1)
## 1 20 223.9 5.593e-37
## 2 30 235.5 3.228e-34
## 3 40 256.4 8.749e-34
## 4 50 265.0 2.083e-31
##
##
## Elapsed time : 0.2232869
res3<-garchFit13@fit$residuals
res3.ts<-ts(res3)
plot.ts(res3.ts)#GARCH(1,4)
garchSpec14 <- ugarchspec(
variance.model=list(model="sGARCH",
garchOrder=c(1,4)),
mean.model=list(armaOrder=c(0,2)))
garchFit14 <- ugarchfit(spec=garchSpec14, data=diff.1.amazon)
coef(garchFit14)## mu ma1 ma2 omega alpha1
## 1.222193e-01 -2.159528e-02 -6.418984e-02 1.350320e-01 1.005402e-01
## beta1 beta2 beta3 beta4
## 1.274961e-07 9.578452e-08 2.430906e-01 6.553690e-01
garchFit14##
## *---------------------------------*
## * GARCH Model Fit *
## *---------------------------------*
##
## Conditional Variance Dynamics
## -----------------------------------
## GARCH Model : sGARCH(1,4)
## Mean Model : ARFIMA(0,0,2)
## Distribution : norm
##
## Optimal Parameters
## ------------------------------------
## Estimate Std. Error t value Pr(>|t|)
## mu 0.122219 0.052412 2.331892 0.019706
## ma1 -0.021595 0.024697 -0.874417 0.381891
## ma2 -0.064190 0.020259 -3.168425 0.001533
## omega 0.135032 0.025679 5.258375 0.000000
## alpha1 0.100540 0.012356 8.136652 0.000000
## beta1 0.000000 0.057452 0.000002 0.999998
## beta2 0.000000 0.062993 0.000002 0.999999
## beta3 0.243091 0.028039 8.669674 0.000000
## beta4 0.655369 0.075548 8.674904 0.000000
##
## Robust Standard Errors:
## Estimate Std. Error t value Pr(>|t|)
## mu 0.122219 0.058670 2.08317 0.037236
## ma1 -0.021595 0.031432 -0.68706 0.492047
## ma2 -0.064190 0.026842 -2.39143 0.016783
## omega 0.135032 0.114369 1.18067 0.237732
## alpha1 0.100540 0.037656 2.66995 0.007586
## beta1 0.000000 0.326060 0.00000 1.000000
## beta2 0.000000 0.235368 0.00000 1.000000
## beta3 0.243091 0.230900 1.05280 0.292434
## beta4 0.655369 0.326154 2.00938 0.044496
##
## LogLikelihood : -6508.459
##
## Information Criteria
## ------------------------------------
##
## Akaike 5.3908
## Bayes 5.4123
## Shibata 5.3908
## Hannan-Quinn 5.3986
##
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.2859 0.5929
## Lag[2*(p+q)+(p+q)-1][5] 0.7807 1.0000
## Lag[4*(p+q)+(p+q)-1][9] 1.4086 0.9980
## d.o.f=2
## H0 : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.01318 0.9086
## Lag[2*(p+q)+(p+q)-1][14] 0.51250 1.0000
## Lag[4*(p+q)+(p+q)-1][24] 1.20951 1.0000
## d.o.f=5
##
## Weighted ARCH LM Tests
## ------------------------------------
## Statistic Shape Scale P-Value
## ARCH Lag[6] 0.004247 0.500 2.000 0.9480
## ARCH Lag[8] 0.089316 1.480 1.774 0.9911
## ARCH Lag[10] 0.256136 2.424 1.650 0.9968
##
## Nyblom stability test
## ------------------------------------
## Joint Statistic: 4.3228
## Individual Statistics:
## mu 0.33943
## ma1 0.05264
## ma2 0.09556
## omega 0.11841
## alpha1 0.08382
## beta1 0.31212
## beta2 0.29457
## beta3 0.27117
## beta4 0.29175
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 2.1 2.32 2.82
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## ------------------------------------
## t-value prob sig
## Sign Bias 0.3032 0.7618
## Negative Sign Bias 0.1710 0.8642
## Positive Sign Bias 0.9553 0.3395
## Joint Effect 0.9902 0.8036
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
## group statistic p-value(g-1)
## 1 20 273.7 4.751e-47
## 2 30 298.4 1.683e-46
## 3 40 297.2 1.794e-41
## 4 50 309.2 1.908e-39
##
##
## Elapsed time : 0.126461
res4<-garchFit14@fit$residuals
res4.ts<-ts(res4)
plot.ts(res4.ts)#GARCH(2,1)
garchSpec21 <- ugarchspec(
variance.model=list(model="sGARCH",
garchOrder=c(2,1)),
mean.model=list(armaOrder=c(0,2)))
garchFit21 <- ugarchfit(spec=garchSpec21, data=diff.1.amazon)
coef(garchFit21)## mu ma1 ma2 omega alpha1
## 1.246391e-01 -3.035390e-02 -5.831529e-02 3.763826e-02 2.575720e-02
## alpha2 beta1
## 8.787294e-08 9.732427e-01
garchFit21##
## *---------------------------------*
## * GARCH Model Fit *
## *---------------------------------*
##
## Conditional Variance Dynamics
## -----------------------------------
## GARCH Model : sGARCH(2,1)
## Mean Model : ARFIMA(0,0,2)
## Distribution : norm
##
## Optimal Parameters
## ------------------------------------
## Estimate Std. Error t value Pr(>|t|)
## mu 0.124639 0.052982 2.35246 0.018650
## ma1 -0.030354 0.022738 -1.33492 0.181903
## ma2 -0.058315 0.023212 -2.51229 0.011995
## omega 0.037638 0.007674 4.90476 0.000001
## alpha1 0.025757 0.008359 3.08130 0.002061
## alpha2 0.000000 0.008878 0.00001 0.999992
## beta1 0.973243 0.002991 325.39038 0.000000
##
## Robust Standard Errors:
## Estimate Std. Error t value Pr(>|t|)
## mu 0.124639 0.059048 2.110816 0.034788
## ma1 -0.030354 0.027119 -1.119303 0.263011
## ma2 -0.058315 0.024183 -2.411432 0.015890
## omega 0.037638 0.033753 1.115093 0.264810
## alpha1 0.025757 0.018030 1.428546 0.153135
## alpha2 0.000000 0.019006 0.000005 0.999996
## beta1 0.973243 0.011050 88.073168 0.000000
##
## LogLikelihood : -6544.866
##
## Information Criteria
## ------------------------------------
##
## Akaike 5.4192
## Bayes 5.4360
## Shibata 5.4192
## Hannan-Quinn 5.4253
##
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.0001551 0.9901
## Lag[2*(p+q)+(p+q)-1][5] 0.2181961 1.0000
## Lag[4*(p+q)+(p+q)-1][9] 0.9518260 0.9998
## d.o.f=2
## H0 : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 1.766 0.1839
## Lag[2*(p+q)+(p+q)-1][8] 2.461 0.7827
## Lag[4*(p+q)+(p+q)-1][14] 2.700 0.9701
## d.o.f=3
##
## Weighted ARCH LM Tests
## ------------------------------------
## Statistic Shape Scale P-Value
## ARCH Lag[4] 0.003034 0.500 2.000 0.9561
## ARCH Lag[6] 0.212764 1.461 1.711 0.9658
## ARCH Lag[8] 0.261205 2.368 1.583 0.9957
##
## Nyblom stability test
## ------------------------------------
## Joint Statistic: 3.4695
## Individual Statistics:
## mu 0.36022
## ma1 0.02986
## ma2 0.07162
## omega 0.16405
## alpha1 0.08142
## alpha2 0.08324
## beta1 0.25034
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 1.69 1.9 2.35
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## ------------------------------------
## t-value prob sig
## Sign Bias 0.1930 0.84700
## Negative Sign Bias 0.5549 0.57903
## Positive Sign Bias 1.9471 0.05164 *
## Joint Effect 4.3433 0.22670
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
## group statistic p-value(g-1)
## 1 20 278.4 5.318e-48
## 2 30 305.4 6.866e-48
## 3 40 305.3 5.258e-43
## 4 50 325.2 2.036e-42
##
##
## Elapsed time : 0.1099808
res21<-garchFit21@fit$residuals
res21.ts<-ts(res21)
plot.ts(res21.ts) # UJI DIAGNOSTIK GARCH(1,2)
amazon.garch12 <- garch(data_amazon.ts.train,c(1,2)) #ordo ARCH(1)##
## ***** ESTIMATION WITH ANALYTICAL GRADIENT *****
##
##
## I INITIAL X(I) D(I)
##
## 1 1.186014e+04 1.000e+00
## 2 5.000000e-02 1.000e+00
## 3 5.000000e-02 1.000e+00
## 4 5.000000e-02 1.000e+00
##
## IT NF F RELDF PRELDF RELDX STPPAR D*STEP NPRELDF
## 0 1 1.424e+04
## 1 2 1.374e+04 3.50e-02 6.99e-01 3.0e-05 1.0e+04 1.0e+00 3.48e+03
## 2 4 1.369e+04 3.68e-03 3.50e-03 1.9e-06 6.6e+00 5.0e-02 2.64e+01
## 3 6 1.360e+04 6.52e-03 6.46e-03 3.8e-06 2.4e+00 1.0e-01 7.73e-01
## 4 8 1.359e+04 1.18e-03 1.18e-03 7.5e-07 2.8e+01 2.0e-02 4.82e-01
## 5 10 1.358e+04 2.32e-04 2.32e-04 1.5e-07 1.4e+02 4.0e-03 3.04e-01
## 6 13 1.356e+04 1.80e-03 1.80e-03 1.2e-06 5.5e+00 3.2e-02 2.72e-01
## 7 17 1.356e+04 3.50e-06 3.50e-06 2.4e-09 8.6e+03 6.4e-05 2.24e-01
## 8 19 1.356e+04 7.00e-06 7.00e-06 4.8e-09 1.1e+03 1.3e-04 1.88e-01
## 9 21 1.356e+04 1.40e-06 1.40e-06 9.5e-10 2.2e+04 2.6e-05 1.88e-01
## 10 23 1.356e+04 2.80e-06 2.80e-06 1.9e-09 2.7e+03 5.1e-05 1.88e-01
## 11 25 1.356e+04 5.60e-06 5.60e-06 3.8e-09 1.4e+03 1.0e-04 1.88e-01
## 12 27 1.356e+04 1.12e-06 1.12e-06 7.6e-10 2.7e+04 2.0e-05 1.88e-01
## 13 29 1.356e+04 2.24e-07 2.24e-07 1.5e-10 1.4e+05 4.1e-06 1.87e-01
## 14 31 1.356e+04 4.48e-08 4.48e-08 3.1e-11 6.8e+05 8.2e-07 1.87e-01
## 15 33 1.356e+04 8.96e-08 8.96e-08 6.1e-11 8.6e+04 1.6e-06 1.87e-01
## 16 35 1.356e+04 1.79e-08 1.79e-08 1.2e-11 1.7e+06 3.3e-07 1.87e-01
## 17 37 1.356e+04 3.58e-08 3.58e-08 2.4e-11 2.1e+05 6.6e-07 1.87e-01
## 18 39 1.356e+04 7.17e-09 7.17e-09 4.9e-12 4.3e+06 1.3e-07 1.87e-01
## 19 41 1.356e+04 1.43e-09 1.43e-09 9.8e-13 2.1e+07 2.6e-08 1.87e-01
## 20 43 1.356e+04 2.87e-09 2.87e-09 2.0e-12 2.7e+06 5.2e-08 1.87e-01
## 21 46 1.356e+04 5.73e-11 5.73e-11 3.9e-14 1.9e+00 1.0e-09 -2.17e-02
## 22 48 1.356e+04 1.15e-10 1.15e-10 7.8e-14 6.7e+07 2.1e-09 1.87e-01
## 23 50 1.356e+04 2.29e-11 2.29e-11 1.6e-14 1.9e+00 4.2e-10 -2.17e-02
## 24 53 1.356e+04 1.84e-10 1.84e-10 1.2e-13 4.2e+07 3.4e-09 1.87e-01
## 25 56 1.356e+04 -7.37e+05 3.67e-12 2.5e-15 1.9e+00 6.7e-11 -2.17e-02
##
## ***** FALSE CONVERGENCE *****
##
## FUNCTION 1.355994e+04 RELDX 2.499e-15
## FUNC. EVALS 56 GRAD. EVALS 25
## PRELDF 3.670e-12 NPRELDF -2.174e-02
##
## I FINAL X(I) D(I) G(I)
##
## 1 1.186014e+04 1.000e+00 2.664e-02
## 2 6.894395e-01 1.000e+00 2.461e+02
## 3 6.869600e-01 1.000e+00 2.458e+02
## 4 5.355173e-11 1.000e+00 6.549e+02
## Warning in sqrt(pred$e): NaNs produced
amazongarch12 <- summary(amazon.garch12)
amazongarch12##
## Call:
## garch(x = data_amazon.ts.train, order = c(1, 2))
##
## Model:
## GARCH(1,2)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0.2265 0.5347 0.7324 0.8044 0.9466
##
## Coefficient(s):
## Estimate Std. Error t value Pr(>|t|)
## a0 1.186e+04 1.374e+04 0.863 0.388
## a1 6.894e-01 3.940e+00 0.175 0.861
## a2 6.870e-01 4.234e+00 0.162 0.871
## b1 5.355e-11 1.147e+00 0.000 1.000
##
## Diagnostic Tests:
## Jarque Bera Test
##
## data: Residuals
## X-squared = 295.38, df = 2, p-value < 2.2e-16
##
##
## Box-Ljung test
##
## data: Squared.Residuals
## X-squared = 2379.2, df = 1, p-value < 2.2e-16
#str(sbydarch)
plot(amazon.garch12) Peramalan
Peramalan dengan Data Train
## ramalan dari data train
model <-Arima(data_amazon.ts.train,order=c(0,1,2))
ramalan_model<-forecast(model,h=600)
plot(ramalan_model)Plot ramalan dengan Data Test
f.arima<-predict(model, n.ahead=600)
for.arima<-cbind(datatest=data_amazon.ts.test,f.arima$pred,f.arima$se^2)
f.garch<-ugarchforecast(garchFit12,n.ahead=600)
plot.ts(for.arima)Perbandingan hasil ramalan dengan data test
ramalan <- f.arima$pred
hasil_perbandingan<- as.data.frame(cbind(data_amazon.ts.test,ramalan))
hasil_perbandingan## data_amazon.ts.test ramalan
## 1 531.52 529.6449
## 2 535.22 529.4593
## 3 535.02 529.4593
## 4 532.92 529.4593
## 5 515.78 529.4593
## 6 494.47 529.4593
## 7 463.37 529.4593
## 8 466.37 529.4593
## 9 500.77 529.4593
## 10 518.37 529.4593
## 11 518.01 529.4593
## 12 512.89 529.4593
## 13 496.54 529.4593
## 14 510.55 529.4593
## 15 504.72 529.4593
## 16 499.00 529.4593
## 17 517.54 529.4593
## 18 516.89 529.4593
## 19 522.24 529.4593
## 20 529.44 529.4593
## 21 521.38 529.4593
## 22 522.37 529.4593
## 23 527.39 529.4593
## 24 538.87 529.4593
## 25 540.26 529.4593
## 26 548.39 529.4593
## 27 538.40 529.4593
## 28 536.07 529.4593
## 29 533.75 529.4593
## 30 524.25 529.4593
## 31 504.06 529.4593
## 32 496.07 529.4593
## 33 511.89 529.4593
## 34 520.72 529.4593
## 35 532.54 529.4593
## 36 543.68 529.4593
## 37 537.48 529.4593
## 38 541.94 529.4593
## 39 533.16 529.4593
## 40 539.80 529.4593
## 41 550.19 529.4593
## 42 548.90 529.4593
## 43 544.83 529.4593
## 44 562.44 529.4593
## 45 570.76 529.4593
## 46 573.15 529.4593
## 47 560.88 529.4593
## 48 555.77 529.4593
## 49 563.91 529.4593
## 50 599.03 529.4593
## 51 608.61 529.4593
## 52 611.01 529.4593
## 53 617.10 529.4593
## 54 626.55 529.4593
## 55 625.90 529.4593
## 56 628.35 529.4593
## 57 625.31 529.4593
## 58 640.95 529.4593
## 59 655.65 529.4593
## 60 659.37 529.4593
## 61 655.49 529.4593
## 62 659.68 529.4593
## 63 673.25 529.4593
## 64 665.60 529.4593
## 65 642.35 529.4593
## 66 647.81 529.4593
## 67 643.30 529.4593
## 68 663.54 529.4593
## 69 661.27 529.4593
## 70 668.45 529.4593
## 71 678.99 529.4593
## 72 671.15 529.4593
## 73 675.34 529.4593
## 74 673.26 529.4593
## 75 664.80 529.4593
## 76 679.06 529.4593
## 77 676.01 529.4593
## 78 666.25 529.4593
## 79 672.64 529.4593
## 80 669.83 529.4593
## 81 677.33 529.4593
## 82 664.79 529.4593
## 83 662.32 529.4593
## 84 640.15 529.4593
## 85 657.91 529.4593
## 86 658.64 529.4593
## 87 675.77 529.4593
## 88 670.65 529.4593
## 89 664.14 529.4593
## 90 664.51 529.4593
## 91 663.15 529.4593
## 92 663.70 529.4593
## 93 662.79 529.4593
## 94 675.20 529.4593
## 95 693.97 529.4593
## 96 689.07 529.4593
## 97 675.89 529.4593
## 98 636.99 529.4593
## 99 633.79 529.4593
## 100 632.65 529.4593
## 101 607.94 529.4593
## 102 607.05 529.4593
## 103 617.74 529.4593
## 104 617.89 529.4593
## 105 581.81 529.4593
## 106 593.00 529.4593
## 107 570.18 529.4593
## 108 574.48 529.4593
## 109 571.77 529.4593
## 110 575.02 529.4593
## 111 596.38 529.4593
## 112 596.53 529.4593
## 113 601.25 529.4593
## 114 583.35 529.4593
## 115 635.35 529.4593
## 116 587.00 529.4593
## 117 574.81 529.4593
## 118 552.10 529.4593
## 119 531.07 529.4593
## 120 536.26 529.4593
## 121 502.13 529.4593
## 122 488.10 529.4593
## 123 482.07 529.4593
## 124 490.48 529.4593
## 125 503.82 529.4593
## 126 507.08 529.4593
## 127 521.10 529.4593
## 128 534.10 529.4593
## 129 525.00 529.4593
## 130 534.90 529.4593
## 131 559.50 529.4593
## 132 552.94 529.4593
## 133 554.04 529.4593
## 134 555.15 529.4593
## 135 555.23 529.4593
## 136 552.52 529.4593
## 137 579.04 529.4593
## 138 580.21 529.4593
## 139 577.49 529.4593
## 140 575.14 529.4593
## 141 562.80 529.4593
## 142 560.26 529.4593
## 143 559.47 529.4593
## 144 558.93 529.4593
## 145 569.61 529.4593
## 146 573.37 529.4593
## 147 577.02 529.4593
## 148 574.27 529.4593
## 149 559.44 529.4593
## 150 552.08 529.4593
## 151 553.98 529.4593
## 152 560.48 529.4593
## 153 569.63 529.4593
## 154 582.95 529.4593
## 155 579.87 529.4593
## 156 593.86 529.4593
## 157 598.69 529.4593
## 158 593.64 529.4593
## 159 598.50 529.4593
## 160 593.19 529.4593
## 161 586.14 529.4593
## 162 602.08 529.4593
## 163 591.43 529.4593
## 164 594.60 529.4593
## 165 595.93 529.4593
## 166 603.17 529.4593
## 167 614.82 529.4593
## 168 620.75 529.4593
## 169 625.89 529.4593
## 170 635.35 529.4593
## 171 627.90 529.4593
## 172 632.99 529.4593
## 173 631.00 529.4593
## 174 620.50 529.4593
## 175 626.20 529.4593
## 176 616.88 529.4593
## 177 606.57 529.4593
## 178 602.00 529.4593
## 179 659.59 529.4593
## 180 683.85 529.4593
## 181 671.32 529.4593
## 182 670.90 529.4593
## 183 659.09 529.4593
## 184 673.95 529.4593
## 185 679.75 529.4593
## 186 703.07 529.4593
## 187 713.23 529.4593
## 188 717.93 529.4593
## 189 709.92 529.4593
## 190 710.66 529.4593
## 191 695.27 529.4593
## 192 697.45 529.4593
## 193 698.52 529.4593
## 194 702.80 529.4593
## 195 696.75 529.4593
## 196 704.20 529.4593
## 197 708.35 529.4593
## 198 714.91 529.4593
## 199 712.24 529.4593
## 200 722.79 529.4593
## 201 719.44 529.4593
## 202 728.24 529.4593
## 203 725.54 529.4593
## 204 726.73 529.4593
## 205 723.74 529.4593
## 206 726.64 529.4593
## 207 727.65 529.4593
## 208 717.91 529.4593
## 209 715.24 529.4593
## 210 719.30 529.4593
## 211 714.26 529.4593
## 212 717.51 529.4593
## 213 706.39 529.4593
## 214 714.01 529.4593
## 215 715.82 529.4593
## 216 710.60 529.4593
## 217 722.08 529.4593
## 218 698.96 529.4593
## 219 691.36 529.4593
## 220 707.95 529.4593
## 221 715.60 529.4593
## 222 715.62 529.4593
## 223 725.68 529.4593
## 224 728.10 529.4593
## 225 737.61 529.4593
## 226 736.57 529.4593
## 227 745.81 529.4593
## 228 753.78 529.4593
## 229 748.21 529.4593
## 230 742.63 529.4593
## 231 741.20 529.4593
## 232 735.44 529.4593
## 233 736.07 529.4593
## 234 739.95 529.4593
## 235 745.72 529.4593
## 236 744.43 529.4593
## 237 744.86 529.4593
## 238 739.61 529.4593
## 239 735.59 529.4593
## 240 736.67 529.4593
## 241 752.61 529.4593
## 242 758.81 529.4593
## 243 767.74 529.4593
## 244 760.58 529.4593
## 245 754.64 529.4593
## 246 760.77 529.4593
## 247 765.98 529.4593
## 248 766.56 529.4593
## 249 768.31 529.4593
## 250 768.56 529.4593
## 251 771.24 529.4593
## 252 772.56 529.4593
## 253 768.49 529.4593
## 254 764.04 529.4593
## 255 764.63 529.4593
## 256 764.46 529.4593
## 257 757.31 529.4593
## 258 759.48 529.4593
## 259 762.45 529.4593
## 260 757.25 529.4593
## 261 759.22 529.4593
## 262 769.00 529.4593
## 263 771.29 529.4593
## 264 767.58 529.4593
## 265 769.16 529.4593
## 266 770.62 529.4593
## 267 772.44 529.4593
## 268 788.87 529.4593
## 269 784.48 529.4593
## 270 784.06 529.4593
## 271 760.14 529.4593
## 272 771.49 529.4593
## 273 761.01 529.4593
## 274 761.09 529.4593
## 275 769.69 529.4593
## 276 778.52 529.4593
## 277 775.10 529.4593
## 278 780.22 529.4593
## 279 789.74 529.4593
## 280 804.70 529.4593
## 281 805.75 529.4593
## 282 799.16 529.4593
## 283 816.11 529.4593
## 284 828.72 529.4593
## 285 829.05 529.4593
## 286 837.31 529.4593
## 287 836.74 529.4593
## 288 834.03 529.4593
## 289 844.36 529.4593
## 290 841.66 529.4593
## 291 839.43 529.4593
## 292 841.71 529.4593
## 293 831.00 529.4593
## 294 834.09 529.4593
## 295 829.28 529.4593
## 296 822.96 529.4593
## 297 812.95 529.4593
## 298 817.65 529.4593
## 299 817.69 529.4593
## 300 810.32 529.4593
## 301 818.99 529.4593
## 302 838.09 529.4593
## 303 835.18 529.4593
## 304 822.59 529.4593
## 305 818.36 529.4593
## 306 776.32 529.4593
## 307 789.82 529.4593
## 308 785.41 529.4593
## 309 765.56 529.4593
## 310 767.03 529.4593
## 311 755.05 529.4593
## 312 784.93 529.4593
## 313 787.75 529.4593
## 314 771.88 529.4593
## 315 742.38 529.4593
## 316 739.01 529.4593
## 317 719.07 529.4593
## 318 743.24 529.4593
## 319 746.49 529.4593
## 320 756.40 529.4593
## 321 760.16 529.4593
## 322 780.00 529.4593
## 323 785.33 529.4593
## 324 780.12 529.4593
## 325 780.37 529.4593
## 326 766.77 529.4593
## 327 762.52 529.4593
## 328 750.57 529.4593
## 329 743.65 529.4593
## 330 740.34 529.4593
## 331 759.36 529.4593
## 332 764.72 529.4593
## 333 770.42 529.4593
## 334 767.33 529.4593
## 335 768.66 529.4593
## 336 760.12 529.4593
## 337 774.34 529.4593
## 338 768.82 529.4593
## 339 761.00 529.4593
## 340 757.77 529.4593
## 341 766.00 529.4593
## 342 771.22 529.4593
## 343 770.60 529.4593
## 344 766.34 529.4593
## 345 760.59 529.4593
## 346 771.40 529.4593
## 347 772.13 529.4593
## 348 765.15 529.4593
## 349 749.87 529.4593
## 350 753.67 529.4593
## 351 757.18 529.4593
## 352 780.45 529.4593
## 353 795.99 529.4593
## 354 796.92 529.4593
## 355 795.90 529.4593
## 356 799.02 529.4593
## 357 813.64 529.4593
## 358 817.14 529.4593
## 359 809.72 529.4593
## 360 807.48 529.4593
## 361 809.04 529.4593
## 362 808.33 529.4593
## 363 817.88 529.4593
## 364 822.44 529.4593
## 365 836.52 529.4593
## 366 839.15 529.4593
## 367 835.77 529.4593
## 368 830.38 529.4593
## 369 823.48 529.4593
## 370 832.35 529.4593
## 371 839.95 529.4593
## 372 810.20 529.4593
## 373 807.64 529.4593
## 374 812.50 529.4593
## 375 819.71 529.4593
## 376 821.36 529.4593
## 377 827.46 529.4593
## 378 836.53 529.4593
## 379 836.39 529.4593
## 380 842.70 529.4593
## 381 844.14 529.4593
## 382 845.07 529.4593
## 383 856.44 529.4593
## 384 855.61 529.4593
## 385 852.19 529.4593
## 386 845.24 529.4593
## 387 848.64 529.4593
## 388 845.04 529.4593
## 389 853.08 529.4593
## 390 848.91 529.4593
## 391 849.88 529.4593
## 392 846.61 529.4593
## 393 846.02 529.4593
## 394 850.50 529.4593
## 395 853.00 529.4593
## 396 852.46 529.4593
## 397 854.59 529.4593
## 398 852.53 529.4593
## 399 852.97 529.4593
## 400 853.42 529.4593
## 401 852.31 529.4593
## 402 856.97 529.4593
## 403 843.20 529.4593
## 404 848.06 529.4593
## 405 847.38 529.4593
## 406 845.61 529.4593
## 407 846.82 529.4593
## 408 856.00 529.4593
## 409 874.32 529.4593
## 410 876.34 529.4593
## 411 886.54 529.4593
## 412 891.51 529.4593
## 413 906.83 529.4593
## 414 909.28 529.4593
## 415 898.28 529.4593
## 416 894.88 529.4593
## 417 907.04 529.4593
## 418 902.36 529.4593
## 419 896.23 529.4593
## 420 884.67 529.4593
## 421 901.99 529.4593
## 422 903.78 529.4593
## 423 899.20 529.4593
## 424 902.06 529.4593
## 425 898.53 529.4593
## 426 907.41 529.4593
## 427 907.62 529.4593
## 428 909.29 529.4593
## 429 918.38 529.4593
## 430 924.99 529.4593
## 431 948.23 529.4593
## 432 946.94 529.4593
## 433 941.03 529.4593
## 434 937.53 529.4593
## 435 934.15 529.4593
## 436 949.04 529.4593
## 437 952.82 529.4593
## 438 948.95 529.4593
## 439 947.62 529.4593
## 440 961.35 529.4593
## 441 957.97 529.4593
## 442 966.07 529.4593
## 443 944.76 529.4593
## 444 958.49 529.4593
## 445 959.84 529.4593
## 446 970.67 529.4593
## 447 971.54 529.4593
## 448 980.35 529.4593
## 449 993.38 529.4593
## 450 995.78 529.4593
## 451 996.70 529.4593
## 452 994.62 529.4593
## 453 995.95 529.4593
## 454 1006.73 529.4593
## 455 1011.34 529.4593
## 456 1003.00 529.4593
## 457 1010.07 529.4593
## 458 1010.27 529.4593
## 459 978.31 529.4593
## 460 964.91 529.4593
## 461 980.79 529.4593
## 462 976.47 529.4593
## 463 964.17 529.4593
## 464 987.71 529.4593
## 465 995.17 529.4593
## 466 992.59 529.4593
## 467 1002.23 529.4593
## 468 1001.30 529.4593
## 469 1003.74 529.4593
## 470 993.98 529.4593
## 471 976.78 529.4593
## 472 990.33 529.4593
## 473 975.93 529.4593
## 474 968.00 529.4593
## 475 953.66 529.4593
## 476 971.40 529.4593
## 477 965.14 529.4593
## 478 978.76 529.4593
## 479 996.47 529.4593
## 480 994.13 529.4593
## 481 1006.51 529.4593
## 482 1000.63 529.4593
## 483 1001.81 529.4593
## 484 1010.04 529.4593
## 485 1024.45 529.4593
## 486 1026.87 529.4593
## 487 1028.70 529.4593
## 488 1025.67 529.4593
## 489 1038.95 529.4593
## 490 1039.87 529.4593
## 491 1052.80 529.4593
## 492 1046.00 529.4593
## 493 1020.04 529.4593
## 494 987.78 529.4593
## 495 996.19 529.4593
## 496 995.89 529.4593
## 497 986.92 529.4593
## 498 987.58 529.4593
## 499 992.27 529.4593
## 500 989.84 529.4593
## 501 982.01 529.4593
## 502 956.92 529.4593
## 503 967.99 529.4593
## 504 983.30 529.4593
## 505 982.74 529.4593
## 506 978.18 529.4593
## 507 960.57 529.4593
## 508 958.47 529.4593
## 509 953.29 529.4593
## 510 966.90 529.4593
## 511 958.00 529.4593
## 512 952.45 529.4593
## 513 945.26 529.4593
## 514 946.02 529.4593
## 515 954.06 529.4593
## 516 967.59 529.4593
## 517 980.60 529.4593
## 518 978.25 529.4593
## 519 965.27 529.4593
## 520 967.80 529.4593
## 521 979.47 529.4593
## 522 965.90 529.4593
## 523 977.96 529.4593
## 524 982.58 529.4593
## 525 999.60 529.4593
## 526 992.21 529.4593
## 527 986.79 529.4593
## 528 974.19 529.4593
## 529 969.86 529.4593
## 530 973.21 529.4593
## 531 964.65 529.4593
## 532 955.10 529.4593
## 533 939.79 529.4593
## 534 938.60 529.4593
## 535 950.87 529.4593
## 536 956.40 529.4593
## 537 961.35 529.4593
## 538 959.19 529.4593
## 539 957.10 529.4593
## 540 965.45 529.4593
## 541 980.85 529.4593
## 542 989.58 529.4593
## 543 990.99 529.4593
## 544 987.20 529.4593
## 545 995.00 529.4593
## 546 1000.93 529.4593
## 547 1002.94 529.4593
## 548 1006.34 529.4593
## 549 1009.13 529.4593
## 550 997.00 529.4593
## 551 986.61 529.4593
## 552 982.91 529.4593
## 553 966.30 529.4593
## 554 975.90 529.4593
## 555 972.91 529.4593
## 556 972.43 529.4593
## 557 1100.95 529.4593
## 558 1110.85 529.4593
## 559 1105.28 529.4593
## 560 1103.68 529.4593
## 561 1094.22 529.4593
## 562 1111.60 529.4593
## 563 1120.66 529.4593
## 564 1123.17 529.4593
## 565 1132.88 529.4593
## 566 1129.13 529.4593
## 567 1125.35 529.4593
## 568 1129.17 529.4593
## 569 1136.84 529.4593
## 570 1126.69 529.4593
## 571 1137.29 529.4593
## 572 1129.88 529.4593
## 573 1126.31 529.4593
## 574 1139.49 529.4593
## 575 1156.16 529.4593
## 576 1186.00 529.4593
## 577 1195.83 529.4593
## 578 1193.60 529.4593
## 579 1161.27 529.4593
## 580 1176.75 529.4593
## 581 1162.35 529.4593
## 582 1133.95 529.4593
## 583 1141.57 529.4593
## 584 1152.35 529.4593
## 585 1159.79 529.4593
## 586 1162.00 529.4593
## 587 1168.92 529.4593
## 588 1165.08 529.4593
## 589 1164.13 529.4593
## 590 1174.26 529.4593
## 591 1179.14 529.4593
## 592 1190.58 529.4593
## 593 1187.38 529.4593
## 594 1177.62 529.4593
## 595 1174.76 529.4593
## 596 1168.36 529.4593
## 597 1176.76 529.4593
## 598 1182.26 529.4593
## 599 1186.10 529.4593
## 600 1169.47 529.4593
Model GARCH(1,2)
# GARCH(1,2)
m.12 = garch(diff.1.amazon,order=c(1,2),trace =FALSE)
summary(m.12)##
## Call:
## garch(x = diff.1.amazon, order = c(1, 2), trace = FALSE)
##
## Model:
## GARCH(1,2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.399135 -0.350427 0.003428 0.414105 13.482314
##
## Coefficient(s):
## Estimate Std. Error t value Pr(>|t|)
## a0 1.662e+01 2.571e+00 6.465 1.01e-10 ***
## a1 1.901e-01 8.690e-03 21.875 < 2e-16 ***
## a2 4.208e-02 3.785e-02 1.112 0.266
## b1 2.222e-14 1.528e-01 0.000 1.000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Diagnostic Tests:
## Jarque Bera Test
##
## data: Residuals
## X-squared = 92703, df = 2, p-value < 2.2e-16
##
##
## Box-Ljung test
##
## data: Squared.Residuals
## X-squared = 0.028166, df = 1, p-value = 0.8667
MODEL ARIMA(0,1,2)-GARCH(1,2)
#ARIMA(0,1,2)+GARCH(1,2)
model12<-ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,2)),
mean.model = list(armaOrder = c(0, 2), include.mean = TRUE),
distribution.model = "norm")
m.12<-ugarchfit(spec=model12,data=diff.1.amazon, out.sample = 100)
plot(m.12,which="all")##
## please wait...calculating quantiles...
m.12##
## *---------------------------------*
## * GARCH Model Fit *
## *---------------------------------*
##
## Conditional Variance Dynamics
## -----------------------------------
## GARCH Model : sGARCH(1,2)
## Mean Model : ARFIMA(0,0,2)
## Distribution : norm
##
## Optimal Parameters
## ------------------------------------
## Estimate Std. Error t value Pr(>|t|)
## mu 0.077176 0.050081 1.54103 0.123309
## ma1 -0.019215 0.023719 -0.81008 0.417893
## ma2 -0.046058 0.022024 -2.09129 0.036502
## omega 0.082927 0.019639 4.22263 0.000024
## alpha1 0.070842 0.009396 7.53955 0.000000
## beta1 0.005729 0.005247 1.09177 0.274936
## beta2 0.922430 0.008598 107.28352 0.000000
##
## Robust Standard Errors:
## Estimate Std. Error t value Pr(>|t|)
## mu 0.077176 0.061354 1.25787 0.208438
## ma1 -0.019215 0.028534 -0.67339 0.500696
## ma2 -0.046058 0.026594 -1.73192 0.083289
## omega 0.082927 0.091669 0.90464 0.365658
## alpha1 0.070842 0.033202 2.13367 0.032870
## beta1 0.005729 0.013489 0.42468 0.671070
## beta2 0.922430 0.028667 32.17686 0.000000
##
## LogLikelihood : -6127.746
##
## Information Criteria
## ------------------------------------
##
## Akaike 5.2931
## Bayes 5.3105
## Shibata 5.2931
## Hannan-Quinn 5.2995
##
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.1577 0.6913
## Lag[2*(p+q)+(p+q)-1][5] 0.5828 1.0000
## Lag[4*(p+q)+(p+q)-1][9] 1.8179 0.9909
## d.o.f=2
## H0 : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 0.3557 0.5509
## Lag[2*(p+q)+(p+q)-1][8] 0.9663 0.9763
## Lag[4*(p+q)+(p+q)-1][14] 1.2813 0.9988
## d.o.f=3
##
## Weighted ARCH LM Tests
## ------------------------------------
## Statistic Shape Scale P-Value
## ARCH Lag[4] 0.02383 0.500 2.000 0.8773
## ARCH Lag[6] 0.10765 1.461 1.711 0.9869
## ARCH Lag[8] 0.11675 2.368 1.583 0.9993
##
## Nyblom stability test
## ------------------------------------
## Joint Statistic: 2.6873
## Individual Statistics:
## mu 0.12930
## ma1 0.04957
## ma2 0.13203
## omega 0.20428
## alpha1 0.12314
## beta1 0.29664
## beta2 0.22204
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 1.69 1.9 2.35
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## ------------------------------------
## t-value prob sig
## Sign Bias 0.9323 0.35130
## Negative Sign Bias 0.2416 0.80908
## Positive Sign Bias 2.2075 0.02738 **
## Joint Effect 4.9937 0.17226
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
## group statistic p-value(g-1)
## 1 20 212.5 1.107e-34
## 2 30 218.7 5.345e-31
## 3 40 230.9 4.398e-29
## 4 50 254.4 1.566e-29
##
##
## Elapsed time : 0.1278448
diperoleh mean model yaitu ARIMA(0,1,2) dan varian model yaitu GARCH(1,2) terbaik untuk digunakan dalam peralaman, terlihat pada uji dignostik model pada plot QQ-norm terlihat bahwa sebaran residual mengikuti garis lurus sehingga dapat disimpulkan bahwa residual menyebar normal, lalu untuk uji autokorelasi dapat dilihat plot ACF squared residual telah terlihat bahwa setiap lag berada dibawah batas, sehingga dapat dikatakan bahwa tidak ada autokorelasi antar residual, diperkuat dengan nilai p-value pada uji L-jung Box yang lebih besar dari alpha=0.05.
Peramalan dengan Model ARIMA(0,1,2)-GARCH(1,2)
forc = ugarchforecast(m.12, data = diff.1.amazon, n.ahead = 10, n.roll =10)
print(forc)##
## *------------------------------------*
## * GARCH Model Forecast *
## *------------------------------------*
## Model: sGARCH
## Horizon: 10
## Roll Steps: 10
## Out of Sample: 10
##
## 0-roll forecast [T0=1976-05-07 07:00:00]:
## Series Sigma
## T+1 -0.09997 4.771
## T+2 0.23595 7.638
## T+3 0.07718 5.055
## T+4 0.07718 7.473
## T+5 0.07718 5.285
## T+6 0.07718 7.331
## T+7 0.07718 5.473
## T+8 0.07718 7.207
## T+9 0.07718 5.630
## T+10 0.07718 7.101
plot(forc, which= "all")pada hasil ramalan untuk data saham amazon untuk ke 10 waktu kedepan dapat dilihat pada plot diatas menunjukkan bahwa hasil ramalan bernilai sama sehingga membentuk garis lurus.
Kesimpulan
karena dengan jika menggunakan model ARCH lag hingga 5 masih signifikan, lalu, dicobakan pada beberapa model GARCH dan dibandingkan nilai-nilai seperti AIC dan signifikansi parameter, maka akan digunakan model GARCH(1,2) yang memiliki nilai AIC kecil dan parameter yang hampir semua signifikan. Sehingga diperoleh model Mean yaitu ARIMA(0,1,2) dan model Varian yaitu GARCH(1,2).Dengan persamaan sebagai berikut :
Mean Model ARIMA(0,1,2)
\(Y_t=0.0771+e_t-0.0192 e_{t-1}-0.0460e_{t-2}\)
Varian Model
GARCH(1,2)
\(\sigma^2_t=0.0829+0.0708\epsilon^2_{t-1} +0.0057\sigma^2_{t-1}+ 0.9224 \sigma^2_{t-2}\)