ANALISIS DATA SAHAM AMAZON

library yang digunakan

library(readxl)
library(openxlsx)
library(astsa)
library(dynlm) #time series regression 
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
library(broom) #LM test
library(FinTS) #ARCH test
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## 
## Attaching package: 'forecast'
## The following object is masked from 'package:FinTS':
## 
##     Acf
## The following object is masked from 'package:astsa':
## 
##     gas
library(tseries)
library(TTR)
library(TSA)
## Registered S3 methods overwritten by 'TSA':
##   method       from    
##   fitted.Arima forecast
##   plot.Arima   forecast
## 
## Attaching package: 'TSA'
## The following objects are masked from 'package:stats':
## 
##     acf, arima
## The following object is masked from 'package:utils':
## 
##     tar
library(graphics)
library(portes)
## Loading required package: parallel
library(tseries)
library(car)
## Loading required package: carData
library(rugarch)
## 
## Attaching package: 'rugarch'
## The following object is masked from 'package:stats':
## 
##     sigma

Data

Data yang digunakan adalah data Saham (Stock) dari perusahaan Amazon dimana data di peroleh dari website Kaggle dengan link: https://www.kaggle.com/datasets/szrlee/stock-time-series-20050101-to-20171231?resource=download&select=AMZN_2006-01-01_to_2018-01-01.csv

Data saham Amazon yang digunakan adalah data terdiri dari 13 Tahun data (2006-01-01 hingga 2018-01-01), dimana data berupa data harian saham yang terdiri dari :

  • Date - in format: yy-mm-dd

  • Open - harga awal di pasar saham (this is NYSE data so all in USD)

  • High - harga tertinggi pada hari itu

  • Low Close - harga terendah pada hari itu

  • Volume - Number of shares traded

  • Name - the stock’s ticker name

yang akan di lakukan dalam pengolahan data untuk model time series menguji efek arch/garch digunakan data “High Close” saja semua data yang terdiri dari 3019 data dari 1 Januari 2006 hingga 1 Januari 2018.

data_amazon<- read.csv("~/Documents/Amazon Stock.csv",sep=",")
head(data_amazon)
##         Date  Open  High   Low Close  Volume Name
## 1 2006-01-03 47.47 47.85 46.25 47.58 7582127 AMZN
## 2 2006-01-04 47.48 47.73 46.69 47.25 7440914 AMZN
## 3 2006-01-05 47.16 48.20 47.11 47.65 5417258 AMZN
## 4 2006-01-06 47.97 48.58 47.32 47.87 6154285 AMZN
## 5 2006-01-09 46.55 47.10 46.40 47.08 8945056 AMZN
## 6 2006-01-10 46.41 46.75 45.36 45.65 9686957 AMZN
data_amazon.ts <- ts(data_amazon[,"Close"],start=1,end=3019)
head(data_amazon.ts)
## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
## [1] 47.58 47.25 47.65 47.87 47.08 45.65

Plot Data Time series

plot(data_amazon.ts, type="l",
  main="Saham amazon 01/01/2006 - 01/01/2018", 
  xlab = "Hari ke -",
  ylab = "Close Price")

Memeriksa Pola musiman

seasonplot(data_amazon.ts,30, 
  main="Saham amazon 01/01/2006 - 01/01/2018", 
  xlab = "Hari ke -",
  ylab = "Close Price",
  year.labels = TRUE, col=rainbow(18))

dilakukan pengujian pola musiman untuk memastikan apakah data memiliki pola musiman, walaupun secara plot time series tidak ditemukan pola tertentu pada data saham Google ini, dana setelah dilakukan pengujian pola musiman untuk beberapa kali seperti 7 hari, 14 hari dan 30 hari tidak terdapat pola tertentu dalam data (ditampilkan hanya pola untuk 30 hari), sehingga dapat disimpulkan bahwa data tidak memiliki pola musiman.

Membagi Data

Data yang terdiri dari 3019 data akan di bagi menjadi 2 bagian yaitu data training dan data testing, pembagian data dilakukan sekitar 80-20 antara training dan testing, sehingga data training sebanyak 2419 data dan 600 data testing sebagai berikut:

data_amazon.ts.train <- data_amazon.ts[1:2419]
data_amazon.ts.test <- data_amazon.ts[2420:3019]

Plot antara data Train dan Testing

plot(data_amazon.ts.train, type="l",
   main="Data Training Saham amazon 01/01/2006 - 01/01/2018", 
  xlab = "Hari ke -",
  ylab = "Close Price")

plot(data_amazon.ts.test, type="l",
   main="Data Testing Saham amazon 01/01/2006 - 01/01/2018", 
  xlab = "Hari ke -",
  ylab = "Close Price")

Uji Stasioner data Training

acf(data_amazon.ts.train,lag.max = 30)

adf.test(data_amazon.ts.train, alternative=c("stationary"),
         k=trunc((length(data_amazon.ts.train)-1)^(1/3)))
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_amazon.ts.train
## Dickey-Fuller = -1.437, Lag order = 13, p-value = 0.8167
## alternative hypothesis: stationary

dari hasil pengujian dengan plot ACF dan uji ADF untuk data training ddapat disimpulkan bahwa data belum stasioner dengan bentuk lag pada plot ACF yang turun lambat atau eksponensial dan pada uji ADF yang diperoleh nilai p-value yaitu 0.8167 lebih besar dari alpha=0.05.

Differencing Data

Karena data yang belum stasioner maka akan dilakukan differencing untuk membuat data stasioner sebagai berikut :

diff.1.amazon <- diff(data_amazon.ts.train,differences = 1)
plot(diff.1.amazon,type="l", 
  main="Differencing 1 Data Train Saham", 
  xlab = "Hari ke -",
  ylab = "Close Price")

lalu akan diuji stasioner pada data differencing :

acf(diff.1.amazon,lag.max = 30)

adf.test(diff.1.amazon, alternative=c("stationary"),
         k=trunc((length(diff.1.amazon)-1)^(1/3)))
## Warning in adf.test(diff.1.amazon, alternative = c("stationary"), k =
## trunc((length(diff.1.amazon) - : p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff.1.amazon
## Dickey-Fuller = -13.462, Lag order = 13, p-value = 0.01
## alternative hypothesis: stationary

setelah dilihat dari plot ACF dan uji ADF pada data hasil differencing pertama diperoleh bahwa data telah stasioner dengan plot acf yang telah cut-off setelah lag-2 dan hasil nilai p-value = 0.01 yang lebih kecil dari alpa=0.05. lalu akan dicari model tentatif selanjutnya :

pacf(diff.1.amazon,lag.max = 30)

eacf(diff.1.amazon)
## AR/MA
##   0 1 2 3 4 5 6 7 8 9 10 11 12 13
## 0 o x o o o o o o o o o  o  o  o 
## 1 x x o o o o o o o o o  o  o  o 
## 2 x x o o o o o o o o o  o  o  o 
## 3 x x x o o o o o o o o  o  o  o 
## 4 x x x x o o o o o o o  o  o  o 
## 5 x x x o o o o o o o o  o  o  o 
## 6 x x x o o x o o o o o  o  o  o 
## 7 x x o o o x x o o o o  o  o  o

dari plot ACF, PACF dan EACF diperoleh modle tentatif yaitu : 1. Dari plot ACF diperoleh model ARIMA(0,1,2) 2. Dari plot PACF diperoleh model ARIMA(2,1,0) 3. Dari ECAF diperoleh model ARIMA(1,1,2), ARIMA(2,1,2)

Sehingga dari model tentatif diatas akan di pilih model terbaik yang memiliki nilai AIC terkecil yaitu :

Memilih Model Mean Terbaik

ARIMA012 <- arima(diff.1.amazon, order=c(0,0,2), method = "ML") 
ARIMA210 <- arima(diff.1.amazon, order=c(2,0,0), method = "ML")
ARIMA112 <- arima(diff.1.amazon, order=c(1,0,2), method = "ML")
ARIMA212 <- arima(diff.1.amazon, order=c(2,0,2), method = "ML") 


Model <- c("ARIMA(0,1,2)","ARIMA(2,1,0)","ARIMA(1,1,2)","ARIMA(2,1,2)")
AIC <- c(ARIMA012$aic,ARIMA210$aic,ARIMA112$aic,ARIMA212$aic)

perbandingan_AIC <- as.data.frame(cbind(Model,AIC))
perbandingan_AIC
##          Model              AIC
## 1 ARIMA(0,1,2) 14049.1673390684
## 2 ARIMA(2,1,0) 14049.3359896749
## 3 ARIMA(1,1,2) 14051.1720611438
## 4 ARIMA(2,1,2) 14053.1037022913

Dari perbandingan model tentatif diatas diperoleh bahwa model terbaik dengan nilai AIC terkecil yaitu model ARIMA(0,1,2) yaitu 14049.167. Lalu, akan dilakukan pengujian signifikasni parameter model sebagai berikut :

Uji SIgnifikansi Parameter

printstatarima <- function (x, digits = 4,se=TRUE){ if (length(x$coef) > 0) {
cat("\nCoefficients:\n")
coef <- round(x$coef, digits = digits)
if (se && nrow(x$var.coef)) {
ses <- rep(0, length(coef))
ses[x$mask] <- round(sqrt(diag(x$var.coef)), digits = digits)
coef <- matrix(coef, 1, dimnames = list(NULL, names(coef)))
coef <- rbind(coef, s.e. = ses)
statt <- coef[1,]/ses
pval <- 2*pt(abs(statt), df=length(x$residuals)-1, lower.tail = FALSE)
coef <- rbind(coef, t=round(statt,digits=digits),sign.=round(pval,digits=digits))
  coef <- t(coef)
 }
print.default(coef, print.gap = 2)
  }
}
printstatarima(ARIMA012)
## 
## Coefficients:
##                       s.e.        t   sign.
## ma1        -0.0242  0.0203  -1.1921  0.2333
## ma2        -0.0505  0.0204  -2.4755  0.0134
## intercept   0.1994  0.0831   2.3995  0.0165

dengan dilihat bahwa sebenarnya model ARIMA(0,1,2) yang memiliki nilai AIC terkecil namun parameternya MA(1) tidak signifikan, sehingga akan dicoba dengan model auto.arima sebagai berikut :

auto.arima(data_amazon.ts.train)
## Series: data_amazon.ts.train 
## ARIMA(0,1,0) with drift 
## 
## Coefficients:
##        drift
##       0.1994
## s.e.  0.0899
## 
## sigma^2 = 19.56:  log likelihood = -7025.31
## AIC=14054.62   AICc=14054.62   BIC=14066.2

dengan bantuan fungsi auto.arima diperoleh model terbaik yaitu model ARIMA(0,1,0), namun jika dibandingkan nilai AIC kembali masih lebih kecil nilai AIC dari model ARIMA(0,1,2), sehingga disimpulkan model terbaik yaitu ARIMA(0,1,2)

Lalu, akan dilakukan pengujian dignostik model sebagai berikut :

Uji Diagnostik Model

sisaan <- ARIMA012$residuals

# Uji formal normalitas data
qqnorm(sisaan)
qqline(sisaan)

# Uji nilai tengah sisaan
t.test(sisaan, mu = 0, alternative = "two.sided")
## 
##  One Sample t-test
## 
## data:  sisaan
## t = -0.00086754, df = 2417, p-value = 0.9993
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  -0.1761656  0.1760098
## sample estimates:
##     mean of x 
## -7.790235e-05
# Uji autokorelasi
Box.test(sisaan, lag = 23 ,type = "Ljung")
## 
##  Box-Ljung test
## 
## data:  sisaan
## X-squared = 24.137, df = 23, p-value = 0.3962

Berdasarkan hasil uji dignostik untuk model terbaik ARIMA010 diperoleh sebagai berikut :

Hasil pengujian:

Normalitas Data

Berdasarkan pada Q-Q plot yang diperoleh bahwa residual menyabr pada mengikuti garis lurus, sehingga dapat dikatakan bahwa residual menyebar normal.

Nilai Tengah Sisaan

\(H_0:μ=0\) \(H_1:μ≠0\)

Hasil : \(p−value=0.9993 > α=0.05\) yang berarti TOLAK H0, Nilai tengah sisaan sama dengan 0

Autokorelasi

\(H_0\) : tidak ada autokorelasi \(H_1\) : terdapat autokorelasi

Hasil : \(p−value=0.3962 > α=0.05\) yang berarti TERIMA H0, Tidak terdapat gejala autokorelasi pada sisaan

Kesimpulan : Asumsi terpenuhi untuk residual pada model ARIMA(0,1,2)

Uji sisaan Mean Model

e_topi <- ts(sisaan)
plot.ts(e_topi)

e_topisq <- ts(sisaan^2)
plot.ts(e_topisq)

acf(e_topisq)

pacf(e_topisq)

Uji Efek ARCH

bydArchTest1 <- ArchTest(sisaan, lags=1, demean=TRUE)
bydArchTest1
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  sisaan
## Chi-squared = 9.8042, df = 1, p-value = 0.001741
bydArchTest2 <- ArchTest(sisaan, lags=2, demean=TRUE)
bydArchTest2
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  sisaan
## Chi-squared = 10.016, df = 2, p-value = 0.006683
bydArchTest3 <- ArchTest(sisaan, lags=3, demean=TRUE)
bydArchTest3
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  sisaan
## Chi-squared = 10.017, df = 3, p-value = 0.01842
bydArchTest4 <- ArchTest(sisaan, lags=4, demean=TRUE)
bydArchTest4
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  sisaan
## Chi-squared = 14.705, df = 4, p-value = 0.005355
bydArchTest5 <- ArchTest(sisaan, lags=5, demean=TRUE)
bydArchTest5
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  sisaan
## Chi-squared = 17.825, df = 5, p-value = 0.003174
bydArchTest6 <- ArchTest(sisaan, lags=6, demean=TRUE)
bydArchTest6
## 
##  ARCH LM-test; Null hypothesis: no ARCH effects
## 
## data:  sisaan
## Chi-squared = 18.679, df = 6, p-value = 0.004742

setelah dilakukan uji efek ARCH untuk 5 lag awal, semua nia p-value menunjukkan signifikan, sehingga akan dicoba dengan GARCH.

#Menentukan model volatilitas jika efek ARCH secara statistik signifikan
#Pendugaan model ARCH/GARCH dengan function garch secara simultan
amazon.arch1 <- garch(data_amazon.ts.train,c(0,1)) #ordo ARCH(1)
## 
##  ***** ESTIMATION WITH ANALYTICAL GRADIENT ***** 
## 
## 
##      I     INITIAL X(I)        D(I)
## 
##      1     1.325545e+04     1.000e+00
##      2     5.000000e-02     1.000e+00
## 
##     IT   NF      F         RELDF    PRELDF    RELDX   STPPAR   D*STEP   NPRELDF
##      0    1  1.468e+04
##      1    2  1.353e+04  7.87e-02  8.04e-01  3.8e-05  1.2e+04  1.0e+00  4.75e+03
##      2    3  1.352e+04  2.51e-04  1.27e-04  8.9e-07  0.0e+00  2.9e-02  1.27e-04
##      3    5  1.349e+04  2.12e-03  1.22e-03  8.9e-06  0.0e+00  2.9e-01  1.22e-03
##      4    7  1.348e+04  8.73e-04  1.87e-03  1.0e-05  2.5e+00  2.7e-01  2.11e-03
##      5    8  1.348e+04  2.22e-04  4.13e-04  4.2e-06  0.0e+00  1.1e-01  4.13e-04
##      6    9  1.348e+04  4.43e-05  3.70e-05  1.1e-06  0.0e+00  3.4e-02  3.70e-05
##      7   10  1.348e+04  1.40e-06  1.49e-06  1.0e-06  0.0e+00  2.8e-02  1.49e-06
##      8   11  1.348e+04  4.83e-08  2.72e-08  8.5e-07  0.0e+00  2.2e-02  2.72e-08
##      9   13  1.348e+04  2.68e-07  1.71e-07  7.1e-06  0.0e+00  1.9e-01  1.71e-07
##     10   15  1.348e+04  5.76e-07  3.51e-07  1.9e-05  0.0e+00  5.0e-01  3.51e-07
##     11   17  1.348e+04  1.63e-06  1.01e-06  6.0e-05  0.0e+00  1.6e+00  1.01e-06
##     12   19  1.348e+04  4.12e-06  2.54e-06  1.6e-04  0.0e+00  4.3e+00  2.54e-06
##     13   21  1.348e+04  1.08e-05  6.70e-06  4.4e-04  0.0e+00  1.2e+01  6.70e-06
##     14   23  1.348e+04  2.80e-05  1.72e-05  1.2e-03  0.0e+00  3.1e+01  1.72e-05
##     15   24  1.348e+04  7.22e-05  4.45e-05  3.1e-03  0.0e+00  8.2e+01  4.45e-05
##     16   25  1.348e+04  1.85e-04  1.14e-04  8.2e-03  0.0e+00  2.1e+02  1.14e-04
##     17   26  1.347e+04  4.75e-04  2.90e-04  2.2e-02  0.0e+00  5.6e+02  2.90e-04
##     18   27  1.345e+04  1.27e-03  7.56e-04  6.6e-02  0.0e+00  1.5e+03  7.56e-04
##     19   29  1.339e+04  4.81e-03  2.40e-03  3.1e-01  0.0e+00  5.2e+03  2.40e-03
##     20   31  1.334e+04  3.65e-03  2.81e-03  2.3e-01  1.8e+00  2.1e+03  3.38e-02
##     21   33  1.332e+04  1.55e-03  1.14e-03  6.2e-02  2.0e+00  4.1e+02  1.62e+00
##     22   35  1.324e+04  5.86e-03  3.95e-03  1.5e-01  2.0e+00  8.3e+02  6.55e+00
##     23   36  1.320e+04  2.82e-03  1.44e-02  5.5e-01  2.0e+00  1.7e+03  4.48e+01
##     24   38  1.313e+04  5.25e-03  2.56e-02  1.4e-01  2.0e+00  1.7e+02  6.88e+00
##     25   40  1.310e+04  2.65e-03  1.66e-03  2.0e-01  2.0e+00  1.7e+02  8.13e+00
##     26   48  1.308e+04  1.57e-03  2.73e-03  4.2e-04  2.7e+00  2.8e-01  2.01e+00
##     27   49  1.308e+04  1.45e-04  2.80e-04  4.0e-04  2.0e+00  2.8e-01  3.20e+00
##     28   50  1.308e+04  3.67e-05  3.23e-05  4.2e-04  2.0e+00  2.8e-01  3.17e+00
##     29   51  1.308e+04  9.69e-07  1.00e-06  4.3e-04  2.0e+00  2.8e-01  3.16e+00
##     30   57  1.307e+04  2.76e-04  4.45e-04  7.7e-01  2.0e+00  2.9e+02  3.16e+00
##     31   59  1.307e+04  2.91e-06  3.05e-06  6.3e-02  1.8e+00  5.1e+00  7.81e-06
##     32   61  1.307e+04  3.05e-06  3.43e-06  3.7e-01  7.3e-01  2.0e+01  5.17e-06
##     33   62  1.307e+04  5.93e-07  6.10e-07  6.7e-01  0.0e+00  1.4e+01  6.10e-07
##     34   63  1.307e+04  9.13e-10  9.31e-10  6.5e-02  0.0e+00  4.8e-01  9.31e-10
##     35   64  1.307e+04  3.57e-13  3.57e-13  1.1e-03  0.0e+00  8.7e-03  3.57e-13
## 
##  ***** RELATIVE FUNCTION CONVERGENCE *****
## 
##  FUNCTION     1.307164e+04   RELDX        1.115e-03
##  FUNC. EVALS      64         GRAD. EVALS      36
##  PRELDF       3.572e-13      NPRELDF      3.572e-13
## 
##      I      FINAL X(I)        D(I)          G(I)
## 
##      1    3.913179e+00     1.000e+00     7.630e-10
##      2    1.002753e+00     1.000e+00     2.932e-07
## Warning in sqrt(pred$e): NaNs produced
amazonarch1 <- summary(amazon.arch1)
amazonarch1
## 
## Call:
## garch(x = data_amazon.ts.train, order = c(0, 1))
## 
## Model:
## GARCH(0,1)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## 0.7794 0.9872 0.9985 1.0118 1.2665 
## 
## Coefficient(s):
##     Estimate  Std. Error  t value Pr(>|t|)
## a0     3.913    2916.842    0.001    0.999
## a1     1.003       1.020    0.983    0.326
## 
## Diagnostic Tests:
##  Jarque Bera Test
## 
## data:  Residuals
## X-squared = 28094, df = 2, p-value < 2.2e-16
## 
## 
##  Box-Ljung test
## 
## data:  Squared.Residuals
## X-squared = 0.24086, df = 1, p-value = 0.6236
#str(sbydarch)
plot(amazon.arch1) 

hist(amazonarch1$residuals)

qqnorm(amazonarch1$residuals)
qqline(amazonarch1$residuals, col = "red", lwd = 2)

Model GARCH

#GARCH(1,1)
garchSpec11 <- ugarchspec(
  variance.model=list(model="sGARCH",
                      garchOrder=c(1,1)),
mean.model=list(armaOrder=c(0,2)))
garchFit11 <- ugarchfit(spec=garchSpec11, data=diff.1.amazon)
coef(garchFit11)
##          mu         ma1         ma2       omega      alpha1       beta1 
##  0.12463600 -0.03035405 -0.05831443  0.03763845  0.02575735  0.97324263
garchFit11
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,2)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.124636    0.052939   2.3543 0.018556
## ma1    -0.030354    0.022738  -1.3349 0.181902
## ma2    -0.058314    0.023207  -2.5127 0.011979
## omega   0.037638    0.007578   4.9671 0.000001
## alpha1  0.025757    0.002732   9.4281 0.000000
## beta1   0.973243    0.002867 339.4052 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.124636    0.058579   2.1276 0.033366
## ma1    -0.030354    0.027120  -1.1193 0.263031
## ma2    -0.058314    0.024251  -2.4047 0.016188
## omega   0.037638    0.033996   1.1071 0.268230
## alpha1  0.025757    0.008963   2.8737 0.004056
## beta1   0.973243    0.010706  90.9036 0.000000
## 
## LogLikelihood : -6544.866 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       5.4184
## Bayes        5.4328
## Shibata      5.4184
## Hannan-Quinn 5.4236
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                  0.0001553  0.9901
## Lag[2*(p+q)+(p+q)-1][5] 0.2181728  1.0000
## Lag[4*(p+q)+(p+q)-1][9] 0.9518012  0.9998
## d.o.f=2
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      1.766  0.1839
## Lag[2*(p+q)+(p+q)-1][5]     2.279  0.5541
## Lag[4*(p+q)+(p+q)-1][9]     2.500  0.8377
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.4636 0.500 2.000  0.4959
## ARCH Lag[5]    0.5937 1.440 1.667  0.8557
## ARCH Lag[7]    0.6559 2.315 1.543  0.9622
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  2.667
## Individual Statistics:              
## mu     0.36018
## ma1    0.02986
## ma2    0.07162
## omega  0.16405
## alpha1 0.08142
## beta1  0.25034
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.49 1.68 2.12
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value    prob sig
## Sign Bias           0.1930 0.84700    
## Negative Sign Bias  0.5549 0.57903    
## Positive Sign Bias  1.9471 0.05164   *
## Joint Effect        4.3432 0.22671    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     278.4    5.318e-48
## 2    30     305.4    6.866e-48
## 3    40     305.3    5.258e-43
## 4    50     325.2    2.036e-42
## 
## 
## Elapsed time : 0.103076
res<-garchFit11@fit$residuals
res.ts<-ts(res)
plot.ts(res.ts)

#GARCH(1,2)
garchSpec12 <- ugarchspec(
  variance.model=list(model="sGARCH",
                      garchOrder=c(1,2)),
mean.model=list(armaOrder=c(0,2)))
garchFit12 <- ugarchfit(spec=garchSpec12, data=diff.1.amazon)
coef(garchFit12)
##          mu         ma1         ma2       omega      alpha1       beta1 
##  0.11124578 -0.03056320 -0.05340995  0.06020831  0.04846366  0.03072131 
##       beta2 
##  0.91981503
garchFit12
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,2)
## Mean Model   : ARFIMA(0,0,2)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.111246    0.051908   2.1431 0.032104
## ma1    -0.030563    0.023591  -1.2955 0.195138
## ma2    -0.053410    0.021149  -2.5254 0.011556
## omega   0.060208    0.012132   4.9629 0.000001
## alpha1  0.048464    0.004370  11.0893 0.000000
## beta1   0.030721    0.004594   6.6873 0.000000
## beta2   0.919815    0.004724 194.7209 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.111246    0.058198   1.9115 0.055940
## ma1    -0.030563    0.027373  -1.1165 0.264189
## ma2    -0.053410    0.022868  -2.3356 0.019514
## omega   0.060208    0.059284   1.0156 0.309826
## alpha1  0.048464    0.012727   3.8081 0.000140
## beta1   0.030721    0.008440   3.6398 0.000273
## beta2   0.919815    0.011589  79.3729 0.000000
## 
## LogLikelihood : -6532.755 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       5.4092
## Bayes        5.4260
## Shibata      5.4092
## Hannan-Quinn 5.4153
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                    0.01923  0.8897
## Lag[2*(p+q)+(p+q)-1][5]   0.16928  1.0000
## Lag[4*(p+q)+(p+q)-1][9]   0.90962  0.9999
## d.o.f=2
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                          statistic p-value
## Lag[1]                      0.5603  0.4541
## Lag[2*(p+q)+(p+q)-1][8]     1.2984  0.9490
## Lag[4*(p+q)+(p+q)-1][14]    1.5814  0.9968
## d.o.f=3
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[4]    0.3338 0.500 2.000  0.5635
## ARCH Lag[6]    0.3546 1.461 1.711  0.9314
## ARCH Lag[8]    0.3795 2.368 1.583  0.9900
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  3.3333
## Individual Statistics:              
## mu     0.32710
## ma1    0.03703
## ma2    0.09091
## omega  0.15564
## alpha1 0.07438
## beta1  0.24861
## beta2  0.23574
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.69 1.9 2.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.1040 0.9172    
## Negative Sign Bias  0.3401 0.7338    
## Positive Sign Bias  1.4091 0.1589    
## Joint Effect        2.2906 0.5143    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     266.4    1.419e-45
## 2    30     282.2    2.571e-43
## 3    40     293.1    1.097e-40
## 4    50     302.5    3.262e-38
## 
## 
## Elapsed time : 0.135596
res2<-garchFit12@fit$residuals
res2.ts<-ts(res2)
plot.ts(res2.ts)

#GARCH(1,3)
garchSpec13 <- ugarchspec(
  variance.model=list(model="sGARCH",
                      garchOrder=c(1,3)),
mean.model=list(armaOrder=c(0,2)))
garchFit13 <- ugarchfit(spec=garchSpec13, data=diff.1.amazon)
coef(garchFit13)
##            mu           ma1           ma2         omega        alpha1 
##  1.223706e-01  9.014122e-03 -6.434255e-02  1.123435e-01  9.469583e-02 
##         beta1         beta2         beta3 
##  3.769533e-08  3.825771e-02  8.660464e-01
garchFit13
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,3)
## Mean Model   : ARFIMA(0,0,2)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error   t value Pr(>|t|)
## mu      0.122371    0.051302  2.385305 0.017065
## ma1     0.009014    0.024056  0.374719 0.707869
## ma2    -0.064343    0.019955 -3.224372 0.001262
## omega   0.112344    0.025785  4.356981 0.000013
## alpha1  0.094696    0.010768  8.794304 0.000000
## beta1   0.000000    0.008004  0.000005 0.999996
## beta2   0.038258    0.006945  5.508304 0.000000
## beta3   0.866046    0.014162 61.152209 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error   t value Pr(>|t|)
## mu      0.122371    0.057711  2.120411 0.033971
## ma1     0.009014    0.033655  0.267840 0.788823
## ma2    -0.064343    0.020050 -3.209166 0.001331
## omega   0.112344    0.120427  0.932876 0.350884
## alpha1  0.094696    0.034323  2.758997 0.005798
## beta1   0.000000    0.039482  0.000001 0.999999
## beta2   0.038258    0.021520  1.777776 0.075441
## beta3   0.866046    0.043094 20.096578 0.000000
## 
## LogLikelihood : -6502.891 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       5.3854
## Bayes        5.4045
## Shibata      5.3853
## Hannan-Quinn 5.3923
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      2.954 0.08567
## Lag[2*(p+q)+(p+q)-1][5]     3.443 0.23016
## Lag[4*(p+q)+(p+q)-1][9]     4.299 0.61973
## d.o.f=2
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                          statistic p-value
## Lag[1]                     0.05194  0.8197
## Lag[2*(p+q)+(p+q)-1][11]   1.08365  0.9953
## Lag[4*(p+q)+(p+q)-1][19]   1.53700  0.9999
## d.o.f=4
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[5]    0.7949 0.500 2.000  0.3726
## ARCH Lag[7]    0.8648 1.473 1.746  0.7954
## ARCH Lag[9]    0.8837 2.402 1.619  0.9464
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  5.1071
## Individual Statistics:              
## mu     0.27741
## ma1    0.08201
## ma2    0.08932
## omega  0.22958
## alpha1 0.11516
## beta1  0.26917
## beta2  0.17574
## beta3  0.19232
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.89 2.11 2.59
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias          0.35998 0.7189    
## Negative Sign Bias 0.07121 0.9432    
## Positive Sign Bias 1.18966 0.2343    
## Joint Effect       1.46857 0.6895    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     223.9    5.593e-37
## 2    30     235.5    3.228e-34
## 3    40     256.4    8.749e-34
## 4    50     265.0    2.083e-31
## 
## 
## Elapsed time : 0.2232869
res3<-garchFit13@fit$residuals
res3.ts<-ts(res3)
plot.ts(res3.ts)

#GARCH(1,4)
garchSpec14 <- ugarchspec(
  variance.model=list(model="sGARCH",
                      garchOrder=c(1,4)),
mean.model=list(armaOrder=c(0,2)))
garchFit14 <- ugarchfit(spec=garchSpec14, data=diff.1.amazon)
coef(garchFit14)
##            mu           ma1           ma2         omega        alpha1 
##  1.222193e-01 -2.159528e-02 -6.418984e-02  1.350320e-01  1.005402e-01 
##         beta1         beta2         beta3         beta4 
##  1.274961e-07  9.578452e-08  2.430906e-01  6.553690e-01
garchFit14
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,4)
## Mean Model   : ARFIMA(0,0,2)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error   t value Pr(>|t|)
## mu      0.122219    0.052412  2.331892 0.019706
## ma1    -0.021595    0.024697 -0.874417 0.381891
## ma2    -0.064190    0.020259 -3.168425 0.001533
## omega   0.135032    0.025679  5.258375 0.000000
## alpha1  0.100540    0.012356  8.136652 0.000000
## beta1   0.000000    0.057452  0.000002 0.999998
## beta2   0.000000    0.062993  0.000002 0.999999
## beta3   0.243091    0.028039  8.669674 0.000000
## beta4   0.655369    0.075548  8.674904 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.122219    0.058670  2.08317 0.037236
## ma1    -0.021595    0.031432 -0.68706 0.492047
## ma2    -0.064190    0.026842 -2.39143 0.016783
## omega   0.135032    0.114369  1.18067 0.237732
## alpha1  0.100540    0.037656  2.66995 0.007586
## beta1   0.000000    0.326060  0.00000 1.000000
## beta2   0.000000    0.235368  0.00000 1.000000
## beta3   0.243091    0.230900  1.05280 0.292434
## beta4   0.655369    0.326154  2.00938 0.044496
## 
## LogLikelihood : -6508.459 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       5.3908
## Bayes        5.4123
## Shibata      5.3908
## Hannan-Quinn 5.3986
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.2859  0.5929
## Lag[2*(p+q)+(p+q)-1][5]    0.7807  1.0000
## Lag[4*(p+q)+(p+q)-1][9]    1.4086  0.9980
## d.o.f=2
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                          statistic p-value
## Lag[1]                     0.01318  0.9086
## Lag[2*(p+q)+(p+q)-1][14]   0.51250  1.0000
## Lag[4*(p+q)+(p+q)-1][24]   1.20951  1.0000
## d.o.f=5
## 
## Weighted ARCH LM Tests
## ------------------------------------
##              Statistic Shape Scale P-Value
## ARCH Lag[6]   0.004247 0.500 2.000  0.9480
## ARCH Lag[8]   0.089316 1.480 1.774  0.9911
## ARCH Lag[10]  0.256136 2.424 1.650  0.9968
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  4.3228
## Individual Statistics:              
## mu     0.33943
## ma1    0.05264
## ma2    0.09556
## omega  0.11841
## alpha1 0.08382
## beta1  0.31212
## beta2  0.29457
## beta3  0.27117
## beta4  0.29175
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          2.1 2.32 2.82
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.3032 0.7618    
## Negative Sign Bias  0.1710 0.8642    
## Positive Sign Bias  0.9553 0.3395    
## Joint Effect        0.9902 0.8036    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     273.7    4.751e-47
## 2    30     298.4    1.683e-46
## 3    40     297.2    1.794e-41
## 4    50     309.2    1.908e-39
## 
## 
## Elapsed time : 0.126461
res4<-garchFit14@fit$residuals
res4.ts<-ts(res4)
plot.ts(res4.ts)

#GARCH(2,1)
garchSpec21 <- ugarchspec(
  variance.model=list(model="sGARCH",
                      garchOrder=c(2,1)),
mean.model=list(armaOrder=c(0,2)))
garchFit21 <- ugarchfit(spec=garchSpec21, data=diff.1.amazon)
coef(garchFit21)
##            mu           ma1           ma2         omega        alpha1 
##  1.246391e-01 -3.035390e-02 -5.831529e-02  3.763826e-02  2.575720e-02 
##        alpha2         beta1 
##  8.787294e-08  9.732427e-01
garchFit21
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(2,1)
## Mean Model   : ARFIMA(0,0,2)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error   t value Pr(>|t|)
## mu      0.124639    0.052982   2.35246 0.018650
## ma1    -0.030354    0.022738  -1.33492 0.181903
## ma2    -0.058315    0.023212  -2.51229 0.011995
## omega   0.037638    0.007674   4.90476 0.000001
## alpha1  0.025757    0.008359   3.08130 0.002061
## alpha2  0.000000    0.008878   0.00001 0.999992
## beta1   0.973243    0.002991 325.39038 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error   t value Pr(>|t|)
## mu      0.124639    0.059048  2.110816 0.034788
## ma1    -0.030354    0.027119 -1.119303 0.263011
## ma2    -0.058315    0.024183 -2.411432 0.015890
## omega   0.037638    0.033753  1.115093 0.264810
## alpha1  0.025757    0.018030  1.428546 0.153135
## alpha2  0.000000    0.019006  0.000005 0.999996
## beta1   0.973243    0.011050 88.073168 0.000000
## 
## LogLikelihood : -6544.866 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       5.4192
## Bayes        5.4360
## Shibata      5.4192
## Hannan-Quinn 5.4253
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                  0.0001551  0.9901
## Lag[2*(p+q)+(p+q)-1][5] 0.2181961  1.0000
## Lag[4*(p+q)+(p+q)-1][9] 0.9518260  0.9998
## d.o.f=2
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                          statistic p-value
## Lag[1]                       1.766  0.1839
## Lag[2*(p+q)+(p+q)-1][8]      2.461  0.7827
## Lag[4*(p+q)+(p+q)-1][14]     2.700  0.9701
## d.o.f=3
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[4]  0.003034 0.500 2.000  0.9561
## ARCH Lag[6]  0.212764 1.461 1.711  0.9658
## ARCH Lag[8]  0.261205 2.368 1.583  0.9957
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  3.4695
## Individual Statistics:              
## mu     0.36022
## ma1    0.02986
## ma2    0.07162
## omega  0.16405
## alpha1 0.08142
## alpha2 0.08324
## beta1  0.25034
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.69 1.9 2.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value    prob sig
## Sign Bias           0.1930 0.84700    
## Negative Sign Bias  0.5549 0.57903    
## Positive Sign Bias  1.9471 0.05164   *
## Joint Effect        4.3433 0.22670    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     278.4    5.318e-48
## 2    30     305.4    6.866e-48
## 3    40     305.3    5.258e-43
## 4    50     325.2    2.036e-42
## 
## 
## Elapsed time : 0.1099808
res21<-garchFit21@fit$residuals
res21.ts<-ts(res21)
plot.ts(res21.ts)

# UJI DIAGNOSTIK GARCH(1,2)

amazon.garch12 <- garch(data_amazon.ts.train,c(1,2)) #ordo ARCH(1)
## 
##  ***** ESTIMATION WITH ANALYTICAL GRADIENT ***** 
## 
## 
##      I     INITIAL X(I)        D(I)
## 
##      1     1.186014e+04     1.000e+00
##      2     5.000000e-02     1.000e+00
##      3     5.000000e-02     1.000e+00
##      4     5.000000e-02     1.000e+00
## 
##     IT   NF      F         RELDF    PRELDF    RELDX   STPPAR   D*STEP   NPRELDF
##      0    1  1.424e+04
##      1    2  1.374e+04  3.50e-02  6.99e-01  3.0e-05  1.0e+04  1.0e+00  3.48e+03
##      2    4  1.369e+04  3.68e-03  3.50e-03  1.9e-06  6.6e+00  5.0e-02  2.64e+01
##      3    6  1.360e+04  6.52e-03  6.46e-03  3.8e-06  2.4e+00  1.0e-01  7.73e-01
##      4    8  1.359e+04  1.18e-03  1.18e-03  7.5e-07  2.8e+01  2.0e-02  4.82e-01
##      5   10  1.358e+04  2.32e-04  2.32e-04  1.5e-07  1.4e+02  4.0e-03  3.04e-01
##      6   13  1.356e+04  1.80e-03  1.80e-03  1.2e-06  5.5e+00  3.2e-02  2.72e-01
##      7   17  1.356e+04  3.50e-06  3.50e-06  2.4e-09  8.6e+03  6.4e-05  2.24e-01
##      8   19  1.356e+04  7.00e-06  7.00e-06  4.8e-09  1.1e+03  1.3e-04  1.88e-01
##      9   21  1.356e+04  1.40e-06  1.40e-06  9.5e-10  2.2e+04  2.6e-05  1.88e-01
##     10   23  1.356e+04  2.80e-06  2.80e-06  1.9e-09  2.7e+03  5.1e-05  1.88e-01
##     11   25  1.356e+04  5.60e-06  5.60e-06  3.8e-09  1.4e+03  1.0e-04  1.88e-01
##     12   27  1.356e+04  1.12e-06  1.12e-06  7.6e-10  2.7e+04  2.0e-05  1.88e-01
##     13   29  1.356e+04  2.24e-07  2.24e-07  1.5e-10  1.4e+05  4.1e-06  1.87e-01
##     14   31  1.356e+04  4.48e-08  4.48e-08  3.1e-11  6.8e+05  8.2e-07  1.87e-01
##     15   33  1.356e+04  8.96e-08  8.96e-08  6.1e-11  8.6e+04  1.6e-06  1.87e-01
##     16   35  1.356e+04  1.79e-08  1.79e-08  1.2e-11  1.7e+06  3.3e-07  1.87e-01
##     17   37  1.356e+04  3.58e-08  3.58e-08  2.4e-11  2.1e+05  6.6e-07  1.87e-01
##     18   39  1.356e+04  7.17e-09  7.17e-09  4.9e-12  4.3e+06  1.3e-07  1.87e-01
##     19   41  1.356e+04  1.43e-09  1.43e-09  9.8e-13  2.1e+07  2.6e-08  1.87e-01
##     20   43  1.356e+04  2.87e-09  2.87e-09  2.0e-12  2.7e+06  5.2e-08  1.87e-01
##     21   46  1.356e+04  5.73e-11  5.73e-11  3.9e-14  1.9e+00  1.0e-09 -2.17e-02
##     22   48  1.356e+04  1.15e-10  1.15e-10  7.8e-14  6.7e+07  2.1e-09  1.87e-01
##     23   50  1.356e+04  2.29e-11  2.29e-11  1.6e-14  1.9e+00  4.2e-10 -2.17e-02
##     24   53  1.356e+04  1.84e-10  1.84e-10  1.2e-13  4.2e+07  3.4e-09  1.87e-01
##     25   56  1.356e+04 -7.37e+05  3.67e-12  2.5e-15  1.9e+00  6.7e-11 -2.17e-02
## 
##  ***** FALSE CONVERGENCE *****
## 
##  FUNCTION     1.355994e+04   RELDX        2.499e-15
##  FUNC. EVALS      56         GRAD. EVALS      25
##  PRELDF       3.670e-12      NPRELDF     -2.174e-02
## 
##      I      FINAL X(I)        D(I)          G(I)
## 
##      1    1.186014e+04     1.000e+00     2.664e-02
##      2    6.894395e-01     1.000e+00     2.461e+02
##      3    6.869600e-01     1.000e+00     2.458e+02
##      4    5.355173e-11     1.000e+00     6.549e+02
## Warning in sqrt(pred$e): NaNs produced
amazongarch12 <- summary(amazon.garch12)
amazongarch12
## 
## Call:
## garch(x = data_amazon.ts.train, order = c(1, 2))
## 
## Model:
## GARCH(1,2)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## 0.2265 0.5347 0.7324 0.8044 0.9466 
## 
## Coefficient(s):
##     Estimate  Std. Error  t value Pr(>|t|)
## a0 1.186e+04   1.374e+04    0.863    0.388
## a1 6.894e-01   3.940e+00    0.175    0.861
## a2 6.870e-01   4.234e+00    0.162    0.871
## b1 5.355e-11   1.147e+00    0.000    1.000
## 
## Diagnostic Tests:
##  Jarque Bera Test
## 
## data:  Residuals
## X-squared = 295.38, df = 2, p-value < 2.2e-16
## 
## 
##  Box-Ljung test
## 
## data:  Squared.Residuals
## X-squared = 2379.2, df = 1, p-value < 2.2e-16
#str(sbydarch)
plot(amazon.garch12) 

Peramalan

Peramalan dengan Data Train

## ramalan dari data train
model <-Arima(data_amazon.ts.train,order=c(0,1,2))
ramalan_model<-forecast(model,h=600)
plot(ramalan_model)

Plot ramalan dengan Data Test

f.arima<-predict(model, n.ahead=600)
for.arima<-cbind(datatest=data_amazon.ts.test,f.arima$pred,f.arima$se^2)
f.garch<-ugarchforecast(garchFit12,n.ahead=600)
plot.ts(for.arima)

Perbandingan hasil ramalan dengan data test

ramalan <- f.arima$pred
hasil_perbandingan<- as.data.frame(cbind(data_amazon.ts.test,ramalan))
hasil_perbandingan
##     data_amazon.ts.test  ramalan
## 1                531.52 529.6449
## 2                535.22 529.4593
## 3                535.02 529.4593
## 4                532.92 529.4593
## 5                515.78 529.4593
## 6                494.47 529.4593
## 7                463.37 529.4593
## 8                466.37 529.4593
## 9                500.77 529.4593
## 10               518.37 529.4593
## 11               518.01 529.4593
## 12               512.89 529.4593
## 13               496.54 529.4593
## 14               510.55 529.4593
## 15               504.72 529.4593
## 16               499.00 529.4593
## 17               517.54 529.4593
## 18               516.89 529.4593
## 19               522.24 529.4593
## 20               529.44 529.4593
## 21               521.38 529.4593
## 22               522.37 529.4593
## 23               527.39 529.4593
## 24               538.87 529.4593
## 25               540.26 529.4593
## 26               548.39 529.4593
## 27               538.40 529.4593
## 28               536.07 529.4593
## 29               533.75 529.4593
## 30               524.25 529.4593
## 31               504.06 529.4593
## 32               496.07 529.4593
## 33               511.89 529.4593
## 34               520.72 529.4593
## 35               532.54 529.4593
## 36               543.68 529.4593
## 37               537.48 529.4593
## 38               541.94 529.4593
## 39               533.16 529.4593
## 40               539.80 529.4593
## 41               550.19 529.4593
## 42               548.90 529.4593
## 43               544.83 529.4593
## 44               562.44 529.4593
## 45               570.76 529.4593
## 46               573.15 529.4593
## 47               560.88 529.4593
## 48               555.77 529.4593
## 49               563.91 529.4593
## 50               599.03 529.4593
## 51               608.61 529.4593
## 52               611.01 529.4593
## 53               617.10 529.4593
## 54               626.55 529.4593
## 55               625.90 529.4593
## 56               628.35 529.4593
## 57               625.31 529.4593
## 58               640.95 529.4593
## 59               655.65 529.4593
## 60               659.37 529.4593
## 61               655.49 529.4593
## 62               659.68 529.4593
## 63               673.25 529.4593
## 64               665.60 529.4593
## 65               642.35 529.4593
## 66               647.81 529.4593
## 67               643.30 529.4593
## 68               663.54 529.4593
## 69               661.27 529.4593
## 70               668.45 529.4593
## 71               678.99 529.4593
## 72               671.15 529.4593
## 73               675.34 529.4593
## 74               673.26 529.4593
## 75               664.80 529.4593
## 76               679.06 529.4593
## 77               676.01 529.4593
## 78               666.25 529.4593
## 79               672.64 529.4593
## 80               669.83 529.4593
## 81               677.33 529.4593
## 82               664.79 529.4593
## 83               662.32 529.4593
## 84               640.15 529.4593
## 85               657.91 529.4593
## 86               658.64 529.4593
## 87               675.77 529.4593
## 88               670.65 529.4593
## 89               664.14 529.4593
## 90               664.51 529.4593
## 91               663.15 529.4593
## 92               663.70 529.4593
## 93               662.79 529.4593
## 94               675.20 529.4593
## 95               693.97 529.4593
## 96               689.07 529.4593
## 97               675.89 529.4593
## 98               636.99 529.4593
## 99               633.79 529.4593
## 100              632.65 529.4593
## 101              607.94 529.4593
## 102              607.05 529.4593
## 103              617.74 529.4593
## 104              617.89 529.4593
## 105              581.81 529.4593
## 106              593.00 529.4593
## 107              570.18 529.4593
## 108              574.48 529.4593
## 109              571.77 529.4593
## 110              575.02 529.4593
## 111              596.38 529.4593
## 112              596.53 529.4593
## 113              601.25 529.4593
## 114              583.35 529.4593
## 115              635.35 529.4593
## 116              587.00 529.4593
## 117              574.81 529.4593
## 118              552.10 529.4593
## 119              531.07 529.4593
## 120              536.26 529.4593
## 121              502.13 529.4593
## 122              488.10 529.4593
## 123              482.07 529.4593
## 124              490.48 529.4593
## 125              503.82 529.4593
## 126              507.08 529.4593
## 127              521.10 529.4593
## 128              534.10 529.4593
## 129              525.00 529.4593
## 130              534.90 529.4593
## 131              559.50 529.4593
## 132              552.94 529.4593
## 133              554.04 529.4593
## 134              555.15 529.4593
## 135              555.23 529.4593
## 136              552.52 529.4593
## 137              579.04 529.4593
## 138              580.21 529.4593
## 139              577.49 529.4593
## 140              575.14 529.4593
## 141              562.80 529.4593
## 142              560.26 529.4593
## 143              559.47 529.4593
## 144              558.93 529.4593
## 145              569.61 529.4593
## 146              573.37 529.4593
## 147              577.02 529.4593
## 148              574.27 529.4593
## 149              559.44 529.4593
## 150              552.08 529.4593
## 151              553.98 529.4593
## 152              560.48 529.4593
## 153              569.63 529.4593
## 154              582.95 529.4593
## 155              579.87 529.4593
## 156              593.86 529.4593
## 157              598.69 529.4593
## 158              593.64 529.4593
## 159              598.50 529.4593
## 160              593.19 529.4593
## 161              586.14 529.4593
## 162              602.08 529.4593
## 163              591.43 529.4593
## 164              594.60 529.4593
## 165              595.93 529.4593
## 166              603.17 529.4593
## 167              614.82 529.4593
## 168              620.75 529.4593
## 169              625.89 529.4593
## 170              635.35 529.4593
## 171              627.90 529.4593
## 172              632.99 529.4593
## 173              631.00 529.4593
## 174              620.50 529.4593
## 175              626.20 529.4593
## 176              616.88 529.4593
## 177              606.57 529.4593
## 178              602.00 529.4593
## 179              659.59 529.4593
## 180              683.85 529.4593
## 181              671.32 529.4593
## 182              670.90 529.4593
## 183              659.09 529.4593
## 184              673.95 529.4593
## 185              679.75 529.4593
## 186              703.07 529.4593
## 187              713.23 529.4593
## 188              717.93 529.4593
## 189              709.92 529.4593
## 190              710.66 529.4593
## 191              695.27 529.4593
## 192              697.45 529.4593
## 193              698.52 529.4593
## 194              702.80 529.4593
## 195              696.75 529.4593
## 196              704.20 529.4593
## 197              708.35 529.4593
## 198              714.91 529.4593
## 199              712.24 529.4593
## 200              722.79 529.4593
## 201              719.44 529.4593
## 202              728.24 529.4593
## 203              725.54 529.4593
## 204              726.73 529.4593
## 205              723.74 529.4593
## 206              726.64 529.4593
## 207              727.65 529.4593
## 208              717.91 529.4593
## 209              715.24 529.4593
## 210              719.30 529.4593
## 211              714.26 529.4593
## 212              717.51 529.4593
## 213              706.39 529.4593
## 214              714.01 529.4593
## 215              715.82 529.4593
## 216              710.60 529.4593
## 217              722.08 529.4593
## 218              698.96 529.4593
## 219              691.36 529.4593
## 220              707.95 529.4593
## 221              715.60 529.4593
## 222              715.62 529.4593
## 223              725.68 529.4593
## 224              728.10 529.4593
## 225              737.61 529.4593
## 226              736.57 529.4593
## 227              745.81 529.4593
## 228              753.78 529.4593
## 229              748.21 529.4593
## 230              742.63 529.4593
## 231              741.20 529.4593
## 232              735.44 529.4593
## 233              736.07 529.4593
## 234              739.95 529.4593
## 235              745.72 529.4593
## 236              744.43 529.4593
## 237              744.86 529.4593
## 238              739.61 529.4593
## 239              735.59 529.4593
## 240              736.67 529.4593
## 241              752.61 529.4593
## 242              758.81 529.4593
## 243              767.74 529.4593
## 244              760.58 529.4593
## 245              754.64 529.4593
## 246              760.77 529.4593
## 247              765.98 529.4593
## 248              766.56 529.4593
## 249              768.31 529.4593
## 250              768.56 529.4593
## 251              771.24 529.4593
## 252              772.56 529.4593
## 253              768.49 529.4593
## 254              764.04 529.4593
## 255              764.63 529.4593
## 256              764.46 529.4593
## 257              757.31 529.4593
## 258              759.48 529.4593
## 259              762.45 529.4593
## 260              757.25 529.4593
## 261              759.22 529.4593
## 262              769.00 529.4593
## 263              771.29 529.4593
## 264              767.58 529.4593
## 265              769.16 529.4593
## 266              770.62 529.4593
## 267              772.44 529.4593
## 268              788.87 529.4593
## 269              784.48 529.4593
## 270              784.06 529.4593
## 271              760.14 529.4593
## 272              771.49 529.4593
## 273              761.01 529.4593
## 274              761.09 529.4593
## 275              769.69 529.4593
## 276              778.52 529.4593
## 277              775.10 529.4593
## 278              780.22 529.4593
## 279              789.74 529.4593
## 280              804.70 529.4593
## 281              805.75 529.4593
## 282              799.16 529.4593
## 283              816.11 529.4593
## 284              828.72 529.4593
## 285              829.05 529.4593
## 286              837.31 529.4593
## 287              836.74 529.4593
## 288              834.03 529.4593
## 289              844.36 529.4593
## 290              841.66 529.4593
## 291              839.43 529.4593
## 292              841.71 529.4593
## 293              831.00 529.4593
## 294              834.09 529.4593
## 295              829.28 529.4593
## 296              822.96 529.4593
## 297              812.95 529.4593
## 298              817.65 529.4593
## 299              817.69 529.4593
## 300              810.32 529.4593
## 301              818.99 529.4593
## 302              838.09 529.4593
## 303              835.18 529.4593
## 304              822.59 529.4593
## 305              818.36 529.4593
## 306              776.32 529.4593
## 307              789.82 529.4593
## 308              785.41 529.4593
## 309              765.56 529.4593
## 310              767.03 529.4593
## 311              755.05 529.4593
## 312              784.93 529.4593
## 313              787.75 529.4593
## 314              771.88 529.4593
## 315              742.38 529.4593
## 316              739.01 529.4593
## 317              719.07 529.4593
## 318              743.24 529.4593
## 319              746.49 529.4593
## 320              756.40 529.4593
## 321              760.16 529.4593
## 322              780.00 529.4593
## 323              785.33 529.4593
## 324              780.12 529.4593
## 325              780.37 529.4593
## 326              766.77 529.4593
## 327              762.52 529.4593
## 328              750.57 529.4593
## 329              743.65 529.4593
## 330              740.34 529.4593
## 331              759.36 529.4593
## 332              764.72 529.4593
## 333              770.42 529.4593
## 334              767.33 529.4593
## 335              768.66 529.4593
## 336              760.12 529.4593
## 337              774.34 529.4593
## 338              768.82 529.4593
## 339              761.00 529.4593
## 340              757.77 529.4593
## 341              766.00 529.4593
## 342              771.22 529.4593
## 343              770.60 529.4593
## 344              766.34 529.4593
## 345              760.59 529.4593
## 346              771.40 529.4593
## 347              772.13 529.4593
## 348              765.15 529.4593
## 349              749.87 529.4593
## 350              753.67 529.4593
## 351              757.18 529.4593
## 352              780.45 529.4593
## 353              795.99 529.4593
## 354              796.92 529.4593
## 355              795.90 529.4593
## 356              799.02 529.4593
## 357              813.64 529.4593
## 358              817.14 529.4593
## 359              809.72 529.4593
## 360              807.48 529.4593
## 361              809.04 529.4593
## 362              808.33 529.4593
## 363              817.88 529.4593
## 364              822.44 529.4593
## 365              836.52 529.4593
## 366              839.15 529.4593
## 367              835.77 529.4593
## 368              830.38 529.4593
## 369              823.48 529.4593
## 370              832.35 529.4593
## 371              839.95 529.4593
## 372              810.20 529.4593
## 373              807.64 529.4593
## 374              812.50 529.4593
## 375              819.71 529.4593
## 376              821.36 529.4593
## 377              827.46 529.4593
## 378              836.53 529.4593
## 379              836.39 529.4593
## 380              842.70 529.4593
## 381              844.14 529.4593
## 382              845.07 529.4593
## 383              856.44 529.4593
## 384              855.61 529.4593
## 385              852.19 529.4593
## 386              845.24 529.4593
## 387              848.64 529.4593
## 388              845.04 529.4593
## 389              853.08 529.4593
## 390              848.91 529.4593
## 391              849.88 529.4593
## 392              846.61 529.4593
## 393              846.02 529.4593
## 394              850.50 529.4593
## 395              853.00 529.4593
## 396              852.46 529.4593
## 397              854.59 529.4593
## 398              852.53 529.4593
## 399              852.97 529.4593
## 400              853.42 529.4593
## 401              852.31 529.4593
## 402              856.97 529.4593
## 403              843.20 529.4593
## 404              848.06 529.4593
## 405              847.38 529.4593
## 406              845.61 529.4593
## 407              846.82 529.4593
## 408              856.00 529.4593
## 409              874.32 529.4593
## 410              876.34 529.4593
## 411              886.54 529.4593
## 412              891.51 529.4593
## 413              906.83 529.4593
## 414              909.28 529.4593
## 415              898.28 529.4593
## 416              894.88 529.4593
## 417              907.04 529.4593
## 418              902.36 529.4593
## 419              896.23 529.4593
## 420              884.67 529.4593
## 421              901.99 529.4593
## 422              903.78 529.4593
## 423              899.20 529.4593
## 424              902.06 529.4593
## 425              898.53 529.4593
## 426              907.41 529.4593
## 427              907.62 529.4593
## 428              909.29 529.4593
## 429              918.38 529.4593
## 430              924.99 529.4593
## 431              948.23 529.4593
## 432              946.94 529.4593
## 433              941.03 529.4593
## 434              937.53 529.4593
## 435              934.15 529.4593
## 436              949.04 529.4593
## 437              952.82 529.4593
## 438              948.95 529.4593
## 439              947.62 529.4593
## 440              961.35 529.4593
## 441              957.97 529.4593
## 442              966.07 529.4593
## 443              944.76 529.4593
## 444              958.49 529.4593
## 445              959.84 529.4593
## 446              970.67 529.4593
## 447              971.54 529.4593
## 448              980.35 529.4593
## 449              993.38 529.4593
## 450              995.78 529.4593
## 451              996.70 529.4593
## 452              994.62 529.4593
## 453              995.95 529.4593
## 454             1006.73 529.4593
## 455             1011.34 529.4593
## 456             1003.00 529.4593
## 457             1010.07 529.4593
## 458             1010.27 529.4593
## 459              978.31 529.4593
## 460              964.91 529.4593
## 461              980.79 529.4593
## 462              976.47 529.4593
## 463              964.17 529.4593
## 464              987.71 529.4593
## 465              995.17 529.4593
## 466              992.59 529.4593
## 467             1002.23 529.4593
## 468             1001.30 529.4593
## 469             1003.74 529.4593
## 470              993.98 529.4593
## 471              976.78 529.4593
## 472              990.33 529.4593
## 473              975.93 529.4593
## 474              968.00 529.4593
## 475              953.66 529.4593
## 476              971.40 529.4593
## 477              965.14 529.4593
## 478              978.76 529.4593
## 479              996.47 529.4593
## 480              994.13 529.4593
## 481             1006.51 529.4593
## 482             1000.63 529.4593
## 483             1001.81 529.4593
## 484             1010.04 529.4593
## 485             1024.45 529.4593
## 486             1026.87 529.4593
## 487             1028.70 529.4593
## 488             1025.67 529.4593
## 489             1038.95 529.4593
## 490             1039.87 529.4593
## 491             1052.80 529.4593
## 492             1046.00 529.4593
## 493             1020.04 529.4593
## 494              987.78 529.4593
## 495              996.19 529.4593
## 496              995.89 529.4593
## 497              986.92 529.4593
## 498              987.58 529.4593
## 499              992.27 529.4593
## 500              989.84 529.4593
## 501              982.01 529.4593
## 502              956.92 529.4593
## 503              967.99 529.4593
## 504              983.30 529.4593
## 505              982.74 529.4593
## 506              978.18 529.4593
## 507              960.57 529.4593
## 508              958.47 529.4593
## 509              953.29 529.4593
## 510              966.90 529.4593
## 511              958.00 529.4593
## 512              952.45 529.4593
## 513              945.26 529.4593
## 514              946.02 529.4593
## 515              954.06 529.4593
## 516              967.59 529.4593
## 517              980.60 529.4593
## 518              978.25 529.4593
## 519              965.27 529.4593
## 520              967.80 529.4593
## 521              979.47 529.4593
## 522              965.90 529.4593
## 523              977.96 529.4593
## 524              982.58 529.4593
## 525              999.60 529.4593
## 526              992.21 529.4593
## 527              986.79 529.4593
## 528              974.19 529.4593
## 529              969.86 529.4593
## 530              973.21 529.4593
## 531              964.65 529.4593
## 532              955.10 529.4593
## 533              939.79 529.4593
## 534              938.60 529.4593
## 535              950.87 529.4593
## 536              956.40 529.4593
## 537              961.35 529.4593
## 538              959.19 529.4593
## 539              957.10 529.4593
## 540              965.45 529.4593
## 541              980.85 529.4593
## 542              989.58 529.4593
## 543              990.99 529.4593
## 544              987.20 529.4593
## 545              995.00 529.4593
## 546             1000.93 529.4593
## 547             1002.94 529.4593
## 548             1006.34 529.4593
## 549             1009.13 529.4593
## 550              997.00 529.4593
## 551              986.61 529.4593
## 552              982.91 529.4593
## 553              966.30 529.4593
## 554              975.90 529.4593
## 555              972.91 529.4593
## 556              972.43 529.4593
## 557             1100.95 529.4593
## 558             1110.85 529.4593
## 559             1105.28 529.4593
## 560             1103.68 529.4593
## 561             1094.22 529.4593
## 562             1111.60 529.4593
## 563             1120.66 529.4593
## 564             1123.17 529.4593
## 565             1132.88 529.4593
## 566             1129.13 529.4593
## 567             1125.35 529.4593
## 568             1129.17 529.4593
## 569             1136.84 529.4593
## 570             1126.69 529.4593
## 571             1137.29 529.4593
## 572             1129.88 529.4593
## 573             1126.31 529.4593
## 574             1139.49 529.4593
## 575             1156.16 529.4593
## 576             1186.00 529.4593
## 577             1195.83 529.4593
## 578             1193.60 529.4593
## 579             1161.27 529.4593
## 580             1176.75 529.4593
## 581             1162.35 529.4593
## 582             1133.95 529.4593
## 583             1141.57 529.4593
## 584             1152.35 529.4593
## 585             1159.79 529.4593
## 586             1162.00 529.4593
## 587             1168.92 529.4593
## 588             1165.08 529.4593
## 589             1164.13 529.4593
## 590             1174.26 529.4593
## 591             1179.14 529.4593
## 592             1190.58 529.4593
## 593             1187.38 529.4593
## 594             1177.62 529.4593
## 595             1174.76 529.4593
## 596             1168.36 529.4593
## 597             1176.76 529.4593
## 598             1182.26 529.4593
## 599             1186.10 529.4593
## 600             1169.47 529.4593

Model GARCH(1,2)

# GARCH(1,2)
m.12 = garch(diff.1.amazon,order=c(1,2),trace =FALSE)
summary(m.12)
## 
## Call:
## garch(x = diff.1.amazon, order = c(1, 2), trace = FALSE)
## 
## Model:
## GARCH(1,2)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -8.399135 -0.350427  0.003428  0.414105 13.482314 
## 
## Coefficient(s):
##     Estimate  Std. Error  t value Pr(>|t|)    
## a0 1.662e+01   2.571e+00    6.465 1.01e-10 ***
## a1 1.901e-01   8.690e-03   21.875  < 2e-16 ***
## a2 4.208e-02   3.785e-02    1.112    0.266    
## b1 2.222e-14   1.528e-01    0.000    1.000    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Diagnostic Tests:
##  Jarque Bera Test
## 
## data:  Residuals
## X-squared = 92703, df = 2, p-value < 2.2e-16
## 
## 
##  Box-Ljung test
## 
## data:  Squared.Residuals
## X-squared = 0.028166, df = 1, p-value = 0.8667

MODEL ARIMA(0,1,2)-GARCH(1,2)

#ARIMA(0,1,2)+GARCH(1,2)
model12<-ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,2)), 
                  mean.model = list(armaOrder = c(0, 2), include.mean = TRUE), 
                  distribution.model = "norm")
                  
m.12<-ugarchfit(spec=model12,data=diff.1.amazon, out.sample = 100)
plot(m.12,which="all")
## 
## please wait...calculating quantiles...

m.12
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,2)
## Mean Model   : ARFIMA(0,0,2)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error   t value Pr(>|t|)
## mu      0.077176    0.050081   1.54103 0.123309
## ma1    -0.019215    0.023719  -0.81008 0.417893
## ma2    -0.046058    0.022024  -2.09129 0.036502
## omega   0.082927    0.019639   4.22263 0.000024
## alpha1  0.070842    0.009396   7.53955 0.000000
## beta1   0.005729    0.005247   1.09177 0.274936
## beta2   0.922430    0.008598 107.28352 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.077176    0.061354  1.25787 0.208438
## ma1    -0.019215    0.028534 -0.67339 0.500696
## ma2    -0.046058    0.026594 -1.73192 0.083289
## omega   0.082927    0.091669  0.90464 0.365658
## alpha1  0.070842    0.033202  2.13367 0.032870
## beta1   0.005729    0.013489  0.42468 0.671070
## beta2   0.922430    0.028667 32.17686 0.000000
## 
## LogLikelihood : -6127.746 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       5.2931
## Bayes        5.3105
## Shibata      5.2931
## Hannan-Quinn 5.2995
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.1577  0.6913
## Lag[2*(p+q)+(p+q)-1][5]    0.5828  1.0000
## Lag[4*(p+q)+(p+q)-1][9]    1.8179  0.9909
## d.o.f=2
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                          statistic p-value
## Lag[1]                      0.3557  0.5509
## Lag[2*(p+q)+(p+q)-1][8]     0.9663  0.9763
## Lag[4*(p+q)+(p+q)-1][14]    1.2813  0.9988
## d.o.f=3
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[4]   0.02383 0.500 2.000  0.8773
## ARCH Lag[6]   0.10765 1.461 1.711  0.9869
## ARCH Lag[8]   0.11675 2.368 1.583  0.9993
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  2.6873
## Individual Statistics:              
## mu     0.12930
## ma1    0.04957
## ma2    0.13203
## omega  0.20428
## alpha1 0.12314
## beta1  0.29664
## beta2  0.22204
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.69 1.9 2.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value    prob sig
## Sign Bias           0.9323 0.35130    
## Negative Sign Bias  0.2416 0.80908    
## Positive Sign Bias  2.2075 0.02738  **
## Joint Effect        4.9937 0.17226    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     212.5    1.107e-34
## 2    30     218.7    5.345e-31
## 3    40     230.9    4.398e-29
## 4    50     254.4    1.566e-29
## 
## 
## Elapsed time : 0.1278448

diperoleh mean model yaitu ARIMA(0,1,2) dan varian model yaitu GARCH(1,2) terbaik untuk digunakan dalam peralaman, terlihat pada uji dignostik model pada plot QQ-norm terlihat bahwa sebaran residual mengikuti garis lurus sehingga dapat disimpulkan bahwa residual menyebar normal, lalu untuk uji autokorelasi dapat dilihat plot ACF squared residual telah terlihat bahwa setiap lag berada dibawah batas, sehingga dapat dikatakan bahwa tidak ada autokorelasi antar residual, diperkuat dengan nilai p-value pada uji L-jung Box yang lebih besar dari alpha=0.05.

Peramalan dengan Model ARIMA(0,1,2)-GARCH(1,2)

forc = ugarchforecast(m.12, data = diff.1.amazon, n.ahead = 10, n.roll =10)
print(forc)
## 
## *------------------------------------*
## *       GARCH Model Forecast         *
## *------------------------------------*
## Model: sGARCH
## Horizon: 10
## Roll Steps: 10
## Out of Sample: 10
## 
## 0-roll forecast [T0=1976-05-07 07:00:00]:
##        Series Sigma
## T+1  -0.09997 4.771
## T+2   0.23595 7.638
## T+3   0.07718 5.055
## T+4   0.07718 7.473
## T+5   0.07718 5.285
## T+6   0.07718 7.331
## T+7   0.07718 5.473
## T+8   0.07718 7.207
## T+9   0.07718 5.630
## T+10  0.07718 7.101
plot(forc, which= "all")

pada hasil ramalan untuk data saham amazon untuk ke 10 waktu kedepan dapat dilihat pada plot diatas menunjukkan bahwa hasil ramalan bernilai sama sehingga membentuk garis lurus.

Kesimpulan

karena dengan jika menggunakan model ARCH lag hingga 5 masih signifikan, lalu, dicobakan pada beberapa model GARCH dan dibandingkan nilai-nilai seperti AIC dan signifikansi parameter, maka akan digunakan model GARCH(1,2) yang memiliki nilai AIC kecil dan parameter yang hampir semua signifikan. Sehingga diperoleh model Mean yaitu ARIMA(0,1,2) dan model Varian yaitu GARCH(1,2).Dengan persamaan sebagai berikut :

Mean Model ARIMA(0,1,2)

\(Y_t=0.0771+e_t-0.0192 e_{t-1}-0.0460e_{t-2}\)

Varian Model

GARCH(1,2)

\(\sigma^2_t=0.0829+0.0708\epsilon^2_{t-1} +0.0057\sigma^2_{t-1}+ 0.9224 \sigma^2_{t-2}\)