1.1 Sample Data
The ChemicalManufacturingProcess dataset from the AppliedPredictiveModeling package was used for this illustrated example.
Preliminary dataset assessment:
[A] 176 rows (observations)
[B] 58 columns (variables)
[B.1] 1/58 response = Yield variable (numeric)
[B.2] 57/58 predictors = All remaining variables (57/57 numeric)
## [1] 176 58
## 'data.frame': 176 obs. of 58 variables:
## $ Yield : num 38 42.4 42 41.4 42.5 ...
## $ BiologicalMaterial01 : num 6.25 8.01 8.01 8.01 7.47 6.12 7.48 6.94 6.94 6.94 ...
## $ BiologicalMaterial02 : num 49.6 61 61 61 63.3 ...
## $ BiologicalMaterial03 : num 57 67.5 67.5 67.5 72.2 ...
## $ BiologicalMaterial04 : num 12.7 14.6 14.6 14.6 14 ...
## $ BiologicalMaterial05 : num 19.5 19.4 19.4 19.4 17.9 ...
## $ BiologicalMaterial06 : num 43.7 53.1 53.1 53.1 54.7 ...
## $ BiologicalMaterial07 : num 100 100 100 100 100 100 100 100 100 100 ...
## $ BiologicalMaterial08 : num 16.7 19 19 19 18.2 ...
## $ BiologicalMaterial09 : num 11.4 12.6 12.6 12.6 12.8 ...
## $ BiologicalMaterial10 : num 3.46 3.46 3.46 3.46 3.05 3.78 3.04 3.85 3.85 3.85 ...
## $ BiologicalMaterial11 : num 138 154 154 154 148 ...
## $ BiologicalMaterial12 : num 18.8 21.1 21.1 21.1 21.1 ...
## $ ManufacturingProcess01: num NA 0 0 0 10.7 12 11.5 12 12 12 ...
## $ ManufacturingProcess02: num NA 0 0 0 0 0 0 0 0 0 ...
## $ ManufacturingProcess03: num NA NA NA NA NA NA 1.56 1.55 1.56 1.55 ...
## $ ManufacturingProcess04: num NA 917 912 911 918 924 933 929 928 938 ...
## $ ManufacturingProcess05: num NA 1032 1004 1015 1028 ...
## $ ManufacturingProcess06: num NA 210 207 213 206 ...
## $ ManufacturingProcess07: num NA 177 178 177 178 178 177 178 177 177 ...
## $ ManufacturingProcess08: num NA 178 178 177 178 178 178 178 177 177 ...
## $ ManufacturingProcess09: num 43 46.6 45.1 44.9 45 ...
## $ ManufacturingProcess10: num NA NA NA NA NA NA 11.6 10.2 9.7 10.1 ...
## $ ManufacturingProcess11: num NA NA NA NA NA NA 11.5 11.3 11.1 10.2 ...
## $ ManufacturingProcess12: num NA 0 0 0 0 0 0 0 0 0 ...
## $ ManufacturingProcess13: num 35.5 34 34.8 34.8 34.6 34 32.4 33.6 33.9 34.3 ...
## $ ManufacturingProcess14: num 4898 4869 4878 4897 4992 ...
## $ ManufacturingProcess15: num 6108 6095 6087 6102 6233 ...
## $ ManufacturingProcess16: num 4682 4617 4617 4635 4733 ...
## $ ManufacturingProcess17: num 35.5 34 34.8 34.8 33.9 33.4 33.8 33.6 33.9 35.3 ...
## $ ManufacturingProcess18: num 4865 4867 4877 4872 4886 ...
## $ ManufacturingProcess19: num 6049 6097 6078 6073 6102 ...
## $ ManufacturingProcess20: num 4665 4621 4621 4611 4659 ...
## $ ManufacturingProcess21: num 0 0 0 0 -0.7 -0.6 1.4 0 0 1 ...
## $ ManufacturingProcess22: num NA 3 4 5 8 9 1 2 3 4 ...
## $ ManufacturingProcess23: num NA 0 1 2 4 1 1 2 3 1 ...
## $ ManufacturingProcess24: num NA 3 4 5 18 1 1 2 3 4 ...
## $ ManufacturingProcess25: num 4873 4869 4897 4892 4930 ...
## $ ManufacturingProcess26: num 6074 6107 6116 6111 6151 ...
## $ ManufacturingProcess27: num 4685 4630 4637 4630 4684 ...
## $ ManufacturingProcess28: num 10.7 11.2 11.1 11.1 11.3 11.4 11.2 11.1 11.3 11.4 ...
## $ ManufacturingProcess29: num 21 21.4 21.3 21.3 21.6 21.7 21.2 21.2 21.5 21.7 ...
## $ ManufacturingProcess30: num 9.9 9.9 9.4 9.4 9 10.1 11.2 10.9 10.5 9.8 ...
## $ ManufacturingProcess31: num 69.1 68.7 69.3 69.3 69.4 68.2 67.6 67.9 68 68.5 ...
## $ ManufacturingProcess32: num 156 169 173 171 171 173 159 161 160 164 ...
## $ ManufacturingProcess33: num 66 66 66 68 70 70 65 65 65 66 ...
## $ ManufacturingProcess34: num 2.4 2.6 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 ...
## $ ManufacturingProcess35: num 486 508 509 496 468 490 475 478 491 488 ...
## $ ManufacturingProcess36: num 0.019 0.019 0.018 0.018 0.017 0.018 0.019 0.019 0.019 0.019 ...
## $ ManufacturingProcess37: num 0.5 2 0.7 1.2 0.2 0.4 0.8 1 1.2 1.8 ...
## $ ManufacturingProcess38: num 3 2 2 2 2 2 2 2 3 3 ...
## $ ManufacturingProcess39: num 7.2 7.2 7.2 7.2 7.3 7.2 7.3 7.3 7.4 7.1 ...
## $ ManufacturingProcess40: num NA 0.1 0 0 0 0 0 0 0 0 ...
## $ ManufacturingProcess41: num NA 0.15 0 0 0 0 0 0 0 0 ...
## $ ManufacturingProcess42: num 11.6 11.1 12 10.6 11 11.5 11.7 11.4 11.4 11.3 ...
## $ ManufacturingProcess43: num 3 0.9 1 1.1 1.1 2.2 0.7 0.8 0.9 0.8 ...
## $ ManufacturingProcess44: num 1.8 1.9 1.8 1.8 1.7 1.8 2 2 1.9 1.9 ...
## $ ManufacturingProcess45: num 2.4 2.2 2.3 2.1 2.1 2 2.2 2.2 2.1 2.4 ...
## Yield BiologicalMaterial01 BiologicalMaterial02 BiologicalMaterial03
## Min. :35.25 Min. :4.580 Min. :46.87 Min. :56.97
## 1st Qu.:38.75 1st Qu.:5.978 1st Qu.:52.68 1st Qu.:64.98
## Median :39.97 Median :6.305 Median :55.09 Median :67.22
## Mean :40.18 Mean :6.411 Mean :55.69 Mean :67.70
## 3rd Qu.:41.48 3rd Qu.:6.870 3rd Qu.:58.74 3rd Qu.:70.43
## Max. :46.34 Max. :8.810 Max. :64.75 Max. :78.25
##
## BiologicalMaterial04 BiologicalMaterial05 BiologicalMaterial06
## Min. : 9.38 Min. :13.24 Min. :40.60
## 1st Qu.:11.24 1st Qu.:17.23 1st Qu.:46.05
## Median :12.10 Median :18.49 Median :48.46
## Mean :12.35 Mean :18.60 Mean :48.91
## 3rd Qu.:13.22 3rd Qu.:19.90 3rd Qu.:51.34
## Max. :23.09 Max. :24.85 Max. :59.38
##
## BiologicalMaterial07 BiologicalMaterial08 BiologicalMaterial09
## Min. :100.0 Min. :15.88 Min. :11.44
## 1st Qu.:100.0 1st Qu.:17.06 1st Qu.:12.60
## Median :100.0 Median :17.51 Median :12.84
## Mean :100.0 Mean :17.49 Mean :12.85
## 3rd Qu.:100.0 3rd Qu.:17.88 3rd Qu.:13.13
## Max. :100.8 Max. :19.14 Max. :14.08
##
## BiologicalMaterial10 BiologicalMaterial11 BiologicalMaterial12
## Min. :1.770 Min. :135.8 Min. :18.35
## 1st Qu.:2.460 1st Qu.:143.8 1st Qu.:19.73
## Median :2.710 Median :146.1 Median :20.12
## Mean :2.801 Mean :147.0 Mean :20.20
## 3rd Qu.:2.990 3rd Qu.:149.6 3rd Qu.:20.75
## Max. :6.870 Max. :158.7 Max. :22.21
##
## ManufacturingProcess01 ManufacturingProcess02 ManufacturingProcess03
## Min. : 0.00 Min. : 0.00 Min. :1.47
## 1st Qu.:10.80 1st Qu.:19.30 1st Qu.:1.53
## Median :11.40 Median :21.00 Median :1.54
## Mean :11.21 Mean :16.68 Mean :1.54
## 3rd Qu.:12.15 3rd Qu.:21.50 3rd Qu.:1.55
## Max. :14.10 Max. :22.50 Max. :1.60
## NA's :1 NA's :3 NA's :15
## ManufacturingProcess04 ManufacturingProcess05 ManufacturingProcess06
## Min. :911.0 Min. : 923.0 Min. :203.0
## 1st Qu.:928.0 1st Qu.: 986.8 1st Qu.:205.7
## Median :934.0 Median : 999.2 Median :206.8
## Mean :931.9 Mean :1001.7 Mean :207.4
## 3rd Qu.:936.0 3rd Qu.:1008.9 3rd Qu.:208.7
## Max. :946.0 Max. :1175.3 Max. :227.4
## NA's :1 NA's :1 NA's :2
## ManufacturingProcess07 ManufacturingProcess08 ManufacturingProcess09
## Min. :177.0 Min. :177.0 Min. :38.89
## 1st Qu.:177.0 1st Qu.:177.0 1st Qu.:44.89
## Median :177.0 Median :178.0 Median :45.73
## Mean :177.5 Mean :177.6 Mean :45.66
## 3rd Qu.:178.0 3rd Qu.:178.0 3rd Qu.:46.52
## Max. :178.0 Max. :178.0 Max. :49.36
## NA's :1 NA's :1
## ManufacturingProcess10 ManufacturingProcess11 ManufacturingProcess12
## Min. : 7.500 Min. : 7.500 Min. : 0.0
## 1st Qu.: 8.700 1st Qu.: 9.000 1st Qu.: 0.0
## Median : 9.100 Median : 9.400 Median : 0.0
## Mean : 9.179 Mean : 9.386 Mean : 857.8
## 3rd Qu.: 9.550 3rd Qu.: 9.900 3rd Qu.: 0.0
## Max. :11.600 Max. :11.500 Max. :4549.0
## NA's :9 NA's :10 NA's :1
## ManufacturingProcess13 ManufacturingProcess14 ManufacturingProcess15
## Min. :32.10 Min. :4701 Min. :5904
## 1st Qu.:33.90 1st Qu.:4828 1st Qu.:6010
## Median :34.60 Median :4856 Median :6032
## Mean :34.51 Mean :4854 Mean :6039
## 3rd Qu.:35.20 3rd Qu.:4882 3rd Qu.:6061
## Max. :38.60 Max. :5055 Max. :6233
## NA's :1
## ManufacturingProcess16 ManufacturingProcess17 ManufacturingProcess18
## Min. : 0 Min. :31.30 Min. : 0
## 1st Qu.:4561 1st Qu.:33.50 1st Qu.:4813
## Median :4588 Median :34.40 Median :4835
## Mean :4566 Mean :34.34 Mean :4810
## 3rd Qu.:4619 3rd Qu.:35.10 3rd Qu.:4862
## Max. :4852 Max. :40.00 Max. :4971
##
## ManufacturingProcess19 ManufacturingProcess20 ManufacturingProcess21
## Min. :5890 Min. : 0 Min. :-1.8000
## 1st Qu.:6001 1st Qu.:4553 1st Qu.:-0.6000
## Median :6022 Median :4582 Median :-0.3000
## Mean :6028 Mean :4556 Mean :-0.1642
## 3rd Qu.:6050 3rd Qu.:4610 3rd Qu.: 0.0000
## Max. :6146 Max. :4759 Max. : 3.6000
##
## ManufacturingProcess22 ManufacturingProcess23 ManufacturingProcess24
## Min. : 0.000 Min. :0.000 Min. : 0.000
## 1st Qu.: 3.000 1st Qu.:2.000 1st Qu.: 4.000
## Median : 5.000 Median :3.000 Median : 8.000
## Mean : 5.406 Mean :3.017 Mean : 8.834
## 3rd Qu.: 8.000 3rd Qu.:4.000 3rd Qu.:14.000
## Max. :12.000 Max. :6.000 Max. :23.000
## NA's :1 NA's :1 NA's :1
## ManufacturingProcess25 ManufacturingProcess26 ManufacturingProcess27
## Min. : 0 Min. : 0 Min. : 0
## 1st Qu.:4832 1st Qu.:6020 1st Qu.:4560
## Median :4855 Median :6047 Median :4587
## Mean :4828 Mean :6016 Mean :4563
## 3rd Qu.:4877 3rd Qu.:6070 3rd Qu.:4609
## Max. :4990 Max. :6161 Max. :4710
## NA's :5 NA's :5 NA's :5
## ManufacturingProcess28 ManufacturingProcess29 ManufacturingProcess30
## Min. : 0.000 Min. : 0.00 Min. : 0.000
## 1st Qu.: 0.000 1st Qu.:19.70 1st Qu.: 8.800
## Median :10.400 Median :19.90 Median : 9.100
## Mean : 6.592 Mean :20.01 Mean : 9.161
## 3rd Qu.:10.750 3rd Qu.:20.40 3rd Qu.: 9.700
## Max. :11.500 Max. :22.00 Max. :11.200
## NA's :5 NA's :5 NA's :5
## ManufacturingProcess31 ManufacturingProcess32 ManufacturingProcess33
## Min. : 0.00 Min. :143.0 Min. :56.00
## 1st Qu.:70.10 1st Qu.:155.0 1st Qu.:62.00
## Median :70.80 Median :158.0 Median :64.00
## Mean :70.18 Mean :158.5 Mean :63.54
## 3rd Qu.:71.40 3rd Qu.:162.0 3rd Qu.:65.00
## Max. :72.50 Max. :173.0 Max. :70.00
## NA's :5 NA's :5
## ManufacturingProcess34 ManufacturingProcess35 ManufacturingProcess36
## Min. :2.300 Min. :463.0 Min. :0.01700
## 1st Qu.:2.500 1st Qu.:490.0 1st Qu.:0.01900
## Median :2.500 Median :495.0 Median :0.02000
## Mean :2.494 Mean :495.6 Mean :0.01957
## 3rd Qu.:2.500 3rd Qu.:501.5 3rd Qu.:0.02000
## Max. :2.600 Max. :522.0 Max. :0.02200
## NA's :5 NA's :5 NA's :5
## ManufacturingProcess37 ManufacturingProcess38 ManufacturingProcess39
## Min. :0.000 Min. :0.000 Min. :0.000
## 1st Qu.:0.700 1st Qu.:2.000 1st Qu.:7.100
## Median :1.000 Median :3.000 Median :7.200
## Mean :1.014 Mean :2.534 Mean :6.851
## 3rd Qu.:1.300 3rd Qu.:3.000 3rd Qu.:7.300
## Max. :2.300 Max. :3.000 Max. :7.500
##
## ManufacturingProcess40 ManufacturingProcess41 ManufacturingProcess42
## Min. :0.00000 Min. :0.00000 Min. : 0.00
## 1st Qu.:0.00000 1st Qu.:0.00000 1st Qu.:11.40
## Median :0.00000 Median :0.00000 Median :11.60
## Mean :0.01771 Mean :0.02371 Mean :11.21
## 3rd Qu.:0.00000 3rd Qu.:0.00000 3rd Qu.:11.70
## Max. :0.10000 Max. :0.20000 Max. :12.10
## NA's :1 NA's :1
## ManufacturingProcess43 ManufacturingProcess44 ManufacturingProcess45
## Min. : 0.0000 Min. :0.000 Min. :0.000
## 1st Qu.: 0.6000 1st Qu.:1.800 1st Qu.:2.100
## Median : 0.8000 Median :1.900 Median :2.200
## Mean : 0.9119 Mean :1.805 Mean :2.138
## 3rd Qu.: 1.0250 3rd Qu.:1.900 3rd Qu.:2.300
## Max. :11.0000 Max. :2.100 Max. :2.600
##
## Column.Index Column.Name Column.Type
## 1 1 Yield numeric
## 2 2 BiologicalMaterial01 numeric
## 3 3 BiologicalMaterial02 numeric
## 4 4 BiologicalMaterial03 numeric
## 5 5 BiologicalMaterial04 numeric
## 6 6 BiologicalMaterial05 numeric
## 7 7 BiologicalMaterial06 numeric
## 8 8 BiologicalMaterial07 numeric
## 9 9 BiologicalMaterial08 numeric
## 10 10 BiologicalMaterial09 numeric
## 11 11 BiologicalMaterial10 numeric
## 12 12 BiologicalMaterial11 numeric
## 13 13 BiologicalMaterial12 numeric
## 14 14 ManufacturingProcess01 numeric
## 15 15 ManufacturingProcess02 numeric
## 16 16 ManufacturingProcess03 numeric
## 17 17 ManufacturingProcess04 numeric
## 18 18 ManufacturingProcess05 numeric
## 19 19 ManufacturingProcess06 numeric
## 20 20 ManufacturingProcess07 numeric
## 21 21 ManufacturingProcess08 numeric
## 22 22 ManufacturingProcess09 numeric
## 23 23 ManufacturingProcess10 numeric
## 24 24 ManufacturingProcess11 numeric
## 25 25 ManufacturingProcess12 numeric
## 26 26 ManufacturingProcess13 numeric
## 27 27 ManufacturingProcess14 numeric
## 28 28 ManufacturingProcess15 numeric
## 29 29 ManufacturingProcess16 numeric
## 30 30 ManufacturingProcess17 numeric
## 31 31 ManufacturingProcess18 numeric
## 32 32 ManufacturingProcess19 numeric
## 33 33 ManufacturingProcess20 numeric
## 34 34 ManufacturingProcess21 numeric
## 35 35 ManufacturingProcess22 numeric
## 36 36 ManufacturingProcess23 numeric
## 37 37 ManufacturingProcess24 numeric
## 38 38 ManufacturingProcess25 numeric
## 39 39 ManufacturingProcess26 numeric
## 40 40 ManufacturingProcess27 numeric
## 41 41 ManufacturingProcess28 numeric
## 42 42 ManufacturingProcess29 numeric
## 43 43 ManufacturingProcess30 numeric
## 44 44 ManufacturingProcess31 numeric
## 45 45 ManufacturingProcess32 numeric
## 46 46 ManufacturingProcess33 numeric
## 47 47 ManufacturingProcess34 numeric
## 48 48 ManufacturingProcess35 numeric
## 49 49 ManufacturingProcess36 numeric
## 50 50 ManufacturingProcess37 numeric
## 51 51 ManufacturingProcess38 numeric
## 52 52 ManufacturingProcess39 numeric
## 53 53 ManufacturingProcess40 numeric
## 54 54 ManufacturingProcess41 numeric
## 55 55 ManufacturingProcess42 numeric
## 56 56 ManufacturingProcess43 numeric
## 57 57 ManufacturingProcess44 numeric
## 58 58 ManufacturingProcess45 numeric
1.2 Data Quality Assessment
Data quality assessment:
[A] Missing observations noted for 28 variables with NA.Count>0 and Fill.Rate<1.0.
[A.1] ManufacturingProcess01 variable (numeric)
[A.2] ManufacturingProcess02 variable (numeric)
[A.3] ManufacturingProcess03 variable (numeric)
[A.4] ManufacturingProcess04 variable (numeric)
[A.5] ManufacturingProcess05 variable (numeric)
[A.6] ManufacturingProcess06 variable (numeric)
[A.7] ManufacturingProcess07 variable (numeric)
[A.8] ManufacturingProcess08 variable (numeric)
[A.9] ManufacturingProcess10 variable (numeric)
[A.10] ManufacturingProcess11 variable (numeric)
[A.11] ManufacturingProcess12 variable (numeric)
[A.12] ManufacturingProcess14 variable (numeric)
[A.13] ManufacturingProcess22 variable (numeric)
[A.14] ManufacturingProcess23 variable (numeric)
[A.15] ManufacturingProcess24 variable (numeric)
[A.16] ManufacturingProcess25 variable (numeric)
[A.17] ManufacturingProcess26 variable (numeric)
[A.18] ManufacturingProcess27 variable (numeric)
[A.19] ManufacturingProcess28 variable (numeric)
[A.20] ManufacturingProcess29 variable (numeric)
[A.21] ManufacturingProcess30 variable (numeric)
[A.22] ManufacturingProcess31 variable (numeric)
[A.23] ManufacturingProcess33 variable (numeric)
[A.24] ManufacturingProcess34 variable (numeric)
[A.25] ManufacturingProcess35 variable (numeric)
[A.26] ManufacturingProcess36 variable (numeric)
[A.27] ManufacturingProcess40 variable (numeric)
[A.28] ManufacturingProcess41 variable (numeric)
[B] Low variance observed for 3 variables with First.Second.Mode.Ratio>5.
[B.1] BiologicalMaterial07 variable (numeric)
[B.2] ManufacturingProcess28 variable (numeric)
[B.3] ManufacturingProcess41 variable (numeric)
[C] High skewness observed for 17 variables with Skewness>3 or Skewness<(-3).
[C.1] BiologicalMaterial07 variable (numeric)
[C.2] ManufacturingProcess01 variable (numeric)
[C.3] ManufacturingProcess06 variable (numeric)
[C.4] ManufacturingProcess16 variable (numeric)
[C.5] ManufacturingProcess18 variable (numeric)
[C.6] ManufacturingProcess20 variable (numeric)
[C.7] ManufacturingProcess25 variable (numeric)
[C.8] ManufacturingProcess26 variable (numeric)
[C.9] ManufacturingProcess27 variable (numeric)
[C.10] ManufacturingProcess29 variable (numeric)
[C.11] ManufacturingProcess30 variable (numeric)
[C.12] ManufacturingProcess31 variable (numeric)
[C.14] ManufacturingProcess39 variable (numeric)
[C.15] ManufacturingProcess42 variable (numeric)
[C.16] ManufacturingProcess43 variable (numeric)
[C.17] ManufacturingProcess44 variable (numeric)
[C.18] ManufacturingProcess45 variable (numeric)
##################################
# Loading dataset
##################################
DQA <- ChemicalManufacturingProcess
##################################
# Listing all predictors
##################################
DQA.Predictors <- DQA[,!names(DQA) %in% c("Yield")]
##################################
# Formulating an overall data quality assessment summary
##################################
(DQA.Summary <- data.frame(
Column.Index=c(1:length(names(DQA))),
Column.Name= names(DQA),
Column.Type=sapply(DQA, function(x) class(x)),
Row.Count=sapply(DQA, function(x) nrow(DQA)),
NA.Count=sapply(DQA,function(x)sum(is.na(x))),
Fill.Rate=sapply(DQA,function(x)format(round((sum(!is.na(x))/nrow(DQA)),3),nsmall=3)),
row.names=NULL)
)
## Column.Index Column.Name Column.Type Row.Count NA.Count Fill.Rate
## 1 1 Yield numeric 176 0 1.000
## 2 2 BiologicalMaterial01 numeric 176 0 1.000
## 3 3 BiologicalMaterial02 numeric 176 0 1.000
## 4 4 BiologicalMaterial03 numeric 176 0 1.000
## 5 5 BiologicalMaterial04 numeric 176 0 1.000
## 6 6 BiologicalMaterial05 numeric 176 0 1.000
## 7 7 BiologicalMaterial06 numeric 176 0 1.000
## 8 8 BiologicalMaterial07 numeric 176 0 1.000
## 9 9 BiologicalMaterial08 numeric 176 0 1.000
## 10 10 BiologicalMaterial09 numeric 176 0 1.000
## 11 11 BiologicalMaterial10 numeric 176 0 1.000
## 12 12 BiologicalMaterial11 numeric 176 0 1.000
## 13 13 BiologicalMaterial12 numeric 176 0 1.000
## 14 14 ManufacturingProcess01 numeric 176 1 0.994
## 15 15 ManufacturingProcess02 numeric 176 3 0.983
## 16 16 ManufacturingProcess03 numeric 176 15 0.915
## 17 17 ManufacturingProcess04 numeric 176 1 0.994
## 18 18 ManufacturingProcess05 numeric 176 1 0.994
## 19 19 ManufacturingProcess06 numeric 176 2 0.989
## 20 20 ManufacturingProcess07 numeric 176 1 0.994
## 21 21 ManufacturingProcess08 numeric 176 1 0.994
## 22 22 ManufacturingProcess09 numeric 176 0 1.000
## 23 23 ManufacturingProcess10 numeric 176 9 0.949
## 24 24 ManufacturingProcess11 numeric 176 10 0.943
## 25 25 ManufacturingProcess12 numeric 176 1 0.994
## 26 26 ManufacturingProcess13 numeric 176 0 1.000
## 27 27 ManufacturingProcess14 numeric 176 1 0.994
## 28 28 ManufacturingProcess15 numeric 176 0 1.000
## 29 29 ManufacturingProcess16 numeric 176 0 1.000
## 30 30 ManufacturingProcess17 numeric 176 0 1.000
## 31 31 ManufacturingProcess18 numeric 176 0 1.000
## 32 32 ManufacturingProcess19 numeric 176 0 1.000
## 33 33 ManufacturingProcess20 numeric 176 0 1.000
## 34 34 ManufacturingProcess21 numeric 176 0 1.000
## 35 35 ManufacturingProcess22 numeric 176 1 0.994
## 36 36 ManufacturingProcess23 numeric 176 1 0.994
## 37 37 ManufacturingProcess24 numeric 176 1 0.994
## 38 38 ManufacturingProcess25 numeric 176 5 0.972
## 39 39 ManufacturingProcess26 numeric 176 5 0.972
## 40 40 ManufacturingProcess27 numeric 176 5 0.972
## 41 41 ManufacturingProcess28 numeric 176 5 0.972
## 42 42 ManufacturingProcess29 numeric 176 5 0.972
## 43 43 ManufacturingProcess30 numeric 176 5 0.972
## 44 44 ManufacturingProcess31 numeric 176 5 0.972
## 45 45 ManufacturingProcess32 numeric 176 0 1.000
## 46 46 ManufacturingProcess33 numeric 176 5 0.972
## 47 47 ManufacturingProcess34 numeric 176 5 0.972
## 48 48 ManufacturingProcess35 numeric 176 5 0.972
## 49 49 ManufacturingProcess36 numeric 176 5 0.972
## 50 50 ManufacturingProcess37 numeric 176 0 1.000
## 51 51 ManufacturingProcess38 numeric 176 0 1.000
## 52 52 ManufacturingProcess39 numeric 176 0 1.000
## 53 53 ManufacturingProcess40 numeric 176 1 0.994
## 54 54 ManufacturingProcess41 numeric 176 1 0.994
## 55 55 ManufacturingProcess42 numeric 176 0 1.000
## 56 56 ManufacturingProcess43 numeric 176 0 1.000
## 57 57 ManufacturingProcess44 numeric 176 0 1.000
## 58 58 ManufacturingProcess45 numeric 176 0 1.000
## [1] "There are 57 numeric predictor variable(s)."
## [1] "There are no factor predictor variables."
##################################
# Formulating a data quality assessment summary for factor predictors
##################################
if (length(names(DQA.Predictors.Factor))>0) {
##################################
# Formulating a function to determine the first mode
##################################
FirstModes <- function(x) {
ux <- unique(na.omit(x))
tab <- tabulate(match(x, ux))
ux[tab == max(tab)]
}
##################################
# Formulating a function to determine the second mode
##################################
SecondModes <- function(x) {
ux <- unique(na.omit(x))
tab <- tabulate(match(x, ux))
fm = ux[tab == max(tab)]
sm = x[!(x %in% fm)]
usm <- unique(sm)
tabsm <- tabulate(match(sm, usm))
usm[tabsm == max(tabsm)]
}
(DQA.Predictors.Factor.Summary <- data.frame(
Column.Name= names(DQA.Predictors.Factor),
Column.Type=sapply(DQA.Predictors.Factor, function(x) class(x)),
Unique.Count=sapply(DQA.Predictors.Factor, function(x) length(unique(x))),
First.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(FirstModes(x)[1])),
Second.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(SecondModes(x)[1])),
First.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == FirstModes(x)[1])),
Second.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == SecondModes(x)[1])),
Unique.Count.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Factor)),3), nsmall=3)),
First.Second.Mode.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((sum(x == FirstModes(x)[1])/sum(x == SecondModes(x)[1])),3), nsmall=3)),
row.names=NULL)
)
}
##################################
# Formulating a data quality assessment summary for numeric predictors
##################################
if (length(names(DQA.Predictors.Numeric))>0) {
##################################
# Formulating a function to determine the first mode
##################################
FirstModes <- function(x) {
ux <- unique(na.omit(x))
tab <- tabulate(match(x, ux))
ux[tab == max(tab)]
}
##################################
# Formulating a function to determine the second mode
##################################
SecondModes <- function(x) {
ux <- unique(na.omit(x))
tab <- tabulate(match(x, ux))
fm = ux[tab == max(tab)]
sm = na.omit(x)[!(na.omit(x) %in% fm)]
usm <- unique(sm)
tabsm <- tabulate(match(sm, usm))
usm[tabsm == max(tabsm)]
}
(DQA.Predictors.Numeric.Summary <- data.frame(
Column.Name= names(DQA.Predictors.Numeric),
Column.Type=sapply(DQA.Predictors.Numeric, function(x) class(x)),
Unique.Count=sapply(DQA.Predictors.Numeric, function(x) length(unique(x))),
Unique.Count.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Numeric)),3), nsmall=3)),
First.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((FirstModes(x)[1]),3),nsmall=3)),
Second.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((SecondModes(x)[1]),3),nsmall=3)),
First.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == FirstModes(x)[1])),
Second.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == SecondModes(x)[1])),
First.Second.Mode.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((sum(na.omit(x) == FirstModes(x)[1])/sum(na.omit(x) == SecondModes(x)[1])),3), nsmall=3)),
Minimum=sapply(DQA.Predictors.Numeric, function(x) format(round(min(x,na.rm = TRUE),3), nsmall=3)),
Mean=sapply(DQA.Predictors.Numeric, function(x) format(round(mean(x,na.rm = TRUE),3), nsmall=3)),
Median=sapply(DQA.Predictors.Numeric, function(x) format(round(median(x,na.rm = TRUE),3), nsmall=3)),
Maximum=sapply(DQA.Predictors.Numeric, function(x) format(round(max(x,na.rm = TRUE),3), nsmall=3)),
Skewness=sapply(DQA.Predictors.Numeric, function(x) format(round(skewness(x,na.rm = TRUE),3), nsmall=3)),
Kurtosis=sapply(DQA.Predictors.Numeric, function(x) format(round(kurtosis(x,na.rm = TRUE),3), nsmall=3)),
Percentile25th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.25,na.rm = TRUE),3), nsmall=3)),
Percentile75th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.75,na.rm = TRUE),3), nsmall=3)),
row.names=NULL)
)
}
## Column.Name Column.Type Unique.Count Unique.Count.Ratio
## 1 BiologicalMaterial01 numeric 89 0.506
## 2 BiologicalMaterial02 numeric 106 0.602
## 3 BiologicalMaterial03 numeric 101 0.574
## 4 BiologicalMaterial04 numeric 102 0.580
## 5 BiologicalMaterial05 numeric 103 0.585
## 6 BiologicalMaterial06 numeric 105 0.597
## 7 BiologicalMaterial07 numeric 2 0.011
## 8 BiologicalMaterial08 numeric 90 0.511
## 9 BiologicalMaterial09 numeric 79 0.449
## 10 BiologicalMaterial10 numeric 79 0.449
## 11 BiologicalMaterial11 numeric 105 0.597
## 12 BiologicalMaterial12 numeric 87 0.494
## 13 ManufacturingProcess01 numeric 42 0.239
## 14 ManufacturingProcess02 numeric 28 0.159
## 15 ManufacturingProcess03 numeric 15 0.085
## 16 ManufacturingProcess04 numeric 29 0.165
## 17 ManufacturingProcess05 numeric 155 0.881
## 18 ManufacturingProcess06 numeric 41 0.233
## 19 ManufacturingProcess07 numeric 3 0.017
## 20 ManufacturingProcess08 numeric 3 0.017
## 21 ManufacturingProcess09 numeric 148 0.841
## 22 ManufacturingProcess10 numeric 37 0.210
## 23 ManufacturingProcess11 numeric 36 0.205
## 24 ManufacturingProcess12 numeric 3 0.017
## 25 ManufacturingProcess13 numeric 42 0.239
## 26 ManufacturingProcess14 numeric 115 0.653
## 27 ManufacturingProcess15 numeric 119 0.676
## 28 ManufacturingProcess16 numeric 120 0.682
## 29 ManufacturingProcess17 numeric 42 0.239
## 30 ManufacturingProcess18 numeric 106 0.602
## 31 ManufacturingProcess19 numeric 112 0.636
## 32 ManufacturingProcess20 numeric 112 0.636
## 33 ManufacturingProcess21 numeric 33 0.188
## 34 ManufacturingProcess22 numeric 14 0.080
## 35 ManufacturingProcess23 numeric 8 0.045
## 36 ManufacturingProcess24 numeric 25 0.142
## 37 ManufacturingProcess25 numeric 107 0.608
## 38 ManufacturingProcess26 numeric 106 0.602
## 39 ManufacturingProcess27 numeric 104 0.591
## 40 ManufacturingProcess28 numeric 18 0.102
## 41 ManufacturingProcess29 numeric 31 0.176
## 42 ManufacturingProcess30 numeric 33 0.188
## 43 ManufacturingProcess31 numeric 45 0.256
## 44 ManufacturingProcess32 numeric 27 0.153
## 45 ManufacturingProcess33 numeric 15 0.085
## 46 ManufacturingProcess34 numeric 5 0.028
## 47 ManufacturingProcess35 numeric 47 0.267
## 48 ManufacturingProcess36 numeric 7 0.040
## 49 ManufacturingProcess37 numeric 21 0.119
## 50 ManufacturingProcess38 numeric 3 0.017
## 51 ManufacturingProcess39 numeric 10 0.057
## 52 ManufacturingProcess40 numeric 3 0.017
## 53 ManufacturingProcess41 numeric 5 0.028
## 54 ManufacturingProcess42 numeric 17 0.097
## 55 ManufacturingProcess43 numeric 23 0.131
## 56 ManufacturingProcess44 numeric 8 0.045
## 57 ManufacturingProcess45 numeric 10 0.057
## First.Mode.Value Second.Mode.Value First.Mode.Count Second.Mode.Count
## 1 6.250 6.940 7 6
## 2 60.970 53.180 3 2
## 3 66.950 67.480 4 3
## 4 10.500 11.830 6 4
## 5 18.800 18.040 6 4
## 6 52.830 53.140 4 3
## 7 100.000 100.830 173 3
## 8 17.740 17.870 6 5
## 9 12.750 13.310 11 7
## 10 2.460 2.750 10 9
## 11 153.670 152.820 3 2
## 12 20.250 20.330 9 7
## 13 11.400 11.300 12 11
## 14 0.000 21.500 35 19
## 15 1.550 1.540 63 38
## 16 934.000 936.000 21 17
## 17 1003.800 1014.600 3 2
## 18 206.400 206.600 12 11
## 19 177.000 178.000 91 84
## 20 178.000 177.000 97 78
## 21 45.730 44.920 3 2
## 22 9.000 9.400 14 12
## 23 9.100 9.400 16 12
## 24 0.000 4549.000 142 33
## 25 35.200 34.400 12 11
## 26 4869.000 4878.000 4 3
## 27 6022.000 6029.000 5 4
## 28 4617.000 4577.000 5 4
## 29 34.800 33.900 12 10
## 30 4844.000 4849.000 6 4
## 31 6022.000 6028.000 4 3
## 32 4621.000 4611.000 4 3
## 33 0.000 -0.400 45 17
## 34 3.000 4.000 21 19
## 35 1.000 2.000 36 31
## 36 3.000 7.000 13 12
## 37 4820.000 4846.000 6 4
## 38 6041.000 6060.000 5 4
## 39 4606.000 4572.000 6 5
## 40 0.000 10.700 66 13
## 41 19.700 20.000 24 15
## 42 9.100 8.800 17 14
## 43 70.700 71.400 11 10
## 44 156.000 160.000 22 21
## 45 65.000 63.000 29 28
## 46 2.500 2.400 123 28
## 47 490.000 493.000 13 10
## 48 0.019 0.020 70 63
## 49 1.000 0.700 21 20
## 50 3.000 2.000 104 67
## 51 7.200 7.300 46 40
## 52 0.000 0.100 144 31
## 53 0.000 0.100 143 22
## 54 11.600 11.700 35 30
## 55 0.800 0.700 26 19
## 56 1.900 1.800 74 60
## 57 2.300 2.200 39 38
## First.Second.Mode.Ratio Minimum Mean Median Maximum Skewness
## 1 1.167 4.580 6.411 6.305 8.810 0.276
## 2 1.500 46.870 55.689 55.090 64.750 0.246
## 3 1.333 56.970 67.705 67.220 78.250 0.029
## 4 1.500 9.380 12.349 12.100 23.090 1.747
## 5 1.500 13.240 18.599 18.490 24.850 0.307
## 6 1.333 40.600 48.910 48.460 59.380 0.372
## 7 57.667 100.000 100.014 100.000 100.830 7.462
## 8 1.200 15.880 17.495 17.510 19.140 0.222
## 9 1.571 11.440 12.850 12.835 14.080 -0.271
## 10 1.111 1.770 2.801 2.710 6.870 2.423
## 11 1.500 135.810 146.953 146.080 158.730 0.362
## 12 1.286 18.350 20.200 20.120 22.210 0.306
## 13 1.091 0.000 11.207 11.400 14.100 -3.954
## 14 1.842 0.000 16.683 21.000 22.500 -1.443
## 15 1.658 1.470 1.540 1.540 1.600 -0.484
## 16 1.235 911.000 931.851 934.000 946.000 -0.704
## 17 1.500 923.000 1001.693 999.200 1175.300 2.610
## 18 1.091 203.000 207.402 206.800 227.400 3.068
## 19 1.083 177.000 177.480 177.000 178.000 0.080
## 20 1.244 177.000 177.554 178.000 178.000 -0.218
## 21 1.500 38.890 45.660 45.730 49.360 -0.949
## 22 1.167 7.500 9.179 9.100 11.600 0.655
## 23 1.333 7.500 9.386 9.400 11.500 -0.019
## 24 4.303 0.000 857.811 0.000 4549.000 1.592
## 25 1.091 32.100 34.508 34.600 38.600 0.484
## 26 1.333 4701.000 4853.869 4856.000 5055.000 -0.011
## 27 1.250 5904.000 6038.920 6031.500 6233.000 0.680
## 28 1.250 0.000 4565.801 4588.000 4852.000 -12.527
## 29 1.200 31.300 34.344 34.400 40.000 1.173
## 30 1.500 0.000 4809.682 4835.000 4971.000 -12.845
## 31 1.333 5890.000 6028.199 6022.000 6146.000 0.300
## 32 1.333 0.000 4556.460 4582.000 4759.000 -12.747
## 33 2.647 -1.800 -0.164 -0.300 3.600 1.744
## 34 1.105 0.000 5.406 5.000 12.000 0.318
## 35 1.161 0.000 3.017 3.000 6.000 0.198
## 36 1.083 0.000 8.834 8.000 23.000 0.362
## 37 1.500 0.000 4828.175 4855.000 4990.000 -12.743
## 38 1.250 0.000 6015.596 6047.000 6161.000 -12.781
## 39 1.200 0.000 4562.509 4587.000 4710.000 -12.628
## 40 5.077 0.000 6.592 10.400 11.500 -0.460
## 41 1.600 0.000 20.011 19.900 22.000 -10.174
## 42 1.214 0.000 9.161 9.100 11.200 -4.798
## 43 1.100 0.000 70.185 70.800 72.500 -11.928
## 44 1.048 143.000 158.466 158.000 173.000 0.213
## 45 1.036 56.000 63.544 64.000 70.000 -0.132
## 46 4.393 2.300 2.494 2.500 2.600 -0.266
## 47 1.300 463.000 495.596 495.000 522.000 -0.157
## 48 1.111 0.017 0.020 0.020 0.022 0.147
## 49 1.050 0.000 1.014 1.000 2.300 0.382
## 50 1.552 0.000 2.534 3.000 3.000 -1.696
## 51 1.150 0.000 6.851 7.200 7.500 -4.306
## 52 4.645 0.000 0.018 0.000 0.100 1.691
## 53 6.500 0.000 0.024 0.000 0.200 2.187
## 54 1.167 0.000 11.206 11.600 12.100 -5.497
## 55 1.368 0.000 0.912 0.800 11.000 9.133
## 56 1.233 0.000 1.805 1.900 2.100 -5.013
## 57 1.026 0.000 2.138 2.200 2.600 -4.113
## Kurtosis Percentile25th Percentile75th
## 1 3.496 5.978 6.870
## 2 2.321 52.680 58.737
## 3 2.909 64.980 70.428
## 4 10.172 11.245 13.220
## 5 3.257 17.235 19.900
## 6 2.665 46.055 51.345
## 7 56.684 100.000 100.000
## 8 3.098 17.060 17.880
## 9 3.331 12.602 13.130
## 10 14.815 2.460 2.990
## 11 3.051 143.817 149.600
## 12 3.049 19.730 20.750
## 13 25.155 10.800 12.150
## 14 3.142 19.300 21.500
## 15 4.787 1.530 1.550
## 16 3.098 928.000 936.000
## 17 14.915 986.750 1008.850
## 18 20.613 205.700 208.700
## 19 1.006 177.000 178.000
## 20 1.048 177.000 178.000
## 21 6.342 44.890 46.515
## 22 3.676 8.700 9.550
## 23 3.363 9.000 9.900
## 24 3.535 0.000 0.000
## 25 5.016 33.900 35.200
## 26 4.125 4828.000 4882.500
## 27 4.265 6010.000 6061.000
## 28 163.248 4560.750 4619.000
## 29 7.751 33.500 35.100
## 30 168.649 4813.000 4862.000
## 31 3.334 6000.750 6050.250
## 32 166.958 4552.750 4609.500
## 33 8.119 -0.600 0.000
## 34 2.005 3.000 8.000
## 35 2.026 2.000 4.000
## 36 2.002 4.000 14.000
## 37 165.257 4832.000 4877.000
## 38 165.920 6019.500 6070.500
## 39 163.297 4560.000 4609.000
## 40 1.223 0.000 10.750
## 41 123.883 19.700 20.400
## 42 46.629 8.800 9.700
## 43 150.768 70.100 71.400
## 44 3.095 155.000 162.000
## 45 3.313 62.000 65.000
## 46 4.049 2.500 2.500
## 47 3.453 490.000 501.500
## 48 2.979 0.019 0.020
## 49 3.105 0.700 1.300
## 50 6.998 2.000 3.000
## 51 19.722 7.100 7.300
## 52 3.860 0.000 0.000
## 53 6.705 0.000 0.000
## 54 31.890 11.400 11.700
## 55 105.226 0.600 1.025
## 56 28.410 1.800 1.900
## 57 22.006 2.100 2.300
## [1] "Missing observations noted for 28 variable(s) with NA.Count>0 and Fill.Rate<1.0."
## Column.Index Column.Name Column.Type Row.Count NA.Count Fill.Rate
## 14 14 ManufacturingProcess01 numeric 176 1 0.994
## 15 15 ManufacturingProcess02 numeric 176 3 0.983
## 16 16 ManufacturingProcess03 numeric 176 15 0.915
## 17 17 ManufacturingProcess04 numeric 176 1 0.994
## 18 18 ManufacturingProcess05 numeric 176 1 0.994
## 19 19 ManufacturingProcess06 numeric 176 2 0.989
## 20 20 ManufacturingProcess07 numeric 176 1 0.994
## 21 21 ManufacturingProcess08 numeric 176 1 0.994
## 23 23 ManufacturingProcess10 numeric 176 9 0.949
## 24 24 ManufacturingProcess11 numeric 176 10 0.943
## 25 25 ManufacturingProcess12 numeric 176 1 0.994
## 27 27 ManufacturingProcess14 numeric 176 1 0.994
## 35 35 ManufacturingProcess22 numeric 176 1 0.994
## 36 36 ManufacturingProcess23 numeric 176 1 0.994
## 37 37 ManufacturingProcess24 numeric 176 1 0.994
## 38 38 ManufacturingProcess25 numeric 176 5 0.972
## 39 39 ManufacturingProcess26 numeric 176 5 0.972
## 40 40 ManufacturingProcess27 numeric 176 5 0.972
## 41 41 ManufacturingProcess28 numeric 176 5 0.972
## 42 42 ManufacturingProcess29 numeric 176 5 0.972
## 43 43 ManufacturingProcess30 numeric 176 5 0.972
## 44 44 ManufacturingProcess31 numeric 176 5 0.972
## 46 46 ManufacturingProcess33 numeric 176 5 0.972
## 47 47 ManufacturingProcess34 numeric 176 5 0.972
## 48 48 ManufacturingProcess35 numeric 176 5 0.972
## 49 49 ManufacturingProcess36 numeric 176 5 0.972
## 53 53 ManufacturingProcess40 numeric 176 1 0.994
## 54 54 ManufacturingProcess41 numeric 176 1 0.994
## [1] "No factor predictors noted."
## [1] "Low variance observed for 3 numeric variable(s) with First.Second.Mode.Ratio>5."
## Column.Name Column.Type Unique.Count Unique.Count.Ratio
## 7 BiologicalMaterial07 numeric 2 0.011
## 40 ManufacturingProcess28 numeric 18 0.102
## 53 ManufacturingProcess41 numeric 5 0.028
## First.Mode.Value Second.Mode.Value First.Mode.Count Second.Mode.Count
## 7 100.000 100.830 173 3
## 40 0.000 10.700 66 13
## 53 0.000 0.100 143 22
## First.Second.Mode.Ratio Minimum Mean Median Maximum Skewness Kurtosis
## 7 57.667 100.000 100.014 100.000 100.830 7.462 56.684
## 40 5.077 0.000 6.592 10.400 11.500 -0.460 1.223
## 53 6.500 0.000 0.024 0.000 0.200 2.187 6.705
## Percentile25th Percentile75th
## 7 100.000 100.000
## 40 0.000 10.750
## 53 0.000 0.000
## [1] "No low variance numeric predictors due to low unique count ratio noted."
## [1] "High skewness observed for 17 numeric variable(s) with Skewness>3 or Skewness<(-3)."
## Column.Name Column.Type Unique.Count Unique.Count.Ratio
## 7 BiologicalMaterial07 numeric 2 0.011
## 13 ManufacturingProcess01 numeric 42 0.239
## 18 ManufacturingProcess06 numeric 41 0.233
## 28 ManufacturingProcess16 numeric 120 0.682
## 30 ManufacturingProcess18 numeric 106 0.602
## 32 ManufacturingProcess20 numeric 112 0.636
## 37 ManufacturingProcess25 numeric 107 0.608
## 38 ManufacturingProcess26 numeric 106 0.602
## 39 ManufacturingProcess27 numeric 104 0.591
## 41 ManufacturingProcess29 numeric 31 0.176
## 42 ManufacturingProcess30 numeric 33 0.188
## 43 ManufacturingProcess31 numeric 45 0.256
## 51 ManufacturingProcess39 numeric 10 0.057
## 54 ManufacturingProcess42 numeric 17 0.097
## 55 ManufacturingProcess43 numeric 23 0.131
## 56 ManufacturingProcess44 numeric 8 0.045
## 57 ManufacturingProcess45 numeric 10 0.057
## First.Mode.Value Second.Mode.Value First.Mode.Count Second.Mode.Count
## 7 100.000 100.830 173 3
## 13 11.400 11.300 12 11
## 18 206.400 206.600 12 11
## 28 4617.000 4577.000 5 4
## 30 4844.000 4849.000 6 4
## 32 4621.000 4611.000 4 3
## 37 4820.000 4846.000 6 4
## 38 6041.000 6060.000 5 4
## 39 4606.000 4572.000 6 5
## 41 19.700 20.000 24 15
## 42 9.100 8.800 17 14
## 43 70.700 71.400 11 10
## 51 7.200 7.300 46 40
## 54 11.600 11.700 35 30
## 55 0.800 0.700 26 19
## 56 1.900 1.800 74 60
## 57 2.300 2.200 39 38
## First.Second.Mode.Ratio Minimum Mean Median Maximum Skewness Kurtosis
## 7 57.667 100.000 100.014 100.000 100.830 7.462 56.684
## 13 1.091 0.000 11.207 11.400 14.100 -3.954 25.155
## 18 1.091 203.000 207.402 206.800 227.400 3.068 20.613
## 28 1.250 0.000 4565.801 4588.000 4852.000 -12.527 163.248
## 30 1.500 0.000 4809.682 4835.000 4971.000 -12.845 168.649
## 32 1.333 0.000 4556.460 4582.000 4759.000 -12.747 166.958
## 37 1.500 0.000 4828.175 4855.000 4990.000 -12.743 165.257
## 38 1.250 0.000 6015.596 6047.000 6161.000 -12.781 165.920
## 39 1.200 0.000 4562.509 4587.000 4710.000 -12.628 163.297
## 41 1.600 0.000 20.011 19.900 22.000 -10.174 123.883
## 42 1.214 0.000 9.161 9.100 11.200 -4.798 46.629
## 43 1.100 0.000 70.185 70.800 72.500 -11.928 150.768
## 51 1.150 0.000 6.851 7.200 7.500 -4.306 19.722
## 54 1.167 0.000 11.206 11.600 12.100 -5.497 31.890
## 55 1.368 0.000 0.912 0.800 11.000 9.133 105.226
## 56 1.233 0.000 1.805 1.900 2.100 -5.013 28.410
## 57 1.026 0.000 2.138 2.200 2.600 -4.113 22.006
## Percentile25th Percentile75th
## 7 100.000 100.000
## 13 10.800 12.150
## 18 205.700 208.700
## 28 4560.750 4619.000
## 30 4813.000 4862.000
## 32 4552.750 4609.500
## 37 4832.000 4877.000
## 38 6019.500 6070.500
## 39 4560.000 4609.000
## 41 19.700 20.400
## 42 8.800 9.700
## 43 70.100 71.400
## 51 7.100 7.300
## 54 11.400 11.700
## 55 0.600 1.025
## 56 1.800 1.900
## 57 2.100 2.300
1.3 Data Preprocessing
1.3.1 Missing Data Imputation
Missing data assessment:
[A] Missing observations noted for 28 variables from the previous data quality assessment.
[B] Missing observations noted for 28 variables confirmed using a descriptive statistics summary from the skimr package.
[C] The caret package allows three imputation methods:
[C.1] The knnImpute method is carried out by finding the k closest samples (Euclidian distance) in the training set.
[C.2] The bagImpute method fits a bagged tree model for each predictor (as a function of all the others).
[C.3] The medianImpute method takes the median of each predictor in the training set, and uses them to fill missing values.
[D] The knnImpute, bagImpute and medianImpute methods were applied on the dataset:
[D.1] Imputation was performed using a KNN (K=5) model developed from 152 observations (complete information) and 58 variables (automatic centering and scaling applied).
[D.2] Imputation was performed using bagged trees model developed from 152 observations (complete information) and 58 variables (no centering and scaling applied).
[D.3] Imputation was performed using the median determined for each individual variable (no centering and scaling applied).
Data summary
Name |
DPA |
Number of rows |
176 |
Number of columns |
58 |
_______________________ |
|
Column type frequency: |
|
numeric |
58 |
________________________ |
|
Group variables |
None |
Variable type: numeric
Yield |
0 |
1.00 |
40.18 |
1.85 |
35.25 |
38.75 |
39.97 |
41.48 |
46.34 |
▁▇▇▃▁ |
BiologicalMaterial01 |
0 |
1.00 |
6.41 |
0.71 |
4.58 |
5.98 |
6.30 |
6.87 |
8.81 |
▂▇▇▂▁ |
BiologicalMaterial02 |
0 |
1.00 |
55.69 |
4.03 |
46.87 |
52.68 |
55.09 |
58.74 |
64.75 |
▂▇▆▅▃ |
BiologicalMaterial03 |
0 |
1.00 |
67.70 |
4.00 |
56.97 |
64.98 |
67.22 |
70.43 |
78.25 |
▂▅▇▆▁ |
BiologicalMaterial04 |
0 |
1.00 |
12.35 |
1.77 |
9.38 |
11.25 |
12.10 |
13.22 |
23.09 |
▇▆▁▁▁ |
BiologicalMaterial05 |
0 |
1.00 |
18.60 |
1.84 |
13.24 |
17.23 |
18.49 |
19.90 |
24.85 |
▁▅▇▃▁ |
BiologicalMaterial06 |
0 |
1.00 |
48.91 |
3.75 |
40.60 |
46.05 |
48.46 |
51.34 |
59.38 |
▂▇▆▅▁ |
BiologicalMaterial07 |
0 |
1.00 |
100.01 |
0.11 |
100.00 |
100.00 |
100.00 |
100.00 |
100.83 |
▇▁▁▁▁ |
BiologicalMaterial08 |
0 |
1.00 |
17.49 |
0.68 |
15.88 |
17.06 |
17.51 |
17.88 |
19.14 |
▁▅▇▃▂ |
BiologicalMaterial09 |
0 |
1.00 |
12.85 |
0.42 |
11.44 |
12.60 |
12.84 |
13.13 |
14.08 |
▁▃▇▅▁ |
BiologicalMaterial10 |
0 |
1.00 |
2.80 |
0.60 |
1.77 |
2.46 |
2.71 |
2.99 |
6.87 |
▇▅▁▁▁ |
BiologicalMaterial11 |
0 |
1.00 |
146.95 |
4.82 |
135.81 |
143.82 |
146.08 |
149.60 |
158.73 |
▂▆▇▃▂ |
BiologicalMaterial12 |
0 |
1.00 |
20.20 |
0.77 |
18.35 |
19.73 |
20.12 |
20.75 |
22.21 |
▂▆▇▃▂ |
ManufacturingProcess01 |
1 |
0.99 |
11.21 |
1.82 |
0.00 |
10.80 |
11.40 |
12.15 |
14.10 |
▁▁▁▅▇ |
ManufacturingProcess02 |
3 |
0.98 |
16.68 |
8.47 |
0.00 |
19.30 |
21.00 |
21.50 |
22.50 |
▂▁▁▁▇ |
ManufacturingProcess03 |
15 |
0.91 |
1.54 |
0.02 |
1.47 |
1.53 |
1.54 |
1.55 |
1.60 |
▁▃▆▇▁ |
ManufacturingProcess04 |
1 |
0.99 |
931.85 |
6.27 |
911.00 |
928.00 |
934.00 |
936.00 |
946.00 |
▁▂▃▇▁ |
ManufacturingProcess05 |
1 |
0.99 |
1001.69 |
30.53 |
923.00 |
986.75 |
999.20 |
1008.85 |
1175.30 |
▁▇▁▁▁ |
ManufacturingProcess06 |
2 |
0.99 |
207.40 |
2.70 |
203.00 |
205.70 |
206.80 |
208.70 |
227.40 |
▇▃▁▁▁ |
ManufacturingProcess07 |
1 |
0.99 |
177.48 |
0.50 |
177.00 |
177.00 |
177.00 |
178.00 |
178.00 |
▇▁▁▁▇ |
ManufacturingProcess08 |
1 |
0.99 |
177.55 |
0.50 |
177.00 |
177.00 |
178.00 |
178.00 |
178.00 |
▆▁▁▁▇ |
ManufacturingProcess09 |
0 |
1.00 |
45.66 |
1.55 |
38.89 |
44.89 |
45.73 |
46.52 |
49.36 |
▁▁▅▇▂ |
ManufacturingProcess10 |
9 |
0.95 |
9.18 |
0.77 |
7.50 |
8.70 |
9.10 |
9.55 |
11.60 |
▂▇▆▂▁ |
ManufacturingProcess11 |
10 |
0.94 |
9.39 |
0.72 |
7.50 |
9.00 |
9.40 |
9.90 |
11.50 |
▂▆▇▅▁ |
ManufacturingProcess12 |
1 |
0.99 |
857.81 |
1784.53 |
0.00 |
0.00 |
0.00 |
0.00 |
4549.00 |
▇▁▁▁▂ |
ManufacturingProcess13 |
0 |
1.00 |
34.51 |
1.02 |
32.10 |
33.90 |
34.60 |
35.20 |
38.60 |
▃▇▇▁▁ |
ManufacturingProcess14 |
1 |
0.99 |
4853.87 |
54.52 |
4701.00 |
4828.00 |
4856.00 |
4882.50 |
5055.00 |
▁▅▇▂▁ |
ManufacturingProcess15 |
0 |
1.00 |
6038.92 |
58.31 |
5904.00 |
6010.00 |
6031.50 |
6061.00 |
6233.00 |
▂▇▆▂▁ |
ManufacturingProcess16 |
0 |
1.00 |
4565.80 |
351.70 |
0.00 |
4560.75 |
4588.00 |
4619.00 |
4852.00 |
▁▁▁▁▇ |
ManufacturingProcess17 |
0 |
1.00 |
34.34 |
1.25 |
31.30 |
33.50 |
34.40 |
35.10 |
40.00 |
▂▇▆▁▁ |
ManufacturingProcess18 |
0 |
1.00 |
4809.68 |
367.48 |
0.00 |
4813.00 |
4835.00 |
4862.00 |
4971.00 |
▁▁▁▁▇ |
ManufacturingProcess19 |
0 |
1.00 |
6028.20 |
45.58 |
5890.00 |
6000.75 |
6022.00 |
6050.25 |
6146.00 |
▁▃▇▃▂ |
ManufacturingProcess20 |
0 |
1.00 |
4556.46 |
349.01 |
0.00 |
4552.75 |
4582.00 |
4609.50 |
4759.00 |
▁▁▁▁▇ |
ManufacturingProcess21 |
0 |
1.00 |
-0.16 |
0.78 |
-1.80 |
-0.60 |
-0.30 |
0.00 |
3.60 |
▂▇▂▁▁ |
ManufacturingProcess22 |
1 |
0.99 |
5.41 |
3.33 |
0.00 |
3.00 |
5.00 |
8.00 |
12.00 |
▇▇▇▅▅ |
ManufacturingProcess23 |
1 |
0.99 |
3.02 |
1.66 |
0.00 |
2.00 |
3.00 |
4.00 |
6.00 |
▇▆▇▆▇ |
ManufacturingProcess24 |
1 |
0.99 |
8.83 |
5.80 |
0.00 |
4.00 |
8.00 |
14.00 |
23.00 |
▇▇▅▆▁ |
ManufacturingProcess25 |
5 |
0.97 |
4828.18 |
373.48 |
0.00 |
4832.00 |
4855.00 |
4877.00 |
4990.00 |
▁▁▁▁▇ |
ManufacturingProcess26 |
5 |
0.97 |
6015.60 |
464.87 |
0.00 |
6019.50 |
6047.00 |
6070.50 |
6161.00 |
▁▁▁▁▇ |
ManufacturingProcess27 |
5 |
0.97 |
4562.51 |
353.98 |
0.00 |
4560.00 |
4587.00 |
4609.00 |
4710.00 |
▁▁▁▁▇ |
ManufacturingProcess28 |
5 |
0.97 |
6.59 |
5.25 |
0.00 |
0.00 |
10.40 |
10.75 |
11.50 |
▅▁▁▁▇ |
ManufacturingProcess29 |
5 |
0.97 |
20.01 |
1.66 |
0.00 |
19.70 |
19.90 |
20.40 |
22.00 |
▁▁▁▁▇ |
ManufacturingProcess30 |
5 |
0.97 |
9.16 |
0.98 |
0.00 |
8.80 |
9.10 |
9.70 |
11.20 |
▁▁▁▅▇ |
ManufacturingProcess31 |
5 |
0.97 |
70.18 |
5.56 |
0.00 |
70.10 |
70.80 |
71.40 |
72.50 |
▁▁▁▁▇ |
ManufacturingProcess32 |
0 |
1.00 |
158.47 |
5.40 |
143.00 |
155.00 |
158.00 |
162.00 |
173.00 |
▁▃▇▃▁ |
ManufacturingProcess33 |
5 |
0.97 |
63.54 |
2.48 |
56.00 |
62.00 |
64.00 |
65.00 |
70.00 |
▁▃▇▅▁ |
ManufacturingProcess34 |
5 |
0.97 |
2.49 |
0.05 |
2.30 |
2.50 |
2.50 |
2.50 |
2.60 |
▁▂▁▇▁ |
ManufacturingProcess35 |
5 |
0.97 |
495.60 |
10.82 |
463.00 |
490.00 |
495.00 |
501.50 |
522.00 |
▁▂▇▅▂ |
ManufacturingProcess36 |
5 |
0.97 |
0.02 |
0.00 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
▂▇▇▁▃ |
ManufacturingProcess37 |
0 |
1.00 |
1.01 |
0.45 |
0.00 |
0.70 |
1.00 |
1.30 |
2.30 |
▂▇▇▃▁ |
ManufacturingProcess38 |
0 |
1.00 |
2.53 |
0.65 |
0.00 |
2.00 |
3.00 |
3.00 |
3.00 |
▁▁▁▅▇ |
ManufacturingProcess39 |
0 |
1.00 |
6.85 |
1.51 |
0.00 |
7.10 |
7.20 |
7.30 |
7.50 |
▁▁▁▁▇ |
ManufacturingProcess40 |
1 |
0.99 |
0.02 |
0.04 |
0.00 |
0.00 |
0.00 |
0.00 |
0.10 |
▇▁▁▁▂ |
ManufacturingProcess41 |
1 |
0.99 |
0.02 |
0.05 |
0.00 |
0.00 |
0.00 |
0.00 |
0.20 |
▇▁▁▁▁ |
ManufacturingProcess42 |
0 |
1.00 |
11.21 |
1.94 |
0.00 |
11.40 |
11.60 |
11.70 |
12.10 |
▁▁▁▁▇ |
ManufacturingProcess43 |
0 |
1.00 |
0.91 |
0.87 |
0.00 |
0.60 |
0.80 |
1.02 |
11.00 |
▇▁▁▁▁ |
ManufacturingProcess44 |
0 |
1.00 |
1.81 |
0.32 |
0.00 |
1.80 |
1.90 |
1.90 |
2.10 |
▁▁▁▁▇ |
ManufacturingProcess45 |
0 |
1.00 |
2.14 |
0.41 |
0.00 |
2.10 |
2.20 |
2.30 |
2.60 |
▁▁▁▂▇ |
Data summary
Name |
Piped data |
Number of rows |
176 |
Number of columns |
58 |
_______________________ |
|
Column type frequency: |
|
numeric |
28 |
________________________ |
|
Group variables |
None |
Variable type: numeric
ManufacturingProcess01 |
1 |
0.99 |
11.21 |
1.82 |
0.00 |
10.80 |
11.40 |
12.15 |
14.10 |
▁▁▁▅▇ |
ManufacturingProcess02 |
3 |
0.98 |
16.68 |
8.47 |
0.00 |
19.30 |
21.00 |
21.50 |
22.50 |
▂▁▁▁▇ |
ManufacturingProcess03 |
15 |
0.91 |
1.54 |
0.02 |
1.47 |
1.53 |
1.54 |
1.55 |
1.60 |
▁▃▆▇▁ |
ManufacturingProcess04 |
1 |
0.99 |
931.85 |
6.27 |
911.00 |
928.00 |
934.00 |
936.00 |
946.00 |
▁▂▃▇▁ |
ManufacturingProcess05 |
1 |
0.99 |
1001.69 |
30.53 |
923.00 |
986.75 |
999.20 |
1008.85 |
1175.30 |
▁▇▁▁▁ |
ManufacturingProcess06 |
2 |
0.99 |
207.40 |
2.70 |
203.00 |
205.70 |
206.80 |
208.70 |
227.40 |
▇▃▁▁▁ |
ManufacturingProcess07 |
1 |
0.99 |
177.48 |
0.50 |
177.00 |
177.00 |
177.00 |
178.00 |
178.00 |
▇▁▁▁▇ |
ManufacturingProcess08 |
1 |
0.99 |
177.55 |
0.50 |
177.00 |
177.00 |
178.00 |
178.00 |
178.00 |
▆▁▁▁▇ |
ManufacturingProcess10 |
9 |
0.95 |
9.18 |
0.77 |
7.50 |
8.70 |
9.10 |
9.55 |
11.60 |
▂▇▆▂▁ |
ManufacturingProcess11 |
10 |
0.94 |
9.39 |
0.72 |
7.50 |
9.00 |
9.40 |
9.90 |
11.50 |
▂▆▇▅▁ |
ManufacturingProcess12 |
1 |
0.99 |
857.81 |
1784.53 |
0.00 |
0.00 |
0.00 |
0.00 |
4549.00 |
▇▁▁▁▂ |
ManufacturingProcess14 |
1 |
0.99 |
4853.87 |
54.52 |
4701.00 |
4828.00 |
4856.00 |
4882.50 |
5055.00 |
▁▅▇▂▁ |
ManufacturingProcess22 |
1 |
0.99 |
5.41 |
3.33 |
0.00 |
3.00 |
5.00 |
8.00 |
12.00 |
▇▇▇▅▅ |
ManufacturingProcess23 |
1 |
0.99 |
3.02 |
1.66 |
0.00 |
2.00 |
3.00 |
4.00 |
6.00 |
▇▆▇▆▇ |
ManufacturingProcess24 |
1 |
0.99 |
8.83 |
5.80 |
0.00 |
4.00 |
8.00 |
14.00 |
23.00 |
▇▇▅▆▁ |
ManufacturingProcess25 |
5 |
0.97 |
4828.18 |
373.48 |
0.00 |
4832.00 |
4855.00 |
4877.00 |
4990.00 |
▁▁▁▁▇ |
ManufacturingProcess26 |
5 |
0.97 |
6015.60 |
464.87 |
0.00 |
6019.50 |
6047.00 |
6070.50 |
6161.00 |
▁▁▁▁▇ |
ManufacturingProcess27 |
5 |
0.97 |
4562.51 |
353.98 |
0.00 |
4560.00 |
4587.00 |
4609.00 |
4710.00 |
▁▁▁▁▇ |
ManufacturingProcess28 |
5 |
0.97 |
6.59 |
5.25 |
0.00 |
0.00 |
10.40 |
10.75 |
11.50 |
▅▁▁▁▇ |
ManufacturingProcess29 |
5 |
0.97 |
20.01 |
1.66 |
0.00 |
19.70 |
19.90 |
20.40 |
22.00 |
▁▁▁▁▇ |
ManufacturingProcess30 |
5 |
0.97 |
9.16 |
0.98 |
0.00 |
8.80 |
9.10 |
9.70 |
11.20 |
▁▁▁▅▇ |
ManufacturingProcess31 |
5 |
0.97 |
70.18 |
5.56 |
0.00 |
70.10 |
70.80 |
71.40 |
72.50 |
▁▁▁▁▇ |
ManufacturingProcess33 |
5 |
0.97 |
63.54 |
2.48 |
56.00 |
62.00 |
64.00 |
65.00 |
70.00 |
▁▃▇▅▁ |
ManufacturingProcess34 |
5 |
0.97 |
2.49 |
0.05 |
2.30 |
2.50 |
2.50 |
2.50 |
2.60 |
▁▂▁▇▁ |
ManufacturingProcess35 |
5 |
0.97 |
495.60 |
10.82 |
463.00 |
490.00 |
495.00 |
501.50 |
522.00 |
▁▂▇▅▂ |
ManufacturingProcess36 |
5 |
0.97 |
0.02 |
0.00 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
▂▇▇▁▃ |
ManufacturingProcess40 |
1 |
0.99 |
0.02 |
0.04 |
0.00 |
0.00 |
0.00 |
0.00 |
0.10 |
▇▁▁▁▂ |
ManufacturingProcess41 |
1 |
0.99 |
0.02 |
0.05 |
0.00 |
0.00 |
0.00 |
0.00 |
0.20 |
▇▁▁▁▁ |
## Created from 152 samples and 58 variables
##
## Pre-processing:
## - centered (58)
## - ignored (0)
## - 5 nearest neighbor imputation (58)
## - scaled (58)
Data summary
Name |
DPA_KNNImputed |
Number of rows |
176 |
Number of columns |
58 |
_______________________ |
|
Column type frequency: |
|
numeric |
58 |
________________________ |
|
Group variables |
None |
Variable type: numeric
Yield |
0 |
1 |
0.00 |
1.00 |
-2.67 |
-0.77 |
-0.11 |
0.70 |
3.34 |
▁▇▇▃▁ |
BiologicalMaterial01 |
0 |
1 |
0.00 |
1.00 |
-2.57 |
-0.61 |
-0.15 |
0.64 |
3.36 |
▂▇▇▂▁ |
BiologicalMaterial02 |
0 |
1 |
0.00 |
1.00 |
-2.19 |
-0.75 |
-0.15 |
0.76 |
2.25 |
▂▇▆▅▃ |
BiologicalMaterial03 |
0 |
1 |
0.00 |
1.00 |
-2.68 |
-0.68 |
-0.12 |
0.68 |
2.64 |
▂▅▇▆▁ |
BiologicalMaterial04 |
0 |
1 |
0.00 |
1.00 |
-1.67 |
-0.62 |
-0.14 |
0.49 |
6.05 |
▇▆▁▁▁ |
BiologicalMaterial05 |
0 |
1 |
0.00 |
1.00 |
-2.91 |
-0.74 |
-0.06 |
0.71 |
3.39 |
▁▅▇▃▁ |
BiologicalMaterial06 |
0 |
1 |
0.00 |
1.00 |
-2.22 |
-0.76 |
-0.12 |
0.65 |
2.79 |
▂▇▆▅▁ |
BiologicalMaterial07 |
0 |
1 |
0.00 |
1.00 |
-0.13 |
-0.13 |
-0.13 |
-0.13 |
7.57 |
▇▁▁▁▁ |
BiologicalMaterial08 |
0 |
1 |
0.00 |
1.00 |
-2.39 |
-0.64 |
0.02 |
0.57 |
2.43 |
▁▅▇▃▂ |
BiologicalMaterial09 |
0 |
1 |
0.00 |
1.00 |
-3.40 |
-0.60 |
-0.04 |
0.67 |
2.96 |
▁▃▇▅▁ |
BiologicalMaterial10 |
0 |
1 |
0.00 |
1.00 |
-1.72 |
-0.57 |
-0.15 |
0.32 |
6.79 |
▇▅▁▁▁ |
BiologicalMaterial11 |
0 |
1 |
0.00 |
1.00 |
-2.31 |
-0.65 |
-0.18 |
0.55 |
2.44 |
▂▆▇▃▂ |
BiologicalMaterial12 |
0 |
1 |
0.00 |
1.00 |
-2.39 |
-0.61 |
-0.10 |
0.71 |
2.60 |
▂▆▇▃▂ |
ManufacturingProcess01 |
0 |
1 |
0.00 |
1.00 |
-6.15 |
-0.22 |
0.11 |
0.50 |
1.59 |
▁▁▁▅▇ |
ManufacturingProcess02 |
0 |
1 |
0.01 |
0.99 |
-1.97 |
0.31 |
0.51 |
0.57 |
0.69 |
▂▁▁▁▇ |
ManufacturingProcess03 |
0 |
1 |
0.04 |
0.97 |
-3.11 |
-0.43 |
0.38 |
0.47 |
2.70 |
▁▂▆▇▁ |
ManufacturingProcess04 |
0 |
1 |
0.00 |
1.00 |
-3.32 |
-0.61 |
0.34 |
0.66 |
2.25 |
▁▂▃▇▂ |
ManufacturingProcess05 |
0 |
1 |
0.00 |
1.00 |
-2.58 |
-0.49 |
-0.09 |
0.23 |
5.69 |
▁▇▁▁▁ |
ManufacturingProcess06 |
0 |
1 |
-0.01 |
1.00 |
-1.63 |
-0.63 |
-0.22 |
0.48 |
7.41 |
▇▃▁▁▁ |
ManufacturingProcess07 |
0 |
1 |
0.00 |
1.00 |
-0.96 |
-0.96 |
-0.96 |
1.04 |
1.04 |
▇▁▁▁▇ |
ManufacturingProcess08 |
0 |
1 |
0.00 |
1.00 |
-1.11 |
-1.11 |
0.89 |
0.89 |
0.89 |
▆▁▁▁▇ |
ManufacturingProcess09 |
0 |
1 |
0.00 |
1.00 |
-4.38 |
-0.50 |
0.05 |
0.55 |
2.39 |
▁▁▅▇▂ |
ManufacturingProcess10 |
0 |
1 |
0.02 |
0.99 |
-2.19 |
-0.62 |
-0.10 |
0.55 |
3.16 |
▂▇▇▂▁ |
ManufacturingProcess11 |
0 |
1 |
0.03 |
1.00 |
-2.63 |
-0.54 |
0.02 |
0.72 |
2.95 |
▁▇▇▆▁ |
ManufacturingProcess12 |
0 |
1 |
0.00 |
1.00 |
-0.48 |
-0.48 |
-0.48 |
-0.48 |
2.07 |
▇▁▁▁▂ |
ManufacturingProcess13 |
0 |
1 |
0.00 |
1.00 |
-2.37 |
-0.60 |
0.09 |
0.68 |
4.03 |
▃▆▇▁▁ |
ManufacturingProcess14 |
0 |
1 |
0.00 |
1.00 |
-2.80 |
-0.49 |
0.03 |
0.52 |
3.69 |
▁▅▇▂▁ |
ManufacturingProcess15 |
0 |
1 |
0.00 |
1.00 |
-2.31 |
-0.50 |
-0.13 |
0.38 |
3.33 |
▂▇▆▂▁ |
ManufacturingProcess16 |
0 |
1 |
0.00 |
1.00 |
-12.98 |
-0.01 |
0.06 |
0.15 |
0.81 |
▁▁▁▁▇ |
ManufacturingProcess17 |
0 |
1 |
0.00 |
1.00 |
-2.44 |
-0.68 |
0.05 |
0.61 |
4.53 |
▂▇▆▁▁ |
ManufacturingProcess18 |
0 |
1 |
0.00 |
1.00 |
-13.09 |
0.01 |
0.07 |
0.14 |
0.44 |
▁▁▁▁▇ |
ManufacturingProcess19 |
0 |
1 |
0.00 |
1.00 |
-3.03 |
-0.60 |
-0.14 |
0.48 |
2.58 |
▁▃▇▃▂ |
ManufacturingProcess20 |
0 |
1 |
0.00 |
1.00 |
-13.06 |
-0.01 |
0.07 |
0.15 |
0.58 |
▁▁▁▁▇ |
ManufacturingProcess21 |
0 |
1 |
0.00 |
1.00 |
-2.10 |
-0.56 |
-0.17 |
0.21 |
4.84 |
▂▇▂▁▁ |
ManufacturingProcess22 |
0 |
1 |
0.00 |
1.00 |
-1.62 |
-0.72 |
-0.12 |
0.78 |
1.98 |
▇▇▇▅▅ |
ManufacturingProcess23 |
0 |
1 |
0.00 |
1.00 |
-1.81 |
-0.61 |
-0.01 |
0.59 |
1.79 |
▇▆▇▆▇ |
ManufacturingProcess24 |
0 |
1 |
0.01 |
1.00 |
-1.52 |
-0.83 |
-0.14 |
0.89 |
2.44 |
▇▇▅▆▁ |
ManufacturingProcess25 |
0 |
1 |
0.00 |
0.99 |
-12.93 |
0.00 |
0.07 |
0.13 |
0.43 |
▁▁▁▁▇ |
ManufacturingProcess26 |
0 |
1 |
0.00 |
0.99 |
-12.94 |
0.01 |
0.06 |
0.12 |
0.31 |
▁▁▁▁▇ |
ManufacturingProcess27 |
0 |
1 |
0.00 |
0.99 |
-12.89 |
0.00 |
0.07 |
0.13 |
0.42 |
▁▁▁▁▇ |
ManufacturingProcess28 |
0 |
1 |
-0.03 |
1.00 |
-1.26 |
-1.26 |
0.73 |
0.78 |
0.94 |
▅▁▁▁▇ |
ManufacturingProcess29 |
0 |
1 |
0.00 |
0.99 |
-12.03 |
-0.19 |
-0.07 |
0.23 |
1.20 |
▁▁▁▁▇ |
ManufacturingProcess30 |
0 |
1 |
0.01 |
0.99 |
-9.39 |
-0.37 |
0.04 |
0.55 |
2.09 |
▁▁▁▅▇ |
ManufacturingProcess31 |
0 |
1 |
0.00 |
0.99 |
-12.63 |
-0.02 |
0.11 |
0.22 |
0.42 |
▁▁▁▁▇ |
ManufacturingProcess32 |
0 |
1 |
0.00 |
1.00 |
-2.87 |
-0.64 |
-0.09 |
0.65 |
2.69 |
▁▃▇▃▁ |
ManufacturingProcess33 |
0 |
1 |
-0.01 |
0.99 |
-3.04 |
-0.62 |
0.18 |
0.59 |
2.60 |
▁▃▇▅▁ |
ManufacturingProcess34 |
0 |
1 |
-0.01 |
0.99 |
-3.56 |
0.12 |
0.12 |
0.12 |
1.96 |
▁▂▁▇▁ |
ManufacturingProcess35 |
0 |
1 |
-0.02 |
1.00 |
-3.01 |
-0.52 |
-0.06 |
0.50 |
2.44 |
▁▃▇▅▂ |
ManufacturingProcess36 |
0 |
1 |
-0.01 |
0.99 |
-2.94 |
-0.66 |
-0.08 |
0.49 |
2.78 |
▂▇▁▇▃ |
ManufacturingProcess37 |
0 |
1 |
0.00 |
1.00 |
-2.28 |
-0.70 |
-0.03 |
0.64 |
2.89 |
▂▇▇▃▁ |
ManufacturingProcess38 |
0 |
1 |
0.00 |
1.00 |
-3.90 |
-0.82 |
0.72 |
0.72 |
0.72 |
▁▁▁▅▇ |
ManufacturingProcess39 |
0 |
1 |
0.00 |
1.00 |
-4.55 |
0.17 |
0.23 |
0.30 |
0.43 |
▁▁▁▁▇ |
ManufacturingProcess40 |
0 |
1 |
0.00 |
1.00 |
-0.46 |
-0.46 |
-0.46 |
-0.46 |
2.15 |
▇▁▁▁▂ |
ManufacturingProcess41 |
0 |
1 |
0.00 |
1.00 |
-0.44 |
-0.44 |
-0.44 |
-0.44 |
3.28 |
▇▁▁▁▁ |
ManufacturingProcess42 |
0 |
1 |
0.00 |
1.00 |
-5.77 |
0.10 |
0.20 |
0.25 |
0.46 |
▁▁▁▁▇ |
ManufacturingProcess43 |
0 |
1 |
0.00 |
1.00 |
-1.05 |
-0.36 |
-0.13 |
0.13 |
11.62 |
▇▁▁▁▁ |
ManufacturingProcess44 |
0 |
1 |
0.00 |
1.00 |
-5.61 |
-0.02 |
0.29 |
0.29 |
0.92 |
▁▁▁▁▇ |
ManufacturingProcess45 |
0 |
1 |
0.00 |
1.00 |
-5.25 |
-0.09 |
0.15 |
0.40 |
1.14 |
▁▁▁▂▇ |
## # A tibble: 0 x 12
## # ... with 12 variables: skim_type <chr>, skim_variable <chr>, n_missing <int>,
## # complete_rate <dbl>, numeric.mean <dbl>, numeric.sd <dbl>,
## # numeric.p0 <dbl>, numeric.p25 <dbl>, numeric.p50 <dbl>, numeric.p75 <dbl>,
## # numeric.p100 <dbl>, numeric.hist <chr>
## Created from 152 samples and 58 variables
##
## Pre-processing:
## - bagged tree imputation (58)
## - ignored (0)
Data summary
Name |
DPA_BagImputed |
Number of rows |
176 |
Number of columns |
58 |
_______________________ |
|
Column type frequency: |
|
numeric |
58 |
________________________ |
|
Group variables |
None |
Variable type: numeric
Yield |
0 |
1 |
40.18 |
1.85 |
35.25 |
38.75 |
39.97 |
41.48 |
46.34 |
▁▇▇▃▁ |
BiologicalMaterial01 |
0 |
1 |
6.41 |
0.71 |
4.58 |
5.98 |
6.30 |
6.87 |
8.81 |
▂▇▇▂▁ |
BiologicalMaterial02 |
0 |
1 |
55.69 |
4.03 |
46.87 |
52.68 |
55.09 |
58.74 |
64.75 |
▂▇▆▅▃ |
BiologicalMaterial03 |
0 |
1 |
67.70 |
4.00 |
56.97 |
64.98 |
67.22 |
70.43 |
78.25 |
▂▅▇▆▁ |
BiologicalMaterial04 |
0 |
1 |
12.35 |
1.77 |
9.38 |
11.25 |
12.10 |
13.22 |
23.09 |
▇▆▁▁▁ |
BiologicalMaterial05 |
0 |
1 |
18.60 |
1.84 |
13.24 |
17.23 |
18.49 |
19.90 |
24.85 |
▁▅▇▃▁ |
BiologicalMaterial06 |
0 |
1 |
48.91 |
3.75 |
40.60 |
46.05 |
48.46 |
51.34 |
59.38 |
▂▇▆▅▁ |
BiologicalMaterial07 |
0 |
1 |
100.01 |
0.11 |
100.00 |
100.00 |
100.00 |
100.00 |
100.83 |
▇▁▁▁▁ |
BiologicalMaterial08 |
0 |
1 |
17.49 |
0.68 |
15.88 |
17.06 |
17.51 |
17.88 |
19.14 |
▁▅▇▃▂ |
BiologicalMaterial09 |
0 |
1 |
12.85 |
0.42 |
11.44 |
12.60 |
12.84 |
13.13 |
14.08 |
▁▃▇▅▁ |
BiologicalMaterial10 |
0 |
1 |
2.80 |
0.60 |
1.77 |
2.46 |
2.71 |
2.99 |
6.87 |
▇▅▁▁▁ |
BiologicalMaterial11 |
0 |
1 |
146.95 |
4.82 |
135.81 |
143.82 |
146.08 |
149.60 |
158.73 |
▂▆▇▃▂ |
BiologicalMaterial12 |
0 |
1 |
20.20 |
0.77 |
18.35 |
19.73 |
20.12 |
20.75 |
22.21 |
▂▆▇▃▂ |
ManufacturingProcess01 |
0 |
1 |
11.21 |
1.82 |
0.00 |
10.80 |
11.40 |
12.12 |
14.10 |
▁▁▁▅▇ |
ManufacturingProcess02 |
0 |
1 |
16.69 |
8.43 |
0.00 |
19.23 |
21.00 |
21.50 |
22.50 |
▂▁▁▁▇ |
ManufacturingProcess03 |
0 |
1 |
1.54 |
0.02 |
1.47 |
1.53 |
1.54 |
1.55 |
1.60 |
▁▂▆▇▁ |
ManufacturingProcess04 |
0 |
1 |
931.83 |
6.26 |
911.00 |
928.00 |
934.00 |
936.00 |
946.00 |
▁▂▃▇▁ |
ManufacturingProcess05 |
0 |
1 |
1001.69 |
30.44 |
923.00 |
986.82 |
999.35 |
1008.73 |
1175.30 |
▁▇▁▁▁ |
ManufacturingProcess06 |
0 |
1 |
207.39 |
2.69 |
203.00 |
205.70 |
206.80 |
208.70 |
227.40 |
▇▃▁▁▁ |
ManufacturingProcess07 |
0 |
1 |
177.48 |
0.50 |
177.00 |
177.00 |
177.00 |
178.00 |
178.00 |
▇▁▁▁▇ |
ManufacturingProcess08 |
0 |
1 |
177.56 |
0.50 |
177.00 |
177.00 |
178.00 |
178.00 |
178.00 |
▆▁▁▁▇ |
ManufacturingProcess09 |
0 |
1 |
45.66 |
1.55 |
38.89 |
44.89 |
45.73 |
46.52 |
49.36 |
▁▁▅▇▂ |
ManufacturingProcess10 |
0 |
1 |
9.18 |
0.75 |
7.50 |
8.70 |
9.10 |
9.53 |
11.60 |
▂▇▆▂▁ |
ManufacturingProcess11 |
0 |
1 |
9.39 |
0.71 |
7.50 |
9.00 |
9.40 |
9.90 |
11.50 |
▂▆▇▅▁ |
ManufacturingProcess12 |
0 |
1 |
855.83 |
1779.62 |
0.00 |
0.00 |
0.00 |
0.00 |
4549.00 |
▇▁▁▁▂ |
ManufacturingProcess13 |
0 |
1 |
34.51 |
1.02 |
32.10 |
33.90 |
34.60 |
35.20 |
38.60 |
▃▇▇▁▁ |
ManufacturingProcess14 |
0 |
1 |
4853.60 |
54.48 |
4701.00 |
4827.25 |
4855.50 |
4882.25 |
5055.00 |
▁▅▇▂▁ |
ManufacturingProcess15 |
0 |
1 |
6038.92 |
58.31 |
5904.00 |
6010.00 |
6031.50 |
6061.00 |
6233.00 |
▂▇▆▂▁ |
ManufacturingProcess16 |
0 |
1 |
4565.80 |
351.70 |
0.00 |
4560.75 |
4588.00 |
4619.00 |
4852.00 |
▁▁▁▁▇ |
ManufacturingProcess17 |
0 |
1 |
34.34 |
1.25 |
31.30 |
33.50 |
34.40 |
35.10 |
40.00 |
▂▇▆▁▁ |
ManufacturingProcess18 |
0 |
1 |
4809.68 |
367.48 |
0.00 |
4813.00 |
4835.00 |
4862.00 |
4971.00 |
▁▁▁▁▇ |
ManufacturingProcess19 |
0 |
1 |
6028.20 |
45.58 |
5890.00 |
6000.75 |
6022.00 |
6050.25 |
6146.00 |
▁▃▇▃▂ |
ManufacturingProcess20 |
0 |
1 |
4556.46 |
349.01 |
0.00 |
4552.75 |
4582.00 |
4609.50 |
4759.00 |
▁▁▁▁▇ |
ManufacturingProcess21 |
0 |
1 |
-0.16 |
0.78 |
-1.80 |
-0.60 |
-0.30 |
0.00 |
3.60 |
▂▇▂▁▁ |
ManufacturingProcess22 |
0 |
1 |
5.40 |
3.32 |
0.00 |
3.00 |
5.00 |
8.00 |
12.00 |
▇▇▇▅▅ |
ManufacturingProcess23 |
0 |
1 |
3.02 |
1.66 |
0.00 |
2.00 |
3.00 |
4.00 |
6.00 |
▇▆▇▆▇ |
ManufacturingProcess24 |
0 |
1 |
8.88 |
5.81 |
0.00 |
4.00 |
8.00 |
14.00 |
23.00 |
▇▇▅▆▁ |
ManufacturingProcess25 |
0 |
1 |
4828.37 |
368.11 |
0.00 |
4829.00 |
4854.00 |
4876.25 |
4990.00 |
▁▁▁▁▇ |
ManufacturingProcess26 |
0 |
1 |
6016.39 |
458.21 |
0.00 |
6020.75 |
6046.50 |
6069.25 |
6161.00 |
▁▁▁▁▇ |
ManufacturingProcess27 |
0 |
1 |
4563.16 |
348.91 |
0.00 |
4562.75 |
4585.67 |
4609.00 |
4710.00 |
▁▁▁▁▇ |
ManufacturingProcess28 |
0 |
1 |
6.58 |
5.18 |
0.00 |
0.00 |
10.40 |
10.70 |
11.50 |
▅▁▁▁▇ |
ManufacturingProcess29 |
0 |
1 |
20.01 |
1.64 |
0.00 |
19.70 |
19.90 |
20.40 |
22.00 |
▁▁▁▁▇ |
ManufacturingProcess30 |
0 |
1 |
9.18 |
0.97 |
0.00 |
8.80 |
9.20 |
9.70 |
11.20 |
▁▁▁▅▇ |
ManufacturingProcess31 |
0 |
1 |
70.20 |
5.48 |
0.00 |
70.10 |
70.79 |
71.40 |
72.50 |
▁▁▁▁▇ |
ManufacturingProcess32 |
0 |
1 |
158.47 |
5.40 |
143.00 |
155.00 |
158.00 |
162.00 |
173.00 |
▁▃▇▃▁ |
ManufacturingProcess33 |
0 |
1 |
63.55 |
2.46 |
56.00 |
62.00 |
64.00 |
65.00 |
70.00 |
▁▃▇▅▁ |
ManufacturingProcess34 |
0 |
1 |
2.49 |
0.05 |
2.30 |
2.50 |
2.50 |
2.50 |
2.60 |
▁▂▁▇▁ |
ManufacturingProcess35 |
0 |
1 |
495.52 |
10.69 |
463.00 |
490.00 |
495.00 |
501.00 |
522.00 |
▁▂▇▅▂ |
ManufacturingProcess36 |
0 |
1 |
0.02 |
0.00 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
▂▇▇▁▃ |
ManufacturingProcess37 |
0 |
1 |
1.01 |
0.45 |
0.00 |
0.70 |
1.00 |
1.30 |
2.30 |
▂▇▇▃▁ |
ManufacturingProcess38 |
0 |
1 |
2.53 |
0.65 |
0.00 |
2.00 |
3.00 |
3.00 |
3.00 |
▁▁▁▅▇ |
ManufacturingProcess39 |
0 |
1 |
6.85 |
1.51 |
0.00 |
7.10 |
7.20 |
7.30 |
7.50 |
▁▁▁▁▇ |
ManufacturingProcess40 |
0 |
1 |
0.02 |
0.04 |
0.00 |
0.00 |
0.00 |
0.00 |
0.10 |
▇▁▁▁▂ |
ManufacturingProcess41 |
0 |
1 |
0.02 |
0.05 |
0.00 |
0.00 |
0.00 |
0.00 |
0.20 |
▇▁▁▁▁ |
ManufacturingProcess42 |
0 |
1 |
11.21 |
1.94 |
0.00 |
11.40 |
11.60 |
11.70 |
12.10 |
▁▁▁▁▇ |
ManufacturingProcess43 |
0 |
1 |
0.91 |
0.87 |
0.00 |
0.60 |
0.80 |
1.02 |
11.00 |
▇▁▁▁▁ |
ManufacturingProcess44 |
0 |
1 |
1.81 |
0.32 |
0.00 |
1.80 |
1.90 |
1.90 |
2.10 |
▁▁▁▁▇ |
ManufacturingProcess45 |
0 |
1 |
2.14 |
0.41 |
0.00 |
2.10 |
2.20 |
2.30 |
2.60 |
▁▁▁▂▇ |
## # A tibble: 0 x 12
## # ... with 12 variables: skim_type <chr>, skim_variable <chr>, n_missing <int>,
## # complete_rate <dbl>, numeric.mean <dbl>, numeric.sd <dbl>,
## # numeric.p0 <dbl>, numeric.p25 <dbl>, numeric.p50 <dbl>, numeric.p75 <dbl>,
## # numeric.p100 <dbl>, numeric.hist <chr>
## Created from 152 samples and 58 variables
##
## Pre-processing:
## - ignored (0)
## - median imputation (58)
Data summary
Name |
DPA_MedianImputed |
Number of rows |
176 |
Number of columns |
58 |
_______________________ |
|
Column type frequency: |
|
numeric |
58 |
________________________ |
|
Group variables |
None |
Variable type: numeric
Yield |
0 |
1 |
40.18 |
1.85 |
35.25 |
38.75 |
39.97 |
41.48 |
46.34 |
▁▇▇▃▁ |
BiologicalMaterial01 |
0 |
1 |
6.41 |
0.71 |
4.58 |
5.98 |
6.30 |
6.87 |
8.81 |
▂▇▇▂▁ |
BiologicalMaterial02 |
0 |
1 |
55.69 |
4.03 |
46.87 |
52.68 |
55.09 |
58.74 |
64.75 |
▂▇▆▅▃ |
BiologicalMaterial03 |
0 |
1 |
67.70 |
4.00 |
56.97 |
64.98 |
67.22 |
70.43 |
78.25 |
▂▅▇▆▁ |
BiologicalMaterial04 |
0 |
1 |
12.35 |
1.77 |
9.38 |
11.25 |
12.10 |
13.22 |
23.09 |
▇▆▁▁▁ |
BiologicalMaterial05 |
0 |
1 |
18.60 |
1.84 |
13.24 |
17.23 |
18.49 |
19.90 |
24.85 |
▁▅▇▃▁ |
BiologicalMaterial06 |
0 |
1 |
48.91 |
3.75 |
40.60 |
46.05 |
48.46 |
51.34 |
59.38 |
▂▇▆▅▁ |
BiologicalMaterial07 |
0 |
1 |
100.01 |
0.11 |
100.00 |
100.00 |
100.00 |
100.00 |
100.83 |
▇▁▁▁▁ |
BiologicalMaterial08 |
0 |
1 |
17.49 |
0.68 |
15.88 |
17.06 |
17.51 |
17.88 |
19.14 |
▁▅▇▃▂ |
BiologicalMaterial09 |
0 |
1 |
12.85 |
0.42 |
11.44 |
12.60 |
12.84 |
13.13 |
14.08 |
▁▃▇▅▁ |
BiologicalMaterial10 |
0 |
1 |
2.80 |
0.60 |
1.77 |
2.46 |
2.71 |
2.99 |
6.87 |
▇▅▁▁▁ |
BiologicalMaterial11 |
0 |
1 |
146.95 |
4.82 |
135.81 |
143.82 |
146.08 |
149.60 |
158.73 |
▂▆▇▃▂ |
BiologicalMaterial12 |
0 |
1 |
20.20 |
0.77 |
18.35 |
19.73 |
20.12 |
20.75 |
22.21 |
▂▆▇▃▂ |
ManufacturingProcess01 |
0 |
1 |
11.21 |
1.82 |
0.00 |
10.80 |
11.40 |
12.12 |
14.10 |
▁▁▁▅▇ |
ManufacturingProcess02 |
0 |
1 |
16.76 |
8.42 |
0.00 |
19.30 |
21.00 |
21.50 |
22.50 |
▂▁▁▁▇ |
ManufacturingProcess03 |
0 |
1 |
1.54 |
0.02 |
1.47 |
1.53 |
1.54 |
1.55 |
1.60 |
▁▃▇▇▁ |
ManufacturingProcess04 |
0 |
1 |
931.86 |
6.26 |
911.00 |
928.00 |
934.00 |
936.00 |
946.00 |
▁▂▃▇▁ |
ManufacturingProcess05 |
0 |
1 |
1001.68 |
30.44 |
923.00 |
986.82 |
999.20 |
1008.73 |
1175.30 |
▁▇▁▁▁ |
ManufacturingProcess06 |
0 |
1 |
207.39 |
2.68 |
203.00 |
205.70 |
206.80 |
208.70 |
227.40 |
▇▃▁▁▁ |
ManufacturingProcess07 |
0 |
1 |
177.48 |
0.50 |
177.00 |
177.00 |
177.00 |
178.00 |
178.00 |
▇▁▁▁▇ |
ManufacturingProcess08 |
0 |
1 |
177.56 |
0.50 |
177.00 |
177.00 |
178.00 |
178.00 |
178.00 |
▆▁▁▁▇ |
ManufacturingProcess09 |
0 |
1 |
45.66 |
1.55 |
38.89 |
44.89 |
45.73 |
46.52 |
49.36 |
▁▁▅▇▂ |
ManufacturingProcess10 |
0 |
1 |
9.18 |
0.75 |
7.50 |
8.70 |
9.10 |
9.50 |
11.60 |
▂▇▆▂▁ |
ManufacturingProcess11 |
0 |
1 |
9.39 |
0.69 |
7.50 |
9.00 |
9.40 |
9.83 |
11.50 |
▂▅▇▃▁ |
ManufacturingProcess12 |
0 |
1 |
852.94 |
1780.60 |
0.00 |
0.00 |
0.00 |
0.00 |
4549.00 |
▇▁▁▁▂ |
ManufacturingProcess13 |
0 |
1 |
34.51 |
1.02 |
32.10 |
33.90 |
34.60 |
35.20 |
38.60 |
▃▇▇▁▁ |
ManufacturingProcess14 |
0 |
1 |
4853.88 |
54.37 |
4701.00 |
4828.00 |
4856.00 |
4882.25 |
5055.00 |
▁▅▇▂▁ |
ManufacturingProcess15 |
0 |
1 |
6038.92 |
58.31 |
5904.00 |
6010.00 |
6031.50 |
6061.00 |
6233.00 |
▂▇▆▂▁ |
ManufacturingProcess16 |
0 |
1 |
4565.80 |
351.70 |
0.00 |
4560.75 |
4588.00 |
4619.00 |
4852.00 |
▁▁▁▁▇ |
ManufacturingProcess17 |
0 |
1 |
34.34 |
1.25 |
31.30 |
33.50 |
34.40 |
35.10 |
40.00 |
▂▇▆▁▁ |
ManufacturingProcess18 |
0 |
1 |
4809.68 |
367.48 |
0.00 |
4813.00 |
4835.00 |
4862.00 |
4971.00 |
▁▁▁▁▇ |
ManufacturingProcess19 |
0 |
1 |
6028.20 |
45.58 |
5890.00 |
6000.75 |
6022.00 |
6050.25 |
6146.00 |
▁▃▇▃▂ |
ManufacturingProcess20 |
0 |
1 |
4556.46 |
349.01 |
0.00 |
4552.75 |
4582.00 |
4609.50 |
4759.00 |
▁▁▁▁▇ |
ManufacturingProcess21 |
0 |
1 |
-0.16 |
0.78 |
-1.80 |
-0.60 |
-0.30 |
0.00 |
3.60 |
▂▇▂▁▁ |
ManufacturingProcess22 |
0 |
1 |
5.40 |
3.32 |
0.00 |
3.00 |
5.00 |
8.00 |
12.00 |
▇▇▇▅▅ |
ManufacturingProcess23 |
0 |
1 |
3.02 |
1.66 |
0.00 |
2.00 |
3.00 |
4.00 |
6.00 |
▇▆▇▆▇ |
ManufacturingProcess24 |
0 |
1 |
8.83 |
5.78 |
0.00 |
4.00 |
8.00 |
14.00 |
23.00 |
▇▇▅▆▁ |
ManufacturingProcess25 |
0 |
1 |
4828.94 |
368.13 |
0.00 |
4833.50 |
4855.00 |
4876.25 |
4990.00 |
▁▁▁▁▇ |
ManufacturingProcess26 |
0 |
1 |
6016.49 |
458.21 |
0.00 |
6020.75 |
6047.00 |
6069.25 |
6161.00 |
▁▁▁▁▇ |
ManufacturingProcess27 |
0 |
1 |
4563.20 |
348.92 |
0.00 |
4562.75 |
4587.00 |
4609.00 |
4710.00 |
▁▁▁▁▇ |
ManufacturingProcess28 |
0 |
1 |
6.70 |
5.21 |
0.00 |
0.00 |
10.40 |
10.70 |
11.50 |
▅▁▁▁▇ |
ManufacturingProcess29 |
0 |
1 |
20.01 |
1.64 |
0.00 |
19.70 |
19.90 |
20.40 |
22.00 |
▁▁▁▁▇ |
ManufacturingProcess30 |
0 |
1 |
9.16 |
0.96 |
0.00 |
8.80 |
9.10 |
9.70 |
11.20 |
▁▁▁▅▇ |
ManufacturingProcess31 |
0 |
1 |
70.20 |
5.48 |
0.00 |
70.10 |
70.80 |
71.40 |
72.50 |
▁▁▁▁▇ |
ManufacturingProcess32 |
0 |
1 |
158.47 |
5.40 |
143.00 |
155.00 |
158.00 |
162.00 |
173.00 |
▁▃▇▃▁ |
ManufacturingProcess33 |
0 |
1 |
63.56 |
2.45 |
56.00 |
62.00 |
64.00 |
65.00 |
70.00 |
▁▃▇▅▁ |
ManufacturingProcess34 |
0 |
1 |
2.49 |
0.05 |
2.30 |
2.50 |
2.50 |
2.50 |
2.60 |
▁▂▁▇▁ |
ManufacturingProcess35 |
0 |
1 |
495.58 |
10.66 |
463.00 |
490.00 |
495.00 |
501.00 |
522.00 |
▁▂▇▅▂ |
ManufacturingProcess36 |
0 |
1 |
0.02 |
0.00 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
▂▇▇▁▃ |
ManufacturingProcess37 |
0 |
1 |
1.01 |
0.45 |
0.00 |
0.70 |
1.00 |
1.30 |
2.30 |
▂▇▇▃▁ |
ManufacturingProcess38 |
0 |
1 |
2.53 |
0.65 |
0.00 |
2.00 |
3.00 |
3.00 |
3.00 |
▁▁▁▅▇ |
ManufacturingProcess39 |
0 |
1 |
6.85 |
1.51 |
0.00 |
7.10 |
7.20 |
7.30 |
7.50 |
▁▁▁▁▇ |
ManufacturingProcess40 |
0 |
1 |
0.02 |
0.04 |
0.00 |
0.00 |
0.00 |
0.00 |
0.10 |
▇▁▁▁▂ |
ManufacturingProcess41 |
0 |
1 |
0.02 |
0.05 |
0.00 |
0.00 |
0.00 |
0.00 |
0.20 |
▇▁▁▁▁ |
ManufacturingProcess42 |
0 |
1 |
11.21 |
1.94 |
0.00 |
11.40 |
11.60 |
11.70 |
12.10 |
▁▁▁▁▇ |
ManufacturingProcess43 |
0 |
1 |
0.91 |
0.87 |
0.00 |
0.60 |
0.80 |
1.02 |
11.00 |
▇▁▁▁▁ |
ManufacturingProcess44 |
0 |
1 |
1.81 |
0.32 |
0.00 |
1.80 |
1.90 |
1.90 |
2.10 |
▁▁▁▁▇ |
ManufacturingProcess45 |
0 |
1 |
2.14 |
0.41 |
0.00 |
2.10 |
2.20 |
2.30 |
2.60 |
▁▁▁▂▇ |
## # A tibble: 0 x 12
## # ... with 12 variables: skim_type <chr>, skim_variable <chr>, n_missing <int>,
## # complete_rate <dbl>, numeric.mean <dbl>, numeric.sd <dbl>,
## # numeric.p0 <dbl>, numeric.p25 <dbl>, numeric.p50 <dbl>, numeric.p75 <dbl>,
## # numeric.p100 <dbl>, numeric.hist <chr>
1.3.2 Outlier Treatment
Outlier data assessment:
[A] Outliers noted for 48 variables. Outlier treatment for numerical stability remains optional depending on potential model requirements for the subsequent steps.
[B] Numeric data can be visualized through a boxplot including observations classified as suspected outliers using the IQR criterion. The IQR criterion means that all observations above the (75th percentile + 1.5 x IQR) or below the (25th percentile - 1.5 x IQR) are suspected outliers, where IQR is the difference between the third quartile (75th percentile) and first quartile (25th percentile).
[C] The caret package includes one method for outlier treatment:
[C.1] The spatialSign method from the caret package projects the data for a predictor to the unit circle in p dimensions by dividing it by its norm, where p is the number of predictors.
[D] The spatialSign methods was applied on the dataset:
[D.1] While data distribution generally improved with the number of remaining outliers reduced, there are still 40 variables noted with outliers using the IQR criterion.
##################################
# Loading dataset
##################################
DPA <- ChemicalManufacturingProcess
##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("Yield")]
##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,sapply(DPA.Predictors, is.numeric)]
##################################
# Identifying outliers for the numeric predictors
##################################
OutlierCountList <- c()
for (i in 1:ncol(DPA.Predictors.Numeric)) {
Outliers <- boxplot.stats(DPA.Predictors.Numeric[,i])$out
OutlierCount <- length(Outliers)
OutlierCountList <- append(OutlierCountList,OutlierCount)
OutlierIndices <- which(DPA.Predictors.Numeric[,i] %in% c(Outliers))
boxplot(DPA.Predictors.Numeric[,i],
ylab = names(DPA.Predictors.Numeric)[i],
main = names(DPA.Predictors.Numeric)[i],
horizontal=TRUE)
mtext(paste0(OutlierCount, " Outlier(s) Detected"))
}

























































## [1] "48 numeric variable(s) were noted with outlier(s)."
Data summary
Name |
DPA.Predictors.Numeric |
Number of rows |
176 |
Number of columns |
57 |
_______________________ |
|
Column type frequency: |
|
numeric |
57 |
________________________ |
|
Group variables |
None |
Variable type: numeric
BiologicalMaterial01 |
0 |
1.00 |
6.41 |
0.71 |
4.58 |
5.98 |
6.30 |
6.87 |
8.81 |
▂▇▇▂▁ |
BiologicalMaterial02 |
0 |
1.00 |
55.69 |
4.03 |
46.87 |
52.68 |
55.09 |
58.74 |
64.75 |
▂▇▆▅▃ |
BiologicalMaterial03 |
0 |
1.00 |
67.70 |
4.00 |
56.97 |
64.98 |
67.22 |
70.43 |
78.25 |
▂▅▇▆▁ |
BiologicalMaterial04 |
0 |
1.00 |
12.35 |
1.77 |
9.38 |
11.25 |
12.10 |
13.22 |
23.09 |
▇▆▁▁▁ |
BiologicalMaterial05 |
0 |
1.00 |
18.60 |
1.84 |
13.24 |
17.23 |
18.49 |
19.90 |
24.85 |
▁▅▇▃▁ |
BiologicalMaterial06 |
0 |
1.00 |
48.91 |
3.75 |
40.60 |
46.05 |
48.46 |
51.34 |
59.38 |
▂▇▆▅▁ |
BiologicalMaterial07 |
0 |
1.00 |
100.01 |
0.11 |
100.00 |
100.00 |
100.00 |
100.00 |
100.83 |
▇▁▁▁▁ |
BiologicalMaterial08 |
0 |
1.00 |
17.49 |
0.68 |
15.88 |
17.06 |
17.51 |
17.88 |
19.14 |
▁▅▇▃▂ |
BiologicalMaterial09 |
0 |
1.00 |
12.85 |
0.42 |
11.44 |
12.60 |
12.84 |
13.13 |
14.08 |
▁▃▇▅▁ |
BiologicalMaterial10 |
0 |
1.00 |
2.80 |
0.60 |
1.77 |
2.46 |
2.71 |
2.99 |
6.87 |
▇▅▁▁▁ |
BiologicalMaterial11 |
0 |
1.00 |
146.95 |
4.82 |
135.81 |
143.82 |
146.08 |
149.60 |
158.73 |
▂▆▇▃▂ |
BiologicalMaterial12 |
0 |
1.00 |
20.20 |
0.77 |
18.35 |
19.73 |
20.12 |
20.75 |
22.21 |
▂▆▇▃▂ |
ManufacturingProcess01 |
1 |
0.99 |
11.21 |
1.82 |
0.00 |
10.80 |
11.40 |
12.15 |
14.10 |
▁▁▁▅▇ |
ManufacturingProcess02 |
3 |
0.98 |
16.68 |
8.47 |
0.00 |
19.30 |
21.00 |
21.50 |
22.50 |
▂▁▁▁▇ |
ManufacturingProcess03 |
15 |
0.91 |
1.54 |
0.02 |
1.47 |
1.53 |
1.54 |
1.55 |
1.60 |
▁▃▆▇▁ |
ManufacturingProcess04 |
1 |
0.99 |
931.85 |
6.27 |
911.00 |
928.00 |
934.00 |
936.00 |
946.00 |
▁▂▃▇▁ |
ManufacturingProcess05 |
1 |
0.99 |
1001.69 |
30.53 |
923.00 |
986.75 |
999.20 |
1008.85 |
1175.30 |
▁▇▁▁▁ |
ManufacturingProcess06 |
2 |
0.99 |
207.40 |
2.70 |
203.00 |
205.70 |
206.80 |
208.70 |
227.40 |
▇▃▁▁▁ |
ManufacturingProcess07 |
1 |
0.99 |
177.48 |
0.50 |
177.00 |
177.00 |
177.00 |
178.00 |
178.00 |
▇▁▁▁▇ |
ManufacturingProcess08 |
1 |
0.99 |
177.55 |
0.50 |
177.00 |
177.00 |
178.00 |
178.00 |
178.00 |
▆▁▁▁▇ |
ManufacturingProcess09 |
0 |
1.00 |
45.66 |
1.55 |
38.89 |
44.89 |
45.73 |
46.52 |
49.36 |
▁▁▅▇▂ |
ManufacturingProcess10 |
9 |
0.95 |
9.18 |
0.77 |
7.50 |
8.70 |
9.10 |
9.55 |
11.60 |
▂▇▆▂▁ |
ManufacturingProcess11 |
10 |
0.94 |
9.39 |
0.72 |
7.50 |
9.00 |
9.40 |
9.90 |
11.50 |
▂▆▇▅▁ |
ManufacturingProcess12 |
1 |
0.99 |
857.81 |
1784.53 |
0.00 |
0.00 |
0.00 |
0.00 |
4549.00 |
▇▁▁▁▂ |
ManufacturingProcess13 |
0 |
1.00 |
34.51 |
1.02 |
32.10 |
33.90 |
34.60 |
35.20 |
38.60 |
▃▇▇▁▁ |
ManufacturingProcess14 |
1 |
0.99 |
4853.87 |
54.52 |
4701.00 |
4828.00 |
4856.00 |
4882.50 |
5055.00 |
▁▅▇▂▁ |
ManufacturingProcess15 |
0 |
1.00 |
6038.92 |
58.31 |
5904.00 |
6010.00 |
6031.50 |
6061.00 |
6233.00 |
▂▇▆▂▁ |
ManufacturingProcess16 |
0 |
1.00 |
4565.80 |
351.70 |
0.00 |
4560.75 |
4588.00 |
4619.00 |
4852.00 |
▁▁▁▁▇ |
ManufacturingProcess17 |
0 |
1.00 |
34.34 |
1.25 |
31.30 |
33.50 |
34.40 |
35.10 |
40.00 |
▂▇▆▁▁ |
ManufacturingProcess18 |
0 |
1.00 |
4809.68 |
367.48 |
0.00 |
4813.00 |
4835.00 |
4862.00 |
4971.00 |
▁▁▁▁▇ |
ManufacturingProcess19 |
0 |
1.00 |
6028.20 |
45.58 |
5890.00 |
6000.75 |
6022.00 |
6050.25 |
6146.00 |
▁▃▇▃▂ |
ManufacturingProcess20 |
0 |
1.00 |
4556.46 |
349.01 |
0.00 |
4552.75 |
4582.00 |
4609.50 |
4759.00 |
▁▁▁▁▇ |
ManufacturingProcess21 |
0 |
1.00 |
-0.16 |
0.78 |
-1.80 |
-0.60 |
-0.30 |
0.00 |
3.60 |
▂▇▂▁▁ |
ManufacturingProcess22 |
1 |
0.99 |
5.41 |
3.33 |
0.00 |
3.00 |
5.00 |
8.00 |
12.00 |
▇▇▇▅▅ |
ManufacturingProcess23 |
1 |
0.99 |
3.02 |
1.66 |
0.00 |
2.00 |
3.00 |
4.00 |
6.00 |
▇▆▇▆▇ |
ManufacturingProcess24 |
1 |
0.99 |
8.83 |
5.80 |
0.00 |
4.00 |
8.00 |
14.00 |
23.00 |
▇▇▅▆▁ |
ManufacturingProcess25 |
5 |
0.97 |
4828.18 |
373.48 |
0.00 |
4832.00 |
4855.00 |
4877.00 |
4990.00 |
▁▁▁▁▇ |
ManufacturingProcess26 |
5 |
0.97 |
6015.60 |
464.87 |
0.00 |
6019.50 |
6047.00 |
6070.50 |
6161.00 |
▁▁▁▁▇ |
ManufacturingProcess27 |
5 |
0.97 |
4562.51 |
353.98 |
0.00 |
4560.00 |
4587.00 |
4609.00 |
4710.00 |
▁▁▁▁▇ |
ManufacturingProcess28 |
5 |
0.97 |
6.59 |
5.25 |
0.00 |
0.00 |
10.40 |
10.75 |
11.50 |
▅▁▁▁▇ |
ManufacturingProcess29 |
5 |
0.97 |
20.01 |
1.66 |
0.00 |
19.70 |
19.90 |
20.40 |
22.00 |
▁▁▁▁▇ |
ManufacturingProcess30 |
5 |
0.97 |
9.16 |
0.98 |
0.00 |
8.80 |
9.10 |
9.70 |
11.20 |
▁▁▁▅▇ |
ManufacturingProcess31 |
5 |
0.97 |
70.18 |
5.56 |
0.00 |
70.10 |
70.80 |
71.40 |
72.50 |
▁▁▁▁▇ |
ManufacturingProcess32 |
0 |
1.00 |
158.47 |
5.40 |
143.00 |
155.00 |
158.00 |
162.00 |
173.00 |
▁▃▇▃▁ |
ManufacturingProcess33 |
5 |
0.97 |
63.54 |
2.48 |
56.00 |
62.00 |
64.00 |
65.00 |
70.00 |
▁▃▇▅▁ |
ManufacturingProcess34 |
5 |
0.97 |
2.49 |
0.05 |
2.30 |
2.50 |
2.50 |
2.50 |
2.60 |
▁▂▁▇▁ |
ManufacturingProcess35 |
5 |
0.97 |
495.60 |
10.82 |
463.00 |
490.00 |
495.00 |
501.50 |
522.00 |
▁▂▇▅▂ |
ManufacturingProcess36 |
5 |
0.97 |
0.02 |
0.00 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
▂▇▇▁▃ |
ManufacturingProcess37 |
0 |
1.00 |
1.01 |
0.45 |
0.00 |
0.70 |
1.00 |
1.30 |
2.30 |
▂▇▇▃▁ |
ManufacturingProcess38 |
0 |
1.00 |
2.53 |
0.65 |
0.00 |
2.00 |
3.00 |
3.00 |
3.00 |
▁▁▁▅▇ |
ManufacturingProcess39 |
0 |
1.00 |
6.85 |
1.51 |
0.00 |
7.10 |
7.20 |
7.30 |
7.50 |
▁▁▁▁▇ |
ManufacturingProcess40 |
1 |
0.99 |
0.02 |
0.04 |
0.00 |
0.00 |
0.00 |
0.00 |
0.10 |
▇▁▁▁▂ |
ManufacturingProcess41 |
1 |
0.99 |
0.02 |
0.05 |
0.00 |
0.00 |
0.00 |
0.00 |
0.20 |
▇▁▁▁▁ |
ManufacturingProcess42 |
0 |
1.00 |
11.21 |
1.94 |
0.00 |
11.40 |
11.60 |
11.70 |
12.10 |
▁▁▁▁▇ |
ManufacturingProcess43 |
0 |
1.00 |
0.91 |
0.87 |
0.00 |
0.60 |
0.80 |
1.02 |
11.00 |
▇▁▁▁▁ |
ManufacturingProcess44 |
0 |
1.00 |
1.81 |
0.32 |
0.00 |
1.80 |
1.90 |
1.90 |
2.10 |
▁▁▁▁▇ |
ManufacturingProcess45 |
0 |
1.00 |
2.14 |
0.41 |
0.00 |
2.10 |
2.20 |
2.30 |
2.60 |
▁▁▁▂▇ |
Data summary
Name |
DPA_CenteredScaledSpatial… |
Number of rows |
176 |
Number of columns |
57 |
_______________________ |
|
Column type frequency: |
|
numeric |
57 |
________________________ |
|
Group variables |
None |
Variable type: numeric
BiologicalMaterial01 |
0 |
1.00 |
-0.01 |
0.14 |
-0.35 |
-0.12 |
-0.02 |
0.10 |
0.28 |
▁▅▇▆▃ |
BiologicalMaterial02 |
0 |
1.00 |
-0.02 |
0.15 |
-0.27 |
-0.13 |
-0.02 |
0.11 |
0.27 |
▆▇▆▆▃ |
BiologicalMaterial03 |
0 |
1.00 |
0.00 |
0.15 |
-0.36 |
-0.12 |
-0.01 |
0.12 |
0.35 |
▂▇▇▇▂ |
BiologicalMaterial04 |
0 |
1.00 |
-0.01 |
0.13 |
-0.27 |
-0.09 |
-0.03 |
0.06 |
0.50 |
▅▇▅▂▁ |
BiologicalMaterial05 |
0 |
1.00 |
-0.01 |
0.15 |
-0.41 |
-0.13 |
-0.01 |
0.08 |
0.53 |
▂▇▇▃▁ |
BiologicalMaterial06 |
0 |
1.00 |
-0.01 |
0.15 |
-0.28 |
-0.14 |
-0.02 |
0.09 |
0.42 |
▆▇▇▃▁ |
BiologicalMaterial07 |
0 |
1.00 |
-0.01 |
0.10 |
-0.04 |
-0.03 |
-0.02 |
-0.02 |
0.78 |
▇▁▁▁▁ |
BiologicalMaterial08 |
0 |
1.00 |
-0.01 |
0.14 |
-0.33 |
-0.11 |
0.00 |
0.08 |
0.28 |
▂▆▇▇▃ |
BiologicalMaterial09 |
0 |
1.00 |
0.01 |
0.15 |
-0.46 |
-0.08 |
0.00 |
0.10 |
0.35 |
▁▃▇▆▂ |
BiologicalMaterial10 |
0 |
1.00 |
-0.01 |
0.13 |
-0.26 |
-0.10 |
-0.03 |
0.05 |
0.56 |
▃▇▂▁▁ |
BiologicalMaterial11 |
0 |
1.00 |
-0.01 |
0.14 |
-0.31 |
-0.10 |
-0.02 |
0.09 |
0.30 |
▂▇▇▅▃ |
BiologicalMaterial12 |
0 |
1.00 |
-0.01 |
0.14 |
-0.34 |
-0.11 |
-0.01 |
0.09 |
0.38 |
▂▇▇▅▁ |
ManufacturingProcess01 |
1 |
0.99 |
0.01 |
0.12 |
-0.62 |
-0.04 |
0.02 |
0.08 |
0.24 |
▁▁▂▇▅ |
ManufacturingProcess02 |
3 |
0.98 |
0.02 |
0.14 |
-0.32 |
0.04 |
0.08 |
0.11 |
0.17 |
▂▁▁▅▇ |
ManufacturingProcess03 |
15 |
0.91 |
0.00 |
0.16 |
-0.57 |
-0.07 |
0.00 |
0.09 |
0.50 |
▁▂▇▆▁ |
ManufacturingProcess04 |
1 |
0.99 |
0.02 |
0.15 |
-0.37 |
-0.10 |
0.04 |
0.12 |
0.37 |
▂▅▇▇▂ |
ManufacturingProcess05 |
1 |
0.99 |
-0.01 |
0.13 |
-0.41 |
-0.08 |
-0.01 |
0.04 |
0.77 |
▁▇▂▁▁ |
ManufacturingProcess06 |
2 |
0.99 |
-0.01 |
0.14 |
-0.26 |
-0.10 |
-0.03 |
0.06 |
0.75 |
▇▇▂▁▁ |
ManufacturingProcess07 |
1 |
0.99 |
0.00 |
0.17 |
-0.28 |
-0.16 |
-0.08 |
0.17 |
0.28 |
▇▇▁▇▆ |
ManufacturingProcess08 |
1 |
0.99 |
0.00 |
0.17 |
-0.32 |
-0.17 |
0.09 |
0.16 |
0.25 |
▃▇▁▅▇ |
ManufacturingProcess09 |
0 |
1.00 |
-0.01 |
0.14 |
-0.42 |
-0.09 |
0.01 |
0.09 |
0.32 |
▁▃▆▇▂ |
ManufacturingProcess10 |
9 |
0.95 |
-0.01 |
0.15 |
-0.37 |
-0.12 |
-0.02 |
0.07 |
0.37 |
▂▅▇▃▁ |
ManufacturingProcess11 |
10 |
0.94 |
-0.01 |
0.15 |
-0.38 |
-0.10 |
0.00 |
0.09 |
0.34 |
▂▃▇▆▂ |
ManufacturingProcess12 |
1 |
0.99 |
-0.01 |
0.16 |
-0.14 |
-0.09 |
-0.07 |
-0.05 |
0.41 |
▇▁▁▁▁ |
ManufacturingProcess13 |
0 |
1.00 |
0.01 |
0.14 |
-0.39 |
-0.09 |
0.01 |
0.11 |
0.36 |
▁▅▇▆▁ |
ManufacturingProcess14 |
1 |
0.99 |
0.00 |
0.14 |
-0.36 |
-0.08 |
0.01 |
0.09 |
0.33 |
▁▃▇▅▂ |
ManufacturingProcess15 |
0 |
1.00 |
0.00 |
0.14 |
-0.32 |
-0.08 |
-0.02 |
0.06 |
0.36 |
▂▅▇▂▂ |
ManufacturingProcess16 |
0 |
1.00 |
0.01 |
0.07 |
-0.87 |
0.00 |
0.01 |
0.03 |
0.13 |
▁▁▁▁▇ |
ManufacturingProcess17 |
0 |
1.00 |
0.00 |
0.13 |
-0.33 |
-0.10 |
0.01 |
0.09 |
0.44 |
▂▇▇▂▁ |
ManufacturingProcess18 |
0 |
1.00 |
0.01 |
0.05 |
-0.64 |
0.00 |
0.01 |
0.02 |
0.07 |
▁▁▁▁▇ |
ManufacturingProcess19 |
0 |
1.00 |
-0.01 |
0.14 |
-0.44 |
-0.10 |
-0.02 |
0.08 |
0.47 |
▁▅▇▃▁ |
ManufacturingProcess20 |
0 |
1.00 |
0.01 |
0.05 |
-0.63 |
0.00 |
0.01 |
0.02 |
0.09 |
▁▁▁▁▇ |
ManufacturingProcess21 |
0 |
1.00 |
-0.02 |
0.13 |
-0.32 |
-0.09 |
-0.02 |
0.04 |
0.40 |
▂▇▇▂▁ |
ManufacturingProcess22 |
1 |
0.99 |
0.00 |
0.17 |
-0.30 |
-0.13 |
-0.02 |
0.12 |
0.45 |
▃▇▅▃▁ |
ManufacturingProcess23 |
1 |
0.99 |
0.01 |
0.17 |
-0.27 |
-0.12 |
0.00 |
0.11 |
0.52 |
▇▇▅▃▁ |
ManufacturingProcess24 |
1 |
0.99 |
0.00 |
0.16 |
-0.26 |
-0.12 |
-0.03 |
0.14 |
0.33 |
▅▇▅▅▃ |
ManufacturingProcess25 |
5 |
0.97 |
0.01 |
0.04 |
-0.43 |
0.00 |
0.01 |
0.02 |
0.07 |
▁▁▁▁▇ |
ManufacturingProcess26 |
5 |
0.97 |
0.01 |
0.04 |
-0.43 |
0.00 |
0.01 |
0.02 |
0.06 |
▁▁▁▁▇ |
ManufacturingProcess27 |
5 |
0.97 |
0.01 |
0.04 |
-0.43 |
0.00 |
0.01 |
0.02 |
0.06 |
▁▁▁▁▇ |
ManufacturingProcess28 |
5 |
0.97 |
-0.01 |
0.17 |
-0.31 |
-0.21 |
0.09 |
0.13 |
0.21 |
▅▂▁▅▇ |
ManufacturingProcess29 |
5 |
0.97 |
0.00 |
0.06 |
-0.40 |
-0.03 |
-0.01 |
0.03 |
0.18 |
▁▁▂▇▂ |
ManufacturingProcess30 |
5 |
0.97 |
0.00 |
0.11 |
-0.31 |
-0.07 |
-0.01 |
0.08 |
0.24 |
▁▃▇▇▂ |
ManufacturingProcess31 |
5 |
0.97 |
0.01 |
0.05 |
-0.42 |
0.00 |
0.02 |
0.04 |
0.08 |
▁▁▁▁▇ |
ManufacturingProcess32 |
0 |
1.00 |
-0.01 |
0.15 |
-0.32 |
-0.10 |
-0.01 |
0.08 |
0.39 |
▃▆▇▅▁ |
ManufacturingProcess33 |
5 |
0.97 |
-0.01 |
0.15 |
-0.42 |
-0.12 |
0.03 |
0.10 |
0.34 |
▂▅▇▇▂ |
ManufacturingProcess34 |
5 |
0.97 |
0.00 |
0.16 |
-0.60 |
0.01 |
0.02 |
0.02 |
0.42 |
▁▂▂▇▁ |
ManufacturingProcess35 |
5 |
0.97 |
0.00 |
0.16 |
-0.43 |
-0.08 |
-0.01 |
0.09 |
0.47 |
▁▃▇▂▁ |
ManufacturingProcess36 |
5 |
0.97 |
0.00 |
0.15 |
-0.33 |
-0.11 |
0.04 |
0.10 |
0.34 |
▁▇▂▆▂ |
ManufacturingProcess37 |
0 |
1.00 |
0.00 |
0.16 |
-0.39 |
-0.11 |
-0.01 |
0.08 |
0.42 |
▂▅▇▃▁ |
ManufacturingProcess38 |
0 |
1.00 |
0.01 |
0.14 |
-0.32 |
-0.13 |
0.08 |
0.12 |
0.18 |
▁▃▂▁▇ |
ManufacturingProcess39 |
0 |
1.00 |
0.01 |
0.11 |
-0.68 |
0.02 |
0.03 |
0.05 |
0.09 |
▁▁▁▁▇ |
ManufacturingProcess40 |
1 |
0.99 |
0.00 |
0.16 |
-0.13 |
-0.09 |
-0.07 |
-0.05 |
0.48 |
▇▁▁▁▁ |
ManufacturingProcess41 |
1 |
0.99 |
-0.01 |
0.15 |
-0.13 |
-0.08 |
-0.07 |
-0.04 |
0.59 |
▇▁▁▁▁ |
ManufacturingProcess42 |
0 |
1.00 |
0.01 |
0.08 |
-0.47 |
0.01 |
0.03 |
0.04 |
0.09 |
▁▁▁▁▇ |
ManufacturingProcess43 |
0 |
1.00 |
-0.01 |
0.10 |
-0.17 |
-0.06 |
-0.02 |
0.02 |
0.84 |
▇▂▁▁▁ |
ManufacturingProcess44 |
0 |
1.00 |
0.02 |
0.09 |
-0.46 |
0.00 |
0.03 |
0.06 |
0.17 |
▁▁▁▇▇ |
ManufacturingProcess45 |
0 |
1.00 |
0.01 |
0.10 |
-0.43 |
-0.02 |
0.03 |
0.08 |
0.20 |
▁▁▂▇▅ |

























































## [1] "40 numeric variable(s) were noted with outlier(s)."
1.3.3 Zero and Near-Zero Variance
Zero and near-zero variance data assessment:
[A] Low variance noted for 3 variables from the previous data quality assessment.
[B] Low variance noted for 6 variables confirmed using a preprocessing summary from the caret package.
[C] The caret package includes two methods for detecting low variance variables:
[C.1] The nearZeroVar method using the freqCut criteria with default setting at 95/5 computes the frequency of the most prevalent value over the second most frequent value (called the “frequency ratio’’), which would be near one for well-behaved predictors and very large for highly-unbalanced data.
[C.2] The nearZeroVar method using the uniqueCut criteria with default setting at 10 computes the percent of unique values referring to the number of unique values divided by the total number of samples (times 100) that approaches zero as the granularity of the data increases.
[D] The nearZeroVar method using both the freqCut and uniqueCut criteria set at 80/20 and 10, respectively, were applied on the dataset:
[D.1] 6 variables may be optionally removed from the dataset for the subsequent analysis.
Data summary
Name |
DPA |
Number of rows |
176 |
Number of columns |
58 |
_______________________ |
|
Column type frequency: |
|
numeric |
58 |
________________________ |
|
Group variables |
None |
Variable type: numeric
Yield |
0 |
1.00 |
40.18 |
1.85 |
35.25 |
38.75 |
39.97 |
41.48 |
46.34 |
▁▇▇▃▁ |
BiologicalMaterial01 |
0 |
1.00 |
6.41 |
0.71 |
4.58 |
5.98 |
6.30 |
6.87 |
8.81 |
▂▇▇▂▁ |
BiologicalMaterial02 |
0 |
1.00 |
55.69 |
4.03 |
46.87 |
52.68 |
55.09 |
58.74 |
64.75 |
▂▇▆▅▃ |
BiologicalMaterial03 |
0 |
1.00 |
67.70 |
4.00 |
56.97 |
64.98 |
67.22 |
70.43 |
78.25 |
▂▅▇▆▁ |
BiologicalMaterial04 |
0 |
1.00 |
12.35 |
1.77 |
9.38 |
11.25 |
12.10 |
13.22 |
23.09 |
▇▆▁▁▁ |
BiologicalMaterial05 |
0 |
1.00 |
18.60 |
1.84 |
13.24 |
17.23 |
18.49 |
19.90 |
24.85 |
▁▅▇▃▁ |
BiologicalMaterial06 |
0 |
1.00 |
48.91 |
3.75 |
40.60 |
46.05 |
48.46 |
51.34 |
59.38 |
▂▇▆▅▁ |
BiologicalMaterial07 |
0 |
1.00 |
100.01 |
0.11 |
100.00 |
100.00 |
100.00 |
100.00 |
100.83 |
▇▁▁▁▁ |
BiologicalMaterial08 |
0 |
1.00 |
17.49 |
0.68 |
15.88 |
17.06 |
17.51 |
17.88 |
19.14 |
▁▅▇▃▂ |
BiologicalMaterial09 |
0 |
1.00 |
12.85 |
0.42 |
11.44 |
12.60 |
12.84 |
13.13 |
14.08 |
▁▃▇▅▁ |
BiologicalMaterial10 |
0 |
1.00 |
2.80 |
0.60 |
1.77 |
2.46 |
2.71 |
2.99 |
6.87 |
▇▅▁▁▁ |
BiologicalMaterial11 |
0 |
1.00 |
146.95 |
4.82 |
135.81 |
143.82 |
146.08 |
149.60 |
158.73 |
▂▆▇▃▂ |
BiologicalMaterial12 |
0 |
1.00 |
20.20 |
0.77 |
18.35 |
19.73 |
20.12 |
20.75 |
22.21 |
▂▆▇▃▂ |
ManufacturingProcess01 |
1 |
0.99 |
11.21 |
1.82 |
0.00 |
10.80 |
11.40 |
12.15 |
14.10 |
▁▁▁▅▇ |
ManufacturingProcess02 |
3 |
0.98 |
16.68 |
8.47 |
0.00 |
19.30 |
21.00 |
21.50 |
22.50 |
▂▁▁▁▇ |
ManufacturingProcess03 |
15 |
0.91 |
1.54 |
0.02 |
1.47 |
1.53 |
1.54 |
1.55 |
1.60 |
▁▃▆▇▁ |
ManufacturingProcess04 |
1 |
0.99 |
931.85 |
6.27 |
911.00 |
928.00 |
934.00 |
936.00 |
946.00 |
▁▂▃▇▁ |
ManufacturingProcess05 |
1 |
0.99 |
1001.69 |
30.53 |
923.00 |
986.75 |
999.20 |
1008.85 |
1175.30 |
▁▇▁▁▁ |
ManufacturingProcess06 |
2 |
0.99 |
207.40 |
2.70 |
203.00 |
205.70 |
206.80 |
208.70 |
227.40 |
▇▃▁▁▁ |
ManufacturingProcess07 |
1 |
0.99 |
177.48 |
0.50 |
177.00 |
177.00 |
177.00 |
178.00 |
178.00 |
▇▁▁▁▇ |
ManufacturingProcess08 |
1 |
0.99 |
177.55 |
0.50 |
177.00 |
177.00 |
178.00 |
178.00 |
178.00 |
▆▁▁▁▇ |
ManufacturingProcess09 |
0 |
1.00 |
45.66 |
1.55 |
38.89 |
44.89 |
45.73 |
46.52 |
49.36 |
▁▁▅▇▂ |
ManufacturingProcess10 |
9 |
0.95 |
9.18 |
0.77 |
7.50 |
8.70 |
9.10 |
9.55 |
11.60 |
▂▇▆▂▁ |
ManufacturingProcess11 |
10 |
0.94 |
9.39 |
0.72 |
7.50 |
9.00 |
9.40 |
9.90 |
11.50 |
▂▆▇▅▁ |
ManufacturingProcess12 |
1 |
0.99 |
857.81 |
1784.53 |
0.00 |
0.00 |
0.00 |
0.00 |
4549.00 |
▇▁▁▁▂ |
ManufacturingProcess13 |
0 |
1.00 |
34.51 |
1.02 |
32.10 |
33.90 |
34.60 |
35.20 |
38.60 |
▃▇▇▁▁ |
ManufacturingProcess14 |
1 |
0.99 |
4853.87 |
54.52 |
4701.00 |
4828.00 |
4856.00 |
4882.50 |
5055.00 |
▁▅▇▂▁ |
ManufacturingProcess15 |
0 |
1.00 |
6038.92 |
58.31 |
5904.00 |
6010.00 |
6031.50 |
6061.00 |
6233.00 |
▂▇▆▂▁ |
ManufacturingProcess16 |
0 |
1.00 |
4565.80 |
351.70 |
0.00 |
4560.75 |
4588.00 |
4619.00 |
4852.00 |
▁▁▁▁▇ |
ManufacturingProcess17 |
0 |
1.00 |
34.34 |
1.25 |
31.30 |
33.50 |
34.40 |
35.10 |
40.00 |
▂▇▆▁▁ |
ManufacturingProcess18 |
0 |
1.00 |
4809.68 |
367.48 |
0.00 |
4813.00 |
4835.00 |
4862.00 |
4971.00 |
▁▁▁▁▇ |
ManufacturingProcess19 |
0 |
1.00 |
6028.20 |
45.58 |
5890.00 |
6000.75 |
6022.00 |
6050.25 |
6146.00 |
▁▃▇▃▂ |
ManufacturingProcess20 |
0 |
1.00 |
4556.46 |
349.01 |
0.00 |
4552.75 |
4582.00 |
4609.50 |
4759.00 |
▁▁▁▁▇ |
ManufacturingProcess21 |
0 |
1.00 |
-0.16 |
0.78 |
-1.80 |
-0.60 |
-0.30 |
0.00 |
3.60 |
▂▇▂▁▁ |
ManufacturingProcess22 |
1 |
0.99 |
5.41 |
3.33 |
0.00 |
3.00 |
5.00 |
8.00 |
12.00 |
▇▇▇▅▅ |
ManufacturingProcess23 |
1 |
0.99 |
3.02 |
1.66 |
0.00 |
2.00 |
3.00 |
4.00 |
6.00 |
▇▆▇▆▇ |
ManufacturingProcess24 |
1 |
0.99 |
8.83 |
5.80 |
0.00 |
4.00 |
8.00 |
14.00 |
23.00 |
▇▇▅▆▁ |
ManufacturingProcess25 |
5 |
0.97 |
4828.18 |
373.48 |
0.00 |
4832.00 |
4855.00 |
4877.00 |
4990.00 |
▁▁▁▁▇ |
ManufacturingProcess26 |
5 |
0.97 |
6015.60 |
464.87 |
0.00 |
6019.50 |
6047.00 |
6070.50 |
6161.00 |
▁▁▁▁▇ |
ManufacturingProcess27 |
5 |
0.97 |
4562.51 |
353.98 |
0.00 |
4560.00 |
4587.00 |
4609.00 |
4710.00 |
▁▁▁▁▇ |
ManufacturingProcess28 |
5 |
0.97 |
6.59 |
5.25 |
0.00 |
0.00 |
10.40 |
10.75 |
11.50 |
▅▁▁▁▇ |
ManufacturingProcess29 |
5 |
0.97 |
20.01 |
1.66 |
0.00 |
19.70 |
19.90 |
20.40 |
22.00 |
▁▁▁▁▇ |
ManufacturingProcess30 |
5 |
0.97 |
9.16 |
0.98 |
0.00 |
8.80 |
9.10 |
9.70 |
11.20 |
▁▁▁▅▇ |
ManufacturingProcess31 |
5 |
0.97 |
70.18 |
5.56 |
0.00 |
70.10 |
70.80 |
71.40 |
72.50 |
▁▁▁▁▇ |
ManufacturingProcess32 |
0 |
1.00 |
158.47 |
5.40 |
143.00 |
155.00 |
158.00 |
162.00 |
173.00 |
▁▃▇▃▁ |
ManufacturingProcess33 |
5 |
0.97 |
63.54 |
2.48 |
56.00 |
62.00 |
64.00 |
65.00 |
70.00 |
▁▃▇▅▁ |
ManufacturingProcess34 |
5 |
0.97 |
2.49 |
0.05 |
2.30 |
2.50 |
2.50 |
2.50 |
2.60 |
▁▂▁▇▁ |
ManufacturingProcess35 |
5 |
0.97 |
495.60 |
10.82 |
463.00 |
490.00 |
495.00 |
501.50 |
522.00 |
▁▂▇▅▂ |
ManufacturingProcess36 |
5 |
0.97 |
0.02 |
0.00 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
▂▇▇▁▃ |
ManufacturingProcess37 |
0 |
1.00 |
1.01 |
0.45 |
0.00 |
0.70 |
1.00 |
1.30 |
2.30 |
▂▇▇▃▁ |
ManufacturingProcess38 |
0 |
1.00 |
2.53 |
0.65 |
0.00 |
2.00 |
3.00 |
3.00 |
3.00 |
▁▁▁▅▇ |
ManufacturingProcess39 |
0 |
1.00 |
6.85 |
1.51 |
0.00 |
7.10 |
7.20 |
7.30 |
7.50 |
▁▁▁▁▇ |
ManufacturingProcess40 |
1 |
0.99 |
0.02 |
0.04 |
0.00 |
0.00 |
0.00 |
0.00 |
0.10 |
▇▁▁▁▂ |
ManufacturingProcess41 |
1 |
0.99 |
0.02 |
0.05 |
0.00 |
0.00 |
0.00 |
0.00 |
0.20 |
▇▁▁▁▁ |
ManufacturingProcess42 |
0 |
1.00 |
11.21 |
1.94 |
0.00 |
11.40 |
11.60 |
11.70 |
12.10 |
▁▁▁▁▇ |
ManufacturingProcess43 |
0 |
1.00 |
0.91 |
0.87 |
0.00 |
0.60 |
0.80 |
1.02 |
11.00 |
▇▁▁▁▁ |
ManufacturingProcess44 |
0 |
1.00 |
1.81 |
0.32 |
0.00 |
1.80 |
1.90 |
1.90 |
2.10 |
▁▁▁▁▇ |
ManufacturingProcess45 |
0 |
1.00 |
2.14 |
0.41 |
0.00 |
2.10 |
2.20 |
2.30 |
2.60 |
▁▁▁▂▇ |
## freqRatio percentUnique zeroVar nzv
## BiologicalMaterial07 57.666667 1.136364 FALSE TRUE
## ManufacturingProcess12 4.303030 1.136364 FALSE TRUE
## ManufacturingProcess28 5.076923 9.659091 FALSE TRUE
## ManufacturingProcess34 4.392857 2.272727 FALSE TRUE
## ManufacturingProcess40 4.645161 1.136364 FALSE TRUE
## ManufacturingProcess41 6.500000 2.272727 FALSE TRUE
if ((nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))==0){
print("No low variance predictors noted.")
} else {
print(paste0("Low variance observed for ",
(nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
" numeric variable(s) with First.Second.Mode.Ratio>4 and Unique.Count.Ratio<0.10."))
DPA_LowVarianceForRemoval <- (nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))
print(paste0("Low variance can be resolved by removing ",
(nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
" numeric variable(s)."))
for (j in 1:DPA_LowVarianceForRemoval) {
DPA_LowVarianceRemovedVariable <- rownames(DPA_LowVariance[DPA_LowVariance$nzv,])[j]
print(paste0("Variable ",
j,
" for removal: ",
DPA_LowVarianceRemovedVariable))
}
DPA %>%
skim() %>%
dplyr::filter(skim_variable %in% rownames(DPA_LowVariance[DPA_LowVariance$nzv,]))
##################################
# Filtering out columns with low variance
#################################
DPA_ExcludedLowVariance <- DPA[,!names(DPA) %in% rownames(DPA_LowVariance[DPA_LowVariance$nzv,])]
##################################
# Gathering descriptive statistics
##################################
(DPA_ExcludedLowVariance_Skimmed <- skim(DPA_ExcludedLowVariance))
}
## [1] "Low variance observed for 6 numeric variable(s) with First.Second.Mode.Ratio>4 and Unique.Count.Ratio<0.10."
## [1] "Low variance can be resolved by removing 6 numeric variable(s)."
## [1] "Variable 1 for removal: BiologicalMaterial07"
## [1] "Variable 2 for removal: ManufacturingProcess12"
## [1] "Variable 3 for removal: ManufacturingProcess28"
## [1] "Variable 4 for removal: ManufacturingProcess34"
## [1] "Variable 5 for removal: ManufacturingProcess40"
## [1] "Variable 6 for removal: ManufacturingProcess41"
Data summary
Name |
DPA_ExcludedLowVariance |
Number of rows |
176 |
Number of columns |
52 |
_______________________ |
|
Column type frequency: |
|
numeric |
52 |
________________________ |
|
Group variables |
None |
Variable type: numeric
Yield |
0 |
1.00 |
40.18 |
1.85 |
35.25 |
38.75 |
39.97 |
41.48 |
46.34 |
▁▇▇▃▁ |
BiologicalMaterial01 |
0 |
1.00 |
6.41 |
0.71 |
4.58 |
5.98 |
6.30 |
6.87 |
8.81 |
▂▇▇▂▁ |
BiologicalMaterial02 |
0 |
1.00 |
55.69 |
4.03 |
46.87 |
52.68 |
55.09 |
58.74 |
64.75 |
▂▇▆▅▃ |
BiologicalMaterial03 |
0 |
1.00 |
67.70 |
4.00 |
56.97 |
64.98 |
67.22 |
70.43 |
78.25 |
▂▅▇▆▁ |
BiologicalMaterial04 |
0 |
1.00 |
12.35 |
1.77 |
9.38 |
11.25 |
12.10 |
13.22 |
23.09 |
▇▆▁▁▁ |
BiologicalMaterial05 |
0 |
1.00 |
18.60 |
1.84 |
13.24 |
17.23 |
18.49 |
19.90 |
24.85 |
▁▅▇▃▁ |
BiologicalMaterial06 |
0 |
1.00 |
48.91 |
3.75 |
40.60 |
46.05 |
48.46 |
51.34 |
59.38 |
▂▇▆▅▁ |
BiologicalMaterial08 |
0 |
1.00 |
17.49 |
0.68 |
15.88 |
17.06 |
17.51 |
17.88 |
19.14 |
▁▅▇▃▂ |
BiologicalMaterial09 |
0 |
1.00 |
12.85 |
0.42 |
11.44 |
12.60 |
12.84 |
13.13 |
14.08 |
▁▃▇▅▁ |
BiologicalMaterial10 |
0 |
1.00 |
2.80 |
0.60 |
1.77 |
2.46 |
2.71 |
2.99 |
6.87 |
▇▅▁▁▁ |
BiologicalMaterial11 |
0 |
1.00 |
146.95 |
4.82 |
135.81 |
143.82 |
146.08 |
149.60 |
158.73 |
▂▆▇▃▂ |
BiologicalMaterial12 |
0 |
1.00 |
20.20 |
0.77 |
18.35 |
19.73 |
20.12 |
20.75 |
22.21 |
▂▆▇▃▂ |
ManufacturingProcess01 |
1 |
0.99 |
11.21 |
1.82 |
0.00 |
10.80 |
11.40 |
12.15 |
14.10 |
▁▁▁▅▇ |
ManufacturingProcess02 |
3 |
0.98 |
16.68 |
8.47 |
0.00 |
19.30 |
21.00 |
21.50 |
22.50 |
▂▁▁▁▇ |
ManufacturingProcess03 |
15 |
0.91 |
1.54 |
0.02 |
1.47 |
1.53 |
1.54 |
1.55 |
1.60 |
▁▃▆▇▁ |
ManufacturingProcess04 |
1 |
0.99 |
931.85 |
6.27 |
911.00 |
928.00 |
934.00 |
936.00 |
946.00 |
▁▂▃▇▁ |
ManufacturingProcess05 |
1 |
0.99 |
1001.69 |
30.53 |
923.00 |
986.75 |
999.20 |
1008.85 |
1175.30 |
▁▇▁▁▁ |
ManufacturingProcess06 |
2 |
0.99 |
207.40 |
2.70 |
203.00 |
205.70 |
206.80 |
208.70 |
227.40 |
▇▃▁▁▁ |
ManufacturingProcess07 |
1 |
0.99 |
177.48 |
0.50 |
177.00 |
177.00 |
177.00 |
178.00 |
178.00 |
▇▁▁▁▇ |
ManufacturingProcess08 |
1 |
0.99 |
177.55 |
0.50 |
177.00 |
177.00 |
178.00 |
178.00 |
178.00 |
▆▁▁▁▇ |
ManufacturingProcess09 |
0 |
1.00 |
45.66 |
1.55 |
38.89 |
44.89 |
45.73 |
46.52 |
49.36 |
▁▁▅▇▂ |
ManufacturingProcess10 |
9 |
0.95 |
9.18 |
0.77 |
7.50 |
8.70 |
9.10 |
9.55 |
11.60 |
▂▇▆▂▁ |
ManufacturingProcess11 |
10 |
0.94 |
9.39 |
0.72 |
7.50 |
9.00 |
9.40 |
9.90 |
11.50 |
▂▆▇▅▁ |
ManufacturingProcess13 |
0 |
1.00 |
34.51 |
1.02 |
32.10 |
33.90 |
34.60 |
35.20 |
38.60 |
▃▇▇▁▁ |
ManufacturingProcess14 |
1 |
0.99 |
4853.87 |
54.52 |
4701.00 |
4828.00 |
4856.00 |
4882.50 |
5055.00 |
▁▅▇▂▁ |
ManufacturingProcess15 |
0 |
1.00 |
6038.92 |
58.31 |
5904.00 |
6010.00 |
6031.50 |
6061.00 |
6233.00 |
▂▇▆▂▁ |
ManufacturingProcess16 |
0 |
1.00 |
4565.80 |
351.70 |
0.00 |
4560.75 |
4588.00 |
4619.00 |
4852.00 |
▁▁▁▁▇ |
ManufacturingProcess17 |
0 |
1.00 |
34.34 |
1.25 |
31.30 |
33.50 |
34.40 |
35.10 |
40.00 |
▂▇▆▁▁ |
ManufacturingProcess18 |
0 |
1.00 |
4809.68 |
367.48 |
0.00 |
4813.00 |
4835.00 |
4862.00 |
4971.00 |
▁▁▁▁▇ |
ManufacturingProcess19 |
0 |
1.00 |
6028.20 |
45.58 |
5890.00 |
6000.75 |
6022.00 |
6050.25 |
6146.00 |
▁▃▇▃▂ |
ManufacturingProcess20 |
0 |
1.00 |
4556.46 |
349.01 |
0.00 |
4552.75 |
4582.00 |
4609.50 |
4759.00 |
▁▁▁▁▇ |
ManufacturingProcess21 |
0 |
1.00 |
-0.16 |
0.78 |
-1.80 |
-0.60 |
-0.30 |
0.00 |
3.60 |
▂▇▂▁▁ |
ManufacturingProcess22 |
1 |
0.99 |
5.41 |
3.33 |
0.00 |
3.00 |
5.00 |
8.00 |
12.00 |
▇▇▇▅▅ |
ManufacturingProcess23 |
1 |
0.99 |
3.02 |
1.66 |
0.00 |
2.00 |
3.00 |
4.00 |
6.00 |
▇▆▇▆▇ |
ManufacturingProcess24 |
1 |
0.99 |
8.83 |
5.80 |
0.00 |
4.00 |
8.00 |
14.00 |
23.00 |
▇▇▅▆▁ |
ManufacturingProcess25 |
5 |
0.97 |
4828.18 |
373.48 |
0.00 |
4832.00 |
4855.00 |
4877.00 |
4990.00 |
▁▁▁▁▇ |
ManufacturingProcess26 |
5 |
0.97 |
6015.60 |
464.87 |
0.00 |
6019.50 |
6047.00 |
6070.50 |
6161.00 |
▁▁▁▁▇ |
ManufacturingProcess27 |
5 |
0.97 |
4562.51 |
353.98 |
0.00 |
4560.00 |
4587.00 |
4609.00 |
4710.00 |
▁▁▁▁▇ |
ManufacturingProcess29 |
5 |
0.97 |
20.01 |
1.66 |
0.00 |
19.70 |
19.90 |
20.40 |
22.00 |
▁▁▁▁▇ |
ManufacturingProcess30 |
5 |
0.97 |
9.16 |
0.98 |
0.00 |
8.80 |
9.10 |
9.70 |
11.20 |
▁▁▁▅▇ |
ManufacturingProcess31 |
5 |
0.97 |
70.18 |
5.56 |
0.00 |
70.10 |
70.80 |
71.40 |
72.50 |
▁▁▁▁▇ |
ManufacturingProcess32 |
0 |
1.00 |
158.47 |
5.40 |
143.00 |
155.00 |
158.00 |
162.00 |
173.00 |
▁▃▇▃▁ |
ManufacturingProcess33 |
5 |
0.97 |
63.54 |
2.48 |
56.00 |
62.00 |
64.00 |
65.00 |
70.00 |
▁▃▇▅▁ |
ManufacturingProcess35 |
5 |
0.97 |
495.60 |
10.82 |
463.00 |
490.00 |
495.00 |
501.50 |
522.00 |
▁▂▇▅▂ |
ManufacturingProcess36 |
5 |
0.97 |
0.02 |
0.00 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
▂▇▇▁▃ |
ManufacturingProcess37 |
0 |
1.00 |
1.01 |
0.45 |
0.00 |
0.70 |
1.00 |
1.30 |
2.30 |
▂▇▇▃▁ |
ManufacturingProcess38 |
0 |
1.00 |
2.53 |
0.65 |
0.00 |
2.00 |
3.00 |
3.00 |
3.00 |
▁▁▁▅▇ |
ManufacturingProcess39 |
0 |
1.00 |
6.85 |
1.51 |
0.00 |
7.10 |
7.20 |
7.30 |
7.50 |
▁▁▁▁▇ |
ManufacturingProcess42 |
0 |
1.00 |
11.21 |
1.94 |
0.00 |
11.40 |
11.60 |
11.70 |
12.10 |
▁▁▁▁▇ |
ManufacturingProcess43 |
0 |
1.00 |
0.91 |
0.87 |
0.00 |
0.60 |
0.80 |
1.02 |
11.00 |
▇▁▁▁▁ |
ManufacturingProcess44 |
0 |
1.00 |
1.81 |
0.32 |
0.00 |
1.80 |
1.90 |
1.90 |
2.10 |
▁▁▁▁▇ |
ManufacturingProcess45 |
0 |
1.00 |
2.14 |
0.41 |
0.00 |
2.10 |
2.20 |
2.30 |
2.60 |
▁▁▁▂▇ |
1.3.4 Collinearity
High collinearity data assessment:
[A] High correlation noted for 10 variable pairs confirmed using the preprocessing summaries from the caret and lares packages.
[B] The caret and lares packages include methods for detecting highly correlated variables:
[B.1] The findCorrelation method using the cutoff criteria with default setting at 0.90 from the caret package searches through a correlation matrix and returns a vector of integers corresponding to columns to remove to reduce pair-wise correlations.
[B.2] The corr_cross method using the top criteria from the lares package lists out and ranks the variable-pairs with the highest correlation coefficients which were statistically significant.
[C] The findCorrelation method using the cutoff criterion set at 0.95 and the corr_cross method using the top criterion set at 10 were applied on the dataset:
[C.1] 10 variable-pairs were identified to have the highest correlation which were statistically significant.
[C.2] 7 variables may be optionally removed from the dataset for the subsequent analysis.
##################################
# Loading dataset
##################################
DPA <- ChemicalManufacturingProcess
##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("Yield")]
##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,sapply(DPA.Predictors, is.numeric)]
##################################
# Visualizing pairwise correlation between predictors
##################################
DPA_CorrelationTest <- cor.mtest(DPA.Predictors.Numeric,
method = "pearson",
conf.level = .95)
corrplot(cor(DPA.Predictors.Numeric,
method = "pearson",
use="pairwise.complete.obs"),
method = "circle",
type = "upper",
order = "original",
tl.col = "black",
tl.cex = 0.75,
tl.srt = 90,
sig.level = 0.05,
p.mat = DPA_CorrelationTest$p,
insig = "blank")

## [1] 10
## [1] "High correlation observed for 10 pairs of numeric variable(s) with Correlation.Coefficient>0.95."

## [1] "High correlation can be resolved by removing 6 numeric variable(s)."
## [1] "Variable 1 for removal: BiologicalMaterial02"
## [1] "Variable 2 for removal: ManufacturingProcess29"
## [1] "Variable 3 for removal: ManufacturingProcess27"
## [1] "Variable 4 for removal: ManufacturingProcess25"
## [1] "Variable 5 for removal: ManufacturingProcess31"
## [1] "Variable 6 for removal: ManufacturingProcess20"
Data summary
Name |
DPA_ExcludedHighCorrelati… |
Number of rows |
176 |
Number of columns |
52 |
_______________________ |
|
Column type frequency: |
|
numeric |
52 |
________________________ |
|
Group variables |
None |
Variable type: numeric
Yield |
0 |
1.00 |
40.18 |
1.85 |
35.25 |
38.75 |
39.97 |
41.48 |
46.34 |
▁▇▇▃▁ |
BiologicalMaterial02 |
0 |
1.00 |
55.69 |
4.03 |
46.87 |
52.68 |
55.09 |
58.74 |
64.75 |
▂▇▆▅▃ |
BiologicalMaterial03 |
0 |
1.00 |
67.70 |
4.00 |
56.97 |
64.98 |
67.22 |
70.43 |
78.25 |
▂▅▇▆▁ |
BiologicalMaterial04 |
0 |
1.00 |
12.35 |
1.77 |
9.38 |
11.25 |
12.10 |
13.22 |
23.09 |
▇▆▁▁▁ |
BiologicalMaterial05 |
0 |
1.00 |
18.60 |
1.84 |
13.24 |
17.23 |
18.49 |
19.90 |
24.85 |
▁▅▇▃▁ |
BiologicalMaterial06 |
0 |
1.00 |
48.91 |
3.75 |
40.60 |
46.05 |
48.46 |
51.34 |
59.38 |
▂▇▆▅▁ |
BiologicalMaterial07 |
0 |
1.00 |
100.01 |
0.11 |
100.00 |
100.00 |
100.00 |
100.00 |
100.83 |
▇▁▁▁▁ |
BiologicalMaterial08 |
0 |
1.00 |
17.49 |
0.68 |
15.88 |
17.06 |
17.51 |
17.88 |
19.14 |
▁▅▇▃▂ |
BiologicalMaterial09 |
0 |
1.00 |
12.85 |
0.42 |
11.44 |
12.60 |
12.84 |
13.13 |
14.08 |
▁▃▇▅▁ |
BiologicalMaterial10 |
0 |
1.00 |
2.80 |
0.60 |
1.77 |
2.46 |
2.71 |
2.99 |
6.87 |
▇▅▁▁▁ |
BiologicalMaterial11 |
0 |
1.00 |
146.95 |
4.82 |
135.81 |
143.82 |
146.08 |
149.60 |
158.73 |
▂▆▇▃▂ |
BiologicalMaterial12 |
0 |
1.00 |
20.20 |
0.77 |
18.35 |
19.73 |
20.12 |
20.75 |
22.21 |
▂▆▇▃▂ |
ManufacturingProcess01 |
1 |
0.99 |
11.21 |
1.82 |
0.00 |
10.80 |
11.40 |
12.15 |
14.10 |
▁▁▁▅▇ |
ManufacturingProcess02 |
3 |
0.98 |
16.68 |
8.47 |
0.00 |
19.30 |
21.00 |
21.50 |
22.50 |
▂▁▁▁▇ |
ManufacturingProcess03 |
15 |
0.91 |
1.54 |
0.02 |
1.47 |
1.53 |
1.54 |
1.55 |
1.60 |
▁▃▆▇▁ |
ManufacturingProcess04 |
1 |
0.99 |
931.85 |
6.27 |
911.00 |
928.00 |
934.00 |
936.00 |
946.00 |
▁▂▃▇▁ |
ManufacturingProcess05 |
1 |
0.99 |
1001.69 |
30.53 |
923.00 |
986.75 |
999.20 |
1008.85 |
1175.30 |
▁▇▁▁▁ |
ManufacturingProcess06 |
2 |
0.99 |
207.40 |
2.70 |
203.00 |
205.70 |
206.80 |
208.70 |
227.40 |
▇▃▁▁▁ |
ManufacturingProcess07 |
1 |
0.99 |
177.48 |
0.50 |
177.00 |
177.00 |
177.00 |
178.00 |
178.00 |
▇▁▁▁▇ |
ManufacturingProcess08 |
1 |
0.99 |
177.55 |
0.50 |
177.00 |
177.00 |
178.00 |
178.00 |
178.00 |
▆▁▁▁▇ |
ManufacturingProcess09 |
0 |
1.00 |
45.66 |
1.55 |
38.89 |
44.89 |
45.73 |
46.52 |
49.36 |
▁▁▅▇▂ |
ManufacturingProcess10 |
9 |
0.95 |
9.18 |
0.77 |
7.50 |
8.70 |
9.10 |
9.55 |
11.60 |
▂▇▆▂▁ |
ManufacturingProcess11 |
10 |
0.94 |
9.39 |
0.72 |
7.50 |
9.00 |
9.40 |
9.90 |
11.50 |
▂▆▇▅▁ |
ManufacturingProcess12 |
1 |
0.99 |
857.81 |
1784.53 |
0.00 |
0.00 |
0.00 |
0.00 |
4549.00 |
▇▁▁▁▂ |
ManufacturingProcess13 |
0 |
1.00 |
34.51 |
1.02 |
32.10 |
33.90 |
34.60 |
35.20 |
38.60 |
▃▇▇▁▁ |
ManufacturingProcess14 |
1 |
0.99 |
4853.87 |
54.52 |
4701.00 |
4828.00 |
4856.00 |
4882.50 |
5055.00 |
▁▅▇▂▁ |
ManufacturingProcess15 |
0 |
1.00 |
6038.92 |
58.31 |
5904.00 |
6010.00 |
6031.50 |
6061.00 |
6233.00 |
▂▇▆▂▁ |
ManufacturingProcess16 |
0 |
1.00 |
4565.80 |
351.70 |
0.00 |
4560.75 |
4588.00 |
4619.00 |
4852.00 |
▁▁▁▁▇ |
ManufacturingProcess17 |
0 |
1.00 |
34.34 |
1.25 |
31.30 |
33.50 |
34.40 |
35.10 |
40.00 |
▂▇▆▁▁ |
ManufacturingProcess18 |
0 |
1.00 |
4809.68 |
367.48 |
0.00 |
4813.00 |
4835.00 |
4862.00 |
4971.00 |
▁▁▁▁▇ |
ManufacturingProcess20 |
0 |
1.00 |
4556.46 |
349.01 |
0.00 |
4552.75 |
4582.00 |
4609.50 |
4759.00 |
▁▁▁▁▇ |
ManufacturingProcess21 |
0 |
1.00 |
-0.16 |
0.78 |
-1.80 |
-0.60 |
-0.30 |
0.00 |
3.60 |
▂▇▂▁▁ |
ManufacturingProcess22 |
1 |
0.99 |
5.41 |
3.33 |
0.00 |
3.00 |
5.00 |
8.00 |
12.00 |
▇▇▇▅▅ |
ManufacturingProcess23 |
1 |
0.99 |
3.02 |
1.66 |
0.00 |
2.00 |
3.00 |
4.00 |
6.00 |
▇▆▇▆▇ |
ManufacturingProcess25 |
5 |
0.97 |
4828.18 |
373.48 |
0.00 |
4832.00 |
4855.00 |
4877.00 |
4990.00 |
▁▁▁▁▇ |
ManufacturingProcess27 |
5 |
0.97 |
4562.51 |
353.98 |
0.00 |
4560.00 |
4587.00 |
4609.00 |
4710.00 |
▁▁▁▁▇ |
ManufacturingProcess29 |
5 |
0.97 |
20.01 |
1.66 |
0.00 |
19.70 |
19.90 |
20.40 |
22.00 |
▁▁▁▁▇ |
ManufacturingProcess31 |
5 |
0.97 |
70.18 |
5.56 |
0.00 |
70.10 |
70.80 |
71.40 |
72.50 |
▁▁▁▁▇ |
ManufacturingProcess32 |
0 |
1.00 |
158.47 |
5.40 |
143.00 |
155.00 |
158.00 |
162.00 |
173.00 |
▁▃▇▃▁ |
ManufacturingProcess33 |
5 |
0.97 |
63.54 |
2.48 |
56.00 |
62.00 |
64.00 |
65.00 |
70.00 |
▁▃▇▅▁ |
ManufacturingProcess34 |
5 |
0.97 |
2.49 |
0.05 |
2.30 |
2.50 |
2.50 |
2.50 |
2.60 |
▁▂▁▇▁ |
ManufacturingProcess35 |
5 |
0.97 |
495.60 |
10.82 |
463.00 |
490.00 |
495.00 |
501.50 |
522.00 |
▁▂▇▅▂ |
ManufacturingProcess36 |
5 |
0.97 |
0.02 |
0.00 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
▂▇▇▁▃ |
ManufacturingProcess37 |
0 |
1.00 |
1.01 |
0.45 |
0.00 |
0.70 |
1.00 |
1.30 |
2.30 |
▂▇▇▃▁ |
ManufacturingProcess38 |
0 |
1.00 |
2.53 |
0.65 |
0.00 |
2.00 |
3.00 |
3.00 |
3.00 |
▁▁▁▅▇ |
ManufacturingProcess39 |
0 |
1.00 |
6.85 |
1.51 |
0.00 |
7.10 |
7.20 |
7.30 |
7.50 |
▁▁▁▁▇ |
ManufacturingProcess40 |
1 |
0.99 |
0.02 |
0.04 |
0.00 |
0.00 |
0.00 |
0.00 |
0.10 |
▇▁▁▁▂ |
ManufacturingProcess41 |
1 |
0.99 |
0.02 |
0.05 |
0.00 |
0.00 |
0.00 |
0.00 |
0.20 |
▇▁▁▁▁ |
ManufacturingProcess42 |
0 |
1.00 |
11.21 |
1.94 |
0.00 |
11.40 |
11.60 |
11.70 |
12.10 |
▁▁▁▁▇ |
ManufacturingProcess43 |
0 |
1.00 |
0.91 |
0.87 |
0.00 |
0.60 |
0.80 |
1.02 |
11.00 |
▇▁▁▁▁ |
ManufacturingProcess44 |
0 |
1.00 |
1.81 |
0.32 |
0.00 |
1.80 |
1.90 |
1.90 |
2.10 |
▁▁▁▁▇ |
ManufacturingProcess45 |
0 |
1.00 |
2.14 |
0.41 |
0.00 |
2.10 |
2.20 |
2.30 |
2.60 |
▁▁▁▂▇ |
1.3.5 Linear Dependencies
Linear dependency data assessment:
[A] Linear dependency noted for 1 subset of 3 variables using the preprocessing summary from the caret package.
[B] The caret package includes a method for detecting linearly dependent variables:
[B.1] The findLinearCombos method from the caret package uses the QR decomposition of a matrix to enumerate sets of linear combinations (if they exist).
[C] The findLinearCombos method was applied on the dataset:
[C.1] 1 subset involving 3 variables was identified to have linear dependency.
[C.2] 1/3 linearly dependent variables from the subset may be optionally removed from the dataset for the subsequent analysis.
## [1] 1
## [1] "Linear dependency observed for 1 subset(s) of numeric variable(s)."
## [1] "Linear dependent variable(s) for subset 1 include: ManufacturingProcess21"
## [2] "Linear dependent variable(s) for subset 1 include: ManufacturingProcess13"
## [3] "Linear dependent variable(s) for subset 1 include: ManufacturingProcess17"
## [1] "Linear dependency can be resolved by removing 1 numeric variable(s)."
## [1] "Variable 1 for removal: ManufacturingProcess21"
Data summary
Name |
DPA_ExcludedLinearlyDepen… |
Number of rows |
176 |
Number of columns |
56 |
_______________________ |
|
Column type frequency: |
|
numeric |
56 |
________________________ |
|
Group variables |
None |
Variable type: numeric
BiologicalMaterial01 |
0 |
1 |
6.41 |
0.71 |
4.58 |
5.98 |
6.30 |
6.87 |
8.81 |
▂▇▇▂▁ |
BiologicalMaterial02 |
0 |
1 |
55.69 |
4.03 |
46.87 |
52.68 |
55.09 |
58.74 |
64.75 |
▂▇▆▅▃ |
BiologicalMaterial03 |
0 |
1 |
67.70 |
4.00 |
56.97 |
64.98 |
67.22 |
70.43 |
78.25 |
▂▅▇▆▁ |
BiologicalMaterial04 |
0 |
1 |
12.35 |
1.77 |
9.38 |
11.25 |
12.10 |
13.22 |
23.09 |
▇▆▁▁▁ |
BiologicalMaterial05 |
0 |
1 |
18.60 |
1.84 |
13.24 |
17.23 |
18.49 |
19.90 |
24.85 |
▁▅▇▃▁ |
BiologicalMaterial06 |
0 |
1 |
48.91 |
3.75 |
40.60 |
46.05 |
48.46 |
51.34 |
59.38 |
▂▇▆▅▁ |
BiologicalMaterial07 |
0 |
1 |
100.01 |
0.11 |
100.00 |
100.00 |
100.00 |
100.00 |
100.83 |
▇▁▁▁▁ |
BiologicalMaterial08 |
0 |
1 |
17.49 |
0.68 |
15.88 |
17.06 |
17.51 |
17.88 |
19.14 |
▁▅▇▃▂ |
BiologicalMaterial09 |
0 |
1 |
12.85 |
0.42 |
11.44 |
12.60 |
12.84 |
13.13 |
14.08 |
▁▃▇▅▁ |
BiologicalMaterial10 |
0 |
1 |
2.80 |
0.60 |
1.77 |
2.46 |
2.71 |
2.99 |
6.87 |
▇▅▁▁▁ |
BiologicalMaterial11 |
0 |
1 |
146.95 |
4.82 |
135.81 |
143.82 |
146.08 |
149.60 |
158.73 |
▂▆▇▃▂ |
BiologicalMaterial12 |
0 |
1 |
20.20 |
0.77 |
18.35 |
19.73 |
20.12 |
20.75 |
22.21 |
▂▆▇▃▂ |
ManufacturingProcess01 |
0 |
1 |
11.21 |
1.82 |
0.00 |
10.80 |
11.40 |
12.12 |
14.10 |
▁▁▁▅▇ |
ManufacturingProcess02 |
0 |
1 |
16.69 |
8.43 |
0.00 |
19.23 |
21.00 |
21.50 |
22.50 |
▂▁▁▁▇ |
ManufacturingProcess03 |
0 |
1 |
1.54 |
0.02 |
1.47 |
1.53 |
1.54 |
1.55 |
1.60 |
▁▂▆▇▁ |
ManufacturingProcess04 |
0 |
1 |
931.83 |
6.26 |
911.00 |
928.00 |
934.00 |
936.00 |
946.00 |
▁▂▃▇▁ |
ManufacturingProcess05 |
0 |
1 |
1001.69 |
30.44 |
923.00 |
986.82 |
999.35 |
1008.73 |
1175.30 |
▁▇▁▁▁ |
ManufacturingProcess06 |
0 |
1 |
207.39 |
2.69 |
203.00 |
205.70 |
206.80 |
208.70 |
227.40 |
▇▃▁▁▁ |
ManufacturingProcess07 |
0 |
1 |
177.48 |
0.50 |
177.00 |
177.00 |
177.00 |
178.00 |
178.00 |
▇▁▁▁▇ |
ManufacturingProcess08 |
0 |
1 |
177.56 |
0.50 |
177.00 |
177.00 |
178.00 |
178.00 |
178.00 |
▆▁▁▁▇ |
ManufacturingProcess09 |
0 |
1 |
45.66 |
1.55 |
38.89 |
44.89 |
45.73 |
46.52 |
49.36 |
▁▁▅▇▂ |
ManufacturingProcess10 |
0 |
1 |
9.18 |
0.75 |
7.50 |
8.70 |
9.10 |
9.53 |
11.60 |
▂▇▆▂▁ |
ManufacturingProcess11 |
0 |
1 |
9.39 |
0.71 |
7.50 |
9.00 |
9.40 |
9.90 |
11.50 |
▂▆▇▅▁ |
ManufacturingProcess12 |
0 |
1 |
855.83 |
1779.62 |
0.00 |
0.00 |
0.00 |
0.00 |
4549.00 |
▇▁▁▁▂ |
ManufacturingProcess13 |
0 |
1 |
34.51 |
1.02 |
32.10 |
33.90 |
34.60 |
35.20 |
38.60 |
▃▇▇▁▁ |
ManufacturingProcess14 |
0 |
1 |
4853.60 |
54.48 |
4701.00 |
4827.25 |
4855.50 |
4882.25 |
5055.00 |
▁▅▇▂▁ |
ManufacturingProcess15 |
0 |
1 |
6038.92 |
58.31 |
5904.00 |
6010.00 |
6031.50 |
6061.00 |
6233.00 |
▂▇▆▂▁ |
ManufacturingProcess16 |
0 |
1 |
4565.80 |
351.70 |
0.00 |
4560.75 |
4588.00 |
4619.00 |
4852.00 |
▁▁▁▁▇ |
ManufacturingProcess17 |
0 |
1 |
34.34 |
1.25 |
31.30 |
33.50 |
34.40 |
35.10 |
40.00 |
▂▇▆▁▁ |
ManufacturingProcess18 |
0 |
1 |
4809.68 |
367.48 |
0.00 |
4813.00 |
4835.00 |
4862.00 |
4971.00 |
▁▁▁▁▇ |
ManufacturingProcess19 |
0 |
1 |
6028.20 |
45.58 |
5890.00 |
6000.75 |
6022.00 |
6050.25 |
6146.00 |
▁▃▇▃▂ |
ManufacturingProcess20 |
0 |
1 |
4556.46 |
349.01 |
0.00 |
4552.75 |
4582.00 |
4609.50 |
4759.00 |
▁▁▁▁▇ |
ManufacturingProcess22 |
0 |
1 |
5.40 |
3.32 |
0.00 |
3.00 |
5.00 |
8.00 |
12.00 |
▇▇▇▅▅ |
ManufacturingProcess23 |
0 |
1 |
3.02 |
1.66 |
0.00 |
2.00 |
3.00 |
4.00 |
6.00 |
▇▆▇▆▇ |
ManufacturingProcess24 |
0 |
1 |
8.88 |
5.81 |
0.00 |
4.00 |
8.00 |
14.00 |
23.00 |
▇▇▅▆▁ |
ManufacturingProcess25 |
0 |
1 |
4828.37 |
368.11 |
0.00 |
4829.00 |
4854.00 |
4876.25 |
4990.00 |
▁▁▁▁▇ |
ManufacturingProcess26 |
0 |
1 |
6016.39 |
458.21 |
0.00 |
6020.75 |
6046.50 |
6069.25 |
6161.00 |
▁▁▁▁▇ |
ManufacturingProcess27 |
0 |
1 |
4563.16 |
348.91 |
0.00 |
4562.75 |
4585.67 |
4609.00 |
4710.00 |
▁▁▁▁▇ |
ManufacturingProcess28 |
0 |
1 |
6.58 |
5.18 |
0.00 |
0.00 |
10.40 |
10.70 |
11.50 |
▅▁▁▁▇ |
ManufacturingProcess29 |
0 |
1 |
20.01 |
1.64 |
0.00 |
19.70 |
19.90 |
20.40 |
22.00 |
▁▁▁▁▇ |
ManufacturingProcess30 |
0 |
1 |
9.18 |
0.97 |
0.00 |
8.80 |
9.20 |
9.70 |
11.20 |
▁▁▁▅▇ |
ManufacturingProcess31 |
0 |
1 |
70.20 |
5.48 |
0.00 |
70.10 |
70.79 |
71.40 |
72.50 |
▁▁▁▁▇ |
ManufacturingProcess32 |
0 |
1 |
158.47 |
5.40 |
143.00 |
155.00 |
158.00 |
162.00 |
173.00 |
▁▃▇▃▁ |
ManufacturingProcess33 |
0 |
1 |
63.55 |
2.46 |
56.00 |
62.00 |
64.00 |
65.00 |
70.00 |
▁▃▇▅▁ |
ManufacturingProcess34 |
0 |
1 |
2.49 |
0.05 |
2.30 |
2.50 |
2.50 |
2.50 |
2.60 |
▁▂▁▇▁ |
ManufacturingProcess35 |
0 |
1 |
495.52 |
10.69 |
463.00 |
490.00 |
495.00 |
501.00 |
522.00 |
▁▂▇▅▂ |
ManufacturingProcess36 |
0 |
1 |
0.02 |
0.00 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
▂▇▇▁▃ |
ManufacturingProcess37 |
0 |
1 |
1.01 |
0.45 |
0.00 |
0.70 |
1.00 |
1.30 |
2.30 |
▂▇▇▃▁ |
ManufacturingProcess38 |
0 |
1 |
2.53 |
0.65 |
0.00 |
2.00 |
3.00 |
3.00 |
3.00 |
▁▁▁▅▇ |
ManufacturingProcess39 |
0 |
1 |
6.85 |
1.51 |
0.00 |
7.10 |
7.20 |
7.30 |
7.50 |
▁▁▁▁▇ |
ManufacturingProcess40 |
0 |
1 |
0.02 |
0.04 |
0.00 |
0.00 |
0.00 |
0.00 |
0.10 |
▇▁▁▁▂ |
ManufacturingProcess41 |
0 |
1 |
0.02 |
0.05 |
0.00 |
0.00 |
0.00 |
0.00 |
0.20 |
▇▁▁▁▁ |
ManufacturingProcess42 |
0 |
1 |
11.21 |
1.94 |
0.00 |
11.40 |
11.60 |
11.70 |
12.10 |
▁▁▁▁▇ |
ManufacturingProcess43 |
0 |
1 |
0.91 |
0.87 |
0.00 |
0.60 |
0.80 |
1.02 |
11.00 |
▇▁▁▁▁ |
ManufacturingProcess44 |
0 |
1 |
1.81 |
0.32 |
0.00 |
1.80 |
1.90 |
1.90 |
2.10 |
▁▁▁▁▇ |
ManufacturingProcess45 |
0 |
1 |
2.14 |
0.41 |
0.00 |
2.10 |
2.20 |
2.30 |
2.60 |
▁▁▁▂▇ |
1.3.6 Centering and Scaling
Centering and scaling data assessment:
[A] Centering and scaling transformation for numerical stability remains optional depending on potential model requirements for the subsequent steps.
[B] The caret package includes three methods for centering and scaling variables:
[B.1] The center method from the caret package subtracts the average value of a numeric variable to all the values. As a result of centering, the variable has a zero mean.
[B.2] The scale method from the caret package performs a center transformation with each value of the variable divided by its standard deviation. Scaling the data coerces the values to have a common standard deviation of one.
[B.3] The range method from the caret package scales the data to be within the defined numeric range bound.
[C] The center, scale and range methods were tried on the dataset.
Data summary
Name |
DPA.Predictors.Numeric |
Number of rows |
176 |
Number of columns |
57 |
_______________________ |
|
Column type frequency: |
|
numeric |
57 |
________________________ |
|
Group variables |
None |
Variable type: numeric
BiologicalMaterial01 |
0 |
1.00 |
6.41 |
0.71 |
4.58 |
5.98 |
6.30 |
6.87 |
8.81 |
▂▇▇▂▁ |
BiologicalMaterial02 |
0 |
1.00 |
55.69 |
4.03 |
46.87 |
52.68 |
55.09 |
58.74 |
64.75 |
▂▇▆▅▃ |
BiologicalMaterial03 |
0 |
1.00 |
67.70 |
4.00 |
56.97 |
64.98 |
67.22 |
70.43 |
78.25 |
▂▅▇▆▁ |
BiologicalMaterial04 |
0 |
1.00 |
12.35 |
1.77 |
9.38 |
11.25 |
12.10 |
13.22 |
23.09 |
▇▆▁▁▁ |
BiologicalMaterial05 |
0 |
1.00 |
18.60 |
1.84 |
13.24 |
17.23 |
18.49 |
19.90 |
24.85 |
▁▅▇▃▁ |
BiologicalMaterial06 |
0 |
1.00 |
48.91 |
3.75 |
40.60 |
46.05 |
48.46 |
51.34 |
59.38 |
▂▇▆▅▁ |
BiologicalMaterial07 |
0 |
1.00 |
100.01 |
0.11 |
100.00 |
100.00 |
100.00 |
100.00 |
100.83 |
▇▁▁▁▁ |
BiologicalMaterial08 |
0 |
1.00 |
17.49 |
0.68 |
15.88 |
17.06 |
17.51 |
17.88 |
19.14 |
▁▅▇▃▂ |
BiologicalMaterial09 |
0 |
1.00 |
12.85 |
0.42 |
11.44 |
12.60 |
12.84 |
13.13 |
14.08 |
▁▃▇▅▁ |
BiologicalMaterial10 |
0 |
1.00 |
2.80 |
0.60 |
1.77 |
2.46 |
2.71 |
2.99 |
6.87 |
▇▅▁▁▁ |
BiologicalMaterial11 |
0 |
1.00 |
146.95 |
4.82 |
135.81 |
143.82 |
146.08 |
149.60 |
158.73 |
▂▆▇▃▂ |
BiologicalMaterial12 |
0 |
1.00 |
20.20 |
0.77 |
18.35 |
19.73 |
20.12 |
20.75 |
22.21 |
▂▆▇▃▂ |
ManufacturingProcess01 |
1 |
0.99 |
11.21 |
1.82 |
0.00 |
10.80 |
11.40 |
12.15 |
14.10 |
▁▁▁▅▇ |
ManufacturingProcess02 |
3 |
0.98 |
16.68 |
8.47 |
0.00 |
19.30 |
21.00 |
21.50 |
22.50 |
▂▁▁▁▇ |
ManufacturingProcess03 |
15 |
0.91 |
1.54 |
0.02 |
1.47 |
1.53 |
1.54 |
1.55 |
1.60 |
▁▃▆▇▁ |
ManufacturingProcess04 |
1 |
0.99 |
931.85 |
6.27 |
911.00 |
928.00 |
934.00 |
936.00 |
946.00 |
▁▂▃▇▁ |
ManufacturingProcess05 |
1 |
0.99 |
1001.69 |
30.53 |
923.00 |
986.75 |
999.20 |
1008.85 |
1175.30 |
▁▇▁▁▁ |
ManufacturingProcess06 |
2 |
0.99 |
207.40 |
2.70 |
203.00 |
205.70 |
206.80 |
208.70 |
227.40 |
▇▃▁▁▁ |
ManufacturingProcess07 |
1 |
0.99 |
177.48 |
0.50 |
177.00 |
177.00 |
177.00 |
178.00 |
178.00 |
▇▁▁▁▇ |
ManufacturingProcess08 |
1 |
0.99 |
177.55 |
0.50 |
177.00 |
177.00 |
178.00 |
178.00 |
178.00 |
▆▁▁▁▇ |
ManufacturingProcess09 |
0 |
1.00 |
45.66 |
1.55 |
38.89 |
44.89 |
45.73 |
46.52 |
49.36 |
▁▁▅▇▂ |
ManufacturingProcess10 |
9 |
0.95 |
9.18 |
0.77 |
7.50 |
8.70 |
9.10 |
9.55 |
11.60 |
▂▇▆▂▁ |
ManufacturingProcess11 |
10 |
0.94 |
9.39 |
0.72 |
7.50 |
9.00 |
9.40 |
9.90 |
11.50 |
▂▆▇▅▁ |
ManufacturingProcess12 |
1 |
0.99 |
857.81 |
1784.53 |
0.00 |
0.00 |
0.00 |
0.00 |
4549.00 |
▇▁▁▁▂ |
ManufacturingProcess13 |
0 |
1.00 |
34.51 |
1.02 |
32.10 |
33.90 |
34.60 |
35.20 |
38.60 |
▃▇▇▁▁ |
ManufacturingProcess14 |
1 |
0.99 |
4853.87 |
54.52 |
4701.00 |
4828.00 |
4856.00 |
4882.50 |
5055.00 |
▁▅▇▂▁ |
ManufacturingProcess15 |
0 |
1.00 |
6038.92 |
58.31 |
5904.00 |
6010.00 |
6031.50 |
6061.00 |
6233.00 |
▂▇▆▂▁ |
ManufacturingProcess16 |
0 |
1.00 |
4565.80 |
351.70 |
0.00 |
4560.75 |
4588.00 |
4619.00 |
4852.00 |
▁▁▁▁▇ |
ManufacturingProcess17 |
0 |
1.00 |
34.34 |
1.25 |
31.30 |
33.50 |
34.40 |
35.10 |
40.00 |
▂▇▆▁▁ |
ManufacturingProcess18 |
0 |
1.00 |
4809.68 |
367.48 |
0.00 |
4813.00 |
4835.00 |
4862.00 |
4971.00 |
▁▁▁▁▇ |
ManufacturingProcess19 |
0 |
1.00 |
6028.20 |
45.58 |
5890.00 |
6000.75 |
6022.00 |
6050.25 |
6146.00 |
▁▃▇▃▂ |
ManufacturingProcess20 |
0 |
1.00 |
4556.46 |
349.01 |
0.00 |
4552.75 |
4582.00 |
4609.50 |
4759.00 |
▁▁▁▁▇ |
ManufacturingProcess21 |
0 |
1.00 |
-0.16 |
0.78 |
-1.80 |
-0.60 |
-0.30 |
0.00 |
3.60 |
▂▇▂▁▁ |
ManufacturingProcess22 |
1 |
0.99 |
5.41 |
3.33 |
0.00 |
3.00 |
5.00 |
8.00 |
12.00 |
▇▇▇▅▅ |
ManufacturingProcess23 |
1 |
0.99 |
3.02 |
1.66 |
0.00 |
2.00 |
3.00 |
4.00 |
6.00 |
▇▆▇▆▇ |
ManufacturingProcess24 |
1 |
0.99 |
8.83 |
5.80 |
0.00 |
4.00 |
8.00 |
14.00 |
23.00 |
▇▇▅▆▁ |
ManufacturingProcess25 |
5 |
0.97 |
4828.18 |
373.48 |
0.00 |
4832.00 |
4855.00 |
4877.00 |
4990.00 |
▁▁▁▁▇ |
ManufacturingProcess26 |
5 |
0.97 |
6015.60 |
464.87 |
0.00 |
6019.50 |
6047.00 |
6070.50 |
6161.00 |
▁▁▁▁▇ |
ManufacturingProcess27 |
5 |
0.97 |
4562.51 |
353.98 |
0.00 |
4560.00 |
4587.00 |
4609.00 |
4710.00 |
▁▁▁▁▇ |
ManufacturingProcess28 |
5 |
0.97 |
6.59 |
5.25 |
0.00 |
0.00 |
10.40 |
10.75 |
11.50 |
▅▁▁▁▇ |
ManufacturingProcess29 |
5 |
0.97 |
20.01 |
1.66 |
0.00 |
19.70 |
19.90 |
20.40 |
22.00 |
▁▁▁▁▇ |
ManufacturingProcess30 |
5 |
0.97 |
9.16 |
0.98 |
0.00 |
8.80 |
9.10 |
9.70 |
11.20 |
▁▁▁▅▇ |
ManufacturingProcess31 |
5 |
0.97 |
70.18 |
5.56 |
0.00 |
70.10 |
70.80 |
71.40 |
72.50 |
▁▁▁▁▇ |
ManufacturingProcess32 |
0 |
1.00 |
158.47 |
5.40 |
143.00 |
155.00 |
158.00 |
162.00 |
173.00 |
▁▃▇▃▁ |
ManufacturingProcess33 |
5 |
0.97 |
63.54 |
2.48 |
56.00 |
62.00 |
64.00 |
65.00 |
70.00 |
▁▃▇▅▁ |
ManufacturingProcess34 |
5 |
0.97 |
2.49 |
0.05 |
2.30 |
2.50 |
2.50 |
2.50 |
2.60 |
▁▂▁▇▁ |
ManufacturingProcess35 |
5 |
0.97 |
495.60 |
10.82 |
463.00 |
490.00 |
495.00 |
501.50 |
522.00 |
▁▂▇▅▂ |
ManufacturingProcess36 |
5 |
0.97 |
0.02 |
0.00 |
0.02 |
0.02 |
0.02 |
0.02 |
0.02 |
▂▇▇▁▃ |
ManufacturingProcess37 |
0 |
1.00 |
1.01 |
0.45 |
0.00 |
0.70 |
1.00 |
1.30 |
2.30 |
▂▇▇▃▁ |
ManufacturingProcess38 |
0 |
1.00 |
2.53 |
0.65 |
0.00 |
2.00 |
3.00 |
3.00 |
3.00 |
▁▁▁▅▇ |
ManufacturingProcess39 |
0 |
1.00 |
6.85 |
1.51 |
0.00 |
7.10 |
7.20 |
7.30 |
7.50 |
▁▁▁▁▇ |
ManufacturingProcess40 |
1 |
0.99 |
0.02 |
0.04 |
0.00 |
0.00 |
0.00 |
0.00 |
0.10 |
▇▁▁▁▂ |
ManufacturingProcess41 |
1 |
0.99 |
0.02 |
0.05 |
0.00 |
0.00 |
0.00 |
0.00 |
0.20 |
▇▁▁▁▁ |
ManufacturingProcess42 |
0 |
1.00 |
11.21 |
1.94 |
0.00 |
11.40 |
11.60 |
11.70 |
12.10 |
▁▁▁▁▇ |
ManufacturingProcess43 |
0 |
1.00 |
0.91 |
0.87 |
0.00 |
0.60 |
0.80 |
1.02 |
11.00 |
▇▁▁▁▁ |
ManufacturingProcess44 |
0 |
1.00 |
1.81 |
0.32 |
0.00 |
1.80 |
1.90 |
1.90 |
2.10 |
▁▁▁▁▇ |
ManufacturingProcess45 |
0 |
1.00 |
2.14 |
0.41 |
0.00 |
2.10 |
2.20 |
2.30 |
2.60 |
▁▁▁▂▇ |
Data summary
Name |
DPA_CenteredTransformed |
Number of rows |
176 |
Number of columns |
57 |
_______________________ |
|
Column type frequency: |
|
numeric |
57 |
________________________ |
|
Group variables |
None |
Variable type: numeric
BiologicalMaterial01 |
0 |
1.00 |
0 |
0.71 |
-1.83 |
-0.43 |
-0.11 |
0.46 |
2.40 |
▂▇▇▂▁ |
BiologicalMaterial02 |
0 |
1.00 |
0 |
4.03 |
-8.82 |
-3.01 |
-0.60 |
3.05 |
9.06 |
▂▇▆▅▃ |
BiologicalMaterial03 |
0 |
1.00 |
0 |
4.00 |
-10.73 |
-2.72 |
-0.48 |
2.72 |
10.55 |
▂▅▇▆▁ |
BiologicalMaterial04 |
0 |
1.00 |
0 |
1.77 |
-2.97 |
-1.10 |
-0.25 |
0.87 |
10.74 |
▇▆▁▁▁ |
BiologicalMaterial05 |
0 |
1.00 |
0 |
1.84 |
-5.36 |
-1.36 |
-0.11 |
1.30 |
6.25 |
▁▅▇▃▁ |
BiologicalMaterial06 |
0 |
1.00 |
0 |
3.75 |
-8.31 |
-2.86 |
-0.45 |
2.43 |
10.47 |
▂▇▆▅▁ |
BiologicalMaterial07 |
0 |
1.00 |
0 |
0.11 |
-0.01 |
-0.01 |
-0.01 |
-0.01 |
0.82 |
▇▁▁▁▁ |
BiologicalMaterial08 |
0 |
1.00 |
0 |
0.68 |
-1.61 |
-0.43 |
0.02 |
0.39 |
1.65 |
▁▅▇▃▂ |
BiologicalMaterial09 |
0 |
1.00 |
0 |
0.42 |
-1.41 |
-0.25 |
-0.02 |
0.28 |
1.23 |
▁▃▇▅▁ |
BiologicalMaterial10 |
0 |
1.00 |
0 |
0.60 |
-1.03 |
-0.34 |
-0.09 |
0.19 |
4.07 |
▇▅▁▁▁ |
BiologicalMaterial11 |
0 |
1.00 |
0 |
4.82 |
-11.14 |
-3.14 |
-0.87 |
2.65 |
11.78 |
▂▆▇▃▂ |
BiologicalMaterial12 |
0 |
1.00 |
0 |
0.77 |
-1.85 |
-0.47 |
-0.08 |
0.55 |
2.01 |
▂▆▇▃▂ |
ManufacturingProcess01 |
1 |
0.99 |
0 |
1.82 |
-11.21 |
-0.41 |
0.19 |
0.94 |
2.89 |
▁▁▁▅▇ |
ManufacturingProcess02 |
3 |
0.98 |
0 |
8.47 |
-16.68 |
2.62 |
4.32 |
4.82 |
5.82 |
▂▁▁▁▇ |
ManufacturingProcess03 |
15 |
0.91 |
0 |
0.02 |
-0.07 |
-0.01 |
0.00 |
0.01 |
0.06 |
▁▃▆▇▁ |
ManufacturingProcess04 |
1 |
0.99 |
0 |
6.27 |
-20.85 |
-3.85 |
2.15 |
4.15 |
14.15 |
▁▂▃▇▁ |
ManufacturingProcess05 |
1 |
0.99 |
0 |
30.53 |
-78.69 |
-14.94 |
-2.49 |
7.16 |
173.61 |
▁▇▁▁▁ |
ManufacturingProcess06 |
2 |
0.99 |
0 |
2.70 |
-4.40 |
-1.70 |
-0.60 |
1.30 |
20.00 |
▇▃▁▁▁ |
ManufacturingProcess07 |
1 |
0.99 |
0 |
0.50 |
-0.48 |
-0.48 |
-0.48 |
0.52 |
0.52 |
▇▁▁▁▇ |
ManufacturingProcess08 |
1 |
0.99 |
0 |
0.50 |
-0.55 |
-0.55 |
0.45 |
0.45 |
0.45 |
▆▁▁▁▇ |
ManufacturingProcess09 |
0 |
1.00 |
0 |
1.55 |
-6.77 |
-0.77 |
0.07 |
0.85 |
3.70 |
▁▁▅▇▂ |
ManufacturingProcess10 |
9 |
0.95 |
0 |
0.77 |
-1.68 |
-0.48 |
-0.08 |
0.37 |
2.42 |
▂▇▆▂▁ |
ManufacturingProcess11 |
10 |
0.94 |
0 |
0.72 |
-1.89 |
-0.39 |
0.01 |
0.51 |
2.11 |
▁▆▇▅▁ |
ManufacturingProcess12 |
1 |
0.99 |
0 |
1784.53 |
-857.81 |
-857.81 |
-857.81 |
-857.81 |
3691.19 |
▇▁▁▁▂ |
ManufacturingProcess13 |
0 |
1.00 |
0 |
1.02 |
-2.41 |
-0.61 |
0.09 |
0.69 |
4.09 |
▃▆▇▁▁ |
ManufacturingProcess14 |
1 |
0.99 |
0 |
54.52 |
-152.87 |
-25.87 |
2.13 |
28.63 |
201.13 |
▁▅▇▂▁ |
ManufacturingProcess15 |
0 |
1.00 |
0 |
58.31 |
-134.92 |
-28.92 |
-7.42 |
22.08 |
194.08 |
▂▇▆▂▁ |
ManufacturingProcess16 |
0 |
1.00 |
0 |
351.70 |
-4565.80 |
-5.05 |
22.20 |
53.20 |
286.20 |
▁▁▁▁▇ |
ManufacturingProcess17 |
0 |
1.00 |
0 |
1.25 |
-3.04 |
-0.84 |
0.06 |
0.76 |
5.66 |
▂▇▆▁▁ |
ManufacturingProcess18 |
0 |
1.00 |
0 |
367.48 |
-4809.68 |
3.32 |
25.32 |
52.32 |
161.32 |
▁▁▁▁▇ |
ManufacturingProcess19 |
0 |
1.00 |
0 |
45.58 |
-138.20 |
-27.45 |
-6.20 |
22.05 |
117.80 |
▁▃▇▃▂ |
ManufacturingProcess20 |
0 |
1.00 |
0 |
349.01 |
-4556.46 |
-3.71 |
25.54 |
53.04 |
202.54 |
▁▁▁▁▇ |
ManufacturingProcess21 |
0 |
1.00 |
0 |
0.78 |
-1.64 |
-0.44 |
-0.14 |
0.16 |
3.76 |
▂▇▂▁▁ |
ManufacturingProcess22 |
1 |
0.99 |
0 |
3.33 |
-5.41 |
-2.41 |
-0.41 |
2.59 |
6.59 |
▇▇▇▅▅ |
ManufacturingProcess23 |
1 |
0.99 |
0 |
1.66 |
-3.02 |
-1.02 |
-0.02 |
0.98 |
2.98 |
▇▆▇▆▇ |
ManufacturingProcess24 |
1 |
0.99 |
0 |
5.80 |
-8.83 |
-4.83 |
-0.83 |
5.17 |
14.17 |
▇▇▅▆▁ |
ManufacturingProcess25 |
5 |
0.97 |
0 |
373.48 |
-4828.18 |
3.82 |
26.82 |
48.82 |
161.82 |
▁▁▁▁▇ |
ManufacturingProcess26 |
5 |
0.97 |
0 |
464.87 |
-6015.60 |
3.90 |
31.40 |
54.90 |
145.40 |
▁▁▁▁▇ |
ManufacturingProcess27 |
5 |
0.97 |
0 |
353.98 |
-4562.51 |
-2.51 |
24.49 |
46.49 |
147.49 |
▁▁▁▁▇ |
ManufacturingProcess28 |
5 |
0.97 |
0 |
5.25 |
-6.59 |
-6.59 |
3.81 |
4.16 |
4.91 |
▅▁▁▁▇ |
ManufacturingProcess29 |
5 |
0.97 |
0 |
1.66 |
-20.01 |
-0.31 |
-0.11 |
0.39 |
1.99 |
▁▁▁▁▇ |
ManufacturingProcess30 |
5 |
0.97 |
0 |
0.98 |
-9.16 |
-0.36 |
-0.06 |
0.54 |
2.04 |
▁▁▁▅▇ |
ManufacturingProcess31 |
5 |
0.97 |
0 |
5.56 |
-70.18 |
-0.08 |
0.62 |
1.22 |
2.32 |
▁▁▁▁▇ |
ManufacturingProcess32 |
0 |
1.00 |
0 |
5.40 |
-15.47 |
-3.47 |
-0.47 |
3.53 |
14.53 |
▁▃▇▃▁ |
ManufacturingProcess33 |
5 |
0.97 |
0 |
2.48 |
-7.54 |
-1.54 |
0.46 |
1.46 |
6.46 |
▁▃▇▅▁ |
ManufacturingProcess34 |
5 |
0.97 |
0 |
0.05 |
-0.19 |
0.01 |
0.01 |
0.01 |
0.11 |
▁▂▁▇▁ |
ManufacturingProcess35 |
5 |
0.97 |
0 |
10.82 |
-32.60 |
-5.60 |
-0.60 |
5.90 |
26.40 |
▁▂▇▅▂ |
ManufacturingProcess36 |
5 |
0.97 |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
▂▇▁▇▃ |
ManufacturingProcess37 |
0 |
1.00 |
0 |
0.45 |
-1.01 |
-0.31 |
-0.01 |
0.29 |
1.29 |
▂▇▇▃▁ |
ManufacturingProcess38 |
0 |
1.00 |
0 |
0.65 |
-2.53 |
-0.53 |
0.47 |
0.47 |
0.47 |
▁▁▁▅▇ |
ManufacturingProcess39 |
0 |
1.00 |
0 |
1.51 |
-6.85 |
0.25 |
0.35 |
0.45 |
0.65 |
▁▁▁▁▇ |
ManufacturingProcess40 |
1 |
0.99 |
0 |
0.04 |
-0.02 |
-0.02 |
-0.02 |
-0.02 |
0.08 |
▇▁▁▁▂ |
ManufacturingProcess41 |
1 |
0.99 |
0 |
0.05 |
-0.02 |
-0.02 |
-0.02 |
-0.02 |
0.18 |
▇▁▁▁▁ |
ManufacturingProcess42 |
0 |
1.00 |
0 |
1.94 |
-11.21 |
0.19 |
0.39 |
0.49 |
0.89 |
▁▁▁▁▇ |
ManufacturingProcess43 |
0 |
1.00 |
0 |
0.87 |
-0.91 |
-0.31 |
-0.11 |
0.11 |
10.09 |
▇▁▁▁▁ |
ManufacturingProcess44 |
0 |
1.00 |
0 |
0.32 |
-1.81 |
-0.01 |
0.09 |
0.09 |
0.29 |
▁▁▁▁▇ |
ManufacturingProcess45 |
0 |
1.00 |
0 |
0.41 |
-2.14 |
-0.04 |
0.06 |
0.16 |
0.46 |
▁▁▁▂▇ |
Data summary
Name |
DPA_CenteredScaledTransfo… |
Number of rows |
176 |
Number of columns |
57 |
_______________________ |
|
Column type frequency: |
|
numeric |
57 |
________________________ |
|
Group variables |
None |
Variable type: numeric
BiologicalMaterial01 |
0 |
1.00 |
0 |
1 |
-2.57 |
-0.61 |
-0.15 |
0.64 |
3.36 |
▂▇▇▂▁ |
BiologicalMaterial02 |
0 |
1.00 |
0 |
1 |
-2.19 |
-0.75 |
-0.15 |
0.76 |
2.25 |
▂▇▆▅▃ |
BiologicalMaterial03 |
0 |
1.00 |
0 |
1 |
-2.68 |
-0.68 |
-0.12 |
0.68 |
2.64 |
▂▅▇▆▁ |
BiologicalMaterial04 |
0 |
1.00 |
0 |
1 |
-1.67 |
-0.62 |
-0.14 |
0.49 |
6.05 |
▇▆▁▁▁ |
BiologicalMaterial05 |
0 |
1.00 |
0 |
1 |
-2.91 |
-0.74 |
-0.06 |
0.71 |
3.39 |
▁▅▇▃▁ |
BiologicalMaterial06 |
0 |
1.00 |
0 |
1 |
-2.22 |
-0.76 |
-0.12 |
0.65 |
2.79 |
▂▇▆▅▁ |
BiologicalMaterial07 |
0 |
1.00 |
0 |
1 |
-0.13 |
-0.13 |
-0.13 |
-0.13 |
7.57 |
▇▁▁▁▁ |
BiologicalMaterial08 |
0 |
1.00 |
0 |
1 |
-2.39 |
-0.64 |
0.02 |
0.57 |
2.43 |
▁▅▇▃▂ |
BiologicalMaterial09 |
0 |
1.00 |
0 |
1 |
-3.40 |
-0.60 |
-0.04 |
0.67 |
2.96 |
▁▃▇▅▁ |
BiologicalMaterial10 |
0 |
1.00 |
0 |
1 |
-1.72 |
-0.57 |
-0.15 |
0.32 |
6.79 |
▇▅▁▁▁ |
BiologicalMaterial11 |
0 |
1.00 |
0 |
1 |
-2.31 |
-0.65 |
-0.18 |
0.55 |
2.44 |
▂▆▇▃▂ |
BiologicalMaterial12 |
0 |
1.00 |
0 |
1 |
-2.39 |
-0.61 |
-0.10 |
0.71 |
2.60 |
▂▆▇▃▂ |
ManufacturingProcess01 |
1 |
0.99 |
0 |
1 |
-6.15 |
-0.22 |
0.11 |
0.52 |
1.59 |
▁▁▁▅▇ |
ManufacturingProcess02 |
3 |
0.98 |
0 |
1 |
-1.97 |
0.31 |
0.51 |
0.57 |
0.69 |
▂▁▁▁▇ |
ManufacturingProcess03 |
15 |
0.91 |
0 |
1 |
-3.11 |
-0.43 |
0.02 |
0.47 |
2.70 |
▁▃▆▇▁ |
ManufacturingProcess04 |
1 |
0.99 |
0 |
1 |
-3.32 |
-0.61 |
0.34 |
0.66 |
2.25 |
▁▂▃▇▂ |
ManufacturingProcess05 |
1 |
0.99 |
0 |
1 |
-2.58 |
-0.49 |
-0.08 |
0.23 |
5.69 |
▁▇▁▁▁ |
ManufacturingProcess06 |
2 |
0.99 |
0 |
1 |
-1.63 |
-0.63 |
-0.22 |
0.48 |
7.41 |
▇▃▁▁▁ |
ManufacturingProcess07 |
1 |
0.99 |
0 |
1 |
-0.96 |
-0.96 |
-0.96 |
1.04 |
1.04 |
▇▁▁▁▇ |
ManufacturingProcess08 |
1 |
0.99 |
0 |
1 |
-1.11 |
-1.11 |
0.89 |
0.89 |
0.89 |
▆▁▁▁▇ |
ManufacturingProcess09 |
0 |
1.00 |
0 |
1 |
-4.38 |
-0.50 |
0.05 |
0.55 |
2.39 |
▁▁▅▇▂ |
ManufacturingProcess10 |
9 |
0.95 |
0 |
1 |
-2.19 |
-0.62 |
-0.10 |
0.48 |
3.16 |
▂▇▆▂▁ |
ManufacturingProcess11 |
10 |
0.94 |
0 |
1 |
-2.63 |
-0.54 |
0.02 |
0.72 |
2.95 |
▁▇▇▅▁ |
ManufacturingProcess12 |
1 |
0.99 |
0 |
1 |
-0.48 |
-0.48 |
-0.48 |
-0.48 |
2.07 |
▇▁▁▁▂ |
ManufacturingProcess13 |
0 |
1.00 |
0 |
1 |
-2.37 |
-0.60 |
0.09 |
0.68 |
4.03 |
▃▆▇▁▁ |
ManufacturingProcess14 |
1 |
0.99 |
0 |
1 |
-2.80 |
-0.47 |
0.04 |
0.53 |
3.69 |
▁▅▇▂▁ |
ManufacturingProcess15 |
0 |
1.00 |
0 |
1 |
-2.31 |
-0.50 |
-0.13 |
0.38 |
3.33 |
▂▇▆▂▁ |
ManufacturingProcess16 |
0 |
1.00 |
0 |
1 |
-12.98 |
-0.01 |
0.06 |
0.15 |
0.81 |
▁▁▁▁▇ |
ManufacturingProcess17 |
0 |
1.00 |
0 |
1 |
-2.44 |
-0.68 |
0.05 |
0.61 |
4.53 |
▂▇▆▁▁ |
ManufacturingProcess18 |
0 |
1.00 |
0 |
1 |
-13.09 |
0.01 |
0.07 |
0.14 |
0.44 |
▁▁▁▁▇ |
ManufacturingProcess19 |
0 |
1.00 |
0 |
1 |
-3.03 |
-0.60 |
-0.14 |
0.48 |
2.58 |
▁▃▇▃▂ |
ManufacturingProcess20 |
0 |
1.00 |
0 |
1 |
-13.06 |
-0.01 |
0.07 |
0.15 |
0.58 |
▁▁▁▁▇ |
ManufacturingProcess21 |
0 |
1.00 |
0 |
1 |
-2.10 |
-0.56 |
-0.17 |
0.21 |
4.84 |
▂▇▂▁▁ |
ManufacturingProcess22 |
1 |
0.99 |
0 |
1 |
-1.62 |
-0.72 |
-0.12 |
0.78 |
1.98 |
▇▇▇▅▅ |
ManufacturingProcess23 |
1 |
0.99 |
0 |
1 |
-1.81 |
-0.61 |
-0.01 |
0.59 |
1.79 |
▇▆▇▆▇ |
ManufacturingProcess24 |
1 |
0.99 |
0 |
1 |
-1.52 |
-0.83 |
-0.14 |
0.89 |
2.44 |
▇▇▅▆▁ |
ManufacturingProcess25 |
5 |
0.97 |
0 |
1 |
-12.93 |
0.01 |
0.07 |
0.13 |
0.43 |
▁▁▁▁▇ |
ManufacturingProcess26 |
5 |
0.97 |
0 |
1 |
-12.94 |
0.01 |
0.07 |
0.12 |
0.31 |
▁▁▁▁▇ |
ManufacturingProcess27 |
5 |
0.97 |
0 |
1 |
-12.89 |
-0.01 |
0.07 |
0.13 |
0.42 |
▁▁▁▁▇ |
ManufacturingProcess28 |
5 |
0.97 |
0 |
1 |
-1.26 |
-1.26 |
0.73 |
0.79 |
0.94 |
▅▁▁▁▇ |
ManufacturingProcess29 |
5 |
0.97 |
0 |
1 |
-12.03 |
-0.19 |
-0.07 |
0.23 |
1.20 |
▁▁▁▁▇ |
ManufacturingProcess30 |
5 |
0.97 |
0 |
1 |
-9.39 |
-0.37 |
-0.06 |
0.55 |
2.09 |
▁▁▁▅▇ |
ManufacturingProcess31 |
5 |
0.97 |
0 |
1 |
-12.63 |
-0.02 |
0.11 |
0.22 |
0.42 |
▁▁▁▁▇ |
ManufacturingProcess32 |
0 |
1.00 |
0 |
1 |
-2.87 |
-0.64 |
-0.09 |
0.65 |
2.69 |
▁▃▇▃▁ |
ManufacturingProcess33 |
5 |
0.97 |
0 |
1 |
-3.04 |
-0.62 |
0.18 |
0.59 |
2.60 |
▁▃▇▅▁ |
ManufacturingProcess34 |
5 |
0.97 |
0 |
1 |
-3.56 |
0.12 |
0.12 |
0.12 |
1.96 |
▁▂▁▇▁ |
ManufacturingProcess35 |
5 |
0.97 |
0 |
1 |
-3.01 |
-0.52 |
-0.06 |
0.55 |
2.44 |
▁▂▇▅▂ |
ManufacturingProcess36 |
5 |
0.97 |
0 |
1 |
-2.94 |
-0.66 |
0.49 |
0.49 |
2.78 |
▂▇▁▇▃ |
ManufacturingProcess37 |
0 |
1.00 |
0 |
1 |
-2.28 |
-0.70 |
-0.03 |
0.64 |
2.89 |
▂▇▇▃▁ |
ManufacturingProcess38 |
0 |
1.00 |
0 |
1 |
-3.90 |
-0.82 |
0.72 |
0.72 |
0.72 |
▁▁▁▅▇ |
ManufacturingProcess39 |
0 |
1.00 |
0 |
1 |
-4.55 |
0.17 |
0.23 |
0.30 |
0.43 |
▁▁▁▁▇ |
ManufacturingProcess40 |
1 |
0.99 |
0 |
1 |
-0.46 |
-0.46 |
-0.46 |
-0.46 |
2.15 |
▇▁▁▁▂ |
ManufacturingProcess41 |
1 |
0.99 |
0 |
1 |
-0.44 |
-0.44 |
-0.44 |
-0.44 |
3.28 |
▇▁▁▁▁ |
ManufacturingProcess42 |
0 |
1.00 |
0 |
1 |
-5.77 |
0.10 |
0.20 |
0.25 |
0.46 |
▁▁▁▁▇ |
ManufacturingProcess43 |
0 |
1.00 |
0 |
1 |
-1.05 |
-0.36 |
-0.13 |
0.13 |
11.62 |
▇▁▁▁▁ |
ManufacturingProcess44 |
0 |
1.00 |
0 |
1 |
-5.61 |
-0.02 |
0.29 |
0.29 |
0.92 |
▁▁▁▁▇ |
ManufacturingProcess45 |
0 |
1.00 |
0 |
1 |
-5.25 |
-0.09 |
0.15 |
0.40 |
1.14 |
▁▁▁▂▇ |
Data summary
Name |
DPA_RangedTransformed |
Number of rows |
176 |
Number of columns |
57 |
_______________________ |
|
Column type frequency: |
|
numeric |
57 |
________________________ |
|
Group variables |
None |
Variable type: numeric
BiologicalMaterial01 |
0 |
1.00 |
0.43 |
0.17 |
0 |
0.33 |
0.41 |
0.54 |
1 |
▂▇▇▂▁ |
BiologicalMaterial02 |
0 |
1.00 |
0.49 |
0.23 |
0 |
0.32 |
0.46 |
0.66 |
1 |
▂▇▆▅▃ |
BiologicalMaterial03 |
0 |
1.00 |
0.50 |
0.19 |
0 |
0.38 |
0.48 |
0.63 |
1 |
▂▅▇▆▁ |
BiologicalMaterial04 |
0 |
1.00 |
0.22 |
0.13 |
0 |
0.14 |
0.20 |
0.28 |
1 |
▇▆▁▁▁ |
BiologicalMaterial05 |
0 |
1.00 |
0.46 |
0.16 |
0 |
0.34 |
0.45 |
0.57 |
1 |
▁▅▇▃▁ |
BiologicalMaterial06 |
0 |
1.00 |
0.44 |
0.20 |
0 |
0.29 |
0.42 |
0.57 |
1 |
▂▇▆▅▁ |
BiologicalMaterial07 |
0 |
1.00 |
0.02 |
0.13 |
0 |
0.00 |
0.00 |
0.00 |
1 |
▇▁▁▁▁ |
BiologicalMaterial08 |
0 |
1.00 |
0.50 |
0.21 |
0 |
0.36 |
0.50 |
0.61 |
1 |
▁▅▇▃▂ |
BiologicalMaterial09 |
0 |
1.00 |
0.53 |
0.16 |
0 |
0.44 |
0.53 |
0.64 |
1 |
▁▃▇▅▁ |
BiologicalMaterial10 |
0 |
1.00 |
0.20 |
0.12 |
0 |
0.14 |
0.18 |
0.24 |
1 |
▇▅▁▁▁ |
BiologicalMaterial11 |
0 |
1.00 |
0.49 |
0.21 |
0 |
0.35 |
0.45 |
0.60 |
1 |
▂▆▇▃▂ |
BiologicalMaterial12 |
0 |
1.00 |
0.48 |
0.20 |
0 |
0.36 |
0.46 |
0.62 |
1 |
▂▆▇▃▂ |
ManufacturingProcess01 |
1 |
0.99 |
0.79 |
0.13 |
0 |
0.77 |
0.81 |
0.86 |
1 |
▁▁▁▅▇ |
ManufacturingProcess02 |
3 |
0.98 |
0.74 |
0.38 |
0 |
0.86 |
0.93 |
0.96 |
1 |
▂▁▁▁▇ |
ManufacturingProcess03 |
15 |
0.91 |
0.54 |
0.17 |
0 |
0.46 |
0.54 |
0.62 |
1 |
▁▃▆▇▁ |
ManufacturingProcess04 |
1 |
0.99 |
0.60 |
0.18 |
0 |
0.49 |
0.66 |
0.71 |
1 |
▁▂▃▇▁ |
ManufacturingProcess05 |
1 |
0.99 |
0.31 |
0.12 |
0 |
0.25 |
0.30 |
0.34 |
1 |
▁▇▁▁▁ |
ManufacturingProcess06 |
2 |
0.99 |
0.18 |
0.11 |
0 |
0.11 |
0.16 |
0.23 |
1 |
▇▃▁▁▁ |
ManufacturingProcess07 |
1 |
0.99 |
0.48 |
0.50 |
0 |
0.00 |
0.00 |
1.00 |
1 |
▇▁▁▁▇ |
ManufacturingProcess08 |
1 |
0.99 |
0.55 |
0.50 |
0 |
0.00 |
1.00 |
1.00 |
1 |
▆▁▁▁▇ |
ManufacturingProcess09 |
0 |
1.00 |
0.65 |
0.15 |
0 |
0.57 |
0.65 |
0.73 |
1 |
▁▁▅▇▂ |
ManufacturingProcess10 |
9 |
0.95 |
0.41 |
0.19 |
0 |
0.29 |
0.39 |
0.50 |
1 |
▂▇▆▂▁ |
ManufacturingProcess11 |
10 |
0.94 |
0.47 |
0.18 |
0 |
0.38 |
0.48 |
0.60 |
1 |
▁▆▇▅▁ |
ManufacturingProcess12 |
1 |
0.99 |
0.19 |
0.39 |
0 |
0.00 |
0.00 |
0.00 |
1 |
▇▁▁▁▂ |
ManufacturingProcess13 |
0 |
1.00 |
0.37 |
0.16 |
0 |
0.28 |
0.38 |
0.48 |
1 |
▃▆▇▁▁ |
ManufacturingProcess14 |
1 |
0.99 |
0.43 |
0.15 |
0 |
0.36 |
0.44 |
0.51 |
1 |
▁▅▇▂▁ |
ManufacturingProcess15 |
0 |
1.00 |
0.41 |
0.18 |
0 |
0.32 |
0.39 |
0.48 |
1 |
▂▇▆▂▁ |
ManufacturingProcess16 |
0 |
1.00 |
0.94 |
0.07 |
0 |
0.94 |
0.95 |
0.95 |
1 |
▁▁▁▁▇ |
ManufacturingProcess17 |
0 |
1.00 |
0.35 |
0.14 |
0 |
0.25 |
0.36 |
0.44 |
1 |
▂▇▆▁▁ |
ManufacturingProcess18 |
0 |
1.00 |
0.97 |
0.07 |
0 |
0.97 |
0.97 |
0.98 |
1 |
▁▁▁▁▇ |
ManufacturingProcess19 |
0 |
1.00 |
0.54 |
0.18 |
0 |
0.43 |
0.52 |
0.63 |
1 |
▁▃▇▃▂ |
ManufacturingProcess20 |
0 |
1.00 |
0.96 |
0.07 |
0 |
0.96 |
0.96 |
0.97 |
1 |
▁▁▁▁▇ |
ManufacturingProcess21 |
0 |
1.00 |
0.30 |
0.14 |
0 |
0.22 |
0.28 |
0.33 |
1 |
▂▇▂▁▁ |
ManufacturingProcess22 |
1 |
0.99 |
0.45 |
0.28 |
0 |
0.25 |
0.42 |
0.67 |
1 |
▇▇▇▅▅ |
ManufacturingProcess23 |
1 |
0.99 |
0.50 |
0.28 |
0 |
0.33 |
0.50 |
0.67 |
1 |
▇▆▇▆▇ |
ManufacturingProcess24 |
1 |
0.99 |
0.38 |
0.25 |
0 |
0.17 |
0.35 |
0.61 |
1 |
▇▇▅▆▁ |
ManufacturingProcess25 |
5 |
0.97 |
0.97 |
0.07 |
0 |
0.97 |
0.97 |
0.98 |
1 |
▁▁▁▁▇ |
ManufacturingProcess26 |
5 |
0.97 |
0.98 |
0.08 |
0 |
0.98 |
0.98 |
0.99 |
1 |
▁▁▁▁▇ |
ManufacturingProcess27 |
5 |
0.97 |
0.97 |
0.08 |
0 |
0.97 |
0.97 |
0.98 |
1 |
▁▁▁▁▇ |
ManufacturingProcess28 |
5 |
0.97 |
0.57 |
0.46 |
0 |
0.00 |
0.90 |
0.93 |
1 |
▅▁▁▁▇ |
ManufacturingProcess29 |
5 |
0.97 |
0.91 |
0.08 |
0 |
0.90 |
0.90 |
0.93 |
1 |
▁▁▁▁▇ |
ManufacturingProcess30 |
5 |
0.97 |
0.82 |
0.09 |
0 |
0.79 |
0.81 |
0.87 |
1 |
▁▁▁▅▇ |
ManufacturingProcess31 |
5 |
0.97 |
0.97 |
0.08 |
0 |
0.97 |
0.98 |
0.98 |
1 |
▁▁▁▁▇ |
ManufacturingProcess32 |
0 |
1.00 |
0.52 |
0.18 |
0 |
0.40 |
0.50 |
0.63 |
1 |
▁▃▇▃▁ |
ManufacturingProcess33 |
5 |
0.97 |
0.54 |
0.18 |
0 |
0.43 |
0.57 |
0.64 |
1 |
▁▃▇▅▁ |
ManufacturingProcess34 |
5 |
0.97 |
0.65 |
0.18 |
0 |
0.67 |
0.67 |
0.67 |
1 |
▁▂▁▇▁ |
ManufacturingProcess35 |
5 |
0.97 |
0.55 |
0.18 |
0 |
0.46 |
0.54 |
0.65 |
1 |
▁▂▇▅▂ |
ManufacturingProcess36 |
5 |
0.97 |
0.51 |
0.17 |
0 |
0.40 |
0.60 |
0.60 |
1 |
▂▇▇▁▃ |
ManufacturingProcess37 |
0 |
1.00 |
0.44 |
0.19 |
0 |
0.30 |
0.43 |
0.57 |
1 |
▂▇▇▃▁ |
ManufacturingProcess38 |
0 |
1.00 |
0.84 |
0.22 |
0 |
0.67 |
1.00 |
1.00 |
1 |
▁▁▁▅▇ |
ManufacturingProcess39 |
0 |
1.00 |
0.91 |
0.20 |
0 |
0.95 |
0.96 |
0.97 |
1 |
▁▁▁▁▇ |
ManufacturingProcess40 |
1 |
0.99 |
0.18 |
0.38 |
0 |
0.00 |
0.00 |
0.00 |
1 |
▇▁▁▁▂ |
ManufacturingProcess41 |
1 |
0.99 |
0.12 |
0.27 |
0 |
0.00 |
0.00 |
0.00 |
1 |
▇▁▁▁▁ |
ManufacturingProcess42 |
0 |
1.00 |
0.93 |
0.16 |
0 |
0.94 |
0.96 |
0.97 |
1 |
▁▁▁▁▇ |
ManufacturingProcess43 |
0 |
1.00 |
0.08 |
0.08 |
0 |
0.05 |
0.07 |
0.09 |
1 |
▇▁▁▁▁ |
ManufacturingProcess44 |
0 |
1.00 |
0.86 |
0.15 |
0 |
0.86 |
0.90 |
0.90 |
1 |
▁▁▁▁▇ |
ManufacturingProcess45 |
0 |
1.00 |
0.82 |
0.16 |
0 |
0.81 |
0.85 |
0.88 |
1 |
▁▁▁▂▇ |
1.3.8 Dummy Variables
Dummy variable creation assessment:
[A] Dummy variable creation (or one-hot encoding) for factor variables remains optional depending on potential model requirements for the subsequent steps.
[B] The caret package includes one method for creating dummy variables:
[B.1] The dummyVars method from the caret package generates a complete (less than full rank parameterized) set of dummy variables from one or more factors.
[C] The dummyVars method was tried on the dataset.
## [1] "There are no factor variables for dummy variable creation."