library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(dplyr)
library(ggplot2)

Data Import

  1. Download chickens.csv to your working directory. Make sure to set your working directory appropriately! This dataset was created by modifying the R built-in dataset chickwts.

  2. Import the chickens.csv data into R. Store it in a data.frame named ch_df and print out the entire ch_df to the screen.

library(readr)
ch_df <- read_csv("chickens.csv")
## Rows: 71 Columns: 2
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (2): weight, feed
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
print(ch_df)
## # A tibble: 71 x 2
##    weight feed     
##    <chr>  <chr>    
##  1 206    meatmeal 
##  2 140    horsebean
##  3 <NA>   <NA>     
##  4 318    sunflower
##  5 332    casein   
##  6 na     horsebean
##  7 216    na       
##  8 143    horsebean
##  9 271    soybean  
## 10 315    meatmeal 
## # ... with 61 more rows

Clean Missing Values

There are some missing values in this dataset. Unfortunately they are represented in a number of different ways.

  1. Clean up this dataset by doing the following:
sum(is.na(ch_df))
## [1] 12
replace_na(ch_df)
## # A tibble: 71 x 2
##    weight feed     
##    <chr>  <chr>    
##  1 206    meatmeal 
##  2 140    horsebean
##  3 <NA>   <NA>     
##  4 318    sunflower
##  5 332    casein   
##  6 na     horsebean
##  7 216    na       
##  8 143    horsebean
##  9 271    soybean  
## 10 315    meatmeal 
## # ... with 61 more rows

Now that the dataset is clean, let’s see what percentage of our data is missing.

  1. Calculate the percentage of missing data from the weight column, the feed column, and the entire dataset. Print out each result in the following format: “Percentage of missing data in [fill in the column or dataset name]: [fill in percentage]%.”
mean(is.na(ch_df$weight)) * 100
## [1] 9.859155
mean(is.na(ch_df$feed)) * 100
## [1] 7.042254
mean(is.na(ch_df)) * 100
## [1] 8.450704

EXTRA CREDIT (Optional): Figure out how to create these print statements so that the name and percentage number are not hard-coded into the statement. In other words, so that the name and percentage number are read in dynamically (for example, from a variable, from a function call, etc.) instead of just written in the statement. Please ask me for clarification if necessary.

# fill in your code here

Data Investigation

  1. Group the data by feed and find the mean and median weight for each group. Your result should be a new data frame with the group means in a column named weight_mean and the group medians in a column named weight_median. Save this new data frame; you can name the data frame as you wish. (Remember that variable names should be somewhat descriptive of what they contain.)
ch_df$weight <- as.character(ch_df$weight)
ch_df$weight <- as.numeric(ch_df$weight)
## Warning: NAs introduced by coercion
ch_dfmedmen <- ch_df %>%
  group_by(feed) %>%
  summarise(mean_weight= mean(weight, na.rm = TRUE), median_weight= median(weight, na.rm = TRUE))

ch_dfmedmen
## # A tibble: 11 x 3
##    feed      mean_weight median_weight
##    <chr>           <dbl>         <dbl>
##  1 ?                190.          161 
##  2 casein           314.          325 
##  3 horsebean        161.          160 
##  4 linseed          232.          236.
##  5 meatmeal         304.          315 
##  6 na               216           216 
##  7 not sure         329           329 
##  8 soybean          242.          249 
##  9 sunflower        353.          340 
## 10 unknown          263           263 
## 11 <NA>             298.          286.
  1. Find the feed that has the maximum median chicken weight.
ch_dfmedmen[which.max(ch_dfmedmen$median_weight),]
## # A tibble: 1 x 3
##   feed      mean_weight median_weight
##   <chr>           <dbl>         <dbl>
## 1 sunflower        353.           340
  1. Create a quick histogram of the weight from the original data frame using the Base R Plotting package.
class(ch_df$weight)
## [1] "numeric"
weight_chdf <- as.numeric(ch_df$weight)

hist(weight_chdf)

  1. Create a box plot with feed type as the X axis.
ch_df$weight <- as.numeric(ch_df$weight)
p1 <- ch_df %>%
  ggplot(aes(x= feed, y= weight, group = feed)) + geom_boxplot()

p1
## Warning: Removed 15 rows containing non-finite values (stat_boxplot).

  1. What do these charts tell you? Does the box plot confirm you mean and median calculations? If yes, how so? Are there any outliers displayed in either chart? Confirm this using the five number summary for specific feed types and the IQR.
summary(ch_df)
##      weight          feed          
##  Min.   :108.0   Length:71         
##  1st Qu.:211.2   Class :character  
##  Median :261.5   Mode  :character  
##  Mean   :264.1                     
##  3rd Qu.:325.5                     
##  Max.   :423.0                     
##  NA's   :15

#Group by FEED types (note to self)

ch_df %>%         
  group_by(feed) %>% 
  summarize(min = min(weight, na.rm = TRUE),
            Q1 = quantile(weight, 0.25, na.rm = TRUE),
            Median = median(weight, na.rm = TRUE),
            Mean = mean(weight, na.rm = TRUE),
            Q3 = quantile(weight, 0.75, na.rm = TRUE),
            Max = max(weight, na.rm = TRUE))
## # A tibble: 11 x 7
##    feed        min    Q1 Median  Mean    Q3   Max
##    <chr>     <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
##  1 ?           141  150    161   190.  200.   295
##  2 casein      222  277.   325   314.  356    379
##  3 horsebean   108  142.   160   161.  174.   227
##  4 linseed     148  205    236.  232.  263.   309
##  5 meatmeal    206  280.   315   304.  334.   380
##  6 na          216  216    216   216   216    216
##  7 not sure    329  329    329   329   329    329
##  8 soybean     158  225    249   242.  268    327
##  9 sunflower   318  328    340   353.  366.   423
## 10 unknown     263  263    263   263   263    263
## 11 <NA>        217  247    286.  298.  338    404
  1. Recreate the box plot above using ggplot and add x and y axis labels as well as a title. Describe any differences you notice about the two plots.
p2 <- p1 + ggtitle("Feed and Weights - Chickens") +
  xlab("Feed Type") + ylab ("Weight")

p2
## Warning: Removed 15 rows containing non-finite values (stat_boxplot).