Another Version of Reality

This document explores another possible way to use prior data, as an extension to the opioid_bayes.Rmd document.

The opioid modelling ultimately used a \(LogNormal(log(49363), 0.9)\) distribution for the prior on the root node. This was based on Margot’s estimation of bounds on the root between 46107 and 52619, with approximately 60% certainty. These bounds, in fact, were derived from data on the percentage of individuals calling 911 calls, which was then extrapolated backwards to the number of total overdoses. A more purist approach, therefore, might be to instead revert these back to percentages of individuals calling 911 and use this information to inform a prior on \(p\), leaving the prior on \(Z\) quite uninformative.

For the aforementioned bounds on \(Z\), this corresponds to assuming roughly 26-35% of the total overdoses were counted through the cohort. If we still assume we have roughly 60% certainty in this value, we seek a Beta distribution with approximately 60% of it’s mass between 0.26 and 0.35. This results in a \(Beta(25, 57)\) distribution, which we can visualize by sampling as follows:

Next, we’ll run the model again with a weak prior on \(Z\), using only the information in the cohort data to inform the lower bound, and choosing a high upper bound signaling our lack on knowledge on the true value of this parameter (instead, we’ve transferred this knowledge to the Beta distribution on \(p\)). In particular \(Z \sim Unif(34113, 100000)\).

## Compiling data graph
##    Resolving undeclared variables
##    Allocating nodes
##    Initializing
##    Reading data back into data table
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 11
##    Unobserved stochastic nodes: 11
##    Total graph size: 145
## 
## Initializing model
## Inference for Bugs model at "fullopioidJAGS_contuniformZ.mod", fit using jags,
##  6 chains, each with 1e+07 iterations (first 5e+06 discarded), n.thin = 5000
##  n.sims = 6000 iterations saved
##             mu.vect   sd.vect      2.5%       25%       50%       75%     97.5%
## AB[1]     30358.054  9943.986 13860.250 22675.000 29417.000 36765.500 52035.875
## AB[2]     42975.465  4095.250 37411.875 40067.750 42165.000 45065.250 53298.650
## C         27630.055  9939.332 11137.975 20014.750 26643.500 34005.500 49158.325
## D          2727.998   304.768  2458.000  2525.000  2632.500  2823.250  3538.175
## EFGHI[1]  16922.000     0.000 16922.000 16922.000 16922.000 16922.000 16922.000
## EFGHI[2]   1390.000     0.000  1390.000  1390.000  1390.000  1390.000  1390.000
## EFGHI[3]    473.000     0.000   473.000   473.000   473.000   473.000   473.000
## EFGHI[4]  16758.964   385.040 16103.000 16486.000 16724.500 16994.000 17641.050
## EFGHI[5]   7431.501  4076.239  1970.925  4501.000  6585.000  9506.250 17542.550
## JKL[1]      173.000     0.000   173.000   173.000   173.000   173.000   173.000
## JKL[2]     2279.000     0.000  2279.000  2279.000  2279.000  2279.000  2279.000
## JKL[3]      275.998   304.768     6.000    73.000   180.500   371.250  1086.175
## MNOPQR[1] 11678.000     0.000 11678.000 11678.000 11678.000 11678.000 11678.000
## MNOPQR[2]   199.000     0.000   199.000   199.000   199.000   199.000   199.000
## MNOPQR[3]  1030.000     0.000  1030.000  1030.000  1030.000  1030.000  1030.000
## MNOPQR[4]    45.000     0.000    45.000    45.000    45.000    45.000    45.000
## MNOPQR[5]  2591.756   101.376  2441.975  2516.000  2576.000  2646.000  2839.000
## MNOPQR[6]  1215.208   368.545   608.975   954.000  1180.000  1438.000  2073.000
## STU[1]     2270.000     0.000  2270.000  2270.000  2270.000  2270.000  2270.000
## STU[2]      106.000     0.000   106.000   106.000   106.000   106.000   106.000
## STU[3]      215.756   101.376    65.975   140.000   200.000   270.000   463.000
## Z         73333.519 11028.495 54742.800 64914.250 72441.500 80801.250 96542.025
## p             0.404     0.081     0.247     0.347     0.406     0.462     0.556
## q             0.101     0.039     0.051     0.073     0.093     0.120     0.199
## r[1]          0.397     0.035     0.317     0.375     0.401     0.422     0.452
## r[2]          0.033     0.003     0.026     0.031     0.033     0.035     0.038
## r[3]          0.011     0.001     0.009     0.010     0.011     0.012     0.013
## r[4]          0.393     0.035     0.314     0.371     0.398     0.419     0.448
## r[5]          0.166     0.073     0.052     0.112     0.156     0.211     0.331
## s[1]          0.066     0.008     0.049     0.061     0.066     0.071     0.079
## s[2]          0.842     0.077     0.641     0.805     0.864     0.901     0.927
## s[3]          0.092     0.083     0.003     0.029     0.069     0.131     0.309
## t[1]          0.692     0.016     0.657     0.682     0.693     0.703     0.721
## t[2]          0.014     0.001     0.012     0.013     0.014     0.014     0.015
## t[3]          0.063     0.002     0.058     0.061     0.063     0.064     0.067
## t[4]          0.004     0.001     0.003     0.004     0.004     0.005     0.006
## t[5]          0.155     0.007     0.143     0.151     0.154     0.159     0.169
## t[6]          0.072     0.020     0.038     0.058     0.071     0.085     0.118
## u[1]          0.867     0.033     0.791     0.848     0.871     0.891     0.919
## u[2]          0.051     0.005     0.042     0.048     0.051     0.054     0.061
## u[3]          0.082     0.034     0.027     0.056     0.078     0.102     0.161
## deviance    120.798    10.428   103.118   113.305   119.840   127.473   143.767
##            Rhat n.eff
## AB[1]     1.002  2000
## AB[2]     1.011   370
## C         1.002  2000
## D         1.001  6000
## EFGHI[1]  1.000     1
## EFGHI[2]  1.000     1
## EFGHI[3]  1.000     1
## EFGHI[4]  1.001  6000
## EFGHI[5]  1.010   370
## JKL[1]    1.000     1
## JKL[2]    1.000     1
## JKL[3]    1.001  6000
## MNOPQR[1] 1.000     1
## MNOPQR[2] 1.000     1
## MNOPQR[3] 1.000     1
## MNOPQR[4] 1.000     1
## MNOPQR[5] 1.001  6000
## MNOPQR[6] 1.001  6000
## STU[1]    1.000     1
## STU[2]    1.000     1
## STU[3]    1.001  6000
## Z         1.006   680
## p         1.001  6000
## q         1.002  1900
## r[1]      1.011   380
## r[2]      1.011   370
## r[3]      1.009   420
## r[4]      1.011   360
## r[5]      1.011   370
## s[1]      1.001  5300
## s[2]      1.001  6000
## s[3]      1.001  4900
## t[1]      1.001  6000
## t[2]      1.001  6000
## t[3]      1.001  6000
## t[4]      1.001  6000
## t[5]      1.001  6000
## t[6]      1.001  6000
## u[1]      1.001  6000
## u[2]      1.001  6000
## u[3]      1.001  6000
## deviance  1.001  6000
## 
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
## 
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 54.4 and DIC = 175.2
## DIC is an estimate of expected predictive error (lower deviance is better).