Another Version of Reality

This document explores another possible way to use prior data, as an extension to the opioid_bayes2.Rmd document.

Here we use the same prior on branching, but opt for log normal prior on \(Z\) again, but which is instead only informed by the cohort bound of 34113 and the highest upper bound of 85283. We will aim at placing 80% certainty within these bounds. A \(Normal(59698, 20000)\) distribution achieves this; a \(LogNormal(log(54000), 0.35)\) distribution corresponds closely to these restraints.

## [1] 57290.88
## [1] 20988.78

Next, we’ll run the model again with this updated (less weak than uniform) prior on \(Z\), but the PHAC prior bounds on \(p\):

## Compiling data graph
##    Resolving undeclared variables
##    Allocating nodes
##    Initializing
##    Reading data back into data table
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 11
##    Unobserved stochastic nodes: 11
##    Total graph size: 145
## 
## Initializing model
## Inference for Bugs model at "fullopioidJAGS_lognormalZ.mod", fit using jags,
##  6 chains, each with 1e+07 iterations (first 5e+06 discarded), n.thin = 5000
##  n.sims = 6000 iterations saved
##             mu.vect   sd.vect      2.5%       25%       50%       75%     97.5%
## AB[1]     26721.332  9336.104 12789.975 20054.750 25190.500 31707.250 48898.075
## AB[2]     42307.885  3614.911 37179.925 39706.750 41654.000 44177.000 51127.100
## C         24006.598  9331.853 10096.950 17307.000 22459.500 29053.500 46202.300
## D          2714.734   283.773  2457.000  2522.000  2626.000  2807.250  3482.025
## EFGHI[1]  16922.000     0.000 16922.000 16922.000 16922.000 16922.000 16922.000
## EFGHI[2]   1390.000     0.000  1390.000  1390.000  1390.000  1390.000  1390.000
## EFGHI[3]    473.000     0.000   473.000   473.000   473.000   473.000   473.000
## EFGHI[4]  16755.451   382.174 16110.000 16484.000 16715.000 16993.000 17602.000
## EFGHI[5]   6767.434  3594.039  1723.975  4188.000  6090.500  8628.750 15441.350
## JKL[1]      173.000     0.000   173.000   173.000   173.000   173.000   173.000
## JKL[2]     2279.000     0.000  2279.000  2279.000  2279.000  2279.000  2279.000
## JKL[3]      262.734   283.773     5.000    70.000   174.000   355.250  1030.025
## MNOPQR[1] 11678.000     0.000 11678.000 11678.000 11678.000 11678.000 11678.000
## MNOPQR[2]   199.000     0.000   199.000   199.000   199.000   199.000   199.000
## MNOPQR[3]  1030.000     0.000  1030.000  1030.000  1030.000  1030.000  1030.000
## MNOPQR[4]    45.000     0.000    45.000    45.000    45.000    45.000    45.000
## MNOPQR[5]  2591.159   100.078  2444.000  2519.000  2574.000  2647.000  2826.025
## MNOPQR[6]  1212.292   367.022   606.000   944.000  1170.000  1444.000  2026.000
## STU[1]     2270.000     0.000  2270.000  2270.000  2270.000  2270.000  2270.000
## STU[2]      106.000     0.000   106.000   106.000   106.000   106.000   106.000
## STU[3]      215.159   100.078    68.000   143.000   198.000   271.000   450.025
## Z         69029.217 10336.092 53174.475 61556.750 67485.000 74725.250 93336.075
## p             0.378     0.079     0.231     0.322     0.375     0.429     0.537
## q             0.114     0.041     0.054     0.084     0.107     0.136     0.214
## r[1]          0.403     0.032     0.331     0.383     0.406     0.426     0.455
## r[2]          0.033     0.003     0.027     0.031     0.033     0.035     0.038
## r[3]          0.011     0.001     0.009     0.011     0.011     0.012     0.013
## r[4]          0.399     0.032     0.327     0.378     0.402     0.422     0.451
## r[5]          0.154     0.067     0.047     0.106     0.147     0.195     0.304
## s[1]          0.066     0.007     0.049     0.061     0.066     0.071     0.079
## s[2]          0.845     0.074     0.654     0.810     0.866     0.902     0.927
## s[3]          0.089     0.080     0.002     0.028     0.066     0.127     0.295
## t[1]          0.692     0.016     0.659     0.682     0.693     0.704     0.720
## t[2]          0.014     0.001     0.012     0.013     0.014     0.014     0.015
## t[3]          0.063     0.002     0.058     0.061     0.063     0.064     0.067
## t[4]          0.004     0.001     0.003     0.004     0.004     0.005     0.006
## t[5]          0.155     0.007     0.143     0.150     0.155     0.159     0.169
## t[6]          0.072     0.020     0.038     0.058     0.070     0.085     0.115
## u[1]          0.867     0.032     0.794     0.847     0.871     0.890     0.918
## u[2]          0.051     0.005     0.043     0.048     0.051     0.054     0.061
## u[3]          0.082     0.034     0.028     0.057     0.077     0.102     0.159
## deviance    120.813    10.444   102.853   113.320   119.815   127.338   143.870
##            Rhat n.eff
## AB[1]     1.002  3500
## AB[2]     1.001  5100
## C         1.002  3500
## D         1.001  6000
## EFGHI[1]  1.000     1
## EFGHI[2]  1.000     1
## EFGHI[3]  1.000     1
## EFGHI[4]  1.001  6000
## EFGHI[5]  1.002  2900
## JKL[1]    1.000     1
## JKL[2]    1.000     1
## JKL[3]    1.001  6000
## MNOPQR[1] 1.000     1
## MNOPQR[2] 1.000     1
## MNOPQR[3] 1.000     1
## MNOPQR[4] 1.000     1
## MNOPQR[5] 1.001  6000
## MNOPQR[6] 1.001  6000
## STU[1]    1.000     1
## STU[2]    1.000     1
## STU[3]    1.001  6000
## Z         1.002  2900
## p         1.001  4400
## q         1.001  3600
## r[1]      1.001  4900
## r[2]      1.001  5700
## r[3]      1.001  6000
## r[4]      1.001  4500
## r[5]      1.002  2700
## s[1]      1.001  6000
## s[2]      1.001  6000
## s[3]      1.001  6000
## t[1]      1.001  6000
## t[2]      1.001  6000
## t[3]      1.001  3700
## t[4]      1.001  6000
## t[5]      1.001  6000
## t[6]      1.001  6000
## u[1]      1.001  6000
## u[2]      1.001  6000
## u[3]      1.001  6000
## deviance  1.001  6000
## 
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
## 
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 54.6 and DIC = 175.4
## DIC is an estimate of expected predictive error (lower deviance is better).