Load Libraries

library(tidyverse)
library(patchwork)
library(skimr)
library(knitr)

Load Data

## Rows: 225 Columns: 6
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (1): waste_type
## dbl (5): waste_disposed_of_tonne, total_waste_recycled_tonne, total_waste_ge...
## 
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Clean Data

glimpse(waste_data)
## Rows: 225
## Columns: 6
## $ waste_type                  <chr> "Food", "Paper/Cardboard", "Plastics", "C&~
## $ waste_disposed_of_tonne     <dbl> 679900, 576000, 762700, 9700, 111500, 1191~
## $ total_waste_recycled_tonne  <dbl> 111100, 607100, 59500, 1585700, 209000, 41~
## $ total_waste_generated_tonne <dbl> 791000, 1183100, 822200, 1595400, 320500, ~
## $ recycling_rate              <dbl> 0.14, 0.51, 0.07, 0.99, 0.65, 0.78, 0.99, ~
## $ year                        <dbl> 2016, 2016, 2016, 2016, 2016, 2016, 2016, ~
sort(unique(waste_data$waste_type))
##  [1] "Ash & Sludge"                           
##  [2] "Ash and sludge"                         
##  [3] "C&D"                                    
##  [4] "Construction debris"                    
##  [5] "Construction Debris"                    
##  [6] "Ferrous metal"                          
##  [7] "Ferrous Metal"                          
##  [8] "Ferrous Metals"                         
##  [9] "Food"                                   
## [10] "Food waste"                             
## [11] "Glass"                                  
## [12] "Horticultural waste"                    
## [13] "Horticultural Waste"                    
## [14] "Non-ferrous metal"                      
## [15] "Non-ferrous metals"                     
## [16] "Non-ferrous Metals"                     
## [17] "Others"                                 
## [18] "Others (stones, ceramic, rubber, etc.)" 
## [19] "Others (stones, ceramics & rubber etc)" 
## [20] "Others (stones, ceramics & rubber etc.)"
## [21] "Paper/Cardboard"                        
## [22] "Plastic"                                
## [23] "Plastics"                               
## [24] "Scrap tyres"                            
## [25] "Scrap Tyres"                            
## [26] "Sludge"                                 
## [27] "Textile/Leather"                        
## [28] "Total"                                  
## [29] "Used slag"                              
## [30] "Used Slag"                              
## [31] "Wood"                                   
## [32] "Wood/Timber"
clean_waste_data <- waste_data %>% 
  filter(waste_type != "Total") %>% 
  mutate(waste_type = recode(waste_type,
                             "Others (stones, ceramic, rubber, etc.)" = "Others",
                              "Others (stones, ceramics & rubber etc.)" = "Others",
                             "Others (stones, ceramics & rubber etc)"= "Others",
                              "(stones, ceramic, rubber, etc.)" = "Others",
                             "Plastic" = "Plastics",
                              "Food" = "Food waste" ,
                             "Ash and sludge" =  "Ash & Sludge" ,
                              "Construction debris" = "Construction Debris",
                             "C&D"= "Construction Debris",
                             "Ferrous metal" = "Ferrous Metal",
                             "Ferrous Metals" = "Ferrous Metal",
                             "Horticultural waste" =  "Horticultural Waste" ,
                              "Non-ferrous metal" = "Non-ferrous Metals",
                              "Non-ferrous metals" = "Non-ferrous Metals",
                             "Scrap tyres" = "Scrap Tyres",
                             "Used slag"= "Ash & Sludge",
                             "Sludge"  = "Ash & Sludge",
                             "Sludge"  = "Ash & Sludge",
                             "Wood" = "Wood/Timber"
                             ))
unique(clean_waste_data$waste_type)
##  [1] "Food waste"          "Paper/Cardboard"     "Plastics"           
##  [4] "Construction Debris" "Horticultural Waste" "Wood/Timber"        
##  [7] "Ferrous Metal"       "Non-ferrous Metals"  "Ash & Sludge"       
## [10] "Glass"               "Textile/Leather"     "Scrap Tyres"        
## [13] "Others"              "Used Slag"
clean_waste_data <- clean_waste_data %>%
  mutate(year = as.factor(year))

save the file

write_csv(clean_waste_data,"clean_data2003-2007.csv")

Analyze the Data

compare the generated, disposed, recycle all over the year

generated <- clean_waste_data %>% 
  group_by(year) %>%
  summarise(total = sum(total_waste_generated_tonne))

generated <- tibble(generated,type =  rep("generated", 15))

disposed <- clean_waste_data %>% 
  group_by(year) %>%
  summarise(total = sum(waste_disposed_of_tonne))

disposed <- tibble(disposed, type = rep("disposed", 15))

recycle <- clean_waste_data %>% 
  group_by(year) %>%
  summarise(total = sum(total_waste_recycled_tonne)) 

recycle <- tibble(recycle, type = rep("recycle", 15))

all_over <- bind_rows(generated, disposed, recycle)

all_over <- all_over %>% 
  group_by(type, year) %>% 
  summarise(total = sum(total))
## `summarise()` has grouped output by 'type'. You can override using the `.groups` argument.
all_over
## # A tibble: 45 x 3
## # Groups:   type [3]
##    type     year    total
##    <chr>    <fct>   <dbl>
##  1 disposed 2003  2505000
##  2 disposed 2004  2482600
##  3 disposed 2005  2548800
##  4 disposed 2006  2563600
##  5 disposed 2007  2566000
##  6 disposed 2008  2627600
##  7 disposed 2009  2628900
##  8 disposed 2010  2759500
##  9 disposed 2011  2859500
## 10 disposed 2012  2933900
## # ... with 35 more rows

visualize

options(scipen = 999)
all_over %>% 
  ggplot(aes(year, weight = total, fill = type))+
  geom_bar(position = "dodge")+
  labs(
    title = "Total Generated,Disposed, Recycle, Waste from 2003 to 2007",
    y = "Waste tonnes"
  )

Description

The graph above show how each year generated, disposed, recycle from year 2003 to 2017 on the below we will analyze each one of it. we will see the structure of each column provided and we will look some in site that we can found on provided data.

ToTal Waste Generated

Total Wasted Generated Distribution

clean_waste_data %>% 
  ggplot(aes(total_waste_generated_tonne)) +
  geom_histogram(aes(y = ..density..),bins= 10, fill = "blue", alpha = .6 )+
  geom_density(fill = "skyblue", alpha = .5, color = "skyblue")+
  labs(
    title = "Waste Generated(Tonnes)  Distribution",
    subtitle = "The Distribution is skewed to the right meaning\nthat our some values more occur on the left side of the Graph\n or we can say that the Generate Waste is Almost beetween 0 - 480,000 tonnes "
  )+
  theme(plot.title = element_text(size = 18,
                                  hjust = .5,
                                  face = "bold"),
        plot.subtitle =  element_text(size = 10))

Total waste Generated of tonnes per Waste Type (2003-2017)

Table

total_waste_generated <- clean_waste_data %>% 
  group_by(waste_type) %>% 
  summarise(total_waste_generated = sum(total_waste_generated_tonne)) %>% 
  arrange(-total_waste_generated)
total_waste_generated
## # A tibble: 14 x 2
##    waste_type          total_waste_generated
##    <chr>                               <dbl>
##  1 Paper/Cardboard                  18120800
##  2 Ferrous Metal                    16280900
##  3 Construction Debris              15918300
##  4 Plastics                         11067700
##  5 Food waste                        9876400
##  6 Wood/Timber                       4615500
##  7 Used Slag                         4342100
##  8 Others                            4256200
##  9 Horticultural Waste               3933400
## 10 Ash & Sludge                      3428700
## 11 Textile/Leather                   1884000
## 12 Non-ferrous Metals                1541500
## 13 Glass                             1059600
## 14 Scrap Tyres                        359300

Visualize

options(scipen = 999)

total_waste_generated %>% 
  mutate(waste_type = reorder(waste_type, total_waste_generated)) %>% 
  ggplot(aes(x = waste_type, weight = total_waste_generated,fill = waste_type ))+ 
  geom_bar(show.legend = F)+
  theme_bw()+
  coord_flip()+
  labs(
    title = "Total waste Generated per Waste Type from 2003-2017",
    subtitle = "As We can See in the Graph the Paper/Cardboard\nhave a higher Generated Waste with a 18,120,800 tonnes",
    x =  "Type of Waste",
    y = "Tonnes of Waste"
  )+
  theme(plot.title = element_text(size = 18,
                                  hjust = 2,
                                  face = "bold"),
        plot.subtitle =  element_text(size = 13))

Total Changes of waste Generated per Year from 2003-2007

Table

year_generated <- clean_waste_data %>%
  group_by(year) %>% 
  summarise(total_tonnes = sum(total_waste_generated_tonne))
year_generated
## # A tibble: 15 x 2
##    year  total_tonnes
##    <fct>        <dbl>
##  1 2003       4728200
##  2 2004       4789700
##  3 2005       5018200
##  4 2006       5220500
##  5 2007       5600800
##  6 2008       5970200
##  7 2009       6114100
##  8 2010       6517000
##  9 2011       6898300
## 10 2012       7269500
## 11 2013       7851500
## 12 2014       7514400
## 13 2015       7673500
## 14 2016       7814200
## 15 2017       7704300

Visualize

year_generated %>% 
  mutate(year = as.numeric(as.character(year))) %>% 
  ggplot(aes(year, total_tonnes))+
  geom_line(size = 1, color = "darkgreen")+
  geom_point(color = "darkgreen")+
  theme_bw()+
  labs(
    title  = "Total Changes of waste Generated  per Year from 2003-2017",
    subtitle = "There's a increase of Waste Generated all over\nthe year 2003 to 2017 ",
    y = "waste Tonnes"
  )+
  theme(plot.title = element_text(size = 15,
                                  hjust = .05,
                                  face = "bold"),
        plot.subtitle = element_text(size = 10))

Total waste Generated of tonnes per Waste Type per Year (2003-2017)

Table

total_waste_generated_year <- clean_waste_data %>% 
  group_by(waste_type, year) %>% 
  summarise(total_waste_generated = sum(total_waste_generated_tonne)) %>% 
  arrange(year)
## `summarise()` has grouped output by 'waste_type'. You can override using the `.groups` argument.
total_waste_generated_year
## # A tibble: 206 x 3
## # Groups:   waste_type [14]
##    waste_type          year  total_waste_generated
##    <chr>               <fct>                 <dbl>
##  1 Ash & Sludge        2003                  88500
##  2 Construction Debris 2003                 422900
##  3 Ferrous Metal       2003                 856700
##  4 Food waste          2003                 548000
##  5 Glass               2003                  65500
##  6 Horticultural Waste 2003                 304600
##  7 Non-ferrous Metals  2003                  93900
##  8 Others              2003                 103800
##  9 Paper/Cardboard     2003                1084700
## 10 Plastics            2003                 579900
## # ... with 196 more rows

Viusalize

total_waste_generated_year %>% 
  ggplot(aes(x = year, weight = total_waste_generated, fill = waste_type))+
  geom_bar()+
  labs(
    title= "Total waste Disposed of tonnes per Waste Type per Year (2003-2017)",
    subtitle = "All over the year from 2003 - 2017 based on Legend\nwe see on right side of graph the Construction Debris, Ferous Metal and\nPapers/Carboards have a higher number of tonnes Waste Generated",
    y = "waste Tonnes"
  )+
  theme(plot.title = element_text(size = 15,
                                  hjust = .05,
                                  face = "bold"),
        plot.subtitle = element_text(size = 10))

Total Changes of waste Generated per Waste per Year from 2003-2007

Table

total_waste_generated_year_change <- total_waste_generated_year %>% 
  mutate(year = as.numeric(as.character(year))) %>% 
  group_by(waste_type, year) %>% 
  summarise(total_waste_tonnes = sum(total_waste_generated)) %>% 
  arrange(year)
## `summarise()` has grouped output by 'waste_type'. You can override using the `.groups` argument.
total_waste_generated_year_change
## # A tibble: 206 x 3
## # Groups:   waste_type [14]
##    waste_type           year total_waste_tonnes
##    <chr>               <dbl>              <dbl>
##  1 Ash & Sludge         2003              88500
##  2 Construction Debris  2003             422900
##  3 Ferrous Metal        2003             856700
##  4 Food waste           2003             548000
##  5 Glass                2003              65500
##  6 Horticultural Waste  2003             304600
##  7 Non-ferrous Metals   2003              93900
##  8 Others               2003             103800
##  9 Paper/Cardboard      2003            1084700
## 10 Plastics             2003             579900
## # ... with 196 more rows

Visualize

total_waste_generated_year_change %>% 
  mutate(year = as.numeric(as.character(year))) %>% 
  ggplot(aes(year, total_waste_tonnes, colour = waste_type))+
  geom_line(size = 1, )+
  geom_point()+
  theme_bw()+
  labs(
    title  = "Total Changes of waste Generated per Waste Type per Year from 2003-2017",
    subtitle = "There's a increase of Waste Generated all over the year 2003 to 2017 but also some waste type\nis flatten or no changes happen to them.",
    y = "waste Tonnes"
  )+
  theme(plot.title = element_text(size = 15,
                                  hjust = .05,
                                  face = "bold"),
        plot.subtitle = element_text(size = 12),
        legend.position = "bottom",
        legend.text = element_text(size = 10))

Total Waste Disposed

Total Wasted Disposed Distribution

clean_waste_data %>% 
  ggplot(aes(waste_disposed_of_tonne)) +
  geom_histogram(aes(y = ..density..),bins= 10, fill = "blue", alpha = .6 )+
  geom_density(fill = "skyblue", alpha = .5, color = "skyblue")+
  labs(
    title = "Waste Disposed(Tonnes)  Distribution",
    subtitle = "The Distribution is skewed to the right meaning\nthat our some values more occur on the left side of the Graph\n or we can say that the Generate Waste is Almost beetween 0 - 200,000 tonnes "
  )+
  theme(plot.title = element_text(size = 18,
                                  hjust = .5,
                                  face = "bold"),
        plot.subtitle =  element_text(size = 10))

Total waste Disposed Waste Type (2003-2017)

Table

waste_disposed <- clean_waste_data %>% 
  group_by(waste_type) %>% 
  summarise(Total_waste_disposed = sum(waste_disposed_of_tonne)) %>% 
  arrange(-Total_waste_disposed)
waste_disposed
## # A tibble: 14 x 2
##    waste_type          Total_waste_disposed
##    <chr>                              <dbl>
##  1 Plastics                        10016800
##  2 Paper/Cardboard                  8915500
##  3 Food waste                       8728500
##  4 Others                           4155200
##  5 Ash & Sludge                     2067300
##  6 Horticultural Waste              1970600
##  7 Textile/Leather                  1724000
##  8 Wood/Timber                      1621300
##  9 Glass                             874800
## 10 Ferrous Metal                     772100
## 11 Construction Debris               252000
## 12 Non-ferrous Metals                223000
## 13 Used Slag                         211400
## 14 Scrap Tyres                        60900

Visualize

waste_disposed %>% 
  mutate(waste_type = reorder(waste_type, Total_waste_disposed)) %>% 
  ggplot(aes(x = waste_type, weight = Total_waste_disposed, fill = waste_type))+
  geom_bar(show.legend = F)+
  theme_bw()+
  coord_flip()+
 labs(
    title = "Total waste Disposed per Waste Type from 2003-2017",
    subtitle = "As We can See in the Graph the Plastics\nhave a higher Generated Waste with a 10,016,800 tonnes",
    x =  "Type of Waste",
    y = "Tonnes of Waste"
  )+
  theme(plot.title = element_text(size = 18,
                                  hjust = 2,
                                  face = "bold"),
        plot.subtitle =  element_text(size = 13))

Total Changes of waste Disposed per Year from 2003-2007

Table

year_disposed <- clean_waste_data %>%
  group_by(year) %>% 
  summarise(total_tonnes = sum(waste_disposed_of_tonne))
year_disposed
## # A tibble: 15 x 2
##    year  total_tonnes
##    <fct>        <dbl>
##  1 2003       2505000
##  2 2004       2482600
##  3 2005       2548800
##  4 2006       2563600
##  5 2007       2566000
##  6 2008       2627600
##  7 2009       2628900
##  8 2010       2759500
##  9 2011       2859500
## 10 2012       2933900
## 11 2013       3025600
## 12 2014       3043400
## 13 2015       3023800
## 14 2016       3045200
## 15 2017       2980000

Visualize

year_disposed %>% 
  mutate(year = as.numeric(as.character(year))) %>% 
  ggplot(aes(year, total_tonnes))+
  geom_line(size = 1, color = "orange")+
  geom_point(size = 2, color = "orange")+
  theme_bw()+
  labs(
    title  = "Total Changes of waste Disposed  per Year from 2003-2017",
    subtitle = "There's a increase of Waste Disposed all over the year 2003 to 2017 ",
    y = "waste Tonnes"
  )+
  theme(plot.title = element_text(size = 15,
                                  hjust = .05,
                                  face = "bold"),
        plot.subtitle = element_text(size = 10))

Total waste Disposed of tonnes per Waste Type per Year (2003-2017)

Table

total_waste_disposed_year <- clean_waste_data %>% 
  group_by(waste_type, year) %>% 
  summarise(total_waste_disposed = sum(waste_disposed_of_tonne)) %>% 
  arrange(-total_waste_disposed)
## `summarise()` has grouped output by 'waste_type'. You can override using the `.groups` argument.
total_waste_disposed_year
## # A tibble: 206 x 3
## # Groups:   waste_type [14]
##    waste_type year  total_waste_disposed
##    <chr>      <fct>                <dbl>
##  1 Plastics   2014                789000
##  2 Plastics   2015                766800
##  3 Plastics   2017                763400
##  4 Plastics   2016                762700
##  5 Plastics   2013                741100
##  6 Plastics   2012                721300
##  7 Food waste 2013                696000
##  8 Food waste 2014                687200
##  9 Food waste 2015                681400
## 10 Food waste 2016                679900
## # ... with 196 more rows

Visualize

total_waste_disposed_year %>% 
  ggplot(aes(x = year, weight = total_waste_disposed, fill = waste_type))+
  geom_bar()+
  labs(
    title= "Total waste Generated of tonnes per Waste Type per Year (2003-2017)",
    subtitle = "All over the year from 2003 - 2017 based on Legend we see on right side of graphthe Food Waste,\nPaper/Carboardand Plasticshave a higher number of tonnes Waste Disposed",
    y = "waste Tonnes"
  )+
  theme(plot.title = element_text(size = 15,
                                  hjust = .05,
                                  face = "bold"),
        plot.subtitle = element_text(size = 10))

Total changes of Waste Dispose per waste type per Year(2003-20717)

options(scipen = 999)
total_waste_disposed_year %>% 
  mutate(year = as.numeric(as.character(year))) %>% 
  ggplot(aes(year, total_waste_disposed, colour = waste_type))+
  geom_line()+
  geom_point()+
  theme_minimal()+
  labs(
    title  = "Total Changes of waste Disposed  per Year from 2003-2017",
    subtitle = "Like waste Generated the Waste Disposal have a increase all over the year\nalso, some waste type have no changes happen",
    y = "waste Tonnes"
  )+
  theme(plot.title = element_text(size = 15,
                                  hjust = .05,
                                  face = "bold"),
        plot.subtitle = element_text(size = 10))

Total Recycle Waste

Total Wasted Recycle Distribution

clean_waste_data %>% 
  ggplot(aes(total_waste_recycled_tonne)) +
  geom_histogram(aes(y = ..density..),bins= 10, fill = "blue", alpha = .6 )+
  geom_density(fill = "skyblue", alpha = .5, color = "skyblue")+
  labs(
    title = "Waste Recycle(Tonnes)  Distribution",
    subtitle = "The Distribution is skewed to the right meaning\nthat our some values more occur on the left side of the Graph\n or we can say that the Generate Waste is Almost beetween 0 - 500,000 tonnes "
  )+
  theme(plot.title = element_text(size = 18,
                                  hjust = .5,
                                  face = "bold"),
        plot.subtitle =  element_text(size = 10))

Total Recycle Waste per waste type(2003-2007)

Table

waste_recycled <- clean_waste_data %>% 
  group_by(waste_type) %>% 
  summarise(total_waste_recycled = sum(total_waste_recycled_tonne)) %>% 
  arrange(-total_waste_recycled)
waste_recycled
## # A tibble: 14 x 2
##    waste_type          total_waste_recycled
##    <chr>                              <dbl>
##  1 Construction Debris             15666300
##  2 Ferrous Metal                   15508800
##  3 Paper/Cardboard                  9205200
##  4 Used Slag                        4130700
##  5 Wood/Timber                      2994200
##  6 Horticultural Waste              1962800
##  7 Ash & Sludge                     1361400
##  8 Non-ferrous Metals               1318500
##  9 Food waste                       1147900
## 10 Plastics                         1050900
## 11 Scrap Tyres                       298400
## 12 Glass                             184800
## 13 Textile/Leather                   160000
## 14 Others                            101200

Visualize

waste_recycled %>% 
  mutate(waste_type = reorder(waste_type, total_waste_recycled)) %>% 
  ggplot(aes(waste_type, weight = total_waste_recycled, fill = waste_type))+
  coord_flip()+
  geom_bar()+
  labs(
    title = "Total waste Recycle per waste type(2003-2017",
    subtitle = "The graph represent that Ferrous Metal and Construction Debris Have almost same value\nof aproximetly 15m tonnes recycled  ",
    x = "Waste Type",
    y = "waste Tonnes"
  )+
  theme(
    plot.title = element_text(size = 18,
                               hjust = .5,
                               face = "bold"
                               ),
    plot.subtitle = element_text(size = 12)
  )

Total Changes of Recycle Waste per Year type(2003-2007)

Table

year_recycled <- clean_waste_data %>%
  group_by(year) %>% 
  summarise(total_tonnes = sum(total_waste_recycled_tonne))
year_recycled
## # A tibble: 15 x 2
##    year  total_tonnes
##    <fct>        <dbl>
##  1 2003       2223200
##  2 2004       2307100
##  3 2005       2469400
##  4 2006       2656900
##  5 2007       3034800
##  6 2008       3342600
##  7 2009       3485200
##  8 2010       3757500
##  9 2011       4038800
## 10 2012       4335600
## 11 2013       4825900
## 12 2014       4471100
## 13 2015       4649700
## 14 2016       4769000
## 15 2017       4724300

Visualize

year_recycled %>% 
  mutate(year = as.numeric(as.character(year))) %>% 
  ggplot(aes(year, total_tonnes))+
  geom_line(size = 1, color = "brown")+
  geom_point(color = "brown")+
  theme_bw()+
  labs(
    title  = "Total Changes of waste Recycled  per Year from 2003-2017",
    subtitle = "There's a increase of Waste Recycled all over the year 2003 to 2017 ",
    y = "waste Tonnes"
  )+
  theme(plot.title = element_text(size = 15,
                                  hjust = .05,
                                  face = "bold"),
        plot.subtitle = element_text(size = 10))

Total waste Recycled of tonnes per Waste Type per Year (2003-2017)

Table

total_waste_recycled_year <- clean_waste_data %>% 
  group_by(waste_type, year) %>% 
  summarise(total_waste_recycled = sum(total_waste_recycled_tonne)) %>% 
  arrange(year)
## `summarise()` has grouped output by 'waste_type'. You can override using the `.groups` argument.
total_waste_recycled_year
## # A tibble: 206 x 3
## # Groups:   waste_type [14]
##    waste_type          year  total_waste_recycled
##    <chr>               <fct>                <dbl>
##  1 Ash & Sludge        2003                     0
##  2 Construction Debris 2003                398300
##  3 Ferrous Metal       2003                799000
##  4 Food waste          2003                 32900
##  5 Glass               2003                  6200
##  6 Horticultural Waste 2003                119300
##  7 Non-ferrous Metals  2003                 75800
##  8 Others              2003                     0
##  9 Paper/Cardboard     2003                466200
## 10 Plastics            2003                 39100
## # ... with 196 more rows

Visualize

total_waste_recycled_year %>% 
  ggplot(aes(x = year, weight = total_waste_recycled, fill = waste_type))+
  geom_bar()+
  labs(
    title= "Total waste Generated of tonnes per Waste Type per Year (2003-2017)",
    subtitle = "All over the year from 2003 - 2017 based on Legend we see on right side of graph the Construction and Ferrous Metal have a higher number of tonnes Waste recycle",
    y = "waste Tonnes"
  )+
  theme(plot.title = element_text(size = 15,
                                  hjust = .05,
                                  face = "bold"),
        plot.subtitle = element_text(size = 10))

Total changes of Waste Dispose per waste type per Year(2003-20717)

options(scipen = 999)
total_waste_recycled_year %>% 
  mutate(year = as.numeric(as.character(year))) %>% 
  ggplot(aes(year, total_waste_recycled, colour = waste_type))+
  geom_line()+
  geom_point()+
  theme_minimal()+
  labs(
    title  = "Total Changes of waste Disposed  per Year from 2003-2017",
    subtitle = "Like other graph the Waste recycled have a increase all over the year\nalso, some waste type have no changes happen",
    y = "waste Tonnes"
  )+
  theme(plot.title = element_text(size = 15,
                                  hjust = .05,
                                  face = "bold"),
        plot.subtitle = element_text(size = 10))