| R2_ed | R2_pl | R2_co | Total |
|---|---|---|---|
| 0.0582069 | 0.0125362 | 0.0256489 | 0.0963921 |
| 0.0603327 | 0.0323289 | 0.0164754 | 0.1091371 |
| 0.0012437 | 0.0044102 | 0.0009150 | 0.0065689 |
| 0.0521764 | 0.0118130 | 0.0699642 | 0.1339536 |
| 0.0282109 | 0.0222681 | 0.0164370 | 0.0669161 |
| 0.0076379 | 0.0307104 | 0.0336740 | 0.0720223 |
| 0.0109981 | 0.0035723 | 0.0026478 | 0.0172182 |
| 0.0648037 | 0.0051982 | 0.0021384 | 0.0721403 |
| 0.0148981 | 0.0165036 | 0.0618014 | 0.0932031 |
| 0.0229694 | 0.0308875 | 0.0199420 | 0.0737989 |
| R2_ed | R2_pl_2SD | R2_co_2SD | Total |
|---|---|---|---|
| 0.0583187 | 0.0072004 | 0.0125237 | 0.0780428 |
| 0.0532253 | 0.0282768 | 0.0137331 | 0.0952351 |
| 0.0009224 | 0.0024866 | 0.0092722 | 0.0126813 |
| 0.0521638 | 0.0073939 | 0.0532127 | 0.1127705 |
| 0.0287627 | 0.0211401 | 0.0125461 | 0.0624489 |
| 0.0095261 | 0.0355451 | 0.0460438 | 0.0911150 |
| 0.0101260 | 0.0032751 | 0.0017405 | 0.0151415 |
| 0.0619713 | 0.0058854 | 0.0127016 | 0.0805583 |
| 0.0130481 | 0.0169751 | 0.0572742 | 0.0872973 |
| 0.0227211 | 0.0349849 | 0.0210238 | 0.0787297 |
0.05 is the mean R2 value across various thresholds
## Error in t.test.default(x = c(0.350026007710802, 0.231482008727155, -0.217682024847822, : not enough 'y' observations
## Error in t.test.default(x = c(0.0272469407805695, 0.0240571261242433, : not enough 'y' observations
## Error in stats::oneway.test(func ~ pl, data = df, var.equal = FALSE): not enough observations
## Error in stats::oneway.test(func ~ pl, data = df, var.equal = FALSE): not enough observations
## Error in t.test.default(x = c(0.0272469407805695, 0.0240571261242433, : not enough 'y' observations
## Error in stats::oneway.test(func ~ pl, data = df, var.equal = FALSE): not enough observations
## Error in t.test.default(x = numeric(0), y = numeric(0), p.adjust.method = "holm", : not enough 'x' observations
## Error in t.test.default(x = numeric(0), y = numeric(0), p.adjust.method = "holm", : not enough 'x' observations
## Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]): contrasts can be applied only to factors with 2 or more levels
## Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]): contrasts can be applied only to factors with 2 or more levels
The R2 contributions across all ROIs differ when considering the total R2 for an MLR model with PL_continuous versus PL_categorical. This difference was assessed by a paired, two-sided t-test.
t = -5.7132, df = 463, p-value = 1.986e-08
95 percent confidence interval: -0.005609400 -0.002738195
mean of the differences: -0.004173797 (R2Total_PLcategorical - R2Total_PLcontinuous)
Analytic Procedure Map