library(ipumsr)
library(survey, quietly = T)
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
## dotchart
library(tidyverse, quietly = T)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
## ✓ tibble 3.1.6 ✓ dplyr 1.0.8
## ✓ tidyr 1.2.0 ✓ stringr 1.4.0
## ✓ readr 2.0.1 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x tidyr::expand() masks Matrix::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x tidyr::pack() masks Matrix::pack()
## x tidyr::unpack() masks Matrix::unpack()
library(car, quietly = T)
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
## The following object is masked from 'package:purrr':
##
## some
library(ggplot2, quietly = T)
library(tigris, quietly = T)
## To enable
## caching of data, set `options(tigris_use_cache = TRUE)` in your R script or .Rprofile.
library(classInt, quietly = T)
library(tmap, quietly = T)
ddi <- read_ipums_ddi("/Users/drewschaefer/Downloads/GIS-Dem7093/GIS/usa_00005.xml")
data <- read_ipums_micro(ddi)
## Use of data from IPUMS USA is subject to conditions including that users should
## cite the data appropriately. Use command `ipums_conditions()` for more details.
data<-haven::zap_labels(data) #necessary to avoid problems with "labelled" data class
names(data)<-tolower(names(data))
data$pwt <- data$perwt
data$hwt <- data$hhwt
data$samehouse <- Recode(data$migrate1, recodes = "0=NA; 1=1; 2:9=0")
options(tigris_class = "sf")
pumas<-pumas(state = "CA",
year = 2018,
cb = T)
##
|
| | 0%
|
|= | 1%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 13%
|
|========= | 14%
|
|========== | 14%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============= | 18%
|
|============= | 19%
|
|============== | 20%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 23%
|
|================== | 25%
|
|=================== | 27%
|
|==================== | 29%
|
|====================== | 31%
|
|======================= | 33%
|
|======================== | 35%
|
|========================== | 37%
|
|=========================== | 38%
|
|============================ | 40%
|
|============================== | 42%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 46%
|
|================================== | 48%
|
|=================================== | 51%
|
|===================================== | 53%
|
|====================================== | 55%
|
|======================================== | 57%
|
|========================================== | 59%
|
|=========================================== | 62%
|
|============================================= | 64%
|
|============================================== | 66%
|
|================================================ | 68%
|
|================================================= | 70%
|
|=================================================== | 72%
|
|==================================================== | 75%
|
|======================================================= | 79%
|
|========================================================= | 81%
|
|============================================================ | 86%
|
|============================================================== | 88%
|
|================================================================ | 91%
|
|================================================================= | 93%
|
|=================================================================== | 96%
|
|======================================================================| 100%
plot(pumas["GEOID10"],
main = "Public Use Microdata Areas in California")
mapview::mapview(pumas, zcol= "GEOID10")
## Warning: replacing previous import 'terra::extend' by 'raster::extend' when
## loading 'satellite'
## Warning: replacing previous import 'terra::crop' by 'raster::crop' when loading
## 'satellite'
## Warning: multiple methods tables found for 'crop'
## Warning: multiple methods tables found for 'extend'
des<-svydesign(ids = ~cluster,
strata = ~ strata,
weights = ~pwt,
data = data)
puma_est_house<-svyby(formula = ~samehouse,
by = ~puma,
design = des,
FUN=svymean,
na.rm = TRUE )
pumas$puma<-as.numeric(pumas$PUMACE10)
geo1<-left_join(pumas, puma_est_house, by=c("puma"= "puma"))
head(geo1)
## Simple feature collection with 6 features and 11 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -123.0688 ymin: 32.56534 xmax: -116.0811 ymax: 41.18493
## Geodetic CRS: NAD83
## STATEFP10 PUMACE10 AFFGEOID10 GEOID10
## 1 06 04101 7950000US0604101 0604101
## 2 06 01309 7950000US0601309 0601309
## 3 06 07104 7950000US0607104 0607104
## 4 06 08900 7950000US0608900 0608900
## 5 06 05905 7950000US0605905 0605905
## 6 06 07302 7950000US0607302 0607302
## NAME10
## 1 Marin County (North & West)--Novato & San Rafael (North) Cities
## 2 Contra Costa County (East)--Brentwood & Oakley Cities
## 3 San Bernardino County (Southwest)--Phelan, Lake Arrowhead & Big Bear City
## 4 Shasta County--Redding City
## 5 Orange County (Northeast)--Lake Forest, Irvine (North) Cities & Silverado
## 6 San Diego County (North & East)--Fallbrook, Alpine & Valley Center
## LSAD10 ALAND10 AWATER10 puma samehouse se
## 1 P0 1218249181 765416684 4101 0.8638056 0.011133363
## 2 P0 365953896 56398672 1309 0.8926442 0.010129984
## 3 P0 2957261879 22807769 7104 0.8857259 0.009408765
## 4 P0 9778230074 186479459 8900 0.8575320 0.007507578
## 5 P0 374559889 2183758 5905 0.8663146 0.007305893
## 6 P0 6961523076 32694855 7302 0.8672727 0.009832366
## geometry
## 1 MULTIPOLYGON (((-123.0241 3...
## 2 MULTIPOLYGON (((-121.7789 3...
## 3 MULTIPOLYGON (((-117.6817 3...
## 4 MULTIPOLYGON (((-123.0688 4...
## 5 MULTIPOLYGON (((-117.8449 3...
## 6 MULTIPOLYGON (((-117.5097 3...
tmap_mode("view")
## tmap mode set to interactive viewing
geo1%>%
tm_shape()+
tm_polygons("samehouse",
style="kmeans",
n=8,
legend.hist = TRUE) +
tm_layout(legend.outside = TRUE,
title = "Living in same house rate in California PUMAs \n 2015-2019")