library(car)
## Loading required package: carData
library(ggplot2)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(car)
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(survey)
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
## 
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
## 
##     dotchart
library(questionr)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v tibble  3.1.6     v purrr   0.3.4
## v tidyr   1.1.4     v stringr 1.4.0
## v readr   2.1.1     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x tidyr::expand() masks Matrix::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
## x tidyr::pack()   masks Matrix::pack()
## x dplyr::recode() masks car::recode()
## x purrr::some()   masks car::some()
## x tidyr::unpack() masks Matrix::unpack()
library(broom)
library(emmeans)
library(ipumsr)
## Warning: package 'ipumsr' was built under R version 4.1.3
library(table1)
## 
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
## 
##     units, units<-
library(haven)
X38199_0001_Data <- read_dta("38199-0001-Data.dta")
View(X38199_0001_Data)
nams<-names(X38199_0001_Data)
head(nams, n=10)
##  [1] "SID"                 "STARTDATE"           "ENDDATE"            
##  [4] "USERLANGUAGE"        "CURRENT_RES_LEN_D12" "DETROIT_RES_LEN_D12"
##  [7] "HOUSING_D12"         "HOME_OWNER_D12"      "HOME_TYPE_D12"      
## [10] "HOME_TYPE_TEXT_D12"
newnames<-tolower(gsub(pattern = "_",replacement =  "",x =  nams))
names(X38199_0001_Data)<-newnames
## felt anxious
X38199_0001_Data$felt_anxious<-Recode(X38199_0001_Data$mhanxietyd12, recodes="1:2=0; 3:4=1;else=NA", as.factor=T)
summary(X38199_0001_Data$felt_anxious, na.rm = TRUE)
##    0    1 NA's 
## 1634  514   90
## felt depressed
X38199_0001_Data$felt_depressed<-Recode(X38199_0001_Data$mhdepressd12, recodes="1:2=0; 3:4=1;else=NA", as.factor=T)
summary(X38199_0001_Data$felt_depressed, na.rm = TRUE)
##    0    1 NA's 
## 1634  506   98
## felt worried
X38199_0001_Data$felt_worried<-Recode(X38199_0001_Data$mhworryd12, recodes="1:2=0; 3:4=1;else=NA", as.factor=T)
summary(X38199_0001_Data$felt_worried, na.rm = TRUE)
##    0    1 NA's 
## 1672  464  102
## income less than 35,000
X38199_0001_Data$inclessthn35000<-Recode(X38199_0001_Data$income1d12, recodes="1=1; 2=0;else=NA", as.factor=T)
summary(X38199_0001_Data$inclessthn35000, na.rm = TRUE)
##    0    1 NA's 
##  876 1256  106
## gender
X38199_0001_Data$gendercat <- as.numeric(X38199_0001_Data$gendercat)
X38199_0001_Data$gender5<-Recode(X38199_0001_Data$gendercat, recodes="1='male';2='female';3='other'; else=NA", as.factor=T)
X38199_0001_Data$gender5<-relevel(X38199_0001_Data$gender5, ref='male')
summary(X38199_0001_Data$gender5, na.rm = TRUE)
##   male female  other   NA's 
##    648   1553     11     26
## Race
X38199_0001_Data$racecat4 <- as.numeric(X38199_0001_Data$racecat4)
X38199_0001_Data$race_eth<-Recode(X38199_0001_Data$racecat4, recodes="1='white';2='black';3='other'; 4='hispanic'; else=NA", as.factor=T)
X38199_0001_Data$race_eth<-relevel(X38199_0001_Data$race_eth, ref='white')
summary(X38199_0001_Data$race_eth, na.rm = TRUE)
##    white    black hispanic    other     NA's 
##      341     1487      171      165       74
##educ
X38199_0001_Data$educat4 <- as.numeric(X38199_0001_Data$educat4)
X38199_0001_Data$educa <-Recode(X38199_0001_Data$educat4, recodes="1='lsshgh';2='hghsch';3='somecol'; 4='col'; else=NA", as.factor=T)
X38199_0001_Data$educa <-relevel(X38199_0001_Data$educa, ref='col')
summary(X38199_0001_Data$educa , na.rm = TRUE)
##     col  hghsch  lsshgh somecol    NA's 
##     722     863     173     425      55
##age
X38199_0001_Data$agecat4 <- as.numeric(X38199_0001_Data$agecat4)
X38199_0001_Data$new_age <-Recode(X38199_0001_Data$agecat4,recodes="1='youngeradult';2:3='middleadult';
                                  4='old'; else=NA", as.factor=T)
X38199_0001_Data$new_age<-relevel(X38199_0001_Data$new_age, ref='old')
summary(X38199_0001_Data$new_age , na.rm = TRUE)
##          old  middleadult youngeradult         NA's 
##          468         1210          499           61
##qualityoflife
X38199_0001_Data$nbqold12 <- as.numeric(X38199_0001_Data$nbqold12)
X38199_0001_Data$qol <-Recode(X38199_0001_Data$nbqold12,recodes="1='improving';2='declining'; 3:4='unsure';
                                   else=NA", as.factor=T)
X38199_0001_Data$qol<-relevel(X38199_0001_Data$qol, ref='improving')
summary(X38199_0001_Data$qol , na.rm = TRUE)
## improving declining    unsure      NA's 
##       799       431      1002         6
##neighborhoodsafety
X38199_0001_Data$nbchngsafetyd12 <- as.numeric(X38199_0001_Data$nbchngsafetyd12)
X38199_0001_Data$nbsafe <-Recode(X38199_0001_Data$nbchngsafetyd12,recodes="1='improving';2='declining'; 3:4='unsure';
                                   else=NA", as.factor=T)
X38199_0001_Data$nbsafe<-relevel(X38199_0001_Data$nbsafe, ref='improving')
summary(X38199_0001_Data$nbsafe , na.rm = TRUE)
## improving declining    unsure      NA's 
##       324       466      1440         8
##infrastructure
X38199_0001_Data$satisinfra<-Recode(X38199_0001_Data$nbsatisinfrastd12, recodes="1:2=1; 4:5=0;else=NA", as.factor=T)
summary(X38199_0001_Data$satisinfra, na.rm = TRUE)
##    0    1 NA's 
##  980  991  267
##crime
X38199_0001_Data$satiscrime<-Recode(X38199_0001_Data$nbsatiscrimed12, recodes="1:2=1; 4:5=0;else=NA", as.factor=T)
summary(X38199_0001_Data$satiscrime, na.rm = TRUE)
##    0    1 NA's 
##  480 1167  591
##lots
X38199_0001_Data$satislot<-Recode(X38199_0001_Data$nbsatislotsd12, recodes="1:2=1; 4:5=0;else=NA", as.factor=T)
summary(X38199_0001_Data$satislot, na.rm = TRUE)
##    0    1 NA's 
##  626 1106  506
##housequal
X38199_0001_Data$housequal<-Recode(X38199_0001_Data$nbsatishousequald12, recodes="1:2=1; 4:5=0;else=NA", as.factor=T)
summary(X38199_0001_Data$housequal, na.rm = TRUE)
##    0    1 NA's 
##  946  923  369
##parkqual
X38199_0001_Data$parkqual<-Recode(X38199_0001_Data$parksqualityd12, recodes="1:2=1; 4:5=0;else=NA", as.factor=T)
summary(X38199_0001_Data$parkqual, na.rm = TRUE)
##    0    1 NA's 
##  383  966  889
##safewalk
X38199_0001_Data$walksafetyd12 <- as.numeric(X38199_0001_Data$walksafetyd12)
X38199_0001_Data$safewalking <-Recode(X38199_0001_Data$walksafetyd12,recodes="1='notsafe';2:3='safe'; 3:4='unsure';
                                   else=NA", as.factor=T)
X38199_0001_Data$safewalking<-relevel(X38199_0001_Data$safewalking, ref='safe')
summary(X38199_0001_Data$safewalking , na.rm = TRUE)
##    safe notsafe  unsure    NA's 
##    1660     426     145       7
##safehome
X38199_0001_Data$nbsafetyd12 <- as.numeric(X38199_0001_Data$nbsafetyd12)
X38199_0001_Data$safehome<-Recode(X38199_0001_Data$nbsafetyd12,recodes="1='notsafe';2:3='safe'; 3:4='unsure';
                                   else=NA", as.factor=T)
X38199_0001_Data$safehome<-relevel(X38199_0001_Data$safehome, ref='safe')
summary(X38199_0001_Data$safehome , na.rm = TRUE)
##    safe notsafe  unsure    NA's 
##    2032     173      30       3
sub2<-X38199_0001_Data%>%
  select(felt_depressed, felt_anxious, felt_worried, inclessthn35000, gender5, race_eth, educa, new_age, qol, nbsafe, satisinfra, satiscrime, satislot, housequal, parkqual, safewalking, safehome, weights) %>%
  filter( complete.cases( . ))
table1(~ new_age + race_eth + educa + inclessthn35000 + gender5| felt_anxious,  data=sub2, overall="Total")
0
(N=483)
1
(N=165)
Total
(N=648)
new_age
old 103 (21.3%) 17 (10.3%) 120 (18.5%)
middleadult 279 (57.8%) 99 (60.0%) 378 (58.3%)
youngeradult 101 (20.9%) 49 (29.7%) 150 (23.1%)
race_eth
white 71 (14.7%) 31 (18.8%) 102 (15.7%)
black 350 (72.5%) 103 (62.4%) 453 (69.9%)
hispanic 30 (6.2%) 16 (9.7%) 46 (7.1%)
other 32 (6.6%) 15 (9.1%) 47 (7.3%)
educa
col 155 (32.1%) 52 (31.5%) 207 (31.9%)
hghsch 192 (39.8%) 72 (43.6%) 264 (40.7%)
lsshgh 39 (8.1%) 14 (8.5%) 53 (8.2%)
somecol 97 (20.1%) 27 (16.4%) 124 (19.1%)
inclessthn35000
0 192 (39.8%) 57 (34.5%) 249 (38.4%)
1 291 (60.2%) 108 (65.5%) 399 (61.6%)
gender5
male 138 (28.6%) 40 (24.2%) 178 (27.5%)
female 344 (71.2%) 124 (75.2%) 468 (72.2%)
other 1 (0.2%) 1 (0.6%) 2 (0.3%)
table1(~ new_age + race_eth + educa + inclessthn35000 + gender5| felt_worried,  data=sub2, overall="Total")
0
(N=492)
1
(N=156)
Total
(N=648)
new_age
old 102 (20.7%) 18 (11.5%) 120 (18.5%)
middleadult 280 (56.9%) 98 (62.8%) 378 (58.3%)
youngeradult 110 (22.4%) 40 (25.6%) 150 (23.1%)
race_eth
white 76 (15.4%) 26 (16.7%) 102 (15.7%)
black 351 (71.3%) 102 (65.4%) 453 (69.9%)
hispanic 35 (7.1%) 11 (7.1%) 46 (7.1%)
other 30 (6.1%) 17 (10.9%) 47 (7.3%)
educa
col 164 (33.3%) 43 (27.6%) 207 (31.9%)
hghsch 192 (39.0%) 72 (46.2%) 264 (40.7%)
lsshgh 41 (8.3%) 12 (7.7%) 53 (8.2%)
somecol 95 (19.3%) 29 (18.6%) 124 (19.1%)
inclessthn35000
0 202 (41.1%) 47 (30.1%) 249 (38.4%)
1 290 (58.9%) 109 (69.9%) 399 (61.6%)
gender5
male 139 (28.3%) 39 (25.0%) 178 (27.5%)
female 353 (71.7%) 115 (73.7%) 468 (72.2%)
other 0 (0%) 2 (1.3%) 2 (0.3%)
table1(~ new_age + race_eth + educa + inclessthn35000 + gender5| felt_depressed,  data=sub2, overall="Total")
0
(N=483)
1
(N=165)
Total
(N=648)
new_age
old 103 (21.3%) 17 (10.3%) 120 (18.5%)
middleadult 273 (56.5%) 105 (63.6%) 378 (58.3%)
youngeradult 107 (22.2%) 43 (26.1%) 150 (23.1%)
race_eth
white 82 (17.0%) 20 (12.1%) 102 (15.7%)
black 337 (69.8%) 116 (70.3%) 453 (69.9%)
hispanic 34 (7.0%) 12 (7.3%) 46 (7.1%)
other 30 (6.2%) 17 (10.3%) 47 (7.3%)
educa
col 169 (35.0%) 38 (23.0%) 207 (31.9%)
hghsch 185 (38.3%) 79 (47.9%) 264 (40.7%)
lsshgh 35 (7.2%) 18 (10.9%) 53 (8.2%)
somecol 94 (19.5%) 30 (18.2%) 124 (19.1%)
inclessthn35000
0 197 (40.8%) 52 (31.5%) 249 (38.4%)
1 286 (59.2%) 113 (68.5%) 399 (61.6%)
gender5
male 144 (29.8%) 34 (20.6%) 178 (27.5%)
female 338 (70.0%) 130 (78.8%) 468 (72.2%)
other 1 (0.2%) 1 (0.6%) 2 (0.3%)
options(survey.lonely.psu = "adjust")
des<-svydesign(ids= ~1,
               
               weights= ~weights
               , data = sub2 )

fit.logit1<-svyglm(felt_anxious ~ new_age + race_eth + educa + inclessthn35000 + gender5,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit2<-svyglm(felt_anxious ~ new_age + race_eth + educa + inclessthn35000 + gender5 + qol,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit3<-svyglm(felt_anxious ~ new_age + race_eth + educa + inclessthn35000 + gender5 + nbsafe,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit4<-svyglm(felt_anxious ~ new_age + race_eth + educa + inclessthn35000 + gender5 + satisinfra,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit5<-svyglm(felt_anxious ~ new_age + race_eth + educa + inclessthn35000 + gender5 + satiscrime,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit6<-svyglm(felt_anxious ~ new_age + race_eth + educa + inclessthn35000 + gender5 + satislot,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit7<-svyglm(felt_anxious ~ new_age + race_eth + educa + inclessthn35000 + gender5 + housequal,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit8<-svyglm(felt_anxious ~ new_age + race_eth + educa + inclessthn35000 + gender5 + parkqual,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit9<-svyglm(felt_anxious ~ new_age + race_eth + educa + inclessthn35000 + gender5 + safewalking,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit9<-svyglm(felt_anxious ~ new_age + race_eth + educa + inclessthn35000 + gender5 + safehome,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit10<-svyglm(felt_anxious ~ new_age + race_eth + educa + inclessthn35000 + gender5 + safewalking,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit11<-svyglm(felt_anxious ~ new_age + race_eth + educa + inclessthn35000 + gender5 + qol + satisinfra + 
                      satislot + housequal + parkqual,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit12<-svyglm(felt_anxious ~ new_age + race_eth + educa + inclessthn35000 + gender5 + nbsafe + satiscrime + 
                      safehome + safewalking,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit13<-svyglm(felt_anxious ~ new_age + race_eth + educa + inclessthn35000 + gender5 + + qol + satisinfra + 
                      satislot + housequal + parkqual + nbsafe + satiscrime + 
                      safehome + safewalking,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit1%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -1.381 0.448 -3.086 0.002 0.251 0.104 0.604
new_agemiddleadult 0.445 0.397 1.122 0.262 1.561 0.717 3.397
new_ageyoungeradult 0.861 0.440 1.959 0.051 2.367 0.999 5.603
race_ethblack -0.601 0.387 -1.554 0.121 0.548 0.257 1.170
race_ethhispanic -0.433 0.535 -0.809 0.419 0.649 0.227 1.851
race_ethother -0.419 0.518 -0.809 0.419 0.658 0.239 1.814
educahghsch -0.067 0.354 -0.191 0.849 0.935 0.467 1.871
educalsshgh -0.260 0.469 -0.554 0.580 0.771 0.308 1.933
educasomecol -0.359 0.405 -0.887 0.376 0.698 0.315 1.545
inclessthn350001 0.389 0.318 1.223 0.222 1.475 0.791 2.749
gender5female 0.173 0.292 0.591 0.555 1.189 0.670 2.108
gender5other 1.757 1.251 1.405 0.161 5.797 0.499 67.273
fit.logit2%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -1.711 0.487 -3.516 0.000 0.181 0.070 0.469
new_agemiddleadult 0.486 0.402 1.208 0.228 1.625 0.739 3.574
new_ageyoungeradult 0.919 0.449 2.047 0.041 2.506 1.040 6.039
race_ethblack -0.586 0.368 -1.592 0.112 0.556 0.270 1.145
race_ethhispanic -0.393 0.503 -0.782 0.435 0.675 0.252 1.808
race_ethother -0.326 0.502 -0.648 0.517 0.722 0.270 1.933
educahghsch -0.061 0.342 -0.178 0.859 0.941 0.482 1.838
educalsshgh -0.177 0.465 -0.381 0.703 0.838 0.337 2.083
educasomecol -0.321 0.403 -0.795 0.427 0.726 0.329 1.600
inclessthn350001 0.378 0.313 1.209 0.227 1.460 0.791 2.696
gender5female 0.136 0.289 0.469 0.639 1.145 0.650 2.018
gender5other 1.995 1.280 1.558 0.120 7.351 0.598 90.393
qoldeclining 0.752 0.340 2.210 0.027 2.121 1.089 4.133
qolunsure 0.169 0.324 0.522 0.602 1.184 0.628 2.233
fit.logit3%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -1.513 0.492 -3.075 0.002 0.220 0.084 0.578
new_agemiddleadult 0.385 0.402 0.958 0.338 1.470 0.668 3.232
new_ageyoungeradult 0.759 0.451 1.684 0.093 2.135 0.883 5.164
race_ethblack -0.651 0.360 -1.806 0.071 0.522 0.257 1.057
race_ethhispanic -0.442 0.506 -0.872 0.384 0.643 0.238 1.735
race_ethother -0.446 0.511 -0.872 0.383 0.640 0.235 1.743
educahghsch -0.107 0.337 -0.319 0.750 0.898 0.464 1.740
educalsshgh -0.246 0.473 -0.521 0.603 0.782 0.309 1.975
educasomecol -0.381 0.396 -0.963 0.336 0.683 0.315 1.484
inclessthn350001 0.411 0.303 1.358 0.175 1.508 0.833 2.730
gender5female 0.150 0.285 0.526 0.599 1.161 0.665 2.030
gender5other 1.941 1.240 1.565 0.118 6.968 0.613 79.234
nbsafedeclining 0.662 0.477 1.387 0.166 1.939 0.761 4.939
nbsafeunsure 0.068 0.438 0.156 0.876 1.071 0.454 2.527
fit.logit4%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -1.442 0.453 -3.185 0.002 0.236 0.097 0.574
new_agemiddleadult 0.427 0.401 1.065 0.287 1.533 0.698 3.366
new_ageyoungeradult 0.829 0.452 1.835 0.067 2.292 0.945 5.558
race_ethblack -0.603 0.390 -1.546 0.123 0.547 0.255 1.175
race_ethhispanic -0.470 0.531 -0.885 0.377 0.625 0.221 1.769
race_ethother -0.424 0.525 -0.808 0.420 0.654 0.234 1.831
educahghsch -0.067 0.352 -0.189 0.850 0.936 0.470 1.865
educalsshgh -0.254 0.467 -0.544 0.587 0.776 0.311 1.937
educasomecol -0.367 0.409 -0.898 0.369 0.693 0.311 1.543
inclessthn350001 0.381 0.321 1.188 0.235 1.464 0.780 2.748
gender5female 0.141 0.297 0.476 0.634 1.152 0.644 2.061
gender5other 1.794 1.296 1.385 0.167 6.016 0.475 76.239
satisinfra1 0.175 0.296 0.593 0.553 1.192 0.668 2.127
fit.logit5%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -1.489 0.444 -3.351 0.001 0.226 0.095 0.539
new_agemiddleadult 0.395 0.406 0.972 0.331 1.484 0.670 3.288
new_ageyoungeradult 0.816 0.447 1.825 0.068 2.261 0.941 5.431
race_ethblack -0.624 0.383 -1.630 0.104 0.536 0.253 1.135
race_ethhispanic -0.485 0.532 -0.912 0.362 0.615 0.217 1.747
race_ethother -0.429 0.521 -0.824 0.410 0.651 0.235 1.807
educahghsch -0.110 0.344 -0.321 0.749 0.895 0.456 1.759
educalsshgh -0.259 0.468 -0.555 0.579 0.772 0.309 1.929
educasomecol -0.387 0.406 -0.953 0.341 0.679 0.307 1.505
inclessthn350001 0.402 0.314 1.278 0.202 1.494 0.807 2.766
gender5female 0.113 0.299 0.377 0.706 1.120 0.623 2.013
gender5other 1.822 1.316 1.384 0.167 6.185 0.469 81.635
satiscrime1 0.299 0.338 0.882 0.378 1.348 0.694 2.617
fit.logit6%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -1.752 0.445 -3.941 0.000 0.173 0.073 0.414
new_agemiddleadult 0.320 0.409 0.781 0.435 1.377 0.617 3.071
new_ageyoungeradult 0.703 0.458 1.536 0.125 2.019 0.824 4.950
race_ethblack -0.534 0.375 -1.423 0.155 0.586 0.281 1.223
race_ethhispanic -0.402 0.531 -0.758 0.449 0.669 0.236 1.893
race_ethother -0.346 0.506 -0.683 0.495 0.708 0.263 1.909
educahghsch -0.096 0.344 -0.277 0.782 0.909 0.463 1.785
educalsshgh -0.152 0.467 -0.326 0.744 0.859 0.344 2.145
educasomecol -0.372 0.408 -0.911 0.363 0.689 0.310 1.535
inclessthn350001 0.400 0.317 1.262 0.207 1.492 0.802 2.776
gender5female 0.072 0.298 0.240 0.810 1.074 0.599 1.929
gender5other 2.048 1.457 1.406 0.160 7.753 0.446 134.732
satislot1 0.676 0.344 1.963 0.050 1.966 1.001 3.860
fit.logit7%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -1.405 0.438 -3.205 0.001 0.245 0.104 0.579
new_agemiddleadult 0.437 0.402 1.088 0.277 1.549 0.704 3.406
new_ageyoungeradult 0.845 0.453 1.866 0.062 2.328 0.958 5.656
race_ethblack -0.607 0.387 -1.569 0.117 0.545 0.255 1.163
race_ethhispanic -0.444 0.536 -0.829 0.408 0.641 0.224 1.833
race_ethother -0.417 0.517 -0.806 0.420 0.659 0.239 1.815
educahghsch -0.082 0.349 -0.234 0.815 0.922 0.465 1.826
educalsshgh -0.266 0.469 -0.566 0.572 0.767 0.306 1.924
educasomecol -0.369 0.407 -0.908 0.364 0.691 0.312 1.534
inclessthn350001 0.391 0.316 1.236 0.217 1.478 0.795 2.746
gender5female 0.169 0.293 0.577 0.564 1.184 0.667 2.102
gender5other 1.770 1.270 1.394 0.164 5.874 0.487 70.825
housequal1 0.078 0.285 0.273 0.785 1.081 0.618 1.889
fit.logit8%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -1.573 0.461 -3.408 0.001 0.207 0.084 0.513
new_agemiddleadult 0.391 0.402 0.973 0.331 1.479 0.673 3.250
new_ageyoungeradult 0.753 0.446 1.688 0.092 2.124 0.886 5.094
race_ethblack -0.640 0.381 -1.681 0.093 0.527 0.250 1.112
race_ethhispanic -0.507 0.535 -0.949 0.343 0.602 0.211 1.717
race_ethother -0.424 0.519 -0.815 0.415 0.655 0.237 1.812
educahghsch -0.094 0.352 -0.268 0.789 0.910 0.457 1.813
educalsshgh -0.299 0.465 -0.643 0.521 0.742 0.298 1.845
educasomecol -0.400 0.407 -0.983 0.326 0.671 0.302 1.488
inclessthn350001 0.363 0.319 1.138 0.256 1.437 0.769 2.685
gender5female 0.160 0.295 0.542 0.588 1.173 0.658 2.091
gender5other 1.924 1.355 1.421 0.156 6.850 0.482 97.430
parkqual1 0.429 0.307 1.400 0.162 1.536 0.842 2.803
fit.logit9%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -1.427 0.437 -3.270 0.001 0.240 0.102 0.564
new_agemiddleadult 0.416 0.388 1.072 0.284 1.516 0.709 3.242
new_ageyoungeradult 0.847 0.442 1.918 0.056 2.332 0.982 5.542
race_ethblack -0.591 0.401 -1.476 0.140 0.554 0.253 1.214
race_ethhispanic -0.530 0.529 -1.002 0.317 0.589 0.209 1.660
race_ethother -0.487 0.529 -0.921 0.357 0.614 0.218 1.732
educahghsch -0.089 0.347 -0.255 0.799 0.915 0.463 1.808
educalsshgh -0.224 0.482 -0.464 0.643 0.800 0.311 2.056
educasomecol -0.332 0.407 -0.816 0.415 0.718 0.323 1.592
inclessthn350001 0.427 0.315 1.359 0.175 1.533 0.828 2.841
gender5female 0.072 0.301 0.241 0.810 1.075 0.596 1.939
gender5other 1.824 1.249 1.460 0.145 6.195 0.536 71.638
safehomenotsafe 0.849 0.371 2.286 0.023 2.337 1.129 4.841
safehomeunsure -1.850 1.371 -1.349 0.178 0.157 0.011 2.310
fit.logit10%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -1.420 0.435 -3.263 0.001 0.242 0.103 0.567
new_agemiddleadult 0.441 0.389 1.134 0.257 1.554 0.725 3.331
new_ageyoungeradult 0.810 0.433 1.869 0.062 2.247 0.961 5.254
race_ethblack -0.617 0.369 -1.674 0.095 0.539 0.262 1.111
race_ethhispanic -0.545 0.549 -0.992 0.321 0.580 0.198 1.702
race_ethother -0.369 0.505 -0.730 0.466 0.692 0.257 1.860
educahghsch -0.183 0.333 -0.551 0.582 0.832 0.433 1.599
educalsshgh -0.360 0.468 -0.770 0.442 0.697 0.279 1.746
educasomecol -0.370 0.403 -0.919 0.359 0.691 0.313 1.521
inclessthn350001 0.403 0.310 1.299 0.194 1.496 0.815 2.748
gender5female 0.078 0.299 0.262 0.793 1.082 0.602 1.943
gender5other 1.814 1.271 1.427 0.154 6.132 0.508 74.068
safewalkingnotsafe 0.582 0.283 2.055 0.040 1.789 1.027 3.117
safewalkingunsure -0.108 0.940 -0.115 0.909 0.898 0.142 5.667
fit.logit11%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.009 0.495 -4.056 0.000 0.134 0.051 0.354
new_agemiddleadult 0.385 0.418 0.921 0.358 1.469 0.648 3.332
new_ageyoungeradult 0.816 0.477 1.710 0.088 2.261 0.887 5.763
race_ethblack -0.479 0.358 -1.339 0.181 0.619 0.307 1.249
race_ethhispanic -0.277 0.508 -0.546 0.585 0.758 0.280 2.050
race_ethother -0.248 0.485 -0.512 0.609 0.780 0.302 2.018
educahghsch -0.014 0.345 -0.040 0.968 0.986 0.502 1.938
educalsshgh -0.033 0.467 -0.072 0.943 0.967 0.387 2.417
educasomecol -0.291 0.410 -0.711 0.477 0.747 0.335 1.668
inclessthn350001 0.370 0.314 1.178 0.239 1.448 0.782 2.679
gender5female 0.072 0.295 0.244 0.807 1.075 0.603 1.915
gender5other 2.265 1.387 1.633 0.103 9.632 0.636 145.906
qoldeclining 0.724 0.355 2.040 0.042 2.062 1.029 4.133
qolunsure 0.144 0.319 0.452 0.652 1.155 0.618 2.156
satisinfra1 -0.177 0.285 -0.621 0.535 0.838 0.479 1.465
satislot1 0.793 0.335 2.367 0.018 2.209 1.146 4.259
housequal1 -0.519 0.297 -1.745 0.082 0.595 0.332 1.066
parkqual1 0.220 0.377 0.583 0.560 1.246 0.595 2.607
fit.logit12%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -1.521 0.508 -2.996 0.003 0.218 0.081 0.591
new_agemiddleadult 0.382 0.390 0.978 0.329 1.465 0.681 3.148
new_ageyoungeradult 0.781 0.444 1.761 0.079 2.185 0.916 5.213
race_ethblack -0.622 0.367 -1.696 0.090 0.537 0.261 1.102
race_ethhispanic -0.554 0.519 -1.068 0.286 0.575 0.208 1.588
race_ethother -0.480 0.519 -0.924 0.356 0.619 0.224 1.712
educahghsch -0.155 0.329 -0.470 0.638 0.857 0.450 1.632
educalsshgh -0.220 0.481 -0.457 0.648 0.802 0.312 2.061
educasomecol -0.370 0.399 -0.928 0.354 0.691 0.316 1.509
inclessthn350001 0.438 0.302 1.452 0.147 1.549 0.858 2.799
gender5female 0.029 0.301 0.096 0.924 1.029 0.571 1.856
gender5other 1.958 1.258 1.557 0.120 7.087 0.602 83.435
nbsafedeclining 0.479 0.509 0.940 0.347 1.614 0.595 4.375
nbsafeunsure 0.012 0.423 0.029 0.977 1.012 0.442 2.320
satiscrime1 0.037 0.339 0.110 0.912 1.038 0.534 2.018
safehomenotsafe 0.563 0.397 1.419 0.156 1.756 0.807 3.824
safehomeunsure -2.171 1.405 -1.545 0.123 0.114 0.007 1.790
safewalkingnotsafe 0.192 0.327 0.588 0.557 1.212 0.639 2.298
safewalkingunsure -0.086 0.934 -0.092 0.927 0.918 0.147 5.731
fit.logit13%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -1.857 0.528 -3.515 0.000 0.156 0.055 0.440
new_agemiddleadult 0.356 0.405 0.881 0.379 1.428 0.646 3.156
new_ageyoungeradult 0.792 0.476 1.666 0.096 2.209 0.869 5.611
race_ethblack -0.504 0.358 -1.408 0.160 0.604 0.300 1.218
race_ethhispanic -0.376 0.509 -0.738 0.461 0.687 0.253 1.862
race_ethother -0.354 0.493 -0.720 0.472 0.702 0.267 1.842
educahghsch -0.048 0.336 -0.144 0.885 0.953 0.494 1.839
educalsshgh -0.056 0.477 -0.117 0.907 0.946 0.371 2.410
educasomecol -0.283 0.401 -0.705 0.481 0.753 0.343 1.655
inclessthn350001 0.410 0.306 1.340 0.181 1.507 0.827 2.744
gender5female 0.012 0.304 0.039 0.969 1.012 0.557 1.838
gender5other 2.298 1.341 1.714 0.087 9.950 0.719 137.776
qoldeclining 0.547 0.391 1.400 0.162 1.729 0.803 3.720
qolunsure 0.152 0.339 0.448 0.654 1.164 0.599 2.263
satisinfra1 -0.290 0.288 -1.005 0.315 0.748 0.425 1.317
satislot1 0.731 0.329 2.220 0.027 2.078 1.089 3.962
housequal1 -0.591 0.305 -1.935 0.053 0.554 0.304 1.008
parkqual1 0.226 0.386 0.586 0.558 1.254 0.588 2.673
nbsafedeclining 0.207 0.521 0.396 0.692 1.229 0.443 3.416
nbsafeunsure -0.108 0.423 -0.255 0.799 0.898 0.391 2.059
satiscrime1 0.021 0.380 0.056 0.955 1.022 0.485 2.153
safehomenotsafe 0.674 0.400 1.684 0.093 1.962 0.896 4.301
safehomeunsure -1.766 1.361 -1.298 0.195 0.171 0.012 2.464
safewalkingnotsafe 0.077 0.327 0.234 0.815 1.080 0.569 2.049
safewalkingunsure -0.298 0.853 -0.349 0.727 0.743 0.140 3.953
exp(coefficients(fit.logit1))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##           0.2512502           1.5609262           2.3665002           0.5480958 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##           0.6488585           0.6578133           0.9347622           0.7711981 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##           0.6980997           1.4748127           1.1887244           5.7965109
exp(coefficients(fit.logit2))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##           0.1806727           1.6252682           2.5060380           0.5564308 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##           0.6750252           0.7221551           0.9411307           0.8377765 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##           0.7255176           1.4598477           1.1451903           7.3510683 
##        qoldeclining           qolunsure 
##           2.1212742           1.1839489
exp(coefficients(fit.logit3))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##           0.2201421           1.4698508           2.1352620           0.5216320 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##           0.6429845           0.6404733           0.8980847           0.7817945 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##           0.6832359           1.5084762           1.1614725           6.9684590 
##     nbsafedeclining        nbsafeunsure 
##           1.9386005           1.0705641
exp(coefficients(fit.logit4))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##           0.2363600           1.5331229           2.2920266           0.5472816 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##           0.6252601           0.6543989           0.9356591           0.7759412 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##           0.6927381           1.4643937           1.1517052           6.0155000 
##         satisinfra1 
##           1.1916678
exp(coefficients(fit.logit5))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##           0.2257087           1.4838529           2.2611137           0.5359653 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##           0.6154636           0.6509793           0.8954433           0.7715731 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##           0.6793745           1.4942267           1.1196089           6.1848735 
##         satiscrime1 
##           1.3480463
exp(coefficients(fit.logit6))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##           0.1733416           1.3768201           2.0190682           0.5864728 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##           0.6686858           0.7078468           0.9088648           0.8586663 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##           0.6894960           1.4916685           1.0744139           7.7532991 
##           satislot1 
##           1.9658145
exp(coefficients(fit.logit7))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##           0.2453226           1.5487306           2.3282419           0.5447175 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##           0.6413921           0.6591600           0.9215776           0.7668126 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##           0.6914452           1.4777772           1.1842031           5.8737475 
##          housequal1 
##           1.0808437
exp(coefficients(fit.logit8))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##           0.2074696           1.4785135           2.1239763           0.5270970 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##           0.6020451           0.6547062           0.9100700           0.7416181 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##           0.6706227           1.4374380           1.1731770           6.8502730 
##           parkqual1 
##           1.5363996
exp(coefficients(fit.logit9))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##           0.2399081           1.5156385           2.3323780           0.5536778 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##           0.5888834           0.6143016           0.9152690           0.7996578 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##           0.7175859           1.5333076           1.0750671           6.1946483 
##     safehomenotsafe      safehomeunsure 
##           2.3373317           0.1573136
exp(coefficients(fit.logit10))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##           0.2418269           1.5541541           2.2472509           0.5394072 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##           0.5797814           0.6916719           0.8323991           0.6974646 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##           0.6905416           1.4960726           1.0815751           6.1321648 
##  safewalkingnotsafe   safewalkingunsure 
##           1.7892973           0.8976225
exp(coefficients(fit.logit11))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##           0.1341599           1.4690177           2.2614747           0.6192075 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##           0.7580706           0.7802046           0.9864338           0.9670953 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##           0.7471954           1.4475829           1.0745468           9.6317593 
##        qoldeclining           qolunsure         satisinfra1           satislot1 
##           2.0619831           1.1548486           0.8377000           2.2093843 
##          housequal1           parkqual1 
##           0.5951105           1.2455343
exp(coefficients(fit.logit12))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##           0.2184903           1.4646977           2.1845547           0.5366772 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##           0.5746254           0.6188060           0.8567313           0.8023701 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##           0.6905376           1.5494339           1.0292452           7.0874495 
##     nbsafedeclining        nbsafeunsure         satiscrime1     safehomenotsafe 
##           1.6137156           1.0123794           1.0381490           1.7563186 
##      safehomeunsure  safewalkingnotsafe   safewalkingunsure 
##           0.1140435           1.2116800           0.9178618
exp(coefficients(fit.logit13))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##           0.1560877           1.4280547           2.2086074           0.6043636 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##           0.6869306           0.7015273           0.9526982           0.9455406 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##           0.7534004           1.5065741           1.0120072           9.9500405 
##        qoldeclining           qolunsure         satisinfra1           satislot1 
##           1.7286436           1.1640820           0.7484558           2.0776305 
##          housequal1           parkqual1     nbsafedeclining        nbsafeunsure 
##           0.5537729           1.2539692           1.2294520           0.8977384 
##         satiscrime1     safehomenotsafe      safehomeunsure  safewalkingnotsafe 
##           1.0215596           1.9624895           0.1709593           1.0795541 
##   safewalkingunsure 
##           0.7426085
fit.logit14<-svyglm(felt_worried ~ new_age + race_eth + educa + inclessthn35000 + gender5,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit15<-svyglm(felt_worried ~ new_age + race_eth + educa + inclessthn35000 + gender5 + qol,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit16<-svyglm(felt_worried ~ new_age + race_eth + educa + inclessthn35000 + gender5 + nbsafe,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit17<-svyglm(felt_worried ~ new_age + race_eth + educa + inclessthn35000 + gender5 + satisinfra,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit18<-svyglm(felt_worried ~ new_age + race_eth + educa + inclessthn35000 + gender5 + satiscrime,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit19<-svyglm(felt_worried ~ new_age + race_eth + educa + inclessthn35000 + gender5 + satislot,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit20<-svyglm(felt_worried ~ new_age + race_eth + educa + inclessthn35000 + gender5 + housequal,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit21<-svyglm(felt_worried ~ new_age + race_eth + educa + inclessthn35000 + gender5 + parkqual,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit22<-svyglm(felt_worried ~ new_age + race_eth + educa + inclessthn35000 + gender5 + safewalking,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit23<-svyglm(felt_worried ~ new_age + race_eth + educa + inclessthn35000 + gender5 + safehome,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit24<-svyglm(felt_worried ~ new_age + race_eth + educa + inclessthn35000 + gender5 + safewalking,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit25<-svyglm(felt_worried ~ new_age + race_eth + educa + inclessthn35000 + gender5 + qol + satisinfra + 
                      satislot + housequal + parkqual,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit26<-svyglm(felt_worried ~ new_age + race_eth + educa + inclessthn35000 + gender5 + nbsafe + satiscrime + 
                      safehome + safewalking,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit27<-svyglm(felt_worried ~ new_age + race_eth + educa + inclessthn35000 + gender5 + + qol + satisinfra + 
                      satislot + housequal + parkqual + nbsafe + satiscrime + 
                      safehome + safewalking,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit14%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.201 0.464 -4.743 0.000 0.111 0.045 0.275
new_agemiddleadult 0.499 0.402 1.242 0.215 1.647 0.749 3.619
new_ageyoungeradult 0.616 0.454 1.358 0.175 1.852 0.761 4.506
race_ethblack -0.071 0.375 -0.191 0.849 0.931 0.447 1.940
race_ethhispanic -0.015 0.557 -0.026 0.979 0.985 0.331 2.937
race_ethother 0.314 0.480 0.654 0.513 1.369 0.534 3.506
educahghsch 0.314 0.358 0.878 0.380 1.369 0.679 2.759
educalsshgh -0.035 0.487 -0.072 0.942 0.965 0.372 2.506
educasomecol 0.033 0.414 0.080 0.936 1.034 0.459 2.329
inclessthn350001 0.355 0.332 1.069 0.285 1.426 0.744 2.730
gender5female 0.215 0.311 0.691 0.490 1.240 0.674 2.282
gender5other 14.830 0.906 16.373 0.000 2758297.473 467331.857 16280090.565
fit.logit15%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.308 0.510 -4.530 0.000 0.099 0.037 0.270
new_agemiddleadult 0.509 0.400 1.273 0.204 1.664 0.760 3.644
new_ageyoungeradult 0.632 0.458 1.380 0.168 1.881 0.767 4.618
race_ethblack -0.063 0.380 -0.165 0.869 0.939 0.446 1.978
race_ethhispanic 0.001 0.553 0.002 0.999 1.001 0.338 2.961
race_ethother 0.345 0.484 0.712 0.476 1.412 0.547 3.648
educahghsch 0.317 0.353 0.899 0.369 1.373 0.688 2.743
educalsshgh -0.009 0.485 -0.018 0.986 0.991 0.383 2.566
educasomecol 0.047 0.413 0.115 0.909 1.049 0.467 2.356
inclessthn350001 0.350 0.332 1.055 0.292 1.419 0.741 2.718
gender5female 0.201 0.310 0.647 0.518 1.223 0.665 2.246
gender5other 14.914 0.922 16.176 0.000 2999256.052 492261.789 18273888.138
qoldeclining 0.256 0.351 0.729 0.466 1.292 0.649 2.570
qolunsure 0.059 0.325 0.181 0.856 1.061 0.561 2.007
fit.logit16%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.501 0.558 -4.481 0.000 0.082 0.027 0.245
new_agemiddleadult 0.432 0.401 1.076 0.282 1.540 0.701 3.380
new_ageyoungeradult 0.507 0.468 1.084 0.279 1.660 0.664 4.150
race_ethblack -0.089 0.376 -0.238 0.812 0.915 0.438 1.911
race_ethhispanic -0.018 0.551 -0.033 0.974 0.982 0.333 2.892
race_ethother 0.321 0.484 0.664 0.507 1.379 0.534 3.560
educahghsch 0.269 0.344 0.784 0.434 1.309 0.668 2.567
educalsshgh -0.003 0.494 -0.006 0.995 0.997 0.379 2.624
educasomecol 0.016 0.411 0.039 0.969 1.016 0.454 2.275
inclessthn350001 0.386 0.314 1.227 0.220 1.471 0.794 2.723
gender5female 0.169 0.301 0.560 0.576 1.184 0.656 2.137
gender5other 14.998 0.882 16.998 0.000 3261241.711 578529.659 18384014.260
nbsafedeclining 0.759 0.526 1.443 0.150 2.137 0.762 5.995
nbsafeunsure 0.304 0.482 0.630 0.529 1.355 0.526 3.489
fit.logit17%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.248 0.449 -5.005 0.000 0.106 0.044 0.255
new_agemiddleadult 0.486 0.411 1.180 0.238 1.625 0.725 3.640
new_ageyoungeradult 0.591 0.468 1.263 0.207 1.806 0.721 4.519
race_ethblack -0.070 0.371 -0.189 0.850 0.932 0.450 1.930
race_ethhispanic -0.039 0.558 -0.070 0.944 0.962 0.322 2.872
race_ethother 0.314 0.479 0.655 0.512 1.369 0.535 3.503
educahghsch 0.316 0.357 0.886 0.376 1.372 0.682 2.760
educalsshgh -0.030 0.486 -0.061 0.951 0.971 0.374 2.517
educasomecol 0.030 0.419 0.070 0.944 1.030 0.453 2.342
inclessthn350001 0.347 0.333 1.042 0.298 1.415 0.736 2.720
gender5female 0.191 0.306 0.625 0.532 1.211 0.664 2.207
gender5other 14.866 0.929 15.993 0.000 2858049.677 462249.246 17671089.856
satisinfra1 0.130 0.303 0.429 0.668 1.139 0.629 2.063
fit.logit18%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.385 0.469 -5.091 0.000 0.092 0.037 2.31000e-01
new_agemiddleadult 0.412 0.408 1.010 0.313 1.510 0.678 3.36300e+00
new_ageyoungeradult 0.537 0.465 1.155 0.248 1.711 0.688 4.25700e+00
race_ethblack -0.098 0.381 -0.258 0.796 0.906 0.430 1.91100e+00
race_ethhispanic -0.081 0.554 -0.146 0.884 0.922 0.311 2.73100e+00
race_ethother 0.310 0.490 0.631 0.528 1.363 0.521 3.56300e+00
educahghsch 0.254 0.346 0.734 0.463 1.289 0.654 2.54100e+00
educalsshgh -0.029 0.489 -0.060 0.952 0.971 0.373 2.53100e+00
educasomecol -0.002 0.415 -0.006 0.996 0.998 0.442 2.25100e+00
inclessthn350001 0.376 0.325 1.157 0.248 1.456 0.770 2.75300e+00
gender5female 0.125 0.317 0.396 0.693 1.133 0.609 2.10800e+00
gender5other 14.995 0.974 15.396 0.000 3253130.837 482218.453 2.19462e+07
satiscrime1 0.469 0.361 1.300 0.194 1.599 0.788 3.24500e+00
fit.logit19%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.384 0.477 -5.000 0.000 0.092 0.036 2.35000e-01
new_agemiddleadult 0.431 0.409 1.054 0.292 1.539 0.690 3.42900e+00
new_ageyoungeradult 0.527 0.471 1.117 0.264 1.693 0.672 4.26500e+00
race_ethblack -0.030 0.378 -0.080 0.936 0.970 0.462 2.03500e+00
race_ethhispanic 0.012 0.557 0.021 0.983 1.012 0.340 3.01400e+00
race_ethother 0.361 0.477 0.757 0.450 1.434 0.564 3.65000e+00
educahghsch 0.300 0.352 0.852 0.395 1.350 0.677 2.69300e+00
educalsshgh 0.018 0.492 0.036 0.972 1.018 0.388 2.66800e+00
educasomecol 0.031 0.414 0.076 0.940 1.032 0.458 2.32500e+00
inclessthn350001 0.360 0.328 1.098 0.273 1.434 0.754 2.72700e+00
gender5female 0.163 0.316 0.516 0.606 1.177 0.633 2.18900e+00
gender5other 15.011 0.977 15.367 0.000 3306786.076 487374.621 2.24362e+07
satislot1 0.341 0.330 1.035 0.301 1.407 0.737 2.68500e+00
fit.logit20%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.234 0.457 -4.890 0.000 0.107 0.044 0.262
new_agemiddleadult 0.488 0.406 1.202 0.230 1.629 0.735 3.608
new_ageyoungeradult 0.594 0.469 1.265 0.206 1.811 0.722 4.545
race_ethblack -0.077 0.375 -0.206 0.837 0.926 0.444 1.932
race_ethhispanic -0.026 0.557 -0.047 0.962 0.974 0.327 2.902
race_ethother 0.319 0.481 0.664 0.507 1.376 0.536 3.532
educahghsch 0.297 0.351 0.846 0.398 1.346 0.676 2.679
educalsshgh -0.042 0.488 -0.086 0.931 0.959 0.368 2.497
educasomecol 0.023 0.414 0.056 0.955 1.024 0.454 2.306
inclessthn350001 0.357 0.329 1.087 0.277 1.430 0.751 2.723
gender5female 0.211 0.312 0.674 0.500 1.234 0.669 2.276
gender5other 14.857 0.926 16.051 0.000 2834082.806 461849.957 17390984.294
housequal1 0.099 0.296 0.334 0.738 1.104 0.618 1.972
fit.logit21%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.636 0.501 -5.260 0.000 0.072 0.027 0.191
new_agemiddleadult 0.399 0.404 0.987 0.324 1.490 0.675 3.288
new_ageyoungeradult 0.416 0.456 0.911 0.362 1.516 0.620 3.708
race_ethblack -0.128 0.373 -0.342 0.732 0.880 0.424 1.827
race_ethhispanic -0.137 0.561 -0.244 0.807 0.872 0.290 2.620
race_ethother 0.326 0.485 0.672 0.502 1.386 0.536 3.585
educahghsch 0.276 0.358 0.771 0.441 1.318 0.653 2.660
educalsshgh -0.100 0.489 -0.205 0.838 0.905 0.347 2.361
educasomecol -0.023 0.416 -0.054 0.957 0.978 0.432 2.212
inclessthn350001 0.312 0.334 0.933 0.351 1.366 0.709 2.629
gender5female 0.190 0.314 0.605 0.546 1.209 0.653 2.240
gender5other 15.301 1.009 15.157 0.000 4416155.378 610593.376 31940124.317
parkqual1 0.841 0.324 2.597 0.010 2.318 1.229 4.371
fit.logit22%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.249 0.463 -4.855 0.000 0.105 0.043 2.62000e-01
new_agemiddleadult 0.494 0.397 1.247 0.213 1.640 0.754 3.56700e+00
new_ageyoungeradult 0.571 0.453 1.259 0.209 1.770 0.728 4.30400e+00
race_ethblack -0.074 0.389 -0.191 0.848 0.928 0.433 1.98900e+00
race_ethhispanic -0.094 0.583 -0.162 0.871 0.910 0.290 2.85200e+00
race_ethother 0.364 0.490 0.743 0.457 1.440 0.551 3.76200e+00
educahghsch 0.230 0.339 0.679 0.497 1.259 0.648 2.44800e+00
educalsshgh -0.110 0.489 -0.225 0.822 0.896 0.344 2.33500e+00
educasomecol 0.033 0.420 0.079 0.937 1.034 0.454 2.35300e+00
inclessthn350001 0.367 0.327 1.123 0.262 1.443 0.761 2.73800e+00
gender5female 0.140 0.318 0.441 0.659 1.151 0.617 2.14800e+00
gender5other 14.900 0.923 16.146 0.000 2958023.246 484708.197 1.80519e+07
safewalkingnotsafe 0.470 0.290 1.621 0.106 1.601 0.906 2.82800e+00
safewalkingunsure 0.012 0.859 0.014 0.989 1.012 0.188 5.45500e+00
fit.logit23%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.269 0.448 -5.067 0.000 0.103 0.043 0.249
new_agemiddleadult 0.459 0.390 1.177 0.240 1.583 0.737 3.398
new_ageyoungeradult 0.556 0.460 1.209 0.227 1.743 0.708 4.291
race_ethblack -0.084 0.394 -0.212 0.832 0.920 0.425 1.992
race_ethhispanic -0.118 0.544 -0.216 0.829 0.889 0.306 2.580
race_ethother 0.249 0.490 0.509 0.611 1.283 0.491 3.354
educahghsch 0.296 0.347 0.854 0.393 1.345 0.681 2.655
educalsshgh -0.073 0.517 -0.142 0.887 0.929 0.337 2.562
educasomecol 0.080 0.414 0.193 0.847 1.083 0.481 2.436
inclessthn350001 0.403 0.334 1.208 0.227 1.496 0.778 2.878
gender5female 0.128 0.325 0.395 0.693 1.137 0.601 2.149
gender5other 14.947 0.917 16.307 0.000 3101204.358 514389.904 18696845.302
safehomenotsafe 1.069 0.362 2.954 0.003 2.912 1.433 5.918
safehomeunsure -0.178 1.164 -0.153 0.878 0.837 0.086 8.189
fit.logit24%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.249 0.463 -4.855 0.000 0.105 0.043 2.62000e-01
new_agemiddleadult 0.494 0.397 1.247 0.213 1.640 0.754 3.56700e+00
new_ageyoungeradult 0.571 0.453 1.259 0.209 1.770 0.728 4.30400e+00
race_ethblack -0.074 0.389 -0.191 0.848 0.928 0.433 1.98900e+00
race_ethhispanic -0.094 0.583 -0.162 0.871 0.910 0.290 2.85200e+00
race_ethother 0.364 0.490 0.743 0.457 1.440 0.551 3.76200e+00
educahghsch 0.230 0.339 0.679 0.497 1.259 0.648 2.44800e+00
educalsshgh -0.110 0.489 -0.225 0.822 0.896 0.344 2.33500e+00
educasomecol 0.033 0.420 0.079 0.937 1.034 0.454 2.35300e+00
inclessthn350001 0.367 0.327 1.123 0.262 1.443 0.761 2.73800e+00
gender5female 0.140 0.318 0.441 0.659 1.151 0.617 2.14800e+00
gender5other 14.900 0.923 16.146 0.000 2958023.246 484708.197 1.80519e+07
safewalkingnotsafe 0.470 0.290 1.621 0.106 1.601 0.906 2.82800e+00
safewalkingunsure 0.012 0.859 0.014 0.989 1.012 0.188 5.45500e+00
fit.logit25%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.685 0.531 -5.055 0.000 0.068 0.024 1.93000e-01
new_agemiddleadult 0.401 0.408 0.983 0.326 1.494 0.671 3.32600e+00
new_ageyoungeradult 0.434 0.480 0.904 0.366 1.544 0.602 3.95800e+00
race_ethblack -0.091 0.379 -0.240 0.810 0.913 0.434 1.92000e+00
race_ethhispanic -0.063 0.569 -0.112 0.911 0.938 0.308 2.86300e+00
race_ethother 0.359 0.488 0.735 0.462 1.431 0.550 3.72300e+00
educahghsch 0.319 0.361 0.881 0.379 1.375 0.677 2.79300e+00
educalsshgh -0.029 0.500 -0.058 0.953 0.971 0.364 2.58800e+00
educasomecol 0.017 0.419 0.040 0.968 1.017 0.448 2.31100e+00
inclessthn350001 0.307 0.328 0.935 0.350 1.359 0.714 2.58700e+00
gender5female 0.186 0.302 0.616 0.538 1.204 0.667 2.17600e+00
gender5other 15.337 1.016 15.098 0.000 4579707.169 625397.897 3.35366e+07
qoldeclining 0.137 0.368 0.371 0.710 1.146 0.557 2.35800e+00
qolunsure -0.041 0.320 -0.130 0.897 0.959 0.513 1.79500e+00
satisinfra1 -0.096 0.337 -0.286 0.775 0.908 0.469 1.75700e+00
satislot1 0.204 0.349 0.586 0.558 1.226 0.619 2.42900e+00
housequal1 -0.263 0.312 -0.842 0.400 0.769 0.417 1.41800e+00
parkqual1 0.888 0.381 2.332 0.020 2.431 1.152 5.12700e+00
fit.logit26%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.514 0.571 -4.399 0.000 0.081 0.026 0.248
new_agemiddleadult 0.390 0.388 1.006 0.315 1.477 0.691 3.157
new_ageyoungeradult 0.479 0.468 1.024 0.306 1.614 0.646 4.036
race_ethblack -0.096 0.392 -0.246 0.806 0.908 0.421 1.957
race_ethhispanic -0.141 0.546 -0.258 0.796 0.868 0.298 2.533
race_ethother 0.254 0.499 0.509 0.611 1.289 0.485 3.431
educahghsch 0.249 0.333 0.747 0.455 1.282 0.668 2.463
educalsshgh -0.025 0.529 -0.047 0.963 0.975 0.346 2.750
educasomecol 0.046 0.411 0.112 0.911 1.047 0.468 2.342
inclessthn350001 0.425 0.319 1.333 0.183 1.529 0.819 2.857
gender5female 0.062 0.320 0.192 0.848 1.064 0.568 1.992
gender5other 15.099 0.937 16.121 0.000 3610561.871 575806.708 22639814.441
nbsafedeclining 0.417 0.558 0.749 0.454 1.518 0.509 4.528
nbsafeunsure 0.159 0.458 0.347 0.729 1.172 0.478 2.873
satiscrime1 0.234 0.343 0.681 0.496 1.263 0.645 2.473
safehomenotsafe 0.908 0.398 2.284 0.023 2.481 1.137 5.410
safehomeunsure -0.479 1.284 -0.373 0.709 0.620 0.050 7.678
safewalkingnotsafe -0.013 0.360 -0.035 0.972 0.988 0.487 2.001
safewalkingunsure -0.074 0.861 -0.086 0.931 0.928 0.172 5.016
fit.logit27%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.789 0.577 -4.834 0.000 0.061 0.020 0.190
new_agemiddleadult 0.341 0.379 0.901 0.368 1.407 0.669 2.957
new_ageyoungeradult 0.366 0.477 0.767 0.443 1.442 0.566 3.675
race_ethblack -0.124 0.397 -0.312 0.755 0.884 0.406 1.923
race_ethhispanic -0.178 0.570 -0.313 0.755 0.837 0.274 2.559
race_ethother 0.257 0.502 0.512 0.609 1.293 0.484 3.455
educahghsch 0.239 0.349 0.685 0.493 1.270 0.641 2.517
educalsshgh -0.067 0.529 -0.127 0.899 0.935 0.332 2.637
educasomecol 0.024 0.405 0.060 0.952 1.025 0.463 2.266
inclessthn350001 0.419 0.320 1.309 0.191 1.521 0.812 2.848
gender5female 0.073 0.311 0.236 0.813 1.076 0.585 1.980
gender5other 15.319 0.973 15.739 0.000 4498929.761 667691.778 30313940.743
qoldeclining -0.195 0.391 -0.498 0.618 0.823 0.383 1.770
qolunsure -0.168 0.329 -0.512 0.609 0.845 0.444 1.610
satisinfra1 -0.305 0.346 -0.880 0.379 0.737 0.374 1.454
satislot1 0.022 0.342 0.065 0.948 1.022 0.523 1.999
housequal1 -0.448 0.317 -1.412 0.158 0.639 0.343 1.190
parkqual1 0.874 0.395 2.215 0.027 2.398 1.106 5.197
nbsafedeclining 0.643 0.552 1.165 0.244 1.902 0.645 5.611
nbsafeunsure 0.305 0.431 0.708 0.479 1.357 0.583 3.158
satiscrime1 0.314 0.370 0.847 0.397 1.369 0.662 2.829
safehomenotsafe 0.994 0.405 2.455 0.014 2.701 1.222 5.970
safehomeunsure -0.546 1.342 -0.407 0.684 0.579 0.042 8.040
safewalkingnotsafe 0.023 0.365 0.062 0.950 1.023 0.500 2.093
safewalkingunsure -0.102 0.837 -0.121 0.904 0.903 0.175 4.660
exp(coefficients(fit.logit14))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##        1.106417e-01        1.646804e+00        1.851672e+00        9.310517e-01 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##        9.853604e-01        1.368963e+00        1.368781e+00        9.654298e-01 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##        1.033801e+00        1.425557e+00        1.239958e+00        2.758297e+06
exp(coefficients(fit.logit15))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##        9.941235e-02        1.663694e+00        1.881477e+00        9.391576e-01 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##        1.000835e+00        1.412052e+00        1.373336e+00        9.912289e-01 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##        1.048509e+00        1.418975e+00        1.222530e+00        2.999256e+06 
##        qoldeclining           qolunsure 
##        1.291684e+00        1.060719e+00
exp(coefficients(fit.logit16))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##        8.203433e-02        1.539836e+00        1.659748e+00        9.145389e-01 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##        9.820268e-01        1.378843e+00        1.308905e+00        9.971025e-01 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##        1.016358e+00        1.470757e+00        1.183804e+00        3.261242e+06 
##     nbsafedeclining        nbsafeunsure 
##        2.136756e+00        1.355365e+00
exp(coefficients(fit.logit17))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##        1.056258e-01        1.624988e+00        1.805648e+00        9.322765e-01 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##        9.617934e-01        1.369106e+00        1.371701e+00        9.706012e-01 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##        1.029948e+00        1.415231e+00        1.210886e+00        2.858050e+06 
##         satisinfra1 
##        1.138808e+00
exp(coefficients(fit.logit18))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##        9.205497e-02        1.510326e+00        1.711106e+00        9.062998e-01 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##        9.223748e-01        1.362915e+00        1.289343e+00        9.712785e-01 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##        9.976982e-01        1.456313e+00        1.133381e+00        3.253131e+06 
##         satiscrime1 
##        1.598988e+00
exp(coefficients(fit.logit19))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##        9.213963e-02        1.538579e+00        1.693225e+00        9.700579e-01 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##        1.011914e+00        1.434156e+00        1.350062e+00        1.017671e+00 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##        1.031917e+00        1.433750e+00        1.177337e+00        3.306786e+06 
##           satislot1 
##        1.406598e+00
exp(coefficients(fit.logit20))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##        1.070571e-01        1.628809e+00        1.811146e+00        9.256620e-01 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##        9.741245e-01        1.376286e+00        1.345871e+00        9.588120e-01 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##        1.023528e+00        1.429576e+00        1.234335e+00        2.834083e+06 
##          housequal1 
##        1.104022e+00
exp(coefficients(fit.logit21))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##        7.162259e-02        1.489655e+00        1.515816e+00        8.802505e-01 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##        8.717790e-01        1.385579e+00        1.317912e+00        9.046153e-01 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##        9.777232e-01        1.365785e+00        1.209500e+00        4.416155e+06 
##           parkqual1 
##        2.317645e+00
exp(coefficients(fit.logit22))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##        1.054994e-01        1.639567e+00        1.769696e+00        9.282679e-01 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##        9.098948e-01        1.439612e+00        1.259226e+00        8.956877e-01 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##        1.033780e+00        1.443254e+00        1.150774e+00        2.958023e+06 
##  safewalkingnotsafe   safewalkingunsure 
##        1.600681e+00        1.012035e+00
exp(coefficients(fit.logit23))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##        1.034287e-01        1.582550e+00        1.743276e+00        9.197766e-01 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##        8.889699e-01        1.283372e+00        1.344982e+00        9.292175e-01 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##        1.083011e+00        1.496490e+00        1.136802e+00        3.101204e+06 
##     safehomenotsafe      safehomeunsure 
##        2.912097e+00        8.367860e-01
exp(coefficients(fit.logit24))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##        1.054994e-01        1.639567e+00        1.769696e+00        9.282679e-01 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##        9.098948e-01        1.439612e+00        1.259226e+00        8.956877e-01 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##        1.033780e+00        1.443254e+00        1.150774e+00        2.958023e+06 
##  safewalkingnotsafe   safewalkingunsure 
##        1.600681e+00        1.012035e+00
exp(coefficients(fit.logit25))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##        6.821556e-02        1.493858e+00        1.543963e+00        9.130444e-01 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##        9.384993e-01        1.431387e+00        1.375151e+00        9.712328e-01 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##        1.017074e+00        1.359214e+00        1.204442e+00        4.579707e+06 
##        qoldeclining           qolunsure         satisinfra1           satislot1 
##        1.146462e+00        9.593564e-01        9.080150e-01        1.226447e+00 
##          housequal1           parkqual1 
##        7.685867e-01        2.430502e+00
exp(coefficients(fit.logit26))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##        8.097984e-02        1.476710e+00        1.614202e+00        9.080592e-01 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##        8.683177e-01        1.289398e+00        1.282464e+00        9.754922e-01 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##        1.047214e+00        1.529490e+00        1.063514e+00        3.610562e+06 
##     nbsafedeclining        nbsafeunsure         satiscrime1     safehomenotsafe 
##        1.518075e+00        1.172016e+00        1.263083e+00        2.480574e+00 
##      safehomeunsure  safewalkingnotsafe   safewalkingunsure 
##        6.196187e-01        9.875063e-01        9.284481e-01
exp(coefficients(fit.logit27))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##        6.146580e-02        1.406887e+00        1.442295e+00        8.836661e-01 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##        8.367164e-01        1.292627e+00        1.270172e+00        9.349634e-01 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##        1.024521e+00        1.520631e+00        1.076178e+00        4.498930e+06 
##        qoldeclining           qolunsure         satisinfra1           satislot1 
##        8.231769e-01        8.450431e-01        7.373850e-01        1.022471e+00 
##          housequal1           parkqual1     nbsafedeclining        nbsafeunsure 
##        6.389653e-01        2.397584e+00        1.902224e+00        1.356865e+00 
##         satiscrime1     safehomenotsafe      safehomeunsure  safewalkingnotsafe 
##        1.368783e+00        2.700859e+00        5.791127e-01        1.022946e+00 
##   safewalkingunsure 
##        9.034716e-01
fit.logit28<-svyglm(felt_depressed ~ new_age + race_eth + educa + inclessthn35000 + gender5,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit29<-svyglm(felt_depressed ~ new_age + race_eth + educa + inclessthn35000 + gender5 + qol,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit30<-svyglm(felt_depressed ~ new_age + race_eth + educa + inclessthn35000 + gender5 + nbsafe,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit31<-svyglm(felt_depressed ~ new_age + race_eth + educa + inclessthn35000 + gender5 + satisinfra,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit32<-svyglm(felt_depressed ~ new_age + race_eth + educa + inclessthn35000 + gender5 + satiscrime,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit33<-svyglm(felt_depressed ~ new_age + race_eth + educa + inclessthn35000 + gender5 + satislot,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit34<-svyglm(felt_depressed ~ new_age + race_eth + educa + inclessthn35000 + gender5 + housequal,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit35<-svyglm(felt_depressed ~ new_age + race_eth + educa + inclessthn35000 + gender5 + parkqual,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit36<-svyglm(felt_depressed ~ new_age + race_eth + educa + inclessthn35000 + gender5 + safewalking,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit37<-svyglm(felt_depressed ~ new_age + race_eth + educa + inclessthn35000 + gender5 + safehome,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit38<-svyglm(felt_depressed ~ new_age + race_eth + educa + inclessthn35000 + gender5 + safewalking,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit39<-svyglm(felt_depressed ~ new_age + race_eth + educa + inclessthn35000 + gender5 + qol + satisinfra + 
                      satislot + housequal + parkqual,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit40<-svyglm(felt_depressed ~ new_age + race_eth + educa + inclessthn35000 + gender5 + nbsafe + satiscrime + 
                      safehome + safewalking,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit41<-svyglm(felt_depressed ~ new_age + race_eth + educa + inclessthn35000 + gender5 + + qol + satisinfra + 
                      satislot + housequal + parkqual + nbsafe + satiscrime + 
                      safehome + safewalking,
                  design = des,
                  family = binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
fit.logit28%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.303 0.510 -4.515 0.000 0.100 0.037 0.272
new_agemiddleadult 0.544 0.390 1.392 0.164 1.722 0.801 3.701
new_ageyoungeradult 0.566 0.429 1.320 0.187 1.761 0.760 4.080
race_ethblack -0.100 0.484 -0.206 0.837 0.905 0.351 2.336
race_ethhispanic -0.342 0.674 -0.507 0.612 0.710 0.190 2.661
race_ethother 0.313 0.571 0.549 0.583 1.368 0.447 4.185
educahghsch 0.598 0.353 1.693 0.091 1.819 0.910 3.637
educalsshgh 0.602 0.467 1.287 0.198 1.825 0.730 4.563
educasomecol 0.207 0.423 0.489 0.625 1.230 0.537 2.818
inclessthn350001 0.104 0.319 0.327 0.744 1.110 0.594 2.074
gender5female 0.477 0.298 1.602 0.110 1.612 0.899 2.891
gender5other 2.583 1.649 1.566 0.118 13.234 0.522 335.462
fit.logit29%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.723 0.543 -5.016 0.000 0.066 0.023 0.190
new_agemiddleadult 0.610 0.403 1.512 0.131 1.840 0.835 4.054
new_ageyoungeradult 0.645 0.443 1.457 0.145 1.907 0.800 4.541
race_ethblack -0.077 0.449 -0.173 0.863 0.925 0.384 2.229
race_ethhispanic -0.280 0.626 -0.448 0.655 0.756 0.221 2.579
race_ethother 0.426 0.547 0.779 0.436 1.531 0.524 4.473
educahghsch 0.629 0.347 1.814 0.070 1.875 0.951 3.698
educalsshgh 0.728 0.470 1.547 0.122 2.070 0.823 5.206
educasomecol 0.282 0.422 0.667 0.505 1.326 0.579 3.034
inclessthn350001 0.083 0.316 0.263 0.793 1.086 0.585 2.017
gender5female 0.441 0.298 1.479 0.140 1.555 0.866 2.789
gender5other 2.892 1.687 1.714 0.087 18.027 0.660 492.103
qoldeclining 0.902 0.334 2.701 0.007 2.466 1.281 4.746
qolunsure 0.155 0.316 0.489 0.625 1.167 0.628 2.170
fit.logit30%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.955 0.587 -5.031 0.000 0.052 0.016 0.165
new_agemiddleadult 0.426 0.394 1.080 0.280 1.531 0.707 3.315
new_ageyoungeradult 0.364 0.431 0.845 0.398 1.439 0.619 3.346
race_ethblack -0.148 0.439 -0.338 0.735 0.862 0.365 2.037
race_ethhispanic -0.370 0.629 -0.588 0.557 0.691 0.201 2.371
race_ethother 0.342 0.551 0.621 0.535 1.408 0.478 4.144
educahghsch 0.536 0.342 1.565 0.118 1.709 0.874 3.345
educalsshgh 0.702 0.486 1.445 0.149 2.017 0.779 5.227
educasomecol 0.189 0.406 0.465 0.642 1.208 0.545 2.680
inclessthn350001 0.155 0.303 0.512 0.609 1.168 0.645 2.115
gender5female 0.407 0.297 1.371 0.171 1.502 0.840 2.687
gender5other 2.907 1.493 1.948 0.052 18.307 0.982 341.370
nbsafedeclining 1.451 0.466 3.111 0.002 4.267 1.711 10.642
nbsafeunsure 0.650 0.434 1.498 0.135 1.915 0.818 4.481
fit.logit31%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.403 0.535 -4.488 0.000 0.090 0.032 0.258
new_agemiddleadult 0.521 0.397 1.313 0.190 1.683 0.774 3.663
new_ageyoungeradult 0.516 0.437 1.179 0.239 1.675 0.711 3.946
race_ethblack -0.095 0.493 -0.192 0.848 0.910 0.346 2.391
race_ethhispanic -0.387 0.669 -0.579 0.563 0.679 0.183 2.519
race_ethother 0.314 0.584 0.538 0.591 1.369 0.436 4.297
educahghsch 0.600 0.351 1.711 0.087 1.823 0.916 3.625
educalsshgh 0.611 0.464 1.317 0.188 1.843 0.742 4.576
educasomecol 0.198 0.432 0.458 0.647 1.219 0.523 2.841
inclessthn350001 0.089 0.321 0.276 0.782 1.093 0.582 2.052
gender5female 0.427 0.295 1.447 0.148 1.533 0.859 2.736
gender5other 2.679 1.745 1.535 0.125 14.563 0.476 445.241
satisinfra1 0.268 0.287 0.933 0.351 1.307 0.745 2.295
fit.logit32%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.516 0.499 -5.039 0.000 0.081 0.030 0.215
new_agemiddleadult 0.443 0.398 1.113 0.266 1.558 0.714 3.399
new_ageyoungeradult 0.467 0.424 1.101 0.271 1.595 0.695 3.662
race_ethblack -0.140 0.468 -0.299 0.765 0.869 0.348 2.174
race_ethhispanic -0.431 0.664 -0.650 0.516 0.650 0.177 2.387
race_ethother 0.307 0.570 0.538 0.591 1.359 0.444 4.157
educahghsch 0.531 0.343 1.547 0.122 1.701 0.868 3.333
educalsshgh 0.615 0.467 1.317 0.188 1.850 0.740 4.626
educasomecol 0.161 0.414 0.390 0.697 1.175 0.522 2.646
inclessthn350001 0.127 0.314 0.405 0.686 1.136 0.614 2.102
gender5female 0.371 0.316 1.174 0.241 1.449 0.780 2.690
gender5other 2.795 1.807 1.547 0.122 16.365 0.474 565.118
satiscrime1 0.558 0.322 1.733 0.084 1.748 0.930 3.287
fit.logit33%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.787 0.513 -5.432 0.000 0.062 0.023 0.168
new_agemiddleadult 0.388 0.400 0.971 0.332 1.475 0.673 3.230
new_ageyoungeradult 0.354 0.427 0.831 0.407 1.425 0.618 3.289
race_ethblack -0.018 0.465 -0.038 0.970 0.983 0.395 2.445
race_ethhispanic -0.294 0.667 -0.441 0.660 0.746 0.202 2.753
race_ethother 0.413 0.555 0.743 0.458 1.511 0.509 4.488
educahghsch 0.569 0.346 1.645 0.100 1.767 0.897 3.483
educalsshgh 0.740 0.471 1.572 0.117 2.095 0.833 5.272
educasomecol 0.206 0.421 0.488 0.626 1.228 0.538 2.805
inclessthn350001 0.113 0.317 0.358 0.721 1.120 0.602 2.084
gender5female 0.354 0.309 1.145 0.253 1.425 0.777 2.613
gender5other 3.108 1.950 1.594 0.111 22.384 0.490 1022.552
satislot1 0.862 0.297 2.902 0.004 2.368 1.323 4.240
fit.logit34%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.495 0.509 -4.900 0.000 0.082 0.030 0.224
new_agemiddleadult 0.496 0.398 1.248 0.213 1.642 0.753 3.579
new_ageyoungeradult 0.462 0.430 1.074 0.283 1.588 0.683 3.692
race_ethblack -0.133 0.472 -0.282 0.778 0.875 0.347 2.208
race_ethhispanic -0.410 0.666 -0.615 0.539 0.664 0.180 2.448
race_ethother 0.338 0.571 0.591 0.555 1.402 0.458 4.292
educahghsch 0.513 0.346 1.482 0.139 1.671 0.847 3.295
educalsshgh 0.571 0.469 1.220 0.223 1.771 0.707 4.437
educasomecol 0.161 0.412 0.391 0.696 1.175 0.524 2.636
inclessthn350001 0.113 0.317 0.356 0.722 1.119 0.601 2.084
gender5female 0.459 0.300 1.531 0.126 1.582 0.879 2.847
gender5other 2.774 1.815 1.528 0.127 16.022 0.457 562.155
housequal1 0.515 0.267 1.931 0.054 1.673 0.992 2.821
fit.logit35%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.538 0.520 -4.882 0.000 0.079 0.029 0.219
new_agemiddleadult 0.477 0.395 1.208 0.228 1.611 0.743 3.493
new_ageyoungeradult 0.432 0.435 0.994 0.320 1.541 0.657 3.611
race_ethblack -0.146 0.473 -0.307 0.759 0.865 0.342 2.187
race_ethhispanic -0.434 0.671 -0.647 0.518 0.648 0.174 2.413
race_ethother 0.312 0.570 0.546 0.585 1.366 0.446 4.178
educahghsch 0.580 0.352 1.648 0.100 1.785 0.896 3.556
educalsshgh 0.573 0.464 1.235 0.217 1.773 0.714 4.402
educasomecol 0.176 0.421 0.419 0.676 1.193 0.522 2.723
inclessthn350001 0.070 0.322 0.217 0.828 1.072 0.571 2.014
gender5female 0.465 0.299 1.553 0.121 1.592 0.885 2.864
gender5other 2.855 1.811 1.577 0.115 17.379 0.500 604.629
parkqual1 0.506 0.312 1.623 0.105 1.658 0.900 3.054
fit.logit36%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.419 0.483 -5.011 0.000 0.089 0.035 0.229
new_agemiddleadult 0.538 0.382 1.409 0.159 1.713 0.810 3.621
new_ageyoungeradult 0.474 0.414 1.147 0.252 1.607 0.714 3.614
race_ethblack -0.128 0.439 -0.292 0.771 0.880 0.372 2.082
race_ethhispanic -0.547 0.678 -0.807 0.420 0.579 0.153 2.185
race_ethother 0.411 0.545 0.753 0.451 1.508 0.518 4.386
educahghsch 0.442 0.332 1.333 0.183 1.556 0.812 2.982
educalsshgh 0.468 0.471 0.995 0.320 1.597 0.635 4.020
educasomecol 0.227 0.421 0.541 0.589 1.255 0.550 2.864
inclessthn350001 0.130 0.310 0.419 0.675 1.139 0.620 2.092
gender5female 0.327 0.303 1.079 0.281 1.386 0.766 2.509
gender5other 2.743 1.710 1.604 0.109 15.539 0.544 443.889
safewalkingnotsafe 0.966 0.284 3.404 0.001 2.627 1.506 4.580
safewalkingunsure 0.079 0.825 0.096 0.924 1.082 0.215 5.454
fit.logit37%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.417 0.505 -4.789 0.000 0.089 0.033 0.240
new_agemiddleadult 0.508 0.373 1.361 0.174 1.662 0.800 3.455
new_ageyoungeradult 0.521 0.433 1.204 0.229 1.684 0.721 3.932
race_ethblack -0.101 0.509 -0.199 0.842 0.904 0.333 2.452
race_ethhispanic -0.490 0.658 -0.745 0.457 0.613 0.169 2.224
race_ethother 0.228 0.597 0.381 0.703 1.255 0.390 4.046
educahghsch 0.588 0.346 1.697 0.090 1.800 0.913 3.548
educalsshgh 0.617 0.478 1.290 0.198 1.853 0.726 4.735
educasomecol 0.278 0.426 0.652 0.514 1.320 0.573 3.042
inclessthn350001 0.170 0.320 0.530 0.596 1.185 0.632 2.221
gender5female 0.347 0.307 1.131 0.258 1.415 0.775 2.584
gender5other 2.728 1.673 1.631 0.103 15.309 0.576 406.666
safehomenotsafe 1.382 0.369 3.746 0.000 3.982 1.933 8.205
safehomeunsure -1.752 1.284 -1.364 0.173 0.173 0.014 2.148
fit.logit38%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.419 0.483 -5.011 0.000 0.089 0.035 0.229
new_agemiddleadult 0.538 0.382 1.409 0.159 1.713 0.810 3.621
new_ageyoungeradult 0.474 0.414 1.147 0.252 1.607 0.714 3.614
race_ethblack -0.128 0.439 -0.292 0.771 0.880 0.372 2.082
race_ethhispanic -0.547 0.678 -0.807 0.420 0.579 0.153 2.185
race_ethother 0.411 0.545 0.753 0.451 1.508 0.518 4.386
educahghsch 0.442 0.332 1.333 0.183 1.556 0.812 2.982
educalsshgh 0.468 0.471 0.995 0.320 1.597 0.635 4.020
educasomecol 0.227 0.421 0.541 0.589 1.255 0.550 2.864
inclessthn350001 0.130 0.310 0.419 0.675 1.139 0.620 2.092
gender5female 0.327 0.303 1.079 0.281 1.386 0.766 2.509
gender5other 2.743 1.710 1.604 0.109 15.539 0.544 443.889
safewalkingnotsafe 0.966 0.284 3.404 0.001 2.627 1.506 4.580
safewalkingunsure 0.079 0.825 0.096 0.924 1.082 0.215 5.454
fit.logit39%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -3.007 0.547 -5.501 0.000 0.049 0.017 0.144
new_agemiddleadult 0.484 0.412 1.175 0.240 1.623 0.723 3.642
new_ageyoungeradult 0.476 0.459 1.038 0.300 1.609 0.655 3.953
race_ethblack -0.002 0.429 -0.006 0.995 0.998 0.431 2.311
race_ethhispanic -0.185 0.622 -0.297 0.766 0.831 0.245 2.814
race_ethother 0.513 0.526 0.976 0.330 1.671 0.596 4.688
educahghsch 0.598 0.346 1.728 0.085 1.818 0.923 3.580
educalsshgh 0.843 0.481 1.754 0.080 2.323 0.906 5.959
educasomecol 0.277 0.414 0.669 0.503 1.319 0.586 2.967
inclessthn350001 0.097 0.313 0.310 0.756 1.102 0.597 2.035
gender5female 0.399 0.292 1.368 0.172 1.491 0.841 2.641
gender5other 3.223 1.913 1.685 0.093 25.092 0.591 1066.000
qoldeclining 0.698 0.369 1.891 0.059 2.009 0.975 4.142
qolunsure -0.005 0.317 -0.014 0.989 0.995 0.534 1.854
satisinfra1 -0.279 0.349 -0.800 0.424 0.756 0.382 1.499
satislot1 0.791 0.337 2.345 0.019 2.205 1.139 4.268
housequal1 0.027 0.310 0.087 0.931 1.027 0.559 1.887
parkqual1 0.067 0.375 0.180 0.857 1.070 0.513 2.230
fit.logit40%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -2.966 0.601 -4.936 0.000 0.051 0.016 0.167
new_agemiddleadult 0.454 0.385 1.177 0.239 1.574 0.740 3.349
new_ageyoungeradult 0.409 0.420 0.973 0.331 1.505 0.661 3.429
race_ethblack -0.114 0.444 -0.257 0.797 0.892 0.374 2.131
race_ethhispanic -0.540 0.625 -0.864 0.388 0.583 0.171 1.984
race_ethother 0.325 0.559 0.581 0.561 1.384 0.463 4.138
educahghsch 0.483 0.328 1.470 0.142 1.620 0.851 3.084
educalsshgh 0.685 0.501 1.369 0.172 1.984 0.744 5.293
educasomecol 0.239 0.403 0.592 0.554 1.269 0.576 2.796
inclessthn350001 0.199 0.302 0.658 0.511 1.220 0.675 2.204
gender5female 0.241 0.314 0.768 0.443 1.273 0.687 2.357
gender5other 2.940 1.544 1.904 0.057 18.918 0.917 390.447
nbsafedeclining 1.109 0.529 2.096 0.036 3.033 1.075 8.557
nbsafeunsure 0.541 0.438 1.234 0.218 1.717 0.728 4.053
satiscrime1 -0.001 0.373 -0.003 0.997 0.999 0.481 2.075
safehomenotsafe 0.924 0.413 2.236 0.026 2.520 1.121 5.664
safehomeunsure -2.266 1.329 -1.705 0.089 0.104 0.008 1.403
safewalkingnotsafe 0.349 0.334 1.046 0.296 1.418 0.737 2.726
safewalkingunsure 0.055 0.807 0.068 0.945 1.057 0.217 5.139
fit.logit41%>%
  tidy()%>%
  mutate(OR = exp(estimate),
         LowerOR_Ci = exp(estimate - 1.96*std.error),
         UpperOR_Ci = exp(estimate + 1.96*std.error))%>%
  knitr::kable(digits = 3)
term estimate std.error statistic p.value OR LowerOR_Ci UpperOR_Ci
(Intercept) -3.185 0.609 -5.233 0.000 0.041 0.013 0.136
new_agemiddleadult 0.453 0.385 1.179 0.239 1.574 0.740 3.345
new_ageyoungeradult 0.416 0.440 0.947 0.344 1.517 0.641 3.590
race_ethblack -0.018 0.415 -0.043 0.966 0.982 0.435 2.217
race_ethhispanic -0.324 0.602 -0.538 0.591 0.723 0.222 2.354
race_ethother 0.456 0.528 0.863 0.388 1.577 0.560 4.438
educahghsch 0.514 0.333 1.543 0.123 1.672 0.870 3.213
educalsshgh 0.841 0.493 1.705 0.089 2.318 0.882 6.091
educasomecol 0.296 0.390 0.760 0.447 1.345 0.627 2.887
inclessthn350001 0.215 0.298 0.720 0.472 1.240 0.691 2.224
gender5female 0.300 0.301 0.995 0.320 1.350 0.748 2.436
gender5other 3.080 1.582 1.947 0.052 21.767 0.980 483.551
qoldeclining 0.214 0.390 0.548 0.584 1.238 0.577 2.658
qolunsure -0.204 0.339 -0.601 0.548 0.816 0.419 1.586
satisinfra1 -0.558 0.361 -1.542 0.123 0.573 0.282 1.163
satislot1 0.578 0.333 1.735 0.083 1.782 0.928 3.423
housequal1 -0.099 0.326 -0.305 0.761 0.905 0.478 1.716
parkqual1 0.074 0.367 0.202 0.840 1.077 0.524 2.212
nbsafedeclining 1.062 0.569 1.869 0.062 2.894 0.949 8.818
nbsafeunsure 0.584 0.449 1.300 0.194 1.793 0.743 4.327
satiscrime1 -0.036 0.415 -0.088 0.930 0.964 0.428 2.174
safehomenotsafe 1.019 0.400 2.547 0.011 2.772 1.265 6.073
safehomeunsure -2.120 1.346 -1.576 0.116 0.120 0.009 1.677
safewalkingnotsafe 0.289 0.332 0.871 0.384 1.336 0.696 2.561
safewalkingunsure 0.115 0.763 0.150 0.881 1.121 0.251 5.003
exp(coefficients(fit.logit28))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##          0.09995664          1.72215488          1.76100496          0.90519062 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##          0.71041306          1.36773749          1.81906563          1.82536157 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##          1.22986228          1.10976613          1.61183092         13.23406240
exp(coefficients(fit.logit29))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##          0.06566894          1.83951349          1.90656214          0.92546102 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##          0.75552537          1.53123970          1.87495766          2.07041287 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##          1.32568831          1.08643300          1.55454065         18.02654621 
##        qoldeclining           qolunsure 
##          2.46573132          1.16731002
exp(coefficients(fit.logit30))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##          0.05206308          1.53084855          1.43874788          0.86216499 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##          0.69102132          1.40790462          1.70938183          2.01723509 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##          1.20817796          1.16775358          1.50209822         18.30659935 
##     nbsafedeclining        nbsafeunsure 
##          4.26681171          1.91484845
exp(coefficients(fit.logit31))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##           0.0904449           1.6831595           1.6746543           0.9097512 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##           0.6788566           1.3687624           1.8227030           1.8427130 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##           1.2186498           1.0928774           1.5333621          14.5634878 
##         satisinfra1 
##           1.3073034
exp(coefficients(fit.logit32))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##          0.08077398          1.55755121          1.59513042          0.86945837 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##          0.64958203          1.35915382          1.70068194          1.85048512 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##          1.17524793          1.13566789          1.44887479         16.36496157 
##         satiscrime1 
##          1.74802503
exp(coefficients(fit.logit33))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##          0.06159472          1.47459386          1.42521497          0.98260081 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##          0.74555422          1.51085669          1.76730902          2.09546425 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##          1.22836034          1.12008592          1.42497061         22.38389237 
##           satislot1 
##          2.36820218
exp(coefficients(fit.logit34))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##          0.08248573          1.64222136          1.58772074          0.87548198 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##          0.66393557          1.40158957          1.67083802          1.77085939 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##          1.17483402          1.11947786          1.58211075         16.02203755 
##          housequal1 
##          1.67332155
exp(coefficients(fit.logit35))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##          0.07903864          1.61095489          1.54064875          0.86452531 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##          0.64781062          1.36572174          1.78529790          1.77313906 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##          1.19284019          1.07225644          1.59229690         17.37855676 
##           parkqual1 
##          1.65831369
exp(coefficients(fit.logit36))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##          0.08904104          1.71293421          1.60687436          0.87966758 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##          0.57879209          1.50758499          1.55638576          1.59740083 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##          1.25540039          1.13894924          1.38619564         15.53905529 
##  safewalkingnotsafe   safewalkingunsure 
##          2.62662982          1.08219757
exp(coefficients(fit.logit37))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##          0.08922774          1.66216176          1.68380950          0.90369636 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##          0.61262680          1.25547717          1.79993090          1.85344374 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##          1.32019009          1.18515248          1.41535078         15.30893433 
##     safehomenotsafe      safehomeunsure 
##          3.98206083          0.17347657
exp(coefficients(fit.logit38))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##          0.08904104          1.71293421          1.60687436          0.87966758 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##          0.57879209          1.50758499          1.55638576          1.59740083 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##          1.25540039          1.13894924          1.38619564         15.53905529 
##  safewalkingnotsafe   safewalkingunsure 
##          2.62662982          1.08219757
exp(coefficients(fit.logit39))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##          0.04944271          1.62325406          1.60927315          0.99756205 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##          0.83100463          1.67109399          1.81769395          2.32300157 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##          1.31897002          1.10195400          1.49073087         25.09171350 
##        qoldeclining           qolunsure         satisinfra1           satislot1 
##          2.00943535          0.99544298          0.75624205          2.20453969 
##          housequal1           parkqual1 
##          1.02720710          1.06980742
exp(coefficients(fit.logit40))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##          0.05149221          1.57390050          1.50485710          0.89220929 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##          0.58250675          1.38374638          1.62045781          1.98396781 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##          1.26937771          1.21965501          1.27289131         18.91786673 
##     nbsafedeclining        nbsafeunsure         satiscrime1     safehomenotsafe 
##          3.03261876          1.71726158          0.99877996          2.51973979 
##      safehomeunsure  safewalkingnotsafe   safewalkingunsure 
##          0.10369576          1.41760342          1.05677521
exp(coefficients(fit.logit41))
##         (Intercept)  new_agemiddleadult new_ageyoungeradult       race_ethblack 
##          0.04137849          1.57375362          1.51653424          0.98245586 
##    race_ethhispanic       race_ethother         educahghsch         educalsshgh 
##          0.72320829          1.57724070          1.67214800          2.31760187 
##        educasomecol    inclessthn350001       gender5female        gender5other 
##          1.34499244          1.23950626          1.34953290         21.76699256 
##        qoldeclining           qolunsure         satisinfra1           satislot1 
##          1.23826094          0.81552880          0.57259163          1.78219846 
##          housequal1           parkqual1     nbsafedeclining        nbsafeunsure 
##          0.90539992          1.07697797          2.89354529          1.79325054 
##         satiscrime1     safehomenotsafe      safehomeunsure  safewalkingnotsafe 
##          0.96425273          2.77163756          0.12000695          1.33566217 
##   safewalkingunsure 
##          1.12144022