Se correra la base de datos, la cual esta consta de 80 observaciones y 105 variables de mujeres con cancer de mama en la ciudad de cali, concretando algunos parametros para las simulaciones y el MCMC para obtener la convergencia de los parametros esperados.

options(mc.cores = parallel::detectCores())
datos <- readRDS("data/datos.RDS") 
set.seed(535535)
BURNIN1 = 3000
SAMPLE1 = 6500
BURNIN = 2500
SAMPLE = 6500
CHAINS = 6

MODELO DE REFERENCIA

se establece despues de las prueba de modelos frecuentistas y sus efectos indirectos, finalmente con la investgacion en la literatura, el modelo bayesiano con sus variables latentes.

model_bayesianoref <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad

  # residual correlations

'

Exploracion de funcion bsem

Del paquete Blavaan que nos ayuda a ejecurtar modelos bayesianos para ecuaciones de modelos estructurales.

#codigo para funcion sem
fitref <- bsem(
  model = model_bayesianoref,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE, 
  inits = "prior", 
  sample = 6500,
  burnin = 3000,
  n.chains = 6)
## Computing posterior predictives...

El resumen del modelo nos indica diferentes puntos de interes e informacion necesaria

summary(fitref,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 3000 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -519.994       0.200
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.537    0.811
##     F_c30             1.437    0.156    1.170    1.780    0.771    0.939
##   sintomas =~                                                           
##     S_br23            1.000                               0.331    0.589
##     S_c30             2.343    0.475    1.663    3.513    0.776    0.929
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.604    0.342   -2.437   -1.094   -0.990   -0.990
##   CV_Gral ~                                                             
##     Salud             0.751    0.091    0.573    0.913    0.751    0.760
##     sintomas         -0.604    7.815  -16.484   15.877   -0.200   -0.110
##     funcionalidad     0.373    5.025   -9.849   11.096    0.201    0.110
##   Salud ~                                                               
##     sintomas         -5.783    8.298  -22.898    9.480   -1.916   -1.036
##     funcionalidad    -1.025    5.315  -12.090    8.860   -0.550   -0.298
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,15)
##                          
##     1.000  normal(-10,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.073    2.199    2.487    2.342    3.536
##    .F_c30             2.437    0.088    2.264    2.611    2.437    2.965
##    .S_br23            1.765    0.063    1.643    1.889    1.765    3.138
##    .S_c30             2.164    0.090    1.986    2.341    2.164    2.590
##    .CV_Gral           0.843    0.402    0.123    1.627    0.843    0.462
##    .Salud             4.335    0.207    3.928    4.743    4.335    2.344
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.215    0.150    0.343
##    .F_c30             0.081    0.028    0.029    0.139    0.081    0.119
##    .S_br23            0.206    0.036    0.147    0.286    0.206    0.653
##    .S_c30             0.095    0.033    0.021    0.161    0.095    0.136
##    .CV_Gral           0.430    0.109    0.164    0.633    0.430    0.129
##    .Salud             1.534    0.327    0.902    2.212    1.534    0.448
##    .funcionalidad     0.006    0.010    0.000    0.036    0.021    0.021
##     sintomas          0.110    0.042    0.043    0.204    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

Informacion del BRMSEA

blavFitIndices(fitref)
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc 
##        0.116        0.963        0.864        0.944

Informacion de R hat

blavInspect(fitref, 'rhat')
##         funcionalidad=~F_c30              sintomas=~S_c30 
##                    1.0000343                    1.0000453 
##       funcionalidad~sintomas                CV_Gral~Salud 
##                    1.0000549                    1.0003213 
##             CV_Gral~sintomas        CV_Gral~funcionalidad 
##                    1.0004063                    1.0004426 
##               Salud~sintomas          Salud~funcionalidad 
##                    1.0004253                    1.0003951 
##               F_br23~~F_br23                 F_c30~~F_c30 
##                    1.0001521                    1.0005471 
##               S_br23~~S_br23                 S_c30~~S_c30 
##                    0.9999676                    1.0002329 
##             CV_Gral~~CV_Gral                 Salud~~Salud 
##                    1.0001215                    1.0001325 
## funcionalidad~~funcionalidad           sintomas~~sintomas 
##                    1.0006765                    0.9999426 
##                     F_br23~1                      F_c30~1 
##                    1.0000566                    1.0000149 
##                     S_br23~1                      S_c30~1 
##                    1.0000496                    1.0000642 
##                    CV_Gral~1                      Salud~1 
##                    1.0003088                    1.0000529

Informacion del neff

blavInspect(fitref, 'neff')
##         funcionalidad=~F_c30              sintomas=~S_c30 
##                    25671.738                    11504.372 
##       funcionalidad~sintomas                CV_Gral~Salud 
##                    12714.626                     9877.462 
##             CV_Gral~sintomas        CV_Gral~funcionalidad 
##                     9562.564                     9425.354 
##               Salud~sintomas          Salud~funcionalidad 
##                    11436.464                    11015.307 
##               F_br23~~F_br23                 F_c30~~F_c30 
##                    30448.833                    16757.158 
##               S_br23~~S_br23                 S_c30~~S_c30 
##                    30851.553                    12372.945 
##             CV_Gral~~CV_Gral                 Salud~~Salud 
##                     8951.224                    15476.893 
## funcionalidad~~funcionalidad           sintomas~~sintomas 
##                     7301.670                    19658.809 
##                     F_br23~1                      F_c30~1 
##                    19064.776                    16806.909 
##                     S_br23~1                      S_c30~1 
##                    23222.674                    17088.299 
##                    CV_Gral~1                      Salud~1 
##                    10088.024                    20375.859

Grafico del modelo sem bayesiano

semPaths(
  fitref,
  intercepts = FALSE,
  residuals = TRUE,
  edge.label.cex = 1.5,
  intStyle = "multi",
  optimizeLatRes = TRUE,
  title.color = "black",
  groups = "lat",
  pastel = TRUE,
  exoVar = FALSE,
  sizeInt = 5,
  edge.color = "black",
  esize = 6,
  label.prop = 2,
  sizeLat = 6,
  "std"
)

graficos de mcmc

plot(fitref, par = 1:12,  facet_args = list(ncol = 4))

continuacion de graficos mcmc

plot(fitref, par = 13:22, facet_args = list(ncol = 4))

Grafico de intervalos

plot(fitref, par = 1:12,  plot.type = "intervals")

Gráfico de coordenas paralelas

plot(fitref, plot.type = "parcoord")

Modelos con variables moderadoras

Modelo 1.0 variable interaccion edad

model_bayesiano1.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad + Edad
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad

  # residual correlations

'

sem modelo 1.0

fitedad1.0 <- bsem(
  model = model_bayesiano1.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 1.0

summary(fitedad1.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -526.911       0.036
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.536    0.810
##     F_c30             1.438    0.158    1.170    1.788    0.771    0.938
##   sintomas =~                                                           
##     S_br23            1.000                               0.331    0.589
##     S_c30             2.346    0.488    1.665    3.520    0.777    0.930
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.600    0.350   -2.425   -1.086   -0.989   -0.989
##   CV_Gral ~                                                             
##     Salud             0.740    0.089    0.560    0.903    0.740    0.752
##     sintomas         -1.400    7.841  -17.339   15.298   -0.464   -0.254
##     funcionalidad    -0.091    5.019  -10.401   10.553   -0.049   -0.027
##     Edad             -0.005    0.007   -0.018    0.008   -0.005   -0.033
##   Salud ~                                                               
##     sintomas         -5.621    8.157  -22.985    9.081   -1.862   -1.005
##     funcionalidad    -0.920    5.244  -12.086    8.625   -0.493   -0.266
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,15)
##     1.000    normal(0,10)
##                          
##     1.000  normal(-10,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.072    2.201    2.483    2.342    3.539
##    .F_c30             2.437    0.087    2.268    2.609    2.437    2.966
##    .S_br23            1.765    0.063    1.641    1.889    1.765    3.142
##    .S_c30             2.165    0.090    1.988    2.340    2.165    2.592
##    .CV_Gral           1.152    0.587    0.034    2.328    1.152    0.631
##    .Salud             4.335    0.204    3.936    4.740    4.335    2.340
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.214    0.150    0.343
##    .F_c30             0.081    0.028    0.027    0.139    0.081    0.119
##    .S_br23            0.206    0.036    0.147    0.286    0.206    0.653
##    .S_c30             0.094    0.034    0.016    0.160    0.094    0.135
##    .CV_Gral           0.427    0.115    0.132    0.635    0.427    0.128
##    .Salud             1.538    0.325    0.921    2.203    1.538    0.448
##    .funcionalidad     0.007    0.010    0.000    0.039    0.023    0.023
##     sintomas          0.110    0.041    0.043    0.203    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
blavFitIndices(fitedad1.0, baseline.model = fitref)
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc         BCFI         BTLI 
##        0.130        0.936        0.838        0.887       -0.386       -0.532 
##         BNFI 
##       -1.483

Comparacion con de factor de bayes modelos Ref Vs 1.0

blavCompare(fitref, fitedad1.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  915.901 
## 
## WAIC difference & SE: 
##    -1.071    1.047 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  916.265 
## 
## LOO difference & SE: 
##    -1.057    1.082 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    6.917

Gana modelo ref

Modelo 2.0 interaccion compañero permanente

model_bayesiano2.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad + Con_companero_permanente
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad

  # residual correlations

'

sem modelo 2.0

fit2.0 <- bsem(
  model = model_bayesiano2.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen de modelo 2.0

summary(fit2.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -523.596       0.223
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.538    0.811
##     F_c30             1.436    0.158    1.167    1.789    0.773    0.939
##   sintomas =~                                                           
##     S_br23            1.000                               0.331    0.589
##     S_c30             2.351    0.521    1.657    3.541    0.779    0.930
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.607    0.371   -2.448   -1.089   -0.989   -0.989
##   CV_Gral ~                                                             
##     Salud             0.752    0.105    0.571    0.918    0.752    0.763
##     sintomas         -0.617    7.879  -16.963   15.837   -0.204   -0.112
##     funcionalidad     0.352    5.092  -10.191   10.978    0.189    0.104
##     Cn_cmpnr_prmnn    0.001    0.162   -0.320    0.320    0.001    0.000
##   Salud ~                                                               
##     sintomas         -5.689    8.374  -23.184    9.682   -1.885   -1.018
##     funcionalidad    -0.957    5.367  -12.267    9.062   -0.515   -0.278
##      Rhat    Prior       
##                          
##     1.001    normal(0,10)
##                          
##     1.002    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,15)
##     1.000    normal(0,10)
##                          
##     1.000  normal(-10,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.343    0.072    2.201    2.483    2.343    3.533
##    .F_c30             2.437    0.088    2.265    2.609    2.437    2.960
##    .S_br23            1.765    0.063    1.640    1.889    1.765    3.137
##    .S_c30             2.164    0.090    1.987    2.340    2.164    2.583
##    .CV_Gral           0.837    0.510   -0.030    1.739    0.837    0.458
##    .Salud             4.336    0.206    3.930    4.738    4.336    2.341
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.215    0.150    0.342
##    .F_c30             0.081    0.028    0.030    0.140    0.081    0.119
##    .S_br23            0.207    0.036    0.147    0.288    0.207    0.653
##    .S_c30             0.095    0.034    0.018    0.161    0.095    0.135
##    .CV_Gral           0.434    0.112    0.150    0.641    0.434    0.130
##    .Salud             1.532    0.331    0.895    2.206    1.532    0.447
##    .funcionalidad     0.006    0.010    0.000    0.037    0.021    0.021
##     sintomas          0.110    0.042    0.041    0.203    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD2.0

blavCompare(fitref, fit2.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  915.836 
## 
## WAIC difference & SE: 
##    -1.039    0.107 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  916.205 
## 
## LOO difference & SE: 
##    -1.026    0.123 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    3.602

COMPARACION MOD1.0 Vs MOD2.0

blavCompare(fitedad1.0, fit2.0)
## 
## WAIC estimates: 
##  object1:  915.901 
##  object2:  915.836 
## 
## WAIC difference & SE: 
##    -0.032    1.068 
## 
## LOO estimates: 
##  object1:  916.265 
##  object2:  916.205 
## 
## LOO difference & SE: 
##    -0.030    1.086 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):   -3.315

MODELO COMPUESTO 1.0 + 2.0 (Edad + compañero permanente)

model_bayesiano1.0_2.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad + Edad + Con_companero_permanente
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad

  # residual correlations

'

sem 1.0+2.0

fit1.0_2.0 <- bsem(
  model = model_bayesiano1.0_2.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 1.0 + 2.0

summary(fit1.0_2.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -530.677       0.052
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.537    0.811
##     F_c30             1.436    0.156    1.171    1.783    0.772    0.938
##   sintomas =~                                                           
##     S_br23            1.000                               0.331    0.589
##     S_c30             2.348    0.502    1.661    3.568    0.778    0.930
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.605    0.356   -2.455   -1.091   -0.989   -0.989
##   CV_Gral ~                                                             
##     Salud             0.740    0.101    0.549    0.906    0.740    0.751
##     sintomas         -1.402    8.033  -17.814   15.440   -0.464   -0.255
##     funcionalidad    -0.095    5.185  -10.676   10.763   -0.051   -0.028
##     Edad             -0.005    0.007   -0.019    0.008   -0.005   -0.034
##     Cn_cmpnr_prmnn   -0.016    0.162   -0.336    0.303   -0.016   -0.004
##   Salud ~                                                               
##     sintomas         -5.552    8.300  -22.803    9.604   -1.839   -0.994
##     funcionalidad    -0.881    5.342  -12.219    8.950   -0.473   -0.256
##      Rhat    Prior       
##                          
##     1.001    normal(0,10)
##                          
##     1.001    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,15)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.001  normal(-10,10)
##     1.001    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.343    0.072    2.201    2.485    2.343    3.535
##    .F_c30             2.438    0.088    2.263    2.611    2.438    2.964
##    .S_br23            1.765    0.063    1.641    1.889    1.765    3.137
##    .S_c30             2.164    0.090    1.988    2.342    2.164    2.587
##    .CV_Gral           1.186    0.673   -0.076    2.508    1.186    0.651
##    .Salud             4.336    0.206    3.930    4.740    4.336    2.344
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.215    0.150    0.343
##    .F_c30             0.081    0.028    0.029    0.139    0.081    0.119
##    .S_br23            0.207    0.036    0.147    0.288    0.207    0.653
##    .S_c30             0.095    0.033    0.023    0.160    0.095    0.135
##    .CV_Gral           0.431    0.119    0.109    0.642    0.431    0.130
##    .Salud             1.537    0.341    0.878    2.228    1.537    0.449
##    .funcionalidad     0.006    0.010    0.000    0.037    0.021    0.021
##     sintomas          0.110    0.042    0.041    0.205    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

Comparacion modelo ref vs 1.0+2.0

blavCompare(fitref, fit1.0_2.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  917.961 
## 
## WAIC difference & SE: 
##    -2.101    1.051 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  918.437 
## 
## LOO difference & SE: 
##    -2.142    1.076 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):   10.683

Modelo 3.0 interaccion estrato

model_bayesiano3.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas + Estrato
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad 
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad

  # residual correlations

'

sem modelo 3.0

fit3.0 <- bsem(
  model = model_bayesiano3.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen de modelo 3.0

summary(fit3.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -524.117       0.305
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.544    0.815
##     F_c30             1.432    0.153    1.170    1.774    0.779    0.942
##   sintomas =~                                                           
##     S_br23            1.000                               0.324    0.581
##     S_c30             2.432    0.559    1.705    3.728    0.789    0.938
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.642    0.393   -2.552   -1.104   -0.980   -0.980
##     Estrato           0.083    0.061   -0.020    0.209    0.153    0.076
##   CV_Gral ~                                                             
##     Salud             0.755    0.071    0.615    0.890    0.755    0.765
##     sintomas         -1.470    4.080  -10.320    7.518   -0.477   -0.257
##     funcionalidad    -0.166    2.514   -5.464    5.406   -0.090   -0.049
##   Salud ~                                                               
##     sintomas         -3.321    5.562  -16.734    6.192   -1.077   -0.574
##     funcionalidad     0.582    3.412   -7.616    6.480    0.316    0.168
##      Rhat    Prior       
##                          
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,15)
##                          
##     1.000  normal(-10,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.222    0.114    1.992    2.435    2.222    3.332
##    .F_c30             2.266    0.152    1.963    2.548    2.266    2.743
##    .S_br23            1.765    0.063    1.643    1.889    1.765    3.160
##    .S_c30             2.165    0.090    1.987    2.340    2.165    2.575
##    .CV_Gral           0.852    0.359    0.177    1.575    0.852    0.460
##    .Salud             4.209    0.390    3.403    4.953    4.209    2.242
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.149    0.029    0.102    0.214    0.149    0.336
##    .F_c30             0.077    0.027    0.025    0.134    0.077    0.112
##    .S_br23            0.207    0.036    0.148    0.287    0.207    0.663
##    .S_c30             0.084    0.035    0.006    0.153    0.084    0.119
##    .CV_Gral           0.458    0.090    0.301    0.649    0.458    0.134
##    .Salud             1.596    0.301    1.078    2.253    1.596    0.453
##    .funcionalidad     0.010    0.013    0.000    0.047    0.035    0.035
##     sintomas          0.105    0.041    0.038    0.197    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD3.0

blavCompare(fitref, fit3.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  913.51 
## 
## WAIC difference & SE: 
##    -0.124    1.396 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  913.884 
## 
## LOO difference & SE: 
##    -0.134    1.402 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    4.123

Modelo 4.0 interaccion nivel educativo

model_bayesiano4.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad + niveleducativo
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad

  # residual correlations

'

Sem modelo 4.0

fit4.0 <- bsem(
  model = model_bayesiano4.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 4.0

summary(fit4.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -523.384       0.085
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.539    0.812
##     F_c30             1.435    0.156    1.169    1.783    0.774    0.939
##   sintomas =~                                                           
##     S_br23            1.000                               0.331    0.589
##     S_c30             2.351    0.537    1.657    3.555    0.779    0.929
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.611    0.383   -2.471   -1.089   -0.990   -0.990
##   CV_Gral ~                                                             
##     Salud             0.750    0.093    0.565    0.915    0.750    0.756
##     sintomas         -0.746    8.073  -17.344   15.958   -0.247   -0.135
##     funcionalidad     0.305    5.179  -10.394   11.132    0.164    0.090
##     niveleducativo    0.116    0.173   -0.220    0.457    0.116    0.030
##   Salud ~                                                               
##     sintomas         -5.771    8.383  -23.089    9.753   -1.912   -1.034
##     funcionalidad    -1.010    5.361  -12.227    9.017   -0.545   -0.294
##      Rhat    Prior       
##                          
##     1.001    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,15)
##     1.000    normal(0,10)
##                          
##     1.001  normal(-10,10)
##     1.001    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.343    0.072    2.200    2.485    2.343    3.529
##    .F_c30             2.438    0.088    2.264    2.610    2.438    2.957
##    .S_br23            1.765    0.063    1.640    1.889    1.765    3.136
##    .S_c30             2.163    0.090    1.986    2.342    2.163    2.582
##    .CV_Gral           0.690    0.478   -0.189    1.641    0.690    0.376
##    .Salud             4.338    0.206    3.934    4.741    4.338    2.345
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.028    0.102    0.214    0.150    0.340
##    .F_c30             0.081    0.027    0.031    0.139    0.081    0.119
##    .S_br23            0.207    0.036    0.147    0.289    0.207    0.653
##    .S_c30             0.096    0.033    0.025    0.161    0.096    0.136
##    .CV_Gral           0.429    0.115    0.132    0.636    0.429    0.127
##    .Salud             1.531    0.333    0.874    2.204    1.531    0.447
##    .funcionalidad     0.006    0.009    0.000    0.035    0.020    0.020
##     sintomas          0.110    0.042    0.041    0.205    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD3.0

blavCompare(fitref, fit4.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  915.473 
## 
## WAIC difference & SE: 
##    -0.857    0.762 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  915.771 
## 
## LOO difference & SE: 
##    -0.809    0.801 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    3.390

MODELO COMPUESTO 3.0 + 4.0 (Estrato + nivel educativo)

model_bayesiano3.0_4.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas + Estrato
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad + niveleducativo
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad

  # residual correlations

'

Sem modelo 3.0+4.0

fit3.0_4.0 <- bsem(
  model = model_bayesiano3.0_4.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen de modelo 3.0+4.0

summary(fit3.0_4.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -527.778       0.124
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.544    0.816
##     F_c30             1.433    0.154    1.169    1.770    0.780    0.943
##   sintomas =~                                                           
##     S_br23            1.000                               0.325    0.581
##     S_c30             2.427    0.552    1.693    3.750    0.788    0.937
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.645    0.391   -2.589   -1.100   -0.981   -0.981
##     Estrato           0.087    0.060   -0.018    0.214    0.160    0.079
##   CV_Gral ~                                                             
##     Salud             0.754    0.073    0.610    0.892    0.754    0.758
##     sintomas         -2.406    4.298  -12.462    6.237   -0.781   -0.418
##     funcionalidad    -0.693    2.624   -6.686    4.485   -0.377   -0.202
##     niveleducativo    0.151    0.183   -0.205    0.516    0.151    0.039
##   Salud ~                                                               
##     sintomas         -3.389    5.437  -16.405    5.925   -1.100   -0.585
##     funcionalidad     0.544    3.342   -7.393    6.316    0.296    0.158
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,15)
##     1.000    normal(0,10)
##                          
##     1.000  normal(-10,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.217    0.113    1.987    2.428    2.217    3.322
##    .F_c30             2.259    0.150    1.955    2.538    2.259    2.730
##    .S_br23            1.765    0.063    1.642    1.888    1.765    3.157
##    .S_c30             2.164    0.090    1.987    2.339    2.164    2.573
##    .CV_Gral           0.701    0.420   -0.103    1.539    0.701    0.375
##    .Salud             4.209    0.395    3.384    4.958    4.209    2.239
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.149    0.028    0.102    0.213    0.149    0.335
##    .F_c30             0.076    0.027    0.027    0.132    0.076    0.111
##    .S_br23            0.207    0.036    0.147    0.288    0.207    0.663
##    .S_c30             0.087    0.034    0.011    0.153    0.087    0.123
##    .CV_Gral           0.455    0.092    0.287    0.646    0.455    0.130
##    .Salud             1.597    0.298    1.090    2.250    1.597    0.452
##    .funcionalidad     0.009    0.012    0.000    0.044    0.031    0.031
##     sintomas          0.105    0.041    0.038    0.199    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MODCOMPUESTO 3.0 + 4.0

blavCompare(fitref, fit3.0_4.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  914.607 
## 
## WAIC difference & SE: 
##    -0.424    1.691 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  915.029 
## 
## LOO difference & SE: 
##    -0.439    1.712 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    7.784

MODELO 5.0 Situracion laboral

model_bayesiano5.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas + Situacion_laboral
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad 
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad

  # residual correlations

'

sem modelo 5.0

fit5.0 <- bsem(
  model = model_bayesiano5.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 5.0

summary(fit5.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -524.889       0.192
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.542    0.815
##     F_c30             1.421    0.153    1.158    1.757    0.770    0.937
##   sintomas =~                                                           
##     S_br23            1.000                               0.328    0.585
##     S_c30             2.375    0.570    1.672    3.570    0.780    0.930
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.631    0.401   -2.479   -1.108   -0.988   -0.988
##     Situacion_lbrl   -0.019    0.051   -0.125    0.081   -0.035   -0.017
##   CV_Gral ~                                                             
##     Salud             0.758    0.085    0.599    0.916    0.758    0.767
##     sintomas          0.354    6.618  -14.111   14.015    0.116    0.063
##     funcionalidad     0.938    4.127   -8.052    9.531    0.508    0.277
##   Salud ~                                                               
##     sintomas         -5.376    7.449  -21.342    8.246   -1.765   -0.950
##     funcionalidad    -0.723    4.647  -10.718    7.817   -0.392   -0.211
##      Rhat    Prior       
##                          
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,15)
##                          
##     1.001  normal(-10,10)
##     1.001    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.373    0.108    2.160    2.586    2.373    3.569
##    .F_c30             2.479    0.143    2.193    2.761    2.479    3.018
##    .S_br23            1.765    0.063    1.642    1.887    1.765    3.147
##    .S_c30             2.164    0.089    1.990    2.341    2.164    2.582
##    .CV_Gral           0.940    0.397    0.199    1.740    0.940    0.512
##    .Salud             4.254    0.359    3.478    4.928    4.254    2.291
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.149    0.029    0.101    0.213    0.149    0.336
##    .F_c30             0.082    0.028    0.031    0.140    0.082    0.121
##    .S_br23            0.207    0.036    0.147    0.289    0.207    0.657
##    .S_c30             0.095    0.033    0.020    0.162    0.095    0.135
##    .CV_Gral           0.435    0.104    0.193    0.633    0.435    0.129
##    .Salud             1.546    0.318    0.959    2.218    1.546    0.448
##    .funcionalidad     0.007    0.011    0.000    0.039    0.024    0.024
##     sintomas          0.108    0.041    0.041    0.201    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD5.0

blavCompare(fitref, fit5.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  915.674 
## 
## WAIC difference & SE: 
##    -0.958    0.692 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  916.18 
## 
## LOO difference & SE: 
##    -1.014    0.710 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    4.895

MODELO 6.0 interaccion Regimen de salud

model_bayesiano6.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas 
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad 
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad + Regimen_salud

  # residual correlations

'

sem modelo 6.0

fit6.0 <- bsem(
  model = model_bayesiano6.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

resumen de modelo 6.0

summary(fit6.0,standardized = TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 2500 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -666.899       0.089
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.974    0.928
##     F_c30             1.466    0.167    1.184    1.840    1.427    0.982
##   sintomas =~                                                           
##     S_br23            1.000                               0.271    0.473
##     S_c30            -5.831   12.200  -32.492    3.342   -1.581   -0.983
##      Rhat    Prior       
##                          
##                          
##     1.031    normal(0,15)
##                          
##                          
##     3.277    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas          3.572    7.713   -2.321   20.299    0.995    0.995
##   CV_Gral ~                                                             
##     Salud             0.761    0.086    0.607    0.922    0.761    1.144
##     sintomas          0.451    8.302  -16.456   17.488    0.122    0.100
##     funcionalidad     0.556    4.179   -8.772   10.178    0.541    0.443
##   Salud ~                                                               
##     sintomas         -6.718    8.915  -25.247    9.564   -1.821   -0.993
##     funcionalidad     0.497    4.868  -11.171    7.971    0.484    0.264
##     Regimen_salud     0.288    0.317   -0.337    0.913    0.288    0.076
##      Rhat    Prior       
##                          
##     3.310    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.009    normal(0,10)
##     1.001    normal(0,15)
##                          
##     1.013  normal(-10,10)
##     1.111    normal(0,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.072    2.200    2.484    2.342    2.231
##    .F_c30             2.437    0.088    2.263    2.610    2.437    1.678
##    .S_br23            1.765    0.065    1.639    1.893    1.765    3.078
##    .S_c30             2.164    0.090    1.988    2.342    2.164    1.345
##    .CV_Gral           0.798    0.384    0.080    1.496    0.798    0.654
##    .Salud             3.865    0.559    2.761    4.960    3.865    2.106
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.154    0.029    0.104    0.220    0.154    0.140
##    .F_c30             0.074    0.028    0.020    0.133    0.074    0.035
##    .S_br23            0.255    0.082    0.152    0.443    0.255    0.777
##    .S_c30             0.088    0.039    0.003    0.162    0.088    0.034
##    .CV_Gral           0.443    0.104    0.198    0.641    0.443    0.297
##    .Salud             1.550    0.322    0.964    2.222    1.550    0.460
##    .funcionalidad     0.010    0.014    0.000    0.049    0.011    0.011
##     sintomas          0.073    0.061    0.001    0.192    1.000    1.000
##      Rhat    Prior       
##     1.012 gamma(1,.5)[sd]
##     1.043 gamma(1,.5)[sd]
##     1.902 gamma(1,.5)[sd]
##     1.034 gamma(1,.5)[sd]
##     1.022 gamma(1,.5)[sd]
##     1.004 gamma(1,.5)[sd]
##     1.100 gamma(1,.5)[sd]
##     1.866 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD6.0

blavCompare(fitref, fit6.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  936.114 
## 
## WAIC difference & SE: 
##   -11.178    2.066 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  935.835 
## 
## LOO difference & SE: 
##   -10.841    2.085 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  146.905

MODELO COMPUESTO 5.0 + 6.0 (Situracion laboral + Regimen de salud)

model_bayesiano5.0_6.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas + Situacion_laboral
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad 
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad + Regimen_salud

  # residual correlations

'

sem modelo 5.0+6.0

fit5.0_6.0 <- bsem(
  model = model_bayesiano5.0_6.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen 5.0+6.0

summary(fit5.0_6.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -528.101       0.124
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.541    0.814
##     F_c30             1.425    0.154    1.161    1.765    0.771    0.939
##   sintomas =~                                                           
##     S_br23            1.000                               0.329    0.586
##     S_c30             2.375    0.563    1.669    3.593    0.780    0.930
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.627    0.394   -2.483   -1.100   -0.988   -0.988
##     Situacion_lbrl   -0.019    0.050   -0.123    0.082   -0.036   -0.018
##   CV_Gral ~                                                             
##     Salud             0.767    0.082    0.614    0.932    0.767    0.777
##     sintomas          0.597    6.548  -13.410   14.110    0.196    0.105
##     funcionalidad     1.062    4.098   -7.663    9.575    0.575    0.308
##   Salud ~                                                               
##     sintomas         -5.424    7.438  -21.445    8.033   -1.782   -0.943
##     funcionalidad    -0.685    4.652  -10.656    7.920   -0.371   -0.196
##     Regimen_salud     0.290    0.315   -0.332    0.904    0.290    0.074
##      Rhat    Prior       
##                          
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,15)
##                          
##     1.001  normal(-10,10)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.373    0.108    2.158    2.588    2.373    3.568
##    .F_c30             2.481    0.144    2.195    2.765    2.481    3.019
##    .S_br23            1.765    0.063    1.642    1.889    1.765    3.148
##    .S_c30             2.163    0.090    1.986    2.339    2.163    2.580
##    .CV_Gral           0.910    0.391    0.163    1.685    0.910    0.487
##    .Salud             3.772    0.640    2.495    5.018    3.772    1.995
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.149    0.029    0.101    0.214    0.149    0.338
##    .F_c30             0.080    0.027    0.030    0.138    0.080    0.119
##    .S_br23            0.206    0.036    0.148    0.288    0.206    0.657
##    .S_c30             0.095    0.034    0.019    0.162    0.095    0.135
##    .CV_Gral           0.437    0.101    0.212    0.636    0.437    0.125
##    .Salud             1.546    0.321    0.960    2.224    1.546    0.433
##    .funcionalidad     0.007    0.011    0.000    0.041    0.024    0.024
##     sintomas          0.108    0.041    0.041    0.202    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MODCOMPUESTO 5.0 + 6.0

blavCompare(fitref, fit5.0_6.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  916.925 
## 
## WAIC difference & SE: 
##    -1.583    1.170 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  917.392 
## 
## LOO difference & SE: 
##    -1.620    1.188 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    8.107

MODELO 7.0 Comorbilidad

model_bayesiano7.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas + Comorbilidad
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad 
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad

  # residual correlations

'

sem modelo 7.0

fit7.0 <- bsem(
  model = model_bayesiano7.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 7.0

summary(fit7.0,standardized = TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 2500 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -865.309       0.130
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.297    0.608
##     F_c30             1.421    0.157    1.153    1.768    0.423    0.820
##   sintomas =~                                                           
##     S_br23            1.000                               0.311    0.545
##     S_c30            -1.607    9.079  -27.735    3.265   -0.500   -0.855
##      Rhat    Prior       
##                          
##                          
##     1.026    normal(0,15)
##                          
##                          
##     3.533    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas          0.920    5.839   -2.294   17.606    0.963    0.963
##     Comorbilidad      0.034    0.090   -0.123    0.187    0.115    0.054
##   CV_Gral ~                                                             
##     Salud             0.682    0.118    0.399    0.859    0.682    0.771
##     sintomas         -1.213    7.711  -17.039   12.566   -0.377   -0.254
##     funcionalidad     0.441    4.384   -8.867    8.586    0.131    0.088
##   Salud ~                                                               
##     sintomas         -4.829   11.827  -26.462   13.562   -1.503   -0.895
##     funcionalidad     1.055    6.986  -13.146   11.747    0.314    0.187
##      Rhat    Prior       
##                          
##     3.608    normal(0,10)
##     1.054    normal(0,10)
##                          
##     1.029    normal(0,10)
##     1.008    normal(0,10)
##     1.009    normal(0,15)
##                          
##     1.055  normal(-10,10)
##     1.025    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.285    0.166    1.988    2.594    2.285    4.670
##    .F_c30             2.354    0.228    1.950    2.772    2.354    4.565
##    .S_br23            1.766    0.064    1.641    1.891    1.766    3.095
##    .S_c30             2.165    0.090    1.989    2.342    2.165    3.703
##    .CV_Gral           0.714    0.420   -0.024    1.603    0.714    0.480
##    .Salud             3.497    0.584    2.273    4.517    3.497    2.083
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.043    normal(0,32)
##     1.050    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.001    normal(0,10)
##     1.025    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.151    0.029    0.101    0.217    0.151    0.631
##    .F_c30             0.087    0.028    0.035    0.147    0.087    0.328
##    .S_br23            0.229    0.069    0.146    0.414    0.229    0.703
##    .S_c30             0.092    0.036    0.011    0.162    0.092    0.268
##    .CV_Gral           0.416    0.107    0.166    0.618    0.416    0.188
##    .Salud             1.372    0.345    0.650    2.057    1.372    0.486
##    .funcionalidad     0.006    0.010    0.000    0.036    0.070    0.070
##     sintomas          0.097    0.057    0.001    0.207    1.000    1.000
##      Rhat    Prior       
##     1.014 gamma(1,.5)[sd]
##     1.031 gamma(1,.5)[sd]
##     1.753 gamma(1,.5)[sd]
##     1.025 gamma(1,.5)[sd]
##     1.021 gamma(1,.5)[sd]
##     1.019 gamma(1,.5)[sd]
##     1.097 gamma(1,.5)[sd]
##     1.528 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD7.0

blavCompare(fitref, fit7.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  924.195 
## 
## WAIC difference & SE: 
##    -5.218    2.224 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  924.513 
## 
## LOO difference & SE: 
##    -5.181    2.236 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  345.315

MODELO 8.0 Estado_del_tumor

model_bayesiano8.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas 
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad + Estado_del_tumor
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad

  # residual correlations

'

sem modelo 8.0

fit8.0 <- bsem(
  model = model_bayesiano8.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 8.0

summary(fit8.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -523.556       0.137
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.538    0.811
##     F_c30             1.436    0.154    1.170    1.774    0.772    0.939
##   sintomas =~                                                           
##     S_br23            1.000                               0.331    0.588
##     S_c30             2.353    0.499    1.662    3.575    0.778    0.930
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.609    0.357   -2.478   -1.093   -0.990   -0.990
##   CV_Gral ~                                                             
##     Salud             0.752    0.087    0.577    0.908    0.752    0.754
##     sintomas         -0.825    7.949  -16.926   15.970   -0.273   -0.148
##     funcionalidad     0.272    5.085  -10.032   11.141    0.146    0.079
##     Estado_del_tmr   -0.158    0.170   -0.491    0.177   -0.158   -0.041
##   Salud ~                                                               
##     sintomas         -5.867    8.231  -22.998    9.157   -1.940   -1.047
##     funcionalidad    -1.063    5.264  -12.072    8.676   -0.572   -0.308
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,15)
##     1.000    normal(0,10)
##                          
##     1.000  normal(-10,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.343    0.072    2.201    2.485    2.343    3.535
##    .F_c30             2.438    0.087    2.267    2.609    2.438    2.963
##    .S_br23            1.765    0.063    1.642    1.888    1.765    3.137
##    .S_c30             2.164    0.089    1.990    2.338    2.164    2.586
##    .CV_Gral           1.051    0.449    0.224    1.951    1.051    0.570
##    .Salud             4.337    0.205    3.934    4.737    4.337    2.341
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.001    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.215    0.150    0.342
##    .F_c30             0.080    0.027    0.030    0.138    0.080    0.119
##    .S_br23            0.207    0.037    0.147    0.290    0.207    0.655
##    .S_c30             0.095    0.033    0.023    0.160    0.095    0.136
##    .CV_Gral           0.428    0.110    0.155    0.631    0.428    0.126
##    .Salud             1.538    0.326    0.922    2.214    1.538    0.448
##    .funcionalidad     0.006    0.010    0.000    0.036    0.020    0.020
##     sintomas          0.109    0.042    0.041    0.203    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

Comparacion de modelo ref vs mod 8.0

blavCompare(fitref, fit8.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  914.846 
## 
## WAIC difference & SE: 
##    -0.543    0.991 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  915.233 
## 
## LOO difference & SE: 
##    -0.540    1.012 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    3.562

MODELO COMPUESTO 7.0 + 8.0 (Comorbilidad + Estado del tumor)

model_bayesiano7.0_8.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas + Comorbilidad
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad + Estado_del_tumor
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad 

  # residual correlations

'

sem modelo 7.0+8.0

fit7.0_8.0 <- bsem(
  model = model_bayesiano7.0_8.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 7.0+8.0

summary(fit7.0_8.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -567.888       0.112
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.542    0.814
##     F_c30             1.409    0.151    1.148    1.739    0.763    0.931
##   sintomas =~                                                           
##     S_br23            1.000                               0.339    0.600
##     S_c30             2.280    0.457    1.636    3.345    0.774    0.929
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.583    0.332   -2.355   -1.096   -0.992   -0.992
##     Comorbilidad      0.025    0.091   -0.127    0.179    0.045    0.021
##   CV_Gral ~                                                             
##     Salud             0.670    0.124    0.371    0.853    0.670    0.682
##     sintomas         -1.100    7.557  -16.707   11.767   -0.373   -0.207
##     funcionalidad     0.317    4.873   -9.487    8.974    0.172    0.095
##     Estado_del_tmr   -0.175    0.167   -0.502    0.153   -0.175   -0.046
##   Salud ~                                                               
##     sintomas         -3.120   11.549  -24.644   14.266   -1.059   -0.576
##     funcionalidad     0.681    7.459  -13.249   12.151    0.369    0.201
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##     1.008    normal(0,10)
##                          
##     1.001    normal(0,10)
##     1.007    normal(0,10)
##     1.007    normal(0,15)
##     1.000    normal(0,10)
##                          
##     1.008  normal(-10,10)
##     1.008    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.301    0.168    1.998    2.603    2.301    3.457
##    .F_c30             2.378    0.229    1.967    2.781    2.378    2.900
##    .S_br23            1.765    0.063    1.641    1.889    1.765    3.122
##    .S_c30             2.165    0.089    1.990    2.339    2.165    2.599
##    .CV_Gral           0.931    0.498    0.050    1.988    0.931    0.516
##    .Salud             3.437    0.597    2.211    4.492    3.437    1.870
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.006    normal(0,32)
##     1.007    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.001    normal(0,10)
##     1.002    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.101    0.215    0.150    0.338
##    .F_c30             0.090    0.028    0.040    0.150    0.090    0.134
##    .S_br23            0.204    0.036    0.145    0.285    0.204    0.640
##    .S_c30             0.095    0.033    0.025    0.162    0.095    0.136
##    .CV_Gral           0.405    0.108    0.146    0.606    0.405    0.124
##    .Salud             1.346    0.351    0.607    2.035    1.346    0.398
##    .funcionalidad     0.004    0.007    0.000    0.022    0.015    0.015
##     sintomas          0.115    0.042    0.047    0.211    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MODCOMPUESTO 7.0 + 8.0

blavCompare(fitref, fit7.0_8.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  912.428 
## 
## WAIC difference & SE: 
##    -0.665    2.709 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  912.751 
## 
## LOO difference & SE: 
##    -0.700    2.742 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):   47.894