Se correra la base de datos, la cual esta consta de 80 observaciones y 105 variables de mujeres con cancer de mama en la ciudad de cali, concretando algunos parametros para las simulaciones y el MCMC para obtener la convergencia de los parametros esperados.

options(mc.cores = parallel::detectCores())
datos <- readRDS("data/datos.RDS") 
set.seed(535535)
BURNIN1 = 3000
SAMPLE1 = 6500
BURNIN = 2500
SAMPLE = 6500
CHAINS = 6

MODELO DE REFERENCIA

se establece despues de las prueba de modelos frecuentistas y sus efectos indirectos, finalmente con la investgacion en la literatura, el modelo bayesiano con sus variables latentes.

model_bayesianoref <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ sintomas
    CV_Gral ~ Salud + sintomas + prior("normal(0,15)")*funcionalidad
    Salud ~ prior("normal(-10,10)")*sintomas + funcionalidad

  # residual correlations

'

Explotracion de funcion bsem

Del paquete Blavaan que nos ayuda a ejecurtar modelos bayesianos para ecuaciones de modelos estructurales.

#codigo para funcion sem
fitref <- bsem(
  model = model_bayesianoref,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE, 
  inits = "prior", 
  sample = 6500,
  burnin = 3000,
  n.chains = 6)
## Computing posterior predictives...

El resumen del modelo nos indica diferentes puntos de interes e informacion necesaria

summary(fitref,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 3000 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -519.994       0.200
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.537    0.811
##     F_c30             1.437    0.156    1.170    1.780    0.771    0.939
##   sintomas =~                                                           
##     S_br23            1.000                               0.331    0.589
##     S_c30             2.343    0.475    1.663    3.513    0.776    0.929
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas         -1.604    0.342   -2.437   -1.094   -0.990   -0.990
##   CV_Gral ~                                                             
##     Salud             0.751    0.091    0.573    0.913    0.751    0.760
##     sintomas         -0.604    7.815  -16.484   15.877   -0.200   -0.110
##     funcionalidad     0.373    5.025   -9.849   11.096    0.201    0.110
##   Salud ~                                                               
##     sintomas         -5.783    8.298  -22.898    9.480   -1.916   -1.036
##     funcionalidad    -1.025    5.315  -12.090    8.860   -0.550   -0.298
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,15)
##                          
##     1.000  normal(-10,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.073    2.199    2.487    2.342    3.536
##    .F_c30             2.437    0.088    2.264    2.611    2.437    2.965
##    .S_br23            1.765    0.063    1.643    1.889    1.765    3.138
##    .S_c30             2.164    0.090    1.986    2.341    2.164    2.590
##    .CV_Gral           0.843    0.402    0.123    1.627    0.843    0.462
##    .Salud             4.335    0.207    3.928    4.743    4.335    2.344
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.215    0.150    0.343
##    .F_c30             0.081    0.028    0.029    0.139    0.081    0.119
##    .S_br23            0.206    0.036    0.147    0.286    0.206    0.653
##    .S_c30             0.095    0.033    0.021    0.161    0.095    0.136
##    .CV_Gral           0.430    0.109    0.164    0.633    0.430    0.129
##    .Salud             1.534    0.327    0.902    2.212    1.534    0.448
##    .funcionalidad     0.006    0.010    0.000    0.036    0.021    0.021
##     sintomas          0.110    0.042    0.043    0.204    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

Informacion del BRMSEA

blavFitIndices(fitref)
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc 
##        0.116        0.963        0.864        0.944

Informacion de R hat

blavInspect(fitref, 'rhat')
##         funcionalidad=~F_c30              sintomas=~S_c30 
##                    1.0000343                    1.0000453 
##       funcionalidad~sintomas                CV_Gral~Salud 
##                    1.0000549                    1.0003213 
##             CV_Gral~sintomas        CV_Gral~funcionalidad 
##                    1.0004063                    1.0004426 
##               Salud~sintomas          Salud~funcionalidad 
##                    1.0004253                    1.0003951 
##               F_br23~~F_br23                 F_c30~~F_c30 
##                    1.0001521                    1.0005471 
##               S_br23~~S_br23                 S_c30~~S_c30 
##                    0.9999676                    1.0002329 
##             CV_Gral~~CV_Gral                 Salud~~Salud 
##                    1.0001215                    1.0001325 
## funcionalidad~~funcionalidad           sintomas~~sintomas 
##                    1.0006765                    0.9999426 
##                     F_br23~1                      F_c30~1 
##                    1.0000566                    1.0000149 
##                     S_br23~1                      S_c30~1 
##                    1.0000496                    1.0000642 
##                    CV_Gral~1                      Salud~1 
##                    1.0003088                    1.0000529

Informacion del neff

blavInspect(fitref, 'neff')
##         funcionalidad=~F_c30              sintomas=~S_c30 
##                    25671.738                    11504.372 
##       funcionalidad~sintomas                CV_Gral~Salud 
##                    12714.626                     9877.462 
##             CV_Gral~sintomas        CV_Gral~funcionalidad 
##                     9562.564                     9425.354 
##               Salud~sintomas          Salud~funcionalidad 
##                    11436.464                    11015.307 
##               F_br23~~F_br23                 F_c30~~F_c30 
##                    30448.833                    16757.158 
##               S_br23~~S_br23                 S_c30~~S_c30 
##                    30851.553                    12372.945 
##             CV_Gral~~CV_Gral                 Salud~~Salud 
##                     8951.224                    15476.893 
## funcionalidad~~funcionalidad           sintomas~~sintomas 
##                     7301.670                    19658.809 
##                     F_br23~1                      F_c30~1 
##                    19064.776                    16806.909 
##                     S_br23~1                      S_c30~1 
##                    23222.674                    17088.299 
##                    CV_Gral~1                      Salud~1 
##                    10088.024                    20375.859

Grafico del modelo sem bayesiano

semPaths(
  fitref,
  intercepts = FALSE,
  residuals = TRUE,
  edge.label.cex = 1.5,
  intStyle = "multi",
  optimizeLatRes = TRUE,
  title.color = "black",
  groups = "lat",
  pastel = TRUE,
  exoVar = FALSE,
  sizeInt = 5,
  edge.color = "black",
  esize = 6,
  label.prop = 2,
  sizeLat = 6,
  "std"
)

graficos de mcmc

plot(fitref, par = 1:12,  facet_args = list(ncol = 4))

continuacion de graficos mcmc

plot(fitref, par = 13:22, facet_args = list(ncol = 4))

Grafico de intervalos

plot(fitref, par = 1:12,  plot.type = "intervals")

Gráfico de coordenas paralelas

plot(fitref, plot.type = "parcoord")

Modelos con variables moderadoras

Modelo 1.0 variable interaccion edad

model_bayesiano1.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad + Edad
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

sem modelo 1.0

fitedad1.0 <- bsem(
  model = model_bayesiano1.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 1.0

summary(fitedad1.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -526.600       0.035
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.539    0.812
##     F_c30             1.436    0.157    1.167    1.780    0.773    0.939
##   sintomas =~                                                           
##     S_br23            1.000                               0.330    0.588
##     S_c30             2.362    0.539    1.669    3.546    0.780    0.930
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.614    0.371   -2.462   -1.097   -0.989   -0.989
##   CV_Gral ~                                                             
##     Salud      (c)    0.741    0.089    0.567    0.901    0.741    0.753
##     sintomas   (e)   -1.324    7.335  -16.128   13.986   -0.437   -0.240
##     funcionldd (d)   -0.049    4.615   -9.543    9.659   -0.027   -0.015
##     Edad             -0.005    0.007   -0.018    0.008   -0.005   -0.032
##   Salud ~                                                               
##     sintomas         -5.725    8.329  -23.134    9.303   -1.890   -1.020
##     funcionldd (b)   -0.966    5.318  -12.320    8.735   -0.521   -0.281
##      Rhat    Prior       
##                          
##     1.001    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000  normal(-10,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.072    2.201    2.484    2.342    3.529
##    .F_c30             2.437    0.088    2.266    2.611    2.437    2.958
##    .S_br23            1.765    0.063    1.641    1.889    1.765    3.142
##    .S_c30             2.164    0.090    1.987    2.340    2.164    2.581
##    .CV_Gral           1.149    0.579    0.049    2.297    1.149    0.630
##    .Salud             4.337    0.206    3.931    4.742    4.337    2.341
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.215    0.150    0.341
##    .F_c30             0.081    0.027    0.030    0.139    0.081    0.119
##    .S_br23            0.207    0.036    0.147    0.287    0.207    0.655
##    .S_c30             0.095    0.033    0.024    0.160    0.095    0.135
##    .CV_Gral           0.433    0.107    0.179    0.635    0.433    0.130
##    .Salud             1.535    0.331    0.896    2.210    1.535    0.447
##    .funcionalidad     0.006    0.010    0.000    0.036    0.021    0.021
##     sintomas          0.109    0.042    0.041    0.204    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
blavFitIndices(fitedad1.0, baseline.model = fitref)
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc         BCFI         BTLI 
##        0.130        0.936        0.838        0.887       -0.146       -0.263 
##         BNFI 
##       -1.496

Comparacion con de factor de bayes modelos Ref Vs 1.0

blavCompare(fitref, fitedad1.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  915.775 
## 
## WAIC difference & SE: 
##    -1.008    1.053 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  916.23 
## 
## LOO difference & SE: 
##    -1.039    1.103 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    6.606

Gana modelo ref

Modelo 2.0 interaccion compañero permanente

model_bayesiano2.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad + Con_companero_permanente
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

sem modelo 2.0

fit2.0 <- bsem(
  model = model_bayesiano2.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen de modelo 2.0

summary(fit2.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -523.845       0.227
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.538    0.812
##     F_c30             1.435    0.156    1.167    1.779    0.773    0.939
##   sintomas =~                                                           
##     S_br23            1.000                               0.330    0.587
##     S_c30             2.362    0.525    1.664    3.607    0.779    0.930
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.615    0.366   -2.487   -1.095   -0.989   -0.989
##   CV_Gral ~                                                             
##     Salud      (c)    0.752    0.084    0.584    0.907    0.752    0.761
##     sintomas   (e)   -0.717    7.243  -15.598   14.423   -0.236   -0.129
##     funcionldd (d)    0.298    4.572   -9.100    9.930    0.161    0.088
##     Cn_cmpnr_p        0.001    0.162   -0.317    0.318    0.001    0.000
##   Salud ~                                                               
##     sintomas         -5.631    8.167  -22.863    9.037   -1.857   -1.003
##     funcionldd (b)   -0.910    5.189  -11.988    8.561   -0.490   -0.265
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.001  normal(-10,10)
##     1.001    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.071    2.202    2.482    2.342    3.531
##    .F_c30             2.437    0.087    2.266    2.608    2.437    2.961
##    .S_br23            1.765    0.062    1.643    1.888    1.765    3.143
##    .S_c30             2.165    0.089    1.991    2.340    2.165    2.585
##    .CV_Gral           0.837    0.434    0.021    1.707    0.837    0.458
##    .Salud             4.335    0.204    3.931    4.732    4.335    2.340
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.215    0.150    0.341
##    .F_c30             0.080    0.027    0.030    0.137    0.080    0.118
##    .S_br23            0.207    0.037    0.147    0.289    0.207    0.655
##    .S_c30             0.095    0.033    0.020    0.160    0.095    0.135
##    .CV_Gral           0.441    0.105    0.201    0.643    0.441    0.132
##    .Salud             1.543    0.322    0.949    2.218    1.543    0.450
##    .funcionalidad     0.006    0.010    0.000    0.038    0.022    0.022
##     sintomas          0.109    0.042    0.041    0.203    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD2.0

blavCompare(fitref, fit2.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  915.719 
## 
## WAIC difference & SE: 
##    -0.980    0.088 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  916.01 
## 
## LOO difference & SE: 
##    -0.929    0.101 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    3.851

COMPARACION MOD1.0 Vs MOD2.0

blavCompare(fitedad1.0, fit2.0)
## 
## WAIC estimates: 
##  object1:  915.775 
##  object2:  915.719 
## 
## WAIC difference & SE: 
##    -0.028    1.090 
## 
## LOO estimates: 
##  object1:  916.23 
##  object2:  916.01 
## 
## LOO difference & SE: 
##    -0.110    1.129 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):   -2.755

MODELO COMPUESTO 1.0 + 2.0 (Edad + compañero permanente)

model_bayesiano1.0_2.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad + Edad + Con_companero_permanente
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

sem 1.0+2.0

fit1.0_2.0 <- bsem(
  model = model_bayesiano1.0_2.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 1.0 + 2.0

summary(fit1.0_2.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -530.854       0.053
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.537    0.811
##     F_c30             1.436    0.157    1.167    1.787    0.772    0.939
##   sintomas =~                                                           
##     S_br23            1.000                               0.331    0.589
##     S_c30             2.349    0.482    1.663    3.510    0.778    0.930
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.605    0.345   -2.432   -1.096   -0.989   -0.989
##   CV_Gral ~                                                             
##     Salud      (c)    0.741    0.090    0.564    0.904    0.741    0.752
##     sintomas   (e)   -1.509    7.259  -16.517   13.671   -0.500   -0.274
##     funcionldd (d)   -0.168    4.595   -9.684    9.466   -0.090   -0.050
##     Edad             -0.005    0.007   -0.019    0.008   -0.005   -0.034
##     Cn_cmpnr_p       -0.015    0.165   -0.338    0.306   -0.015   -0.004
##   Salud ~                                                               
##     sintomas         -5.454    8.229  -22.846    9.616   -1.805   -0.976
##     funcionldd (b)   -0.815    5.262  -12.020    8.877   -0.438   -0.237
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000  normal(-10,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.072    2.199    2.484    2.342    3.534
##    .F_c30             2.437    0.088    2.265    2.608    2.437    2.963
##    .S_br23            1.765    0.063    1.642    1.890    1.765    3.143
##    .S_c30             2.164    0.090    1.989    2.338    2.164    2.589
##    .CV_Gral           1.180    0.646   -0.044    2.464    1.180    0.647
##    .Salud             4.336    0.205    3.932    4.738    4.336    2.343
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.001    normal(0,32)
##     1.001    normal(0,32)
##     1.000    normal(0,32)
##     1.001    normal(0,32)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.215    0.150    0.342
##    .F_c30             0.080    0.027    0.029    0.138    0.080    0.119
##    .S_br23            0.206    0.036    0.147    0.286    0.206    0.653
##    .S_c30             0.094    0.033    0.021    0.159    0.094    0.135
##    .CV_Gral           0.439    0.110    0.172    0.649    0.439    0.132
##    .Salud             1.536    0.330    0.910    2.219    1.536    0.449
##    .funcionalidad     0.006    0.010    0.000    0.037    0.022    0.022
##     sintomas          0.110    0.041    0.042    0.204    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

Comparacion modelo ref vs 1.0+2.0

blavCompare(fitref, fit1.0_2.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  917.643 
## 
## WAIC difference & SE: 
##    -1.942    1.073 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  918.12 
## 
## LOO difference & SE: 
##    -1.984    1.118 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):   10.860

Modelo 3.0 interaccion estrato

model_bayesiano3.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas + Estrato
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad 
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

sem modelo 3.0

fit3.0 <- bsem(
  model = model_bayesiano3.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen de modelo 3.0

summary(fit3.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -523.980       0.307
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.544    0.815
##     F_c30             1.432    0.152    1.172    1.762    0.778    0.943
##   sintomas =~                                                           
##     S_br23            1.000                               0.324    0.580
##     S_c30             2.436    0.533    1.708    3.736    0.788    0.939
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.644    0.377   -2.558   -1.106   -0.979   -0.979
##     Estrato           0.084    0.060   -0.019    0.212    0.155    0.077
##   CV_Gral ~                                                             
##     Salud      (c)    0.756    0.071    0.617    0.892    0.756    0.766
##     sintomas   (e)   -1.531    3.868  -10.133    6.792   -0.496   -0.268
##     funcionldd (d)   -0.207    2.358   -5.399    4.804   -0.113   -0.061
##   Salud ~                                                               
##     sintomas         -3.341    5.519  -16.796    5.881   -1.082   -0.576
##     funcionldd (b)    0.573    3.398   -7.609    6.346    0.312    0.166
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,10)
##                          
##     1.001  normal(-10,10)
##     1.001    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.221    0.113    1.992    2.434    2.221    3.330
##    .F_c30             2.265    0.150    1.959    2.544    2.265    2.743
##    .S_br23            1.765    0.063    1.642    1.889    1.765    3.163
##    .S_c30             2.165    0.090    1.989    2.340    2.165    2.577
##    .CV_Gral           0.849    0.355    0.185    1.566    0.849    0.459
##    .Salud             4.202    0.388    3.397    4.942    4.202    2.239
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.149    0.029    0.102    0.214    0.149    0.336
##    .F_c30             0.076    0.027    0.024    0.133    0.076    0.111
##    .S_br23            0.207    0.036    0.147    0.288    0.207    0.664
##    .S_c30             0.084    0.036    0.005    0.152    0.084    0.119
##    .CV_Gral           0.459    0.086    0.307    0.642    0.459    0.134
##    .Salud             1.594    0.298    1.088    2.253    1.594    0.453
##    .funcionalidad     0.011    0.013    0.000    0.049    0.036    0.036
##     sintomas          0.105    0.041    0.038    0.199    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD3.0

blavCompare(fitref, fit3.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  913.279 
## 
## WAIC difference & SE: 
##    -0.240    1.414 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  913.691 
## 
## LOO difference & SE: 
##    -0.231    1.421 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    3.986

Modelo 4.0 interaccion nivel educativo

model_bayesiano4.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad + niveleducativo
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

Sem modelo 4.0

fit4.0 <- bsem(
  model = model_bayesiano4.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 4.0

summary(fit4.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -523.665       0.085
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.538    0.811
##     F_c30             1.436    0.155    1.168    1.776    0.772    0.939
##   sintomas =~                                                           
##     S_br23            1.000                               0.330    0.587
##     S_c30             2.357    0.489    1.667    3.536    0.778    0.930
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.611    0.349   -2.446   -1.097   -0.989   -0.989
##   CV_Gral ~                                                             
##     Salud      (c)    0.752    0.084    0.584    0.910    0.752    0.755
##     sintomas   (e)   -0.917    7.122  -15.516   13.917   -0.302   -0.164
##     funcionldd (d)    0.211    4.530   -9.015    9.810    0.114    0.062
##     niveledctv        0.116    0.173   -0.228    0.455    0.116    0.030
##   Salud ~                                                               
##     sintomas         -5.700    8.226  -22.949    9.229   -1.881   -1.014
##     funcionldd (b)   -0.949    5.235  -12.015    8.650   -0.510   -0.275
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.001  normal(-10,10)
##     1.001    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.341    0.072    2.200    2.484    2.341    3.533
##    .F_c30             2.436    0.088    2.263    2.610    2.436    2.964
##    .S_br23            1.765    0.063    1.640    1.889    1.765    3.143
##    .S_c30             2.165    0.090    1.987    2.340    2.165    2.589
##    .CV_Gral           0.681    0.441   -0.160    1.562    0.681    0.368
##    .Salud             4.335    0.206    3.930    4.738    4.335    2.338
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.215    0.150    0.342
##    .F_c30             0.080    0.028    0.028    0.139    0.080    0.118
##    .S_br23            0.207    0.036    0.148    0.287    0.207    0.655
##    .S_c30             0.095    0.033    0.019    0.161    0.095    0.135
##    .CV_Gral           0.437    0.107    0.191    0.643    0.437    0.128
##    .Salud             1.538    0.324    0.930    2.216    1.538    0.447
##    .funcionalidad     0.006    0.010    0.000    0.038    0.022    0.022
##     sintomas          0.109    0.041    0.042    0.203    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD3.0

blavCompare(fitref, fit4.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  915.408 
## 
## WAIC difference & SE: 
##    -0.824    0.778 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  915.757 
## 
## LOO difference & SE: 
##    -0.803    0.799 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    3.671

MODELO COMPUESTO 3.0 + 4.0 (Estrato + nivel educativo)

model_bayesiano3.0_4.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas + Estrato
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad + niveleducativo
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

Sem modelo 3.0+4.0

fit3.0_4.0 <- bsem(
  model = model_bayesiano3.0_4.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen de modelo 3.0+4.0

summary(fit3.0_4.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -527.682       0.123
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.545    0.815
##     F_c30             1.432    0.154    1.169    1.771    0.780    0.943
##   sintomas =~                                                           
##     S_br23            1.000                               0.324    0.580
##     S_c30             2.432    0.552    1.699    3.759    0.788    0.937
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.649    0.394   -2.607   -1.100   -0.981   -0.981
##     Estrato           0.087    0.059   -0.016    0.213    0.160    0.079
##   CV_Gral ~                                                             
##     Salud      (c)    0.755    0.070    0.617    0.890    0.755    0.758
##     sintomas   (e)   -2.387    3.902  -11.312    5.112   -0.773   -0.412
##     funcionldd (d)   -0.676    2.359   -6.031    3.964   -0.368   -0.196
##     niveledctv        0.152    0.182   -0.205    0.511    0.152    0.039
##   Salud ~                                                               
##     sintomas         -3.355    5.328  -16.169    5.677   -1.087   -0.577
##     funcionldd (b)    0.576    3.246   -7.212    6.195    0.314    0.167
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000  normal(-10,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.217    0.112    1.988    2.427    2.217    3.319
##    .F_c30             2.259    0.149    1.956    2.538    2.259    2.732
##    .S_br23            1.765    0.063    1.641    1.887    1.765    3.158
##    .S_c30             2.164    0.090    1.989    2.339    2.164    2.573
##    .CV_Gral           0.695    0.409   -0.087    1.505    0.695    0.370
##    .Salud             4.212    0.393    3.397    4.963    4.212    2.236
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.101    0.215    0.150    0.335
##    .F_c30             0.076    0.027    0.025    0.132    0.076    0.111
##    .S_br23            0.207    0.037    0.147    0.290    0.207    0.664
##    .S_c30             0.086    0.034    0.009    0.152    0.086    0.122
##    .CV_Gral           0.457    0.090    0.300    0.649    0.457    0.130
##    .Salud             1.599    0.297    1.093    2.258    1.599    0.451
##    .funcionalidad     0.010    0.013    0.000    0.046    0.032    0.032
##     sintomas          0.105    0.041    0.038    0.199    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MODCOMPUESTO 3.0 + 4.0

blavCompare(fitref, fit3.0_4.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  914.672 
## 
## WAIC difference & SE: 
##    -0.456    1.690 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  915.045 
## 
## LOO difference & SE: 
##    -0.446    1.712 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    7.688

MODELO 5.0 Situracion laboral

model_bayesiano5.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas + Situacion_laboral
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad 
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

sem modelo 5.0

fit5.0 <- bsem(
  model = model_bayesiano5.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 5.0

summary(fit5.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -524.806       0.187
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.542    0.815
##     F_c30             1.420    0.153    1.158    1.758    0.769    0.937
##   sintomas =~                                                           
##     S_br23            1.000                               0.327    0.584
##     S_c30             2.382    0.524    1.675    3.633    0.780    0.930
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.635    0.372   -2.516   -1.111   -0.988   -0.988
##     Sitcn_lbrl       -0.019    0.051   -0.124    0.081   -0.035   -0.017
##   CV_Gral ~                                                             
##     Salud      (c)    0.760    0.081    0.606    0.915    0.760    0.768
##     sintomas   (e)    0.334    6.193  -12.963   13.087    0.109    0.059
##     funcionldd (d)    0.919    3.827   -7.255    8.952    0.498    0.270
##   Salud ~                                                               
##     sintomas         -5.409    7.419  -21.500    7.847   -1.771   -0.951
##     funcionldd (b)   -0.723    4.608  -10.758    7.615   -0.392   -0.210
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000  normal(-10,10)
##     1.001    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.373    0.109    2.159    2.590    2.373    3.567
##    .F_c30             2.480    0.144    2.194    2.766    2.480    3.021
##    .S_br23            1.764    0.063    1.641    1.888    1.764    3.150
##    .S_c30             2.164    0.089    1.988    2.339    2.164    2.582
##    .CV_Gral           0.928    0.387    0.207    1.703    0.928    0.504
##    .Salud             4.254    0.355    3.489    4.923    4.254    2.284
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.149    0.029    0.101    0.213    0.149    0.336
##    .F_c30             0.082    0.027    0.031    0.140    0.082    0.121
##    .S_br23            0.207    0.036    0.147    0.287    0.207    0.658
##    .S_c30             0.094    0.034    0.019    0.161    0.094    0.134
##    .CV_Gral           0.439    0.099    0.230    0.632    0.439    0.129
##    .Salud             1.551    0.323    0.975    2.228    1.551    0.447
##    .funcionalidad     0.007    0.011    0.000    0.040    0.024    0.024
##     sintomas          0.107    0.041    0.040    0.201    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD5.0

blavCompare(fitref, fit5.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  915.843 
## 
## WAIC difference & SE: 
##    -1.042    0.673 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  916.331 
## 
## LOO difference & SE: 
##    -1.090    0.690 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    4.812

MODELO 6.0 interaccion Regimen de salud

model_bayesiano6.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas 
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad 
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad +Regimen_salud

  # residual correlations

'

sem modelo 6.0

fit6.0 <- bsem(
  model = model_bayesiano6.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

resumen de modelo 6.0

summary(fit6.0,standardized = TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 2500 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -863.236       0.105
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.305    0.615
##     F_c30             1.451    0.161    1.179    1.809    0.442    0.848
##   sintomas =~                                                           
##     S_br23            1.000                               0.302    0.532
##     S_c30            -1.700    9.457  -28.864    3.442   -0.513   -0.861
##      Rhat    Prior       
##                          
##                          
##     1.018    normal(0,15)
##                          
##                          
##     3.646    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)    0.963    5.994   -2.379   18.041    0.954    0.954
##   CV_Gral ~                                                             
##     Salud      (c)    0.762    0.086    0.605    0.927    0.762    0.993
##     sintomas   (e)   -0.001    7.570  -15.276   15.868   -0.000   -0.000
##     funcionldd (d)    0.500    4.217   -8.467    9.779    0.152    0.087
##   Salud ~                                                               
##     sintomas         -6.167    8.664  -24.471    9.745   -1.861   -0.818
##     funcionldd (b)   -0.136    5.117  -11.660    8.547   -0.041   -0.018
##     Regimn_sld        0.285    0.317   -0.347    0.907    0.285    0.060
##      Rhat    Prior       
##                          
##     3.684    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.007    normal(0,10)
##     1.001    normal(0,10)
##                          
##     1.011  normal(-10,10)
##     1.057    normal(0,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.072    2.201    2.485    2.342    4.732
##    .F_c30             2.437    0.088    2.264    2.612    2.437    4.674
##    .S_br23            1.765    0.064    1.639    1.892    1.765    3.110
##    .S_c30             2.164    0.090    1.986    2.340    2.164    3.632
##    .CV_Gral           0.795    0.382    0.051    1.501    0.795    0.455
##    .Salud             3.871    0.559    2.764    4.973    3.871    1.702
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.152    0.029    0.103    0.218    0.152    0.621
##    .F_c30             0.077    0.028    0.023    0.135    0.077    0.281
##    .S_br23            0.231    0.067    0.149    0.411    0.231    0.717
##    .S_c30             0.092    0.036    0.007    0.161    0.092    0.258
##    .CV_Gral           0.441    0.102    0.214    0.638    0.441    0.145
##    .Salud             1.542    0.330    0.917    2.228    1.542    0.298
##    .funcionalidad     0.008    0.012    0.000    0.045    0.089    0.089
##     sintomas          0.091    0.055    0.001    0.198    1.000    1.000
##      Rhat    Prior       
##     1.007 gamma(1,.5)[sd]
##     1.025 gamma(1,.5)[sd]
##     1.711 gamma(1,.5)[sd]
##     1.023 gamma(1,.5)[sd]
##     1.012 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.073 gamma(1,.5)[sd]
##     1.491 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD6.0

blavCompare(fitref, fit6.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  926.619 
## 
## WAIC difference & SE: 
##    -6.430    1.350 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  926.921 
## 
## LOO difference & SE: 
##    -6.384    1.362 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  343.242

MODELO COMPUESTO 5.0 + 6.0 (Situracion laboral + Regimen de salud)

model_bayesiano5.0_6.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas + Situacion_laboral
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad 
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad + Regimen_salud

  # residual correlations

'

sem modelo 5.0+6.0

fit5.0_6.0 <- bsem(
  model = model_bayesiano5.0_6.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen 5.0+6.0

summary(fit5.0_6.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -527.869       0.126
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.541    0.813
##     F_c30             1.424    0.153    1.161    1.764    0.770    0.939
##   sintomas =~                                                           
##     S_br23            1.000                               0.328    0.585
##     S_c30             2.372    0.498    1.673    3.615    0.778    0.930
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.627    0.359   -2.496   -1.102   -0.987   -0.987
##     Sitcn_lbrl       -0.019    0.051   -0.122    0.083   -0.035   -0.017
##   CV_Gral ~                                                             
##     Salud      (c)    0.769    0.087    0.616    0.944    0.769    0.779
##     sintomas   (e)    0.610    6.306  -12.573   13.889    0.200    0.107
##     funcionldd (d)    1.063    3.901   -7.139    9.292    0.575    0.308
##   Salud ~                                                               
##     sintomas         -5.408    7.469  -21.435    8.183   -1.775   -0.939
##     funcionldd (b)   -0.671    4.661  -10.584    7.892   -0.363   -0.192
##     Regimn_sld        0.288    0.314   -0.334    0.902    0.288    0.073
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,10)
##                          
##     1.000  normal(-10,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.372    0.109    2.156    2.589    2.372    3.568
##    .F_c30             2.479    0.144    2.193    2.765    2.479    3.020
##    .S_br23            1.765    0.062    1.642    1.888    1.765    3.149
##    .S_c30             2.165    0.090    1.989    2.342    2.165    2.586
##    .CV_Gral           0.896    0.403    0.130    1.664    0.896    0.480
##    .Salud             3.772    0.635    2.516    5.009    3.772    1.996
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.101    0.215    0.150    0.339
##    .F_c30             0.080    0.028    0.028    0.138    0.080    0.119
##    .S_br23            0.207    0.036    0.147    0.287    0.207    0.657
##    .S_c30             0.095    0.034    0.019    0.162    0.095    0.135
##    .CV_Gral           0.437    0.101    0.206    0.631    0.437    0.125
##    .Salud             1.541    0.330    0.919    2.216    1.541    0.432
##    .funcionalidad     0.007    0.011    0.000    0.042    0.025    0.025
##     sintomas          0.108    0.041    0.040    0.201    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MODCOMPUESTO 5.0 + 6.0

blavCompare(fitref, fit5.0_6.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  917.076 
## 
## WAIC difference & SE: 
##    -1.659    1.177 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  917.448 
## 
## LOO difference & SE: 
##    -1.648    1.170 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):    7.875

MODELO 7.0 Comorbilidad

model_bayesiano7.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas + Comorbilidad
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad 
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

sem modelo 7.0

fit7.0 <- bsem(
  model = model_bayesiano7.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 7.0

summary(fit7.0,standardized = TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 2500 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -866.873       0.132
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.294    0.603
##     F_c30             1.419    0.155    1.152    1.765    0.417    0.816
##   sintomas =~                                                           
##     S_br23            1.000                               0.311    0.545
##     S_c30            -1.574    8.990  -27.364    3.222   -0.489   -0.850
##      Rhat    Prior       
##                          
##                          
##     1.025    normal(0,15)
##                          
##                          
##     3.570    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)    0.908    5.807   -2.282   17.468    0.962    0.962
##     Comorbildd        0.035    0.092   -0.123    0.189    0.121    0.057
##   CV_Gral ~                                                             
##     Salud      (c)    0.686    0.114    0.410    0.864    0.686    0.775
##     sintomas   (e)   -1.202    7.454  -16.603   11.814   -0.374   -0.250
##     funcionldd (d)    0.461    4.180   -8.432    8.182    0.135    0.091
##   Salud ~                                                               
##     sintomas         -4.878   11.839  -26.891   13.617   -1.517   -0.899
##     funcionldd (b)    1.081    6.939  -12.872   11.718    0.317    0.188
##      Rhat    Prior       
##                          
##     3.662    normal(0,10)
##     1.054    normal(0,10)
##                          
##     1.028    normal(0,10)
##     1.006    normal(0,10)
##     1.006    normal(0,10)
##                          
##     1.055  normal(-10,10)
##     1.022    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.283    0.169    1.983    2.596    2.283    4.691
##    .F_c30             2.351    0.232    1.943    2.773    2.351    4.605
##    .S_br23            1.765    0.064    1.639    1.891    1.765    3.095
##    .S_c30             2.164    0.090    1.987    2.341    2.164    3.758
##    .CV_Gral           0.708    0.412   -0.024    1.593    0.708    0.475
##    .Salud             3.487    0.588    2.250    4.518    3.487    2.067
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.043    normal(0,32)
##     1.049    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.001    normal(0,10)
##     1.022    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.151    0.029    0.102    0.217    0.151    0.636
##    .F_c30             0.087    0.028    0.035    0.147    0.087    0.334
##    .S_br23            0.229    0.069    0.146    0.412    0.229    0.703
##    .S_c30             0.092    0.036    0.011    0.162    0.092    0.277
##    .CV_Gral           0.419    0.104    0.183    0.618    0.419    0.188
##    .Salud             1.371    0.348    0.648    2.062    1.371    0.482
##    .funcionalidad     0.006    0.009    0.000    0.035    0.072    0.072
##     sintomas          0.097    0.057    0.001    0.207    1.000    1.000
##      Rhat    Prior       
##     1.012 gamma(1,.5)[sd]
##     1.032 gamma(1,.5)[sd]
##     1.767 gamma(1,.5)[sd]
##     1.022 gamma(1,.5)[sd]
##     1.019 gamma(1,.5)[sd]
##     1.018 gamma(1,.5)[sd]
##     1.096 gamma(1,.5)[sd]
##     1.534 gamma(1,.5)[sd]

COMPARACION MODREF Vs MOD7.0

blavCompare(fitref, fit7.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  924.257 
## 
## WAIC difference & SE: 
##    -5.249    2.233 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  924.601 
## 
## LOO difference & SE: 
##    -5.225    2.244 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  346.879

MODELO 8.0 Estado_del_tumor

model_bayesiano8.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas 
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad + Estado_del_tumor
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

sem modelo 8.0

fit8.0 <- bsem(
  model = model_bayesiano8.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 8.0

summary(fit8.0,standardized = TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 2500 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -873.023       0.115
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.309    0.621
##     F_c30             1.450    0.161    1.175    1.804    0.448    0.849
##   sintomas =~                                                           
##     S_br23            1.000                               0.301    0.531
##     S_c30            -1.735    9.570  -29.226    3.499   -0.523   -0.866
##      Rhat    Prior       
##                          
##                          
##     1.016    normal(0,15)
##                          
##                          
##     3.625    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)    0.980    6.052   -2.412   18.270    0.956    0.956
##   CV_Gral ~                                                             
##     Salud      (c)    0.753    0.081    0.589    0.904    0.753    0.892
##     sintomas   (e)   -0.553    7.561  -16.075   14.979   -0.166   -0.086
##     funcionldd (d)    0.199    4.168   -8.952    9.053    0.061    0.032
##     Estd_dl_tm       -0.159    0.169   -0.495    0.170   -0.159   -0.039
##   Salud ~                                                               
##     sintomas         -6.211    8.497  -23.970    9.162   -1.871   -0.814
##     funcionldd (b)   -0.212    5.024  -11.291    8.168   -0.066   -0.029
##      Rhat    Prior       
##                          
##     3.658    normal(0,10)
##                          
##     1.001    normal(0,10)
##     1.012    normal(0,10)
##     1.002    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.011  normal(-10,10)
##     1.060    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.072    2.201    2.482    2.342    4.710
##    .F_c30             2.437    0.087    2.264    2.607    2.437    4.622
##    .S_br23            1.765    0.063    1.641    1.890    1.765    3.110
##    .S_c30             2.164    0.089    1.990    2.340    2.164    3.588
##    .CV_Gral           1.047    0.426    0.249    1.901    1.047    0.539
##    .Salud             4.335    0.205    3.929    4.731    4.335    1.885
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.152    0.029    0.103    0.217    0.152    0.614
##    .F_c30             0.078    0.028    0.025    0.135    0.078    0.279
##    .S_br23            0.231    0.068    0.149    0.412    0.231    0.718
##    .S_c30             0.091    0.036    0.007    0.160    0.091    0.249
##    .CV_Gral           0.440    0.102    0.215    0.636    0.440    0.117
##    .Salud             1.549    0.317    0.969    2.219    1.549    0.293
##    .funcionalidad     0.008    0.012    0.000    0.045    0.087    0.087
##     sintomas          0.091    0.055    0.001    0.197    1.000    1.000
##      Rhat    Prior       
##     1.006 gamma(1,.5)[sd]
##     1.019 gamma(1,.5)[sd]
##     1.713 gamma(1,.5)[sd]
##     1.027 gamma(1,.5)[sd]
##     1.010 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.081 gamma(1,.5)[sd]
##     1.486 gamma(1,.5)[sd]

Comparacion de modelo ref vs mod 8.0

blavCompare(fitref, fit8.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  926.346 
## 
## WAIC difference & SE: 
##    -6.294    1.429 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  926.699 
## 
## LOO difference & SE: 
##    -6.273    1.449 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  353.029

MODELO COMPUESTO 7.0 + 8.0 (Comorbilidad + Estado del tumor)

model_bayesiano7.0_8.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas + Comorbilidad
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad + Estado_del_tumor
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad 

  # residual correlations

'

sem modelo 7.0+8.0

fit7.0_8.0 <- bsem(
  model = model_bayesiano7.0_8.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Computing posterior predictives...

Resumen modelo 7.0+8.0

summary(fit7.0_8.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -567.230       0.111
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.541    0.814
##     F_c30             1.408    0.151    1.148    1.737    0.762    0.930
##   sintomas =~                                                           
##     S_br23            1.000                               0.339    0.600
##     S_c30             2.280    0.452    1.642    3.364    0.773    0.929
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.584    0.328   -2.361   -1.101   -0.992   -0.992
##     Comorbildd        0.022    0.092   -0.128    0.178    0.041    0.019
##   CV_Gral ~                                                             
##     Salud      (c)    0.675    0.116    0.397    0.851    0.675    0.685
##     sintomas   (e)   -1.174    7.278  -16.056   11.178   -0.398   -0.219
##     funcionldd (d)    0.265    4.666   -9.064    8.530    0.144    0.079
##     Estd_dl_tm       -0.173    0.166   -0.501    0.152   -0.173   -0.045
##   Salud ~                                                               
##     sintomas         -3.384   11.590  -24.738   14.142   -1.148   -0.623
##     funcionldd (b)    0.527    7.479  -13.307   12.088    0.285    0.155
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##     1.005    normal(0,10)
##                          
##     1.001    normal(0,10)
##     1.004    normal(0,10)
##     1.004    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.005  normal(-10,10)
##     1.005    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.305    0.170    1.999    2.607    2.305    3.465
##    .F_c30             2.383    0.232    1.971    2.787    2.383    2.910
##    .S_br23            1.765    0.063    1.640    1.889    1.765    3.124
##    .S_c30             2.165    0.089    1.990    2.340    2.165    2.600
##    .CV_Gral           0.922    0.478    0.057    1.938    0.922    0.508
##    .Salud             3.430    0.595    2.211    4.494    3.430    1.861
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.004    normal(0,32)
##     1.004    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.149    0.029    0.100    0.215    0.149    0.338
##    .F_c30             0.090    0.028    0.041    0.150    0.090    0.134
##    .S_br23            0.204    0.036    0.145    0.285    0.204    0.640
##    .S_c30             0.095    0.033    0.028    0.161    0.095    0.137
##    .CV_Gral           0.408    0.107    0.155    0.609    0.408    0.124
##    .Salud             1.348    0.345    0.626    2.037    1.348    0.397
##    .funcionalidad     0.004    0.006    0.000    0.021    0.015    0.015
##     sintomas          0.115    0.042    0.046    0.208    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]

COMPARACION MODREF Vs MODCOMPUESTO 7.0 + 8.0

blavCompare(fitref, fit7.0_8.0)
## 
## WAIC estimates: 
##  object1:  913.759 
##  object2:  912.421 
## 
## WAIC difference & SE: 
##    -0.669    2.699 
## 
## LOO estimates: 
##  object1:  914.152 
##  object2:  912.696 
## 
## LOO difference & SE: 
##    -0.728    2.730 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):   47.236