p = seq(0, 1, 0.01)
gini = p * (1 - p) * 2
entropy = -(p * log(p) + (1 - p) * log(1 - p))
class.err = 1 - pmax(p, 1 - p)
plot(p, entropy, type = "l", col = "purple", xlab = "p", ylab = "Values of Error")
lines(p, gini, col = "red")
lines(p, class.err, col = "blue")
legend(0.3, 0.25, c("Classification error", "Gini index", "Cross entropy"), col = c("blue", "red", "purple"), lty = c(1, 1))
(a) Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.
attach(OJ)
set.seed(1)
train = sample(dim(OJ)[1], 800)
oj.train = OJ[train, ]
oj.test = OJ[-train, ]
(b) Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?
oj.tree = tree(Purchase~., data = oj.train)
summary(oj.tree)
##
## Classification tree:
## tree(formula = Purchase ~ ., data = oj.train)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "SpecialCH" "ListPriceDiff"
## [5] "PctDiscMM"
## Number of terminal nodes: 9
## Residual mean deviance: 0.7432 = 587.8 / 791
## Misclassification error rate: 0.1588 = 127 / 800
Variables used: LoyalCH, PriceDiff, SpecialCH, ListPriceDiff, PctDiscMM. There are 9 terminal nodes and the training error rate is 0.1588.
(c) Type in the name of the tree object in order to get a detailed text output. Pick one of the terminal nodes, and interpret the information displayed.
oj.tree
## node), split, n, deviance, yval, (yprob)
## * denotes terminal node
##
## 1) root 800 1073.00 CH ( 0.60625 0.39375 )
## 2) LoyalCH < 0.5036 365 441.60 MM ( 0.29315 0.70685 )
## 4) LoyalCH < 0.280875 177 140.50 MM ( 0.13559 0.86441 )
## 8) LoyalCH < 0.0356415 59 10.14 MM ( 0.01695 0.98305 ) *
## 9) LoyalCH > 0.0356415 118 116.40 MM ( 0.19492 0.80508 ) *
## 5) LoyalCH > 0.280875 188 258.00 MM ( 0.44149 0.55851 )
## 10) PriceDiff < 0.05 79 84.79 MM ( 0.22785 0.77215 )
## 20) SpecialCH < 0.5 64 51.98 MM ( 0.14062 0.85938 ) *
## 21) SpecialCH > 0.5 15 20.19 CH ( 0.60000 0.40000 ) *
## 11) PriceDiff > 0.05 109 147.00 CH ( 0.59633 0.40367 ) *
## 3) LoyalCH > 0.5036 435 337.90 CH ( 0.86897 0.13103 )
## 6) LoyalCH < 0.764572 174 201.00 CH ( 0.73563 0.26437 )
## 12) ListPriceDiff < 0.235 72 99.81 MM ( 0.50000 0.50000 )
## 24) PctDiscMM < 0.196197 55 73.14 CH ( 0.61818 0.38182 ) *
## 25) PctDiscMM > 0.196197 17 12.32 MM ( 0.11765 0.88235 ) *
## 13) ListPriceDiff > 0.235 102 65.43 CH ( 0.90196 0.09804 ) *
## 7) LoyalCH > 0.764572 261 91.20 CH ( 0.95785 0.04215 ) *
Choosing terminal node 8(we know this because of the *), the splitting variable at this node is LoyalCH, and the splitting value is 0.0356. There are 59 points(observations) in the subtree below this node, and deviance for this region is 10.14. An overall prediction for this node is MM(Minute Maid). About 1.7% of nodes have the value CH(Citrus Hill), while 98.3% of the nodes have the value MM.
(d) Create a plot of the tree, and interpret the results.
plot(oj.tree)
text(oj.tree, pretty = 0)
LoyalCH is the most important variable, which can be seen by how it is the top 3 nodes of this tree. If LoyalCH is less than 0.5036 and < 0.280875 the tree predicts MM will be purchased. If LoyalCH is > 0.5036 and < 0.76 the tree predicts CH will be purchased.
(e) Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels. What is the test error rate?
oj.pred = predict(oj.tree, oj.test, type = "class")
table(oj.test$Purchase, oj.pred)
## oj.pred
## CH MM
## CH 160 8
## MM 38 64
mean(oj.test$Purchase != oj.pred)
## [1] 0.1703704
The test error rate is 17.04%
(f) Apply the cv.tree() function to the training set in order to determine the optimal tree size.
oj.cv = cv.tree(oj.tree, FUN = prune.misclass)
oj.cv
## $size
## [1] 9 8 7 4 2 1
##
## $dev
## [1] 150 150 149 158 172 315
##
## $k
## [1] -Inf 0.000000 3.000000 4.333333 10.500000 151.000000
##
## $method
## [1] "misclass"
##
## attr(,"class")
## [1] "prune" "tree.sequence"
(g) Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.
plot(oj.cv$size, oj.cv$dev, type = "b", xlab = "Tree Size", ylab = "Deviance")
oj.cv$size[which.min(oj.cv$dev)]
## [1] 7
(h) Which tree size corresponds to the lowest cross-validated classification error rate?
Tree size 9 has the lowest cross-validation error.
(i) Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.
oj.pruned = prune.misclass(oj.tree, best = 5)
plot(oj.pruned)
text(oj.pruned,pretty=0)
(j) Compare the training error rates between the pruned and unpruned trees. Which is higher?
summary(oj.tree)
##
## Classification tree:
## tree(formula = Purchase ~ ., data = oj.train)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "SpecialCH" "ListPriceDiff"
## [5] "PctDiscMM"
## Number of terminal nodes: 9
## Residual mean deviance: 0.7432 = 587.8 / 791
## Misclassification error rate: 0.1588 = 127 / 800
summary(oj.pruned)
##
## Classification tree:
## snip.tree(tree = oj.tree, nodes = c(4L, 10L))
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "ListPriceDiff" "PctDiscMM"
## Number of terminal nodes: 7
## Residual mean deviance: 0.7748 = 614.4 / 793
## Misclassification error rate: 0.1625 = 130 / 800
The training error rate of the pruned tree is higher than the unpruned tree with a value of 0.1625 vs 0.1588
(k) Compare the test error rates between the pruned and unpruned trees. Which is higher?
pred.unpruned = predict(oj.tree, oj.test, type = "class")
misclass.unpruned = sum(oj.test$Purchase != pred.unpruned)
misclass.unpruned/length(pred.unpruned)
## [1] 0.1703704
pred.pruned = predict(oj.pruned, oj.test, type = "class")
misclass.pruned = sum(oj.test$Purchase != pred.pruned)
misclass.pruned/length(pred.pruned)
## [1] 0.162963
The test error rate at 0.17 for the unpruned tree is higher than the test error at 0.16 for the pruned tree.