Loading dataset & setup codes

Installing packages & exploratory analysis

##Includes codes for Table 1 and S1 Table

## Loading required package: car
## Loading required package: carData
## Loading required package: lmtest
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
## Loading required package: survival
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## This is dlnm 2.4.7. For details: help(dlnm) and vignette('dlnmOverview').
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
## 
##     select
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

##  [1] "epiYr"     "epiWk"     "avgWindSp" "sun"       "RF"        "rainyD"   
##  [7] "minRH"     "meanRH"    "maxRH"     "minT"      "aveT"      "maxT"     
## [13] "AH"        "eptb"      "ptb"       "allTB"     "eptbInW"   "ptbInW"   
## [19] "allTBInW"  "ptbBM"     "smptbBM"   "date"      "time"
##    avgWindSp           sun              RF             minRH      
##  Min.   : 2.964   Min.   :11.15   Min.   :  0.00   Min.   :45.00  
##  1st Qu.: 4.028   1st Qu.:42.40   1st Qu.: 18.43   1st Qu.:59.43  
##  Median : 4.476   Median :50.70   Median : 44.90   Median :63.00  
##  Mean   : 4.579   Mean   :49.64   Mean   : 61.05   Mean   :62.55  
##  3rd Qu.: 4.881   3rd Qu.:57.48   3rd Qu.: 91.80   3rd Qu.:65.79  
##  Max.   :10.173   Max.   :76.00   Max.   :414.50   Max.   :80.57  
##      meanRH          maxRH             minT            aveT      
##  Min.   :70.00   Min.   : 87.71   Min.   :21.84   Min.   :24.51  
##  1st Qu.:80.29   1st Qu.: 95.14   1st Qu.:23.49   1st Qu.:27.19  
##  Median :82.71   Median : 96.86   Median :23.96   Median :27.57  
##  Mean   :82.45   Mean   : 96.27   Mean   :23.97   Mean   :27.63  
##  3rd Qu.:84.86   3rd Qu.: 98.00   3rd Qu.:24.40   3rd Qu.:28.10  
##  Max.   :92.14   Max.   :100.00   Max.   :26.33   Max.   :30.01  
##       maxT             AH       
##  Min.   :27.13   Min.   :26.39  
##  1st Qu.:31.53   1st Qu.:30.40  
##  Median :32.17   Median :31.23  
##  Mean   :32.13   Mean   :31.14  
##  3rd Qu.:32.70   3rd Qu.:32.01  
##  Max.   :35.46   Max.   :35.11
##  avgWindSp        sun         RF      minRH     meanRH      maxRH       minT 
##  0.8125501 11.0464294 56.1497573  4.9608453  3.4318471  2.4541159  0.6828157 
##       aveT       maxT         AH 
##  0.7206880  0.9957562  1.3097508
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   2.000   3.000   3.376   5.000  13.000
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.000   2.000   2.095   3.000   8.000
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.000   1.000   1.504   2.000   8.000
##       ptb
## epiYr   0  1  2  3  4  5  6  7  8  9 10 11 12 13
##   2001  2  5  9 14  8  6  4  2  0  1  0  0  0  1
##   2002  3  6 12  9  6  5  4  3  4  0  0  0  0  0
##   2003  3  6 11 10 14  4  2  3  0  0  0  0  0  0
##   2004  2  9 15  9  5  8  1  2  0  1  0  0  0  0
##   2005  4 13 10  5 13  3  3  1  0  0  0  0  0  0
##   2006  1  7 10 13 11  7  0  0  2  1  0  0  0  0
##   2007  1 12 12  9 10  1  4  1  0  1  1  0  0  0
##   2008  0  5 16 11  8  6  4  2  1  0  0  0  0  0
##   2009  1  9 12 14  1 10  4  0  1  0  0  0  0  0
##   2010  0  5 10 13  9  8  1  3  2  0  0  1  0  0
##   2011  3  5 11 13  4  7  4  3  1  1  0  0  0  0
##   2012  4  5  5  9  9  5  8  4  2  1  0  0  0  0
##   2013  5  8  5 12 11  4  5  0  2  0  0  0  0  0
##   2014  3  7 14 10 11  3  0  2  3  0  0  0  0  0
##   2015  3  6 11 11  7  5  4  2  2  0  1  0  0  0
##   2016  0  4  7 16 10 11  1  2  0  1  0  0  0  0
##   2017  4  6  9  5 10  5  5  3  3  1  1  0  0  0
##   2018  4  7  6  8 11  5  2  3  2  2  0  1  1  0
##       ptbBM
## epiYr   0  1  2  3  4  5  6  7  8
##   2001 10  9 16  7  5  2  3  0  0
##   2002 11 14 14  7  2  0  3  1  0
##   2003  6 18 15  9  4  1  0  0  0
##   2004  9 14 13  6  8  2  0  0  0
##   2005  9 20 10  8  3  2  0  0  0
##   2006  6 11 15 10  9  0  1  0  0
##   2007 12 15  9 10  4  1  1  0  0
##   2008  7 10 16 13  5  2  0  0  0
##   2009  5 19 13  9  3  3  0  0  0
##   2010  3 14 16  9  4  4  1  0  1
##   2011  9 13 16  5  5  3  0  0  1
##   2012  6 12  8 15  7  3  1  0  0
##   2013 10 10 13  9  9  1  0  0  0
##   2014  5 14 18 10  2  1  2  1  0
##   2015  7 11 11 11  7  2  3  0  0
##   2016  4  9 15 12  6  5  1  0  0
##   2017  9 11  8 11  6  4  3  0  0
##   2018  7  9 11 16  3  1  3  2  0
##       smptbBM
## epiYr   0  1  2  3  4  5  7  8
##   2001 20 13 12  6  0  1  0  0
##   2002 13 19 12  4  1  3  0  0
##   2003  8 23 14  8  0  0  0  0
##   2004 12 14 13  8  5  0  0  0
##   2005 10 24 10  4  3  1  0  0
##   2006  7 14 17  8  5  1  0  0
##   2007 13 15 10 10  2  2  0  0
##   2008 11 18  9  9  4  2  0  0
##   2009  8 20 11  8  4  1  0  0
##   2010  4 20 17  2  6  2  0  1
##   2011 19 15 13  2  0  2  1  0
##   2012 13 16 16  5  1  1  0  0
##   2013 18 14 12  7  1  0  0  0
##   2014 13 19 14  5  1  1  0  0
##   2015 10 13 15  9  4  1  0  0
##   2016  9 16 13 12  2  0  0  0
##   2017 20  9 14  7  1  1  0  0
##   2018 15 17  9  6  4  1  0  0
## [1] 3170
## [1] 1967
## [1] 1412
## [1] 1.519793
## [1] 2
##   0%  10%  20%  30%  40%  50%  60%  70%  80%  90% 100% 
##    0    0    1    1    2    2    2    3    3    4    8
## [1] 1.263198
## [1] 1
##   0%  10%  20%  30%  40%  50%  60%  70%  80%  90% 100% 
##    0    0    0    1    1    1    2    2    2    3    8
##        0%        5%       10%       50%       90%       95%      100% 
##  2.964286  3.571429  3.742857  4.476190  5.448810  6.139881 10.172619
##     0%     5%    10%    50%    90%    95%   100% 
## 11.150 30.835 34.470 50.700 62.810 66.170 76.000
##     0%     5%    10%    50%    90%    95%   100% 
##   0.00   0.83   4.45  44.90 134.58 160.71 414.50
##       0%       5%      10%      50%      90%      95%     100% 
## 45.00000 53.71429 56.00000 63.00000 68.57143 70.30000 80.57143
##       0%       5%      10%      50%      90%      95%     100% 
## 70.00000 76.00000 77.71429 82.71429 86.57143 87.57143 92.14286
##        0%        5%       10%       50%       90%       95%      100% 
##  87.71429  90.98571  92.85714  96.85714  99.00000  99.28571 100.00000
##       0%       5%      10%      50%      90%      95%     100% 
## 26.39459 28.76145 29.35032 31.22532 32.66536 33.15713 35.11290
##       0%       5%      10%      50%      90%      95%     100% 
## 21.84286 22.85571 23.15714 23.95714 24.84286 25.10000 26.32857
##       0%       5%      10%      50%      90%      95%     100% 
## 24.51429 26.50000 26.78286 27.57429 28.57429 28.85714 30.01429
##       0%       5%      10%      50%      90%      95%     100% 
## 27.12857 30.58429 30.92857 32.17143 33.41429 33.67143 35.45714
##   0%   5%  10%  50%  90%  95% 100% 
##    0    1    1    3    6    7   13
##   0%   5%  10%  50%  90%  95% 100% 
##    0    0    0    2    4    5    8
##   0%   5%  10%  50%  90%  95% 100% 
##    0    0    0    1    3    4    8
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## The following object is masked from 'package:car':
## 
##     logit
## Loading required package: lattice
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following object is masked from 'package:psych':
## 
##     describe
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units

##           avgWindSp   sun    RF rainyD minRH meanRH maxRH  minT  aveT  maxT
## avgWindSp      1.00 -0.01  0.05   0.05  0.13   0.06 -0.16  0.02 -0.17 -0.22
## sun           -0.01  1.00 -0.26  -0.26 -0.30  -0.33 -0.13  0.34  0.57  0.45
## RF             0.05 -0.26  1.00   0.87  0.38   0.49  0.46 -0.35 -0.42 -0.32
## rainyD         0.05 -0.26  0.87   1.00  0.36   0.45  0.42 -0.33 -0.42 -0.31
## minRH          0.13 -0.30  0.38   0.36  1.00   0.79  0.53 -0.04 -0.52 -0.77
## meanRH         0.06 -0.33  0.49   0.45  0.79   1.00  0.68 -0.08 -0.49 -0.59
## maxRH         -0.16 -0.13  0.46   0.42  0.53   0.68  1.00 -0.10 -0.32 -0.35
## minT           0.02  0.34 -0.35  -0.33 -0.04  -0.08 -0.10  1.00  0.70  0.39
## aveT          -0.17  0.57 -0.42  -0.42 -0.52  -0.49 -0.32  0.70  1.00  0.82
## maxT          -0.22  0.45 -0.32  -0.31 -0.77  -0.59 -0.35  0.39  0.82  1.00
## AH            -0.13  0.25  0.04   0.00  0.23   0.43  0.34  0.65  0.51  0.25
## ptbBM         -0.04 -0.01  0.01   0.04  0.03   0.08  0.05  0.04  0.02  0.00
## smptbBM       -0.02  0.01 -0.02   0.01 -0.03  -0.02 -0.02  0.04  0.03  0.03
##              AH ptbBM smptbBM
## avgWindSp -0.13 -0.04   -0.02
## sun        0.25 -0.01    0.01
## RF         0.04  0.01   -0.02
## rainyD     0.00  0.04    0.01
## minRH      0.23  0.03   -0.03
## meanRH     0.43  0.08   -0.02
## maxRH      0.34  0.05   -0.02
## minT       0.65  0.04    0.04
## aveT       0.51  0.02    0.03
## maxT       0.25  0.00    0.03
## AH         1.00  0.11    0.01
## ptbBM      0.11  1.00    0.81
## smptbBM    0.01  0.81    1.00
## 
## n= 939 
## 
## 
## P
##           avgWindSp sun    RF     rainyD minRH  meanRH maxRH  minT   aveT  
## avgWindSp           0.6796 0.1341 0.1332 0.0001 0.0575 0.0000 0.4540 0.0000
## sun       0.6796           0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## RF        0.1341    0.0000        0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## rainyD    0.1332    0.0000 0.0000        0.0000 0.0000 0.0000 0.0000 0.0000
## minRH     0.0001    0.0000 0.0000 0.0000        0.0000 0.0000 0.2469 0.0000
## meanRH    0.0575    0.0000 0.0000 0.0000 0.0000        0.0000 0.0116 0.0000
## maxRH     0.0000    0.0000 0.0000 0.0000 0.0000 0.0000        0.0025 0.0000
## minT      0.4540    0.0000 0.0000 0.0000 0.2469 0.0116 0.0025        0.0000
## aveT      0.0000    0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000       
## maxT      0.0000    0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## AH        0.0000    0.0000 0.2161 0.9627 0.0000 0.0000 0.0000 0.0000 0.0000
## ptbBM     0.2093    0.6817 0.6638 0.2360 0.3328 0.0105 0.1099 0.2402 0.4590
## smptbBM   0.4920    0.7409 0.5051 0.8599 0.4249 0.5255 0.4490 0.2252 0.3224
##           maxT   AH     ptbBM  smptbBM
## avgWindSp 0.0000 0.0000 0.2093 0.4920 
## sun       0.0000 0.0000 0.6817 0.7409 
## RF        0.0000 0.2161 0.6638 0.5051 
## rainyD    0.0000 0.9627 0.2360 0.8599 
## minRH     0.0000 0.0000 0.3328 0.4249 
## meanRH    0.0000 0.0000 0.0105 0.5255 
## maxRH     0.0000 0.0000 0.1099 0.4490 
## minT      0.0000 0.0000 0.2402 0.2252 
## aveT      0.0000 0.0000 0.4590 0.3224 
## maxT             0.0000 0.8802 0.3192 
## AH        0.0000        0.0011 0.6952 
## ptbBM     0.8802 0.0011        0.0000 
## smptbBM   0.3192 0.6952 0.0000
## Warning in adf.test(week$ptb): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  week$ptb
## Dickey-Fuller = -9.1934, Lag order = 9, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(week$ptbBM): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  week$ptbBM
## Dickey-Fuller = -9.5192, Lag order = 9, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(week$smptbBM): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  week$smptbBM
## Dickey-Fuller = -9.064, Lag order = 9, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(week$avgWindSp): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  week$avgWindSp
## Dickey-Fuller = -7.3964, Lag order = 9, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(week$sun): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  week$sun
## Dickey-Fuller = -7.8712, Lag order = 9, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(week$RF): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  week$RF
## Dickey-Fuller = -8.559, Lag order = 9, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(week$rainyD): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  week$rainyD
## Dickey-Fuller = -9.33, Lag order = 9, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(week$minRH): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  week$minRH
## Dickey-Fuller = -6.7584, Lag order = 9, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(week$meanRH): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  week$meanRH
## Dickey-Fuller = -5.8153, Lag order = 9, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(week$maxRH): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  week$maxRH
## Dickey-Fuller = -4.7739, Lag order = 9, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(week$AH): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  week$AH
## Dickey-Fuller = -5.3508, Lag order = 9, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(week$minT): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  week$minT
## Dickey-Fuller = -4.6279, Lag order = 9, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(week$aveT): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  week$aveT
## Dickey-Fuller = -6.7573, Lag order = 9, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(week$maxT): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  week$maxT
## Dickey-Fuller = -7.4593, Lag order = 9, p-value = 0.01
## alternative hypothesis: stationary

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.000   2.000   2.095   3.000   8.000
## [1] 2.30977

## 
##  Overdispersion test
## 
## data:  test1
## z = 2.0695, p-value = 0.01925
## alternative hypothesis: true alpha is greater than 0
## sample estimates:
##     alpha 
## 0.1014562

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.000   1.000   1.504   2.000   8.000
## [1] 1.595668

## 
##  Overdispersion test
## 
## data:  test2
## z = 1.1918, p-value = 0.1167
## alternative hypothesis: true alpha is greater than 0
## sample estimates:
##      alpha 
## 0.06001201
## [1] model aic   theta
## <0 rows> (or 0-length row.names)
## 
## Call:
## glm.nb(formula = ptbBM ~ ns(time, df = 18 * 1), data = week, 
##     init.theta = 29.52230207, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.35406  -0.79927  -0.06845   0.57730   2.82853  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)   
## (Intercept)              0.653050   0.201843   3.235  0.00121 **
## ns(time, df = 18 * 1)1  -0.244104   0.258448  -0.944  0.34492   
## ns(time, df = 18 * 1)2   0.318754   0.328302   0.971  0.33159   
## ns(time, df = 18 * 1)3  -0.524208   0.303650  -1.726  0.08428 . 
## ns(time, df = 18 * 1)4   0.279397   0.312652   0.894  0.37152   
## ns(time, df = 18 * 1)5  -0.216288   0.303879  -0.712  0.47661   
## ns(time, df = 18 * 1)6   0.220681   0.303638   0.727  0.46736   
## ns(time, df = 18 * 1)7  -0.073592   0.303204  -0.243  0.80823   
## ns(time, df = 18 * 1)8   0.008738   0.301901   0.029  0.97691   
## ns(time, df = 18 * 1)9   0.250586   0.294890   0.850  0.39546   
## ns(time, df = 18 * 1)10  0.058639   0.295705   0.198  0.84281   
## ns(time, df = 18 * 1)11  0.311273   0.295230   1.054  0.29173   
## ns(time, df = 18 * 1)12 -0.218212   0.303157  -0.720  0.47165   
## ns(time, df = 18 * 1)13  0.213599   0.294766   0.725  0.46867   
## ns(time, df = 18 * 1)14  0.259764   0.288802   0.899  0.36841   
## ns(time, df = 18 * 1)15  0.297542   0.287292   1.036  0.30035   
## ns(time, df = 18 * 1)16 -0.010036   0.235495  -0.043  0.96601   
## ns(time, df = 18 * 1)17  0.470497   0.509205   0.924  0.35550   
## ns(time, df = 18 * 1)18  0.349525   0.201300   1.736  0.08250 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(29.5223) family taken to be 1)
## 
##     Null deviance: 1111.3  on 938  degrees of freedom
## Residual deviance: 1083.0  on 920  degrees of freedom
## AIC: 3334.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  29.5 
##           Std. Err.:  21.2 
## 
##  2 x log-likelihood:  -3294.422
## 
## Call:
## glm.nb(formula = ptbBM ~ ns(time, df = 18 * 2), data = week, 
##     init.theta = 80.78772003, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3802  -0.7795  -0.0975   0.6000   3.3961  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              9.738e-01  2.558e-01   3.807  0.00014 ***
## ns(time, df = 18 * 2)1   7.139e-01  3.285e-01   2.173  0.02978 *  
## ns(time, df = 18 * 2)2  -1.497e+00  4.638e-01  -3.227  0.00125 ** 
## ns(time, df = 18 * 2)3   5.091e-01  3.837e-01   1.327  0.18459    
## ns(time, df = 18 * 2)4  -9.245e-01  4.282e-01  -2.159  0.03085 *  
## ns(time, df = 18 * 2)5   1.637e-03  3.996e-01   0.004  0.99673    
## ns(time, df = 18 * 2)6  -2.237e-01  4.173e-01  -0.536  0.59202    
## ns(time, df = 18 * 2)7  -1.125e+00  4.408e-01  -2.553  0.01069 *  
## ns(time, df = 18 * 2)8   1.986e-01  4.136e-01   0.480  0.63112    
## ns(time, df = 18 * 2)9  -1.037e+00  4.232e-01  -2.452  0.01422 *  
## ns(time, df = 18 * 2)10  4.936e-01  3.955e-01   1.248  0.21203    
## ns(time, df = 18 * 2)11 -9.522e-01  4.210e-01  -2.262  0.02372 *  
## ns(time, df = 18 * 2)12 -5.817e-02  4.079e-01  -0.143  0.88659    
## ns(time, df = 18 * 2)13 -5.178e-01  4.053e-01  -1.278  0.20137    
## ns(time, df = 18 * 2)14  1.760e-01  3.942e-01   0.446  0.65529    
## ns(time, df = 18 * 2)15 -6.705e-01  4.127e-01  -1.625  0.10422    
## ns(time, df = 18 * 2)16 -1.159e-01  4.090e-01  -0.283  0.77686    
## ns(time, df = 18 * 2)17 -6.915e-01  4.126e-01  -1.676  0.09375 .  
## ns(time, df = 18 * 2)18  1.017e-01  3.869e-01   0.263  0.79266    
## ns(time, df = 18 * 2)19  1.098e-01  3.876e-01   0.283  0.77694    
## ns(time, df = 18 * 2)20 -8.494e-01  4.124e-01  -2.059  0.03945 *  
## ns(time, df = 18 * 2)21  8.500e-02  3.873e-01   0.219  0.82627    
## ns(time, df = 18 * 2)22  1.201e-01  3.831e-01   0.314  0.75380    
## ns(time, df = 18 * 2)23 -5.500e-01  4.017e-01  -1.369  0.17087    
## ns(time, df = 18 * 2)24  4.817e-04  3.984e-01   0.001  0.99904    
## ns(time, df = 18 * 2)25 -5.537e-01  4.095e-01  -1.352  0.17636    
## ns(time, df = 18 * 2)26 -1.604e-01  4.028e-01  -0.398  0.69040    
## ns(time, df = 18 * 2)27 -4.287e-01  3.979e-01  -1.077  0.28126    
## ns(time, df = 18 * 2)28  1.606e-01  3.800e-01   0.423  0.67263    
## ns(time, df = 18 * 2)29 -1.025e-01  3.814e-01  -0.269  0.78804    
## ns(time, df = 18 * 2)30 -1.647e-01  3.844e-01  -0.428  0.66837    
## ns(time, df = 18 * 2)31 -3.316e-02  3.808e-01  -0.087  0.93061    
## ns(time, df = 18 * 2)32 -4.612e-05  3.823e-01   0.000  0.99990    
## ns(time, df = 18 * 2)33 -3.803e-01  3.886e-01  -0.979  0.32778    
## ns(time, df = 18 * 2)34  2.846e-01  3.112e-01   0.915  0.36041    
## ns(time, df = 18 * 2)35 -7.084e-01  6.598e-01  -1.074  0.28300    
## ns(time, df = 18 * 2)36  6.221e-01  2.766e-01   2.249  0.02450 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(80.7877) family taken to be 1)
## 
##     Null deviance: 1153.1  on 938  degrees of freedom
## Residual deviance: 1081.9  on 902  degrees of freedom
## AIC: 3329.6
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  81 
##           Std. Err.:  149 
## 
##  2 x log-likelihood:  -3253.643
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ ns(time, df = 18 * 5), data = week, 
##     init.theta = 13518.66729, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3965  -0.8154  -0.1146   0.5483   2.9246  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)   
## (Intercept)              0.978311   0.362016   2.702  0.00688 **
## ns(time, df = 18 * 5)1  -0.916744   0.573236  -1.599  0.10977   
## ns(time, df = 18 * 5)2  -0.541213   0.654556  -0.827  0.40833   
## ns(time, df = 18 * 5)3   0.539151   0.538751   1.001  0.31695   
## ns(time, df = 18 * 5)4  -0.342646   0.598201  -0.573  0.56678   
## ns(time, df = 18 * 5)5  -0.281275   0.605235  -0.465  0.64212   
## ns(time, df = 18 * 5)6  -0.191498   0.654094  -0.293  0.76970   
## ns(time, df = 18 * 5)7  -1.772333   0.731248  -2.424  0.01536 * 
## ns(time, df = 18 * 5)8   0.250614   0.611687   0.410  0.68202   
## ns(time, df = 18 * 5)9  -0.153271   0.590485  -0.260  0.79520   
## ns(time, df = 18 * 5)10 -0.245183   0.606886  -0.404  0.68621   
## ns(time, df = 18 * 5)11 -0.453957   0.629261  -0.721  0.47066   
## ns(time, df = 18 * 5)12 -0.525048   0.636302  -0.825  0.40928   
## ns(time, df = 18 * 5)13 -0.264962   0.622602  -0.426  0.67042   
## ns(time, df = 18 * 5)14 -0.572574   0.610690  -0.938  0.34846   
## ns(time, df = 18 * 5)15  0.444277   0.579397   0.767  0.44321   
## ns(time, df = 18 * 5)16 -0.749714   0.632012  -1.186  0.23553   
## ns(time, df = 18 * 5)17 -0.513897   0.642958  -0.799  0.42413   
## ns(time, df = 18 * 5)18  0.082642   0.653266   0.127  0.89933   
## ns(time, df = 18 * 5)19 -1.942792   0.771753  -2.517  0.01182 * 
## ns(time, df = 18 * 5)20 -0.190972   0.659166  -0.290  0.77203   
## ns(time, df = 18 * 5)21 -0.242934   0.611051  -0.398  0.69095   
## ns(time, df = 18 * 5)22  0.106385   0.615053   0.173  0.86268   
## ns(time, df = 18 * 5)23 -1.277215   0.695482  -1.836  0.06629 . 
## ns(time, df = 18 * 5)24 -0.483159   0.648286  -0.745  0.45610   
## ns(time, df = 18 * 5)25 -0.027095   0.594489  -0.046  0.96365   
## ns(time, df = 18 * 5)26 -0.113935   0.585427  -0.195  0.84569   
## ns(time, df = 18 * 5)27 -0.218272   0.594086  -0.367  0.71331   
## ns(time, df = 18 * 5)28 -0.228045   0.606311  -0.376  0.70683   
## ns(time, df = 18 * 5)29 -0.306576   0.636302  -0.482  0.62994   
## ns(time, df = 18 * 5)30 -1.109825   0.678132  -1.637  0.10172   
## ns(time, df = 18 * 5)31 -0.073355   0.616435  -0.119  0.90528   
## ns(time, df = 18 * 5)32 -0.058936   0.606061  -0.097  0.92253   
## ns(time, df = 18 * 5)33 -0.855023   0.633984  -1.349  0.17745   
## ns(time, df = 18 * 5)34  0.181277   0.597627   0.303  0.76164   
## ns(time, df = 18 * 5)35 -0.705830   0.605901  -1.165  0.24405   
## ns(time, df = 18 * 5)36  0.386167   0.571379   0.676  0.49914   
## ns(time, df = 18 * 5)37 -0.465338   0.595503  -0.781  0.43456   
## ns(time, df = 18 * 5)38 -0.032186   0.608411  -0.053  0.95781   
## ns(time, df = 18 * 5)39 -0.885005   0.646566  -1.369  0.17107   
## ns(time, df = 18 * 5)40 -0.131853   0.613262  -0.215  0.82976   
## ns(time, df = 18 * 5)41 -0.075080   0.613883  -0.122  0.90266   
## ns(time, df = 18 * 5)42 -1.025443   0.653735  -1.569  0.11674   
## ns(time, df = 18 * 5)43  0.216475   0.615190   0.352  0.72493   
## ns(time, df = 18 * 5)44 -0.933064   0.646166  -1.444  0.14874   
## ns(time, df = 18 * 5)45 -0.166151   0.607021  -0.274  0.78430   
## ns(time, df = 18 * 5)46 -0.053432   0.581606  -0.092  0.92680   
## ns(time, df = 18 * 5)47 -0.268826   0.571756  -0.470  0.63823   
## ns(time, df = 18 * 5)48  0.345414   0.546709   0.632  0.52751   
## ns(time, df = 18 * 5)49  0.104537   0.566795   0.184  0.85367   
## ns(time, df = 18 * 5)50 -0.585007   0.632507  -0.925  0.35502   
## ns(time, df = 18 * 5)51 -0.857056   0.666199  -1.286  0.19827   
## ns(time, df = 18 * 5)52 -0.303565   0.617762  -0.491  0.62315   
## ns(time, df = 18 * 5)53  0.094271   0.586220   0.161  0.87224   
## ns(time, df = 18 * 5)54 -0.523742   0.594374  -0.881  0.37823   
## ns(time, df = 18 * 5)55  0.103321   0.560145   0.184  0.85366   
## ns(time, df = 18 * 5)56  0.318603   0.550717   0.579  0.56291   
## ns(time, df = 18 * 5)57 -0.437228   0.583432  -0.749  0.45361   
## ns(time, df = 18 * 5)58  0.005814   0.584464   0.010  0.99206   
## ns(time, df = 18 * 5)59 -0.243766   0.607447  -0.401  0.68820   
## ns(time, df = 18 * 5)60 -0.787015   0.634970  -1.239  0.21518   
## ns(time, df = 18 * 5)61 -0.024145   0.591017  -0.041  0.96741   
## ns(time, df = 18 * 5)62  0.192309   0.587403   0.327  0.74337   
## ns(time, df = 18 * 5)63 -0.999734   0.647192  -1.545  0.12241   
## ns(time, df = 18 * 5)64 -0.121481   0.620825  -0.196  0.84486   
## ns(time, df = 18 * 5)65 -0.471848   0.611378  -0.772  0.44025   
## ns(time, df = 18 * 5)66  0.238077   0.605028   0.393  0.69395   
## ns(time, df = 18 * 5)67 -1.421516   0.660033  -2.154  0.03126 * 
## ns(time, df = 18 * 5)68  0.627575   0.582743   1.077  0.28151   
## ns(time, df = 18 * 5)69 -0.644190   0.607869  -1.060  0.28926   
## ns(time, df = 18 * 5)70 -0.271272   0.599347  -0.453  0.65083   
## ns(time, df = 18 * 5)71 -0.085756   0.569180  -0.151  0.88024   
## ns(time, df = 18 * 5)72  0.275578   0.550048   0.501  0.61637   
## ns(time, df = 18 * 5)73 -0.178287   0.563648  -0.316  0.75177   
## ns(time, df = 18 * 5)74  0.013726   0.565821   0.024  0.98065   
## ns(time, df = 18 * 5)75 -0.079980   0.575672  -0.139  0.88950   
## ns(time, df = 18 * 5)76 -0.325803   0.590367  -0.552  0.58104   
## ns(time, df = 18 * 5)77 -0.201005   0.576851  -0.348  0.72750   
## ns(time, df = 18 * 5)78  0.270680   0.557068   0.486  0.62704   
## ns(time, df = 18 * 5)79 -0.282734   0.573799  -0.493  0.62220   
## ns(time, df = 18 * 5)80 -0.049359   0.571030  -0.086  0.93112   
## ns(time, df = 18 * 5)81  0.002628   0.570766   0.005  0.99633   
## ns(time, df = 18 * 5)82 -0.307116   0.581223  -0.528  0.59722   
## ns(time, df = 18 * 5)83  0.067712   0.571192   0.119  0.90564   
## ns(time, df = 18 * 5)84 -0.071086   0.586898  -0.121  0.90359   
## ns(time, df = 18 * 5)85 -0.700224   0.618864  -1.131  0.25786   
## ns(time, df = 18 * 5)86 -0.092954   0.582906  -0.159  0.87330   
## ns(time, df = 18 * 5)87  0.012368   0.548562   0.023  0.98201   
## ns(time, df = 18 * 5)88  0.545028   0.440956   1.236  0.21645   
## ns(time, df = 18 * 5)89 -0.271709   0.961975  -0.282  0.77760   
## ns(time, df = 18 * 5)90 -0.220990   0.445755  -0.496  0.62006   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(13518.67) family taken to be 1)
## 
##     Null deviance: 1179.0  on 938  degrees of freedom
## Residual deviance: 1054.6  on 848  degrees of freedom
## AIC: 3386.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  13519 
##           Std. Err.:  119708 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3202.524
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ ns(time, df = 18 * 6), data = week, 
##     init.theta = 17043.33421, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5533  -0.8230  -0.1055   0.5705   2.6739  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)  
## (Intercept)               0.834068   0.403093   2.069   0.0385 *
## ns(time, df = 18 * 6)1   -0.927636   0.637273  -1.456   0.1455  
## ns(time, df = 18 * 6)2   -0.489553   0.763588  -0.641   0.5214  
## ns(time, df = 18 * 6)3   -0.033997   0.625651  -0.054   0.9567  
## ns(time, df = 18 * 6)4    0.579882   0.624207   0.929   0.3529  
## ns(time, df = 18 * 6)5   -0.196154   0.638269  -0.307   0.7586  
## ns(time, df = 18 * 6)6   -0.140780   0.671504  -0.210   0.8339  
## ns(time, df = 18 * 6)7    0.044422   0.693083   0.064   0.9489  
## ns(time, df = 18 * 6)8   -1.054079   0.791028  -1.333   0.1827  
## ns(time, df = 18 * 6)9   -0.807224   0.760182  -1.062   0.2883  
## ns(time, df = 18 * 6)10   0.194587   0.662513   0.294   0.7690  
## ns(time, df = 18 * 6)11   0.176506   0.642236   0.275   0.7834  
## ns(time, df = 18 * 6)12  -0.267999   0.668601  -0.401   0.6885  
## ns(time, df = 18 * 6)13  -0.087656   0.681419  -0.129   0.8976  
## ns(time, df = 18 * 6)14  -0.457238   0.705543  -0.648   0.5169  
## ns(time, df = 18 * 6)15  -0.263993   0.697440  -0.379   0.7050  
## ns(time, df = 18 * 6)16  -0.157032   0.685606  -0.229   0.8188  
## ns(time, df = 18 * 6)17  -0.417304   0.672843  -0.620   0.5351  
## ns(time, df = 18 * 6)18   0.504009   0.633632   0.795   0.4264  
## ns(time, df = 18 * 6)19  -0.267402   0.671199  -0.398   0.6903  
## ns(time, df = 18 * 6)20  -0.455820   0.709256  -0.643   0.5204  
## ns(time, df = 18 * 6)21  -0.265396   0.705696  -0.376   0.7069  
## ns(time, df = 18 * 6)22   0.057302   0.730717   0.078   0.9375  
## ns(time, df = 18 * 6)23  -1.645644   0.863344  -1.906   0.0566 .
## ns(time, df = 18 * 6)24  -0.544527   0.761062  -0.715   0.4743  
## ns(time, df = 18 * 6)25   0.220007   0.670556   0.328   0.7428  
## ns(time, df = 18 * 6)26  -0.157441   0.667679  -0.236   0.8136  
## ns(time, df = 18 * 6)27   0.080203   0.695706   0.115   0.9082  
## ns(time, df = 18 * 6)28  -1.278306   0.785471  -1.627   0.1036  
## ns(time, df = 18 * 6)29  -0.157474   0.712714  -0.221   0.8251  
## ns(time, df = 18 * 6)30  -0.115019   0.663929  -0.173   0.8625  
## ns(time, df = 18 * 6)31   0.180563   0.638391   0.283   0.7773  
## ns(time, df = 18 * 6)32  -0.024091   0.647026  -0.037   0.9703  
## ns(time, df = 18 * 6)33  -0.188119   0.661754  -0.284   0.7762  
## ns(time, df = 18 * 6)34   0.035254   0.665994   0.053   0.9578  
## ns(time, df = 18 * 6)35  -0.267380   0.705058  -0.379   0.7045  
## ns(time, df = 18 * 6)36  -0.812799   0.753927  -1.078   0.2810  
## ns(time, df = 18 * 6)37  -0.406503   0.706426  -0.575   0.5650  
## ns(time, df = 18 * 6)38   0.361204   0.656246   0.550   0.5820  
## ns(time, df = 18 * 6)39  -0.432124   0.687052  -0.629   0.5294  
## ns(time, df = 18 * 6)40  -0.331637   0.689217  -0.481   0.6304  
## ns(time, df = 18 * 6)41   0.017725   0.663301   0.027   0.9787  
## ns(time, df = 18 * 6)42  -0.149136   0.659785  -0.226   0.8212  
## ns(time, df = 18 * 6)43  -0.121294   0.645268  -0.188   0.8509  
## ns(time, df = 18 * 6)44   0.447848   0.628394   0.713   0.4760  
## ns(time, df = 18 * 6)45  -0.471237   0.668183  -0.705   0.4807  
## ns(time, df = 18 * 6)46   0.182126   0.674321   0.270   0.7871  
## ns(time, df = 18 * 6)47  -0.838612   0.720676  -1.164   0.2446  
## ns(time, df = 18 * 6)48   0.012619   0.678331   0.019   0.9852  
## ns(time, df = 18 * 6)49   0.004361   0.668550   0.007   0.9948  
## ns(time, df = 18 * 6)50  -0.321352   0.700046  -0.459   0.6462  
## ns(time, df = 18 * 6)51  -0.647271   0.713198  -0.908   0.3641  
## ns(time, df = 18 * 6)52   0.318767   0.675465   0.472   0.6370  
## ns(time, df = 18 * 6)53  -0.734014   0.715151  -1.026   0.3047  
## ns(time, df = 18 * 6)54  -0.235229   0.683179  -0.344   0.7306  
## ns(time, df = 18 * 6)55   0.206572   0.643051   0.321   0.7480  
## ns(time, df = 18 * 6)56  -0.176656   0.640095  -0.276   0.7826  
## ns(time, df = 18 * 6)57   0.221681   0.614963   0.360   0.7185  
## ns(time, df = 18 * 6)58   0.286771   0.601668   0.477   0.6336  
## ns(time, df = 18 * 6)59   0.484128   0.618163   0.783   0.4335  
## ns(time, df = 18 * 6)60  -0.756905   0.699266  -1.082   0.2791  
## ns(time, df = 18 * 6)61   0.010506   0.717168   0.015   0.9883  
## ns(time, df = 18 * 6)62  -1.317108   0.754601  -1.745   0.0809 .
## ns(time, df = 18 * 6)63   0.690797   0.648558   1.065   0.2868  
## ns(time, df = 18 * 6)64  -0.371754   0.658226  -0.565   0.5722  
## ns(time, df = 18 * 6)65   0.031473   0.648597   0.049   0.9613  
## ns(time, df = 18 * 6)66  -0.148119   0.628897  -0.236   0.8138  
## ns(time, df = 18 * 6)67   0.700340   0.597594   1.172   0.2412  
## ns(time, df = 18 * 6)68  -0.158995   0.628960  -0.253   0.8004  
## ns(time, df = 18 * 6)69  -0.013997   0.641944  -0.022   0.9826  
## ns(time, df = 18 * 6)70   0.078681   0.647198   0.122   0.9032  
## ns(time, df = 18 * 6)71  -0.235618   0.673187  -0.350   0.7263  
## ns(time, df = 18 * 6)72  -0.225930   0.691121  -0.327   0.7437  
## ns(time, df = 18 * 6)73  -0.613796   0.684555  -0.897   0.3699  
## ns(time, df = 18 * 6)74   0.703713   0.628383   1.120   0.2628  
## ns(time, df = 18 * 6)75  -0.322899   0.674440  -0.479   0.6321  
## ns(time, df = 18 * 6)76  -0.674298   0.717303  -0.940   0.3472  
## ns(time, df = 18 * 6)77   0.068421   0.682769   0.100   0.9202  
## ns(time, df = 18 * 6)78  -0.481611   0.680283  -0.708   0.4790  
## ns(time, df = 18 * 6)79   0.441931   0.654950   0.675   0.4998  
## ns(time, df = 18 * 6)80  -0.672825   0.711678  -0.945   0.3445  
## ns(time, df = 18 * 6)81  -0.577779   0.698948  -0.827   0.4084  
## ns(time, df = 18 * 6)82   0.586410   0.636815   0.921   0.3571  
## ns(time, df = 18 * 6)83  -0.354730   0.668265  -0.531   0.5955  
## ns(time, df = 18 * 6)84  -0.359643   0.675026  -0.533   0.5942  
## ns(time, df = 18 * 6)85   0.160799   0.634232   0.254   0.7999  
## ns(time, df = 18 * 6)86   0.126921   0.614199   0.207   0.8363  
## ns(time, df = 18 * 6)87   0.383552   0.605362   0.634   0.5263  
## ns(time, df = 18 * 6)88  -0.035301   0.624225  -0.057   0.9549  
## ns(time, df = 18 * 6)89   0.031665   0.625985   0.051   0.9597  
## ns(time, df = 18 * 6)90   0.368123   0.626367   0.588   0.5567  
## ns(time, df = 18 * 6)91  -0.573304   0.664518  -0.863   0.3883  
## ns(time, df = 18 * 6)92   0.342863   0.635267   0.540   0.5894  
## ns(time, df = 18 * 6)93  -0.262387   0.636430  -0.412   0.6801  
## ns(time, df = 18 * 6)94   0.466035   0.610290   0.764   0.4451  
## ns(time, df = 18 * 6)95   0.116972   0.630201   0.186   0.8528  
## ns(time, df = 18 * 6)96  -0.662618   0.653273  -1.014   0.3104  
## ns(time, df = 18 * 6)97   1.191958   0.609953   1.954   0.0507 .
## ns(time, df = 18 * 6)98  -1.422223   0.687202  -2.070   0.0385 *
## ns(time, df = 18 * 6)99   1.206425   0.613849   1.965   0.0494 *
## ns(time, df = 18 * 6)100 -0.916125   0.658791  -1.391   0.1643  
## ns(time, df = 18 * 6)101  0.941667   0.632774   1.488   0.1367  
## ns(time, df = 18 * 6)102 -1.276846   0.713323  -1.790   0.0735 .
## ns(time, df = 18 * 6)103  0.434524   0.648727   0.670   0.5030  
## ns(time, df = 18 * 6)104 -0.301056   0.633122  -0.476   0.6344  
## ns(time, df = 18 * 6)105  0.558432   0.588996   0.948   0.3431  
## ns(time, df = 18 * 6)106  0.317039   0.485545   0.653   0.5138  
## ns(time, df = 18 * 6)107  0.240603   1.054643   0.228   0.8195  
## ns(time, df = 18 * 6)108 -0.308728   0.475765  -0.649   0.5164  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17043.33) family taken to be 1)
## 
##     Null deviance: 1179.1  on 938  degrees of freedom
## Residual deviance: 1037.8  on 830  degrees of freedom
## AIC: 3405.7
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17043 
##           Std. Err.:  128028 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3185.698
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ ns(time, df = 18 * 7), data = week, 
##     init.theta = 20836.35921, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5190  -0.7841  -0.1129   0.5375   2.6057  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)   
## (Intercept)               0.486238   0.469293   1.036  0.30015   
## ns(time, df = 18 * 7)1   -1.588027   0.741935  -2.140  0.03232 * 
## ns(time, df = 18 * 7)2    0.970116   0.838987   1.156  0.24756   
## ns(time, df = 18 * 7)3   -1.093662   0.785856  -1.392  0.16402   
## ns(time, df = 18 * 7)4    1.147347   0.706555   1.624  0.10441   
## ns(time, df = 18 * 7)5    0.541891   0.678956   0.798  0.42480   
## ns(time, df = 18 * 7)6    0.130561   0.723924   0.180  0.85688   
## ns(time, df = 18 * 7)7    0.592039   0.726070   0.815  0.41484   
## ns(time, df = 18 * 7)8   -0.375236   0.782072  -0.480  0.63137   
## ns(time, df = 18 * 7)9    0.870542   0.799398   1.089  0.27616   
## ns(time, df = 18 * 7)10  -2.175056   0.997667  -2.180  0.02925 * 
## ns(time, df = 18 * 7)11   0.860855   0.784561   1.097  0.27253   
## ns(time, df = 18 * 7)12  -0.171572   0.742920  -0.231  0.81736   
## ns(time, df = 18 * 7)13   1.092676   0.701965   1.557  0.11957   
## ns(time, df = 18 * 7)14  -0.459542   0.756832  -0.607  0.54372   
## ns(time, df = 18 * 7)15   0.772398   0.738271   1.046  0.29546   
## ns(time, df = 18 * 7)16  -0.437264   0.791466  -0.552  0.58062   
## ns(time, df = 18 * 7)17   0.255596   0.775150   0.330  0.74160   
## ns(time, df = 18 * 7)18  -0.020877   0.773608  -0.027  0.97847   
## ns(time, df = 18 * 7)19   0.180575   0.760537   0.237  0.81232   
## ns(time, df = 18 * 7)20   0.062110   0.745043   0.083  0.93356   
## ns(time, df = 18 * 7)21   0.517897   0.709226   0.730  0.46525   
## ns(time, df = 18 * 7)22   0.702192   0.717776   0.978  0.32793   
## ns(time, df = 18 * 7)23  -0.601707   0.799383  -0.753  0.45162   
## ns(time, df = 18 * 7)24   0.406757   0.772572   0.526  0.59854   
## ns(time, df = 18 * 7)25  -0.100842   0.787434  -0.128  0.89810   
## ns(time, df = 18 * 7)26   0.357505   0.818974   0.437  0.66245   
## ns(time, df = 18 * 7)27  -1.154876   0.961257  -1.201  0.22959   
## ns(time, df = 18 * 7)28  -0.706324   0.886162  -0.797  0.42542   
## ns(time, df = 18 * 7)29   0.861399   0.749028   1.150  0.25013   
## ns(time, df = 18 * 7)30  -0.197850   0.748620  -0.264  0.79156   
## ns(time, df = 18 * 7)31   0.916635   0.730850   1.254  0.20977   
## ns(time, df = 18 * 7)32  -0.530401   0.826468  -0.642  0.52102   
## ns(time, df = 18 * 7)33  -0.489275   0.854801  -0.572  0.56706   
## ns(time, df = 18 * 7)34   0.256622   0.789428   0.325  0.74513   
## ns(time, df = 18 * 7)35  -0.215216   0.756358  -0.285  0.77599   
## ns(time, df = 18 * 7)36   1.096100   0.699147   1.568  0.11694   
## ns(time, df = 18 * 7)37  -0.350273   0.736383  -0.476  0.63431   
## ns(time, df = 18 * 7)38   0.966609   0.709697   1.362  0.17320   
## ns(time, df = 18 * 7)39  -0.390179   0.756454  -0.516  0.60599   
## ns(time, df = 18 * 7)40   0.698436   0.734226   0.951  0.34148   
## ns(time, df = 18 * 7)41   0.001372   0.785723   0.002  0.99861   
## ns(time, df = 18 * 7)42  -0.637697   0.852852  -0.748  0.45463   
## ns(time, df = 18 * 7)43   0.112413   0.793505   0.142  0.88734   
## ns(time, df = 18 * 7)44   0.154971   0.747651   0.207  0.83579   
## ns(time, df = 18 * 7)45   0.696233   0.728796   0.955  0.33942   
## ns(time, df = 18 * 7)46  -0.420292   0.781550  -0.538  0.59074   
## ns(time, df = 18 * 7)47   0.395607   0.754791   0.524  0.60019   
## ns(time, df = 18 * 7)48  -0.047712   0.746773  -0.064  0.94906   
## ns(time, df = 18 * 7)49   0.754843   0.722513   1.045  0.29614   
## ns(time, df = 18 * 7)50  -0.531263   0.749591  -0.709  0.47849   
## ns(time, df = 18 * 7)51   1.330813   0.687108   1.937  0.05277 . 
## ns(time, df = 18 * 7)52  -0.313355   0.736992  -0.425  0.67070   
## ns(time, df = 18 * 7)53   0.595292   0.730388   0.815  0.41505   
## ns(time, df = 18 * 7)54   0.055320   0.766040   0.072  0.94243   
## ns(time, df = 18 * 7)55  -0.312124   0.798352  -0.391  0.69583   
## ns(time, df = 18 * 7)56   0.315590   0.756644   0.417  0.67661   
## ns(time, df = 18 * 7)57   0.215089   0.742915   0.290  0.77218   
## ns(time, df = 18 * 7)58   0.402926   0.751731   0.536  0.59196   
## ns(time, df = 18 * 7)59  -0.380714   0.802078  -0.475  0.63503   
## ns(time, df = 18 * 7)60   0.110842   0.773444   0.143  0.88605   
## ns(time, df = 18 * 7)61   0.431108   0.752211   0.573  0.56656   
## ns(time, df = 18 * 7)62  -0.148550   0.788325  -0.188  0.85053   
## ns(time, df = 18 * 7)63  -0.209487   0.780590  -0.268  0.78841   
## ns(time, df = 18 * 7)64   0.602032   0.718310   0.838  0.40196   
## ns(time, df = 18 * 7)65   0.398930   0.712573   0.560  0.57559   
## ns(time, df = 18 * 7)66   0.031145   0.714096   0.044  0.96521   
## ns(time, df = 18 * 7)67   0.923345   0.671109   1.376  0.16887   
## ns(time, df = 18 * 7)68   0.426046   0.674881   0.631  0.52785   
## ns(time, df = 18 * 7)69   0.875800   0.685838   1.277  0.20161   
## ns(time, df = 18 * 7)70  -0.146042   0.761851  -0.192  0.84798   
## ns(time, df = 18 * 7)71  -0.137520   0.807691  -0.170  0.86480   
## ns(time, df = 18 * 7)72  -0.060410   0.814041  -0.074  0.94084   
## ns(time, df = 18 * 7)73  -0.410526   0.790567  -0.519  0.60357   
## ns(time, df = 18 * 7)74   0.971200   0.710951   1.366  0.17192   
## ns(time, df = 18 * 7)75  -0.027913   0.731953  -0.038  0.96958   
## ns(time, df = 18 * 7)76   0.358017   0.724921   0.494  0.62140   
## ns(time, df = 18 * 7)77   0.196847   0.706933   0.278  0.78067   
## ns(time, df = 18 * 7)78   0.833556   0.670000   1.244  0.21346   
## ns(time, df = 18 * 7)79   0.687532   0.678890   1.013  0.31119   
## ns(time, df = 18 * 7)80   0.007935   0.719288   0.011  0.99120   
## ns(time, df = 18 * 7)81   0.556316   0.709871   0.784  0.43322   
## ns(time, df = 18 * 7)82   0.315564   0.726806   0.434  0.66416   
## ns(time, df = 18 * 7)83  -0.032977   0.752767  -0.044  0.96506   
## ns(time, df = 18 * 7)84   0.566616   0.755934   0.750  0.45352   
## ns(time, df = 18 * 7)85  -0.926981   0.806143  -1.150  0.25019   
## ns(time, df = 18 * 7)86   1.159649   0.702172   1.652  0.09863 . 
## ns(time, df = 18 * 7)87   0.167426   0.718776   0.233  0.81581   
## ns(time, df = 18 * 7)88   0.357741   0.756371   0.473  0.63623   
## ns(time, df = 18 * 7)89  -0.651687   0.811693  -0.803  0.42205   
## ns(time, df = 18 * 7)90   0.663076   0.752510   0.881  0.37824   
## ns(time, df = 18 * 7)91  -0.282401   0.762788  -0.370  0.71122   
## ns(time, df = 18 * 7)92   0.689499   0.725176   0.951  0.34171   
## ns(time, df = 18 * 7)93   0.173082   0.757352   0.229  0.81923   
## ns(time, df = 18 * 7)94  -0.456494   0.808621  -0.565  0.57239   
## ns(time, df = 18 * 7)95   0.197956   0.749113   0.264  0.79158   
## ns(time, df = 18 * 7)96   0.732565   0.706674   1.037  0.29990   
## ns(time, df = 18 * 7)97   0.222634   0.738529   0.301  0.76307   
## ns(time, df = 18 * 7)98  -0.362343   0.771208  -0.470  0.63847   
## ns(time, df = 18 * 7)99   0.693245   0.710799   0.975  0.32941   
## ns(time, df = 18 * 7)100  0.255518   0.697890   0.366  0.71427   
## ns(time, df = 18 * 7)101  0.735029   0.675150   1.089  0.27629   
## ns(time, df = 18 * 7)102  0.567751   0.680658   0.834  0.40421   
## ns(time, df = 18 * 7)103  0.309847   0.698877   0.443  0.65751   
## ns(time, df = 18 * 7)104  0.450801   0.696302   0.647  0.51736   
## ns(time, df = 18 * 7)105  0.585494   0.698482   0.838  0.40190   
## ns(time, df = 18 * 7)106  0.113550   0.727717   0.156  0.87600   
## ns(time, df = 18 * 7)107  0.223522   0.725118   0.308  0.75789   
## ns(time, df = 18 * 7)108  0.525250   0.706846   0.743  0.45743   
## ns(time, df = 18 * 7)109  0.162720   0.703578   0.231  0.81710   
## ns(time, df = 18 * 7)110  0.902023   0.677238   1.332  0.18289   
## ns(time, df = 18 * 7)111  0.324071   0.706154   0.459  0.64629   
## ns(time, df = 18 * 7)112 -0.085975   0.728118  -0.118  0.90601   
## ns(time, df = 18 * 7)113  0.864650   0.685583   1.261  0.20724   
## ns(time, df = 18 * 7)114  0.559891   0.709973   0.789  0.43034   
## ns(time, df = 18 * 7)115 -0.839379   0.759101  -1.106  0.26883   
## ns(time, df = 18 * 7)116  1.930400   0.678015   2.847  0.00441 **
## ns(time, df = 18 * 7)117 -1.311229   0.767319  -1.709  0.08748 . 
## ns(time, df = 18 * 7)118  1.953909   0.699130   2.795  0.00519 **
## ns(time, df = 18 * 7)119 -1.601237   0.826551  -1.937  0.05271 . 
## ns(time, df = 18 * 7)120  1.189566   0.726541   1.637  0.10157   
## ns(time, df = 18 * 7)121 -0.419184   0.737209  -0.569  0.56962   
## ns(time, df = 18 * 7)122  0.951735   0.673356   1.413  0.15753   
## ns(time, df = 18 * 7)123  0.552849   0.659093   0.839  0.40158   
## ns(time, df = 18 * 7)124  0.494977   0.531099   0.932  0.35134   
## ns(time, df = 18 * 7)125  1.483167   1.197745   1.238  0.21561   
## ns(time, df = 18 * 7)126 -0.664647   0.511619  -1.299  0.19391   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(20836.36) family taken to be 1)
## 
##     Null deviance: 1179.1  on 938  degrees of freedom
## Residual deviance: 1008.8  on 812  degrees of freedom
## AIC: 3412.7
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  20836 
##           Std. Err.:  137306 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3156.745
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ ns(time, df = 18 * 8), data = week, 
##     init.theta = 23590.18306, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.58836  -0.76385  -0.08913   0.56775   2.61981  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)   
## (Intercept)               0.232439   0.530333   0.438   0.6612   
## ns(time, df = 18 * 8)1   -1.601161   0.808665  -1.980   0.0477 * 
## ns(time, df = 18 * 8)2    1.285216   0.926095   1.388   0.1652   
## ns(time, df = 18 * 8)3   -0.701280   0.878883  -0.798   0.4249   
## ns(time, df = 18 * 8)4    0.552112   0.834603   0.662   0.5083   
## ns(time, df = 18 * 8)5    0.989025   0.740740   1.335   0.1818   
## ns(time, df = 18 * 8)6    1.017031   0.754584   1.348   0.1777   
## ns(time, df = 18 * 8)7    0.145941   0.791369   0.184   0.8537   
## ns(time, df = 18 * 8)8    1.066568   0.789925   1.350   0.1769   
## ns(time, df = 18 * 8)9   -0.217759   0.850390  -0.256   0.7979   
## ns(time, df = 18 * 8)10   0.937533   0.846624   1.107   0.2681   
## ns(time, df = 18 * 8)11  -0.309473   0.971243  -0.319   0.7500   
## ns(time, df = 18 * 8)12  -1.314163   1.040625  -1.263   0.2066   
## ns(time, df = 18 * 8)13   1.410023   0.827559   1.704   0.0884 . 
## ns(time, df = 18 * 8)14  -0.253358   0.816574  -0.310   0.7564   
## ns(time, df = 18 * 8)15   1.746895   0.760977   2.296   0.0217 * 
## ns(time, df = 18 * 8)16  -0.706514   0.846147  -0.835   0.4037   
## ns(time, df = 18 * 8)17   1.492532   0.794133   1.879   0.0602 . 
## ns(time, df = 18 * 8)18  -0.540035   0.873509  -0.618   0.5364   
## ns(time, df = 18 * 8)19   0.810813   0.840036   0.965   0.3344   
## ns(time, df = 18 * 8)20  -0.080921   0.861834  -0.094   0.9252   
## ns(time, df = 18 * 8)21   0.617987   0.833259   0.742   0.4583   
## ns(time, df = 18 * 8)22   0.200016   0.837032   0.239   0.8111   
## ns(time, df = 18 * 8)23   0.464695   0.812699   0.572   0.5675   
## ns(time, df = 18 * 8)24   0.589765   0.779685   0.756   0.4494   
## ns(time, df = 18 * 8)25   1.158283   0.770624   1.503   0.1328   
## ns(time, df = 18 * 8)26  -0.181013   0.852828  -0.212   0.8319   
## ns(time, df = 18 * 8)27   0.410271   0.853928   0.480   0.6309   
## ns(time, df = 18 * 8)28   0.257994   0.850750   0.303   0.7617   
## ns(time, df = 18 * 8)29   0.490546   0.851736   0.576   0.5647   
## ns(time, df = 18 * 8)30   0.264737   0.912826   0.290   0.7718   
## ns(time, df = 18 * 8)31  -0.749424   1.046227  -0.716   0.4738   
## ns(time, df = 18 * 8)32  -0.466205   0.989652  -0.471   0.6376   
## ns(time, df = 18 * 8)33   0.616966   0.841254   0.733   0.4633   
## ns(time, df = 18 * 8)34   0.807078   0.799636   1.009   0.3128   
## ns(time, df = 18 * 8)35   0.056633   0.816968   0.069   0.9447   
## ns(time, df = 18 * 8)36   1.412330   0.808398   1.747   0.0806 . 
## ns(time, df = 18 * 8)37  -1.138614   0.979198  -1.163   0.2449   
## ns(time, df = 18 * 8)38   0.299293   0.913619   0.328   0.7432   
## ns(time, df = 18 * 8)39   0.340159   0.867453   0.392   0.6950   
## ns(time, df = 18 * 8)40  -0.028955   0.837876  -0.035   0.9724   
## ns(time, df = 18 * 8)41   1.314172   0.766613   1.714   0.0865 . 
## ns(time, df = 18 * 8)42   0.142075   0.795927   0.179   0.8583   
## ns(time, df = 18 * 8)43   0.822177   0.781002   1.053   0.2925   
## ns(time, df = 18 * 8)44   0.582909   0.795293   0.733   0.4636   
## ns(time, df = 18 * 8)45   0.199063   0.821984   0.242   0.8086   
## ns(time, df = 18 * 8)46   0.722347   0.805804   0.896   0.3700   
## ns(time, df = 18 * 8)47   0.639202   0.851466   0.751   0.4528   
## ns(time, df = 18 * 8)48  -1.117356   0.980712  -1.139   0.2546   
## ns(time, df = 18 * 8)49   1.051156   0.858698   1.224   0.2209   
## ns(time, df = 18 * 8)50  -0.411366   0.863790  -0.476   0.6339   
## ns(time, df = 18 * 8)51   1.267623   0.785605   1.614   0.1066   
## ns(time, df = 18 * 8)52   0.245111   0.823208   0.298   0.7659   
## ns(time, df = 18 * 8)53   0.063858   0.853799   0.075   0.9404   
## ns(time, df = 18 * 8)54   0.656676   0.822709   0.798   0.4248   
## ns(time, df = 18 * 8)55   0.122040   0.820029   0.149   0.8817   
## ns(time, df = 18 * 8)56   1.103269   0.787270   1.401   0.1611   
## ns(time, df = 18 * 8)57  -0.214525   0.828049  -0.259   0.7956   
## ns(time, df = 18 * 8)58   1.011506   0.766253   1.320   0.1868   
## ns(time, df = 18 * 8)59   0.925045   0.765633   1.208   0.2270   
## ns(time, df = 18 * 8)60   0.007025   0.817515   0.009   0.9931   
## ns(time, df = 18 * 8)61   0.923839   0.799372   1.156   0.2478   
## ns(time, df = 18 * 8)62   0.192435   0.847111   0.227   0.8203   
## ns(time, df = 18 * 8)63  -0.077683   0.876919  -0.089   0.9294   
## ns(time, df = 18 * 8)64   0.621858   0.828826   0.750   0.4531   
## ns(time, df = 18 * 8)65   0.306873   0.817100   0.376   0.7072   
## ns(time, df = 18 * 8)66   0.856310   0.805286   1.063   0.2876   
## ns(time, df = 18 * 8)67   0.010545   0.860532   0.012   0.9902   
## ns(time, df = 18 * 8)68   0.165681   0.866275   0.191   0.8483   
## ns(time, df = 18 * 8)69   0.450797   0.835662   0.539   0.5896   
## ns(time, df = 18 * 8)70   0.461293   0.825791   0.559   0.5764   
## ns(time, df = 18 * 8)71   0.589173   0.851518   0.692   0.4890   
## ns(time, df = 18 * 8)72  -0.887129   0.906729  -0.978   0.3279   
## ns(time, df = 18 * 8)73   1.697530   0.778613   2.180   0.0292 * 
## ns(time, df = 18 * 8)74  -0.355942   0.813635  -0.437   0.6618   
## ns(time, df = 18 * 8)75   1.457287   0.762046   1.912   0.0558 . 
## ns(time, df = 18 * 8)76  -0.280273   0.792503  -0.354   0.7236   
## ns(time, df = 18 * 8)77   1.682545   0.724097   2.324   0.0201 * 
## ns(time, df = 18 * 8)78   0.352471   0.748658   0.471   0.6378   
## ns(time, df = 18 * 8)79   1.207859   0.749331   1.612   0.1070   
## ns(time, df = 18 * 8)80   0.393787   0.820574   0.480   0.6313   
## ns(time, df = 18 * 8)81  -0.548005   0.907499  -0.604   0.5459   
## ns(time, df = 18 * 8)82   1.238779   0.864304   1.433   0.1518   
## ns(time, df = 18 * 8)83  -1.589114   0.981091  -1.620   0.1053   
## ns(time, df = 18 * 8)84   1.692492   0.794720   2.130   0.0332 * 
## ns(time, df = 18 * 8)85  -0.084164   0.808132  -0.104   0.9171   
## ns(time, df = 18 * 8)86   1.089324   0.779990   1.397   0.1625   
## ns(time, df = 18 * 8)87   0.100306   0.809684   0.124   0.9014   
## ns(time, df = 18 * 8)88   0.641387   0.777452   0.825   0.4094   
## ns(time, df = 18 * 8)89   0.903743   0.741307   1.219   0.2228   
## ns(time, df = 18 * 8)90   1.030094   0.734270   1.403   0.1607   
## ns(time, df = 18 * 8)91   0.690464   0.765797   0.902   0.3673   
## ns(time, df = 18 * 8)92   0.180521   0.797408   0.226   0.8209   
## ns(time, df = 18 * 8)93   1.075634   0.770786   1.396   0.1629   
## ns(time, df = 18 * 8)94   0.285169   0.808861   0.353   0.7244   
## ns(time, df = 18 * 8)95   0.319628   0.821815   0.389   0.6973   
## ns(time, df = 18 * 8)96   0.857998   0.821632   1.044   0.2964   
## ns(time, df = 18 * 8)97  -0.565520   0.893065  -0.633   0.5266   
## ns(time, df = 18 * 8)98   0.745140   0.797496   0.934   0.3501   
## ns(time, df = 18 * 8)99   1.080701   0.761677   1.419   0.1559   
## ns(time, df = 18 * 8)100  0.276002   0.804597   0.343   0.7316   
## ns(time, df = 18 * 8)101  0.645545   0.837287   0.771   0.4407   
## ns(time, df = 18 * 8)102 -0.563352   0.898868  -0.627   0.5308   
## ns(time, df = 18 * 8)103  1.059269   0.818694   1.294   0.1957   
## ns(time, df = 18 * 8)104 -0.065442   0.837308  -0.078   0.9377   
## ns(time, df = 18 * 8)105  0.776549   0.797936   0.973   0.3305   
## ns(time, df = 18 * 8)106  0.663453   0.804335   0.825   0.4095   
## ns(time, df = 18 * 8)107  0.138997   0.863471   0.161   0.8721   
## ns(time, df = 18 * 8)108 -0.201035   0.879668  -0.229   0.8192   
## ns(time, df = 18 * 8)109  0.826488   0.796413   1.038   0.2994   
## ns(time, df = 18 * 8)110  0.688789   0.775924   0.888   0.3747   
## ns(time, df = 18 * 8)111  0.875657   0.800962   1.093   0.2743   
## ns(time, df = 18 * 8)112 -0.745649   0.881951  -0.845   0.3979   
## ns(time, df = 18 * 8)113  1.384081   0.777919   1.779   0.0752 . 
## ns(time, df = 18 * 8)114  0.095373   0.785743   0.121   0.9034   
## ns(time, df = 18 * 8)115  1.126725   0.743740   1.515   0.1298   
## ns(time, df = 18 * 8)116  0.727151   0.743303   0.978   0.3279   
## ns(time, df = 18 * 8)117  0.902773   0.750274   1.203   0.2289   
## ns(time, df = 18 * 8)118  0.405406   0.770625   0.526   0.5988   
## ns(time, df = 18 * 8)119  0.992971   0.758087   1.310   0.1903   
## ns(time, df = 18 * 8)120  0.355992   0.776025   0.459   0.6464   
## ns(time, df = 18 * 8)121  1.120684   0.773026   1.450   0.1471   
## ns(time, df = 18 * 8)122 -0.308155   0.830439  -0.371   0.7106   
## ns(time, df = 18 * 8)123  1.146616   0.772168   1.485   0.1376   
## ns(time, df = 18 * 8)124  0.377961   0.781524   0.484   0.6287   
## ns(time, df = 18 * 8)125  0.637823   0.763554   0.835   0.4035   
## ns(time, df = 18 * 8)126  1.131075   0.741395   1.526   0.1271   
## ns(time, df = 18 * 8)127  0.552585   0.775938   0.712   0.4764   
## ns(time, df = 18 * 8)128  0.219696   0.802176   0.274   0.7842   
## ns(time, df = 18 * 8)129  0.817106   0.760308   1.075   0.2825   
## ns(time, df = 18 * 8)130  1.195228   0.754887   1.583   0.1133   
## ns(time, df = 18 * 8)131 -0.191526   0.831261  -0.230   0.8178   
## ns(time, df = 18 * 8)132  0.479851   0.782283   0.613   0.5396   
## ns(time, df = 18 * 8)133  1.742573   0.748043   2.330   0.0198 * 
## ns(time, df = 18 * 8)134 -1.116304   0.852455  -1.310   0.1904   
## ns(time, df = 18 * 8)135  2.319145   0.764070   3.035   0.0024 **
## ns(time, df = 18 * 8)136 -1.270215   0.902768  -1.407   0.1594   
## ns(time, df = 18 * 8)137  1.040838   0.815586   1.276   0.2019   
## ns(time, df = 18 * 8)138  0.285771   0.801819   0.356   0.7215   
## ns(time, df = 18 * 8)139  0.668573   0.769315   0.869   0.3848   
## ns(time, df = 18 * 8)140  0.888939   0.733666   1.212   0.2256   
## ns(time, df = 18 * 8)141  1.115140   0.715506   1.559   0.1191   
## ns(time, df = 18 * 8)142  0.292513   0.582171   0.502   0.6153   
## ns(time, df = 18 * 8)143  2.252180   1.328502   1.695   0.0900 . 
## ns(time, df = 18 * 8)144 -0.666020   0.527051  -1.264   0.2063   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(23590.18) family taken to be 1)
## 
##     Null deviance: 1179.09  on 938  degrees of freedom
## Residual deviance:  983.67  on 794  degrees of freedom
## AIC: 3423.6
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  23590 
##           Std. Err.:  144004 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3131.554
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ ns(time, df = 18 * 9), data = week, 
##     init.theta = 26527.14967, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -3.00478  -0.75199  -0.09029   0.54830   2.37999  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               0.2442304  0.5566023   0.439 0.660815    
## ns(time, df = 18 * 9)1   -0.6654526  0.7915974  -0.841 0.400547    
## ns(time, df = 18 * 9)2   -0.0959116  1.0291517  -0.093 0.925749    
## ns(time, df = 18 * 9)3    0.8440672  0.8769900   0.962 0.335819    
## ns(time, df = 18 * 9)4   -0.9478481  0.9951252  -0.952 0.340848    
## ns(time, df = 18 * 9)5    1.2287209  0.8104648   1.516 0.129502    
## ns(time, df = 18 * 9)6    0.6507819  0.7944560   0.819 0.412698    
## ns(time, df = 18 * 9)7    1.1934942  0.7844544   1.521 0.128151    
## ns(time, df = 18 * 9)8   -0.0545333  0.8463633  -0.064 0.948626    
## ns(time, df = 18 * 9)9    1.1952241  0.8254770   1.448 0.147640    
## ns(time, df = 18 * 9)10  -0.2583109  0.8966022  -0.288 0.773270    
## ns(time, df = 18 * 9)11   0.8012148  0.8791706   0.911 0.362121    
## ns(time, df = 18 * 9)12   0.2393744  0.9566656   0.250 0.802419    
## ns(time, df = 18 * 9)13  -0.9680410  1.1267446  -0.859 0.390259    
## ns(time, df = 18 * 9)14  -0.4014133  1.0049373  -0.399 0.689568    
## ns(time, df = 18 * 9)15   1.2554599  0.8556150   1.467 0.142289    
## ns(time, df = 18 * 9)16  -0.3183519  0.8599276  -0.370 0.711228    
## ns(time, df = 18 * 9)17   1.8986600  0.7969367   2.382 0.017198 *  
## ns(time, df = 18 * 9)18  -0.8875649  0.9041817  -0.982 0.326286    
## ns(time, df = 18 * 9)19   1.4555598  0.8352700   1.743 0.081400 .  
## ns(time, df = 18 * 9)20  -0.2514360  0.9003095  -0.279 0.780032    
## ns(time, df = 18 * 9)21   0.5221704  0.8954905   0.583 0.559819    
## ns(time, df = 18 * 9)22   0.1523230  0.9063723   0.168 0.866538    
## ns(time, df = 18 * 9)23   0.2947041  0.8965716   0.329 0.742382    
## ns(time, df = 18 * 9)24   0.4366813  0.8805198   0.496 0.619940    
## ns(time, df = 18 * 9)25   0.3263396  0.8820015   0.370 0.711383    
## ns(time, df = 18 * 9)26   0.2348166  0.8656391   0.271 0.786188    
## ns(time, df = 18 * 9)27   0.8552265  0.8156921   1.048 0.294423    
## ns(time, df = 18 * 9)28   0.7192944  0.8135138   0.884 0.376598    
## ns(time, df = 18 * 9)29   0.6946066  0.8527758   0.815 0.415345    
## ns(time, df = 18 * 9)30  -0.4331074  0.9364070  -0.463 0.643708    
## ns(time, df = 18 * 9)31   0.8324267  0.8866557   0.939 0.347814    
## ns(time, df = 18 * 9)32  -0.1643136  0.9123255  -0.180 0.857071    
## ns(time, df = 18 * 9)33   0.9161347  0.8908142   1.028 0.303750    
## ns(time, df = 18 * 9)34  -0.2905841  0.9994181  -0.291 0.771240    
## ns(time, df = 18 * 9)35  -0.3771443  1.0973234  -0.344 0.731076    
## ns(time, df = 18 * 9)36  -0.7349884  1.0841589  -0.678 0.497813    
## ns(time, df = 18 * 9)37   0.4625211  0.9116543   0.507 0.611914    
## ns(time, df = 18 * 9)38   0.8060781  0.8435584   0.956 0.339290    
## ns(time, df = 18 * 9)39   0.3189093  0.8538480   0.373 0.708779    
## ns(time, df = 18 * 9)40   0.5991080  0.8452124   0.709 0.478433    
## ns(time, df = 18 * 9)41   0.9312405  0.8847852   1.053 0.292568    
## ns(time, df = 18 * 9)42  -1.3665419  1.0848547  -1.260 0.207794    
## ns(time, df = 18 * 9)43   0.5968805  0.9541840   0.626 0.531617    
## ns(time, df = 18 * 9)44   0.0930436  0.9235751   0.101 0.919755    
## ns(time, df = 18 * 9)45   0.2310328  0.8850782   0.261 0.794069    
## ns(time, df = 18 * 9)46   0.7287817  0.8225433   0.886 0.375612    
## ns(time, df = 18 * 9)47   1.0040915  0.8100952   1.239 0.215170    
## ns(time, df = 18 * 9)48  -0.0950190  0.8561019  -0.111 0.911624    
## ns(time, df = 18 * 9)49   1.1975921  0.8151905   1.469 0.141807    
## ns(time, df = 18 * 9)50   0.1304987  0.8598176   0.152 0.879364    
## ns(time, df = 18 * 9)51   0.4603479  0.8637637   0.533 0.594064    
## ns(time, df = 18 * 9)52   0.4862069  0.8541298   0.569 0.569192    
## ns(time, df = 18 * 9)53   1.0439332  0.8961598   1.165 0.244061    
## ns(time, df = 18 * 9)54  -2.0264586  1.1228850  -1.805 0.071123 .  
## ns(time, df = 18 * 9)55   1.7624645  0.9073112   1.943 0.052075 .  
## ns(time, df = 18 * 9)56  -1.2170197  0.9763206  -1.247 0.212567    
## ns(time, df = 18 * 9)57   1.4517735  0.8341088   1.741 0.081770 .  
## ns(time, df = 18 * 9)58   0.2147623  0.8511913   0.252 0.800803    
## ns(time, df = 18 * 9)59   0.6149629  0.8724303   0.705 0.480882    
## ns(time, df = 18 * 9)60  -0.1817771  0.9100735  -0.200 0.841685    
## ns(time, df = 18 * 9)61   0.8361760  0.8627258   0.969 0.332433    
## ns(time, df = 18 * 9)62  -0.0258693  0.8712791  -0.030 0.976313    
## ns(time, df = 18 * 9)63   1.1231491  0.8277782   1.357 0.174837    
## ns(time, df = 18 * 9)64   0.0001954  0.8715331   0.000 0.999821    
## ns(time, df = 18 * 9)65   0.4233622  0.8348971   0.507 0.612097    
## ns(time, df = 18 * 9)66   1.3199121  0.7903154   1.670 0.094898 .  
## ns(time, df = 18 * 9)67   0.1505957  0.8435665   0.179 0.858313    
## ns(time, df = 18 * 9)68   0.5448140  0.8493612   0.641 0.521237    
## ns(time, df = 18 * 9)69   0.5912128  0.8536078   0.693 0.488558    
## ns(time, df = 18 * 9)70   0.3221114  0.8962071   0.359 0.719284    
## ns(time, df = 18 * 9)71  -0.1866035  0.9354169  -0.199 0.841882    
## ns(time, df = 18 * 9)72   0.5869093  0.8794462   0.667 0.504541    
## ns(time, df = 18 * 9)73   0.3635356  0.8626488   0.421 0.673450    
## ns(time, df = 18 * 9)74   0.6290428  0.8487741   0.741 0.458621    
## ns(time, df = 18 * 9)75   0.5244634  0.8729985   0.601 0.547999    
## ns(time, df = 18 * 9)76  -0.1101616  0.9319180  -0.118 0.905902    
## ns(time, df = 18 * 9)77   0.2430488  0.9070600   0.268 0.788736    
## ns(time, df = 18 * 9)78   0.5856194  0.8728519   0.671 0.502267    
## ns(time, df = 18 * 9)79   0.2121949  0.8781845   0.242 0.809068    
## ns(time, df = 18 * 9)80   0.9752709  0.8945334   1.090 0.275600    
## ns(time, df = 18 * 9)81  -1.6141990  1.0237707  -1.577 0.114860    
## ns(time, df = 18 * 9)82   2.0222856  0.8258272   2.449 0.014333 *  
## ns(time, df = 18 * 9)83  -0.5435907  0.8709539  -0.624 0.532541    
## ns(time, df = 18 * 9)84   1.3725900  0.8075950   1.700 0.089206 .  
## ns(time, df = 18 * 9)85   0.1172678  0.8360007   0.140 0.888445    
## ns(time, df = 18 * 9)86   0.6662712  0.7992369   0.834 0.404487    
## ns(time, df = 18 * 9)87   1.3209132  0.7629285   1.731 0.083385 .  
## ns(time, df = 18 * 9)88   0.4046742  0.7887996   0.513 0.607934    
## ns(time, df = 18 * 9)89   1.2921347  0.7854341   1.645 0.099945 .  
## ns(time, df = 18 * 9)90   0.1556451  0.8637574   0.180 0.856999    
## ns(time, df = 18 * 9)91   0.1875399  0.9271637   0.202 0.839704    
## ns(time, df = 18 * 9)92  -0.1604091  0.9475563  -0.169 0.865571    
## ns(time, df = 18 * 9)93   0.9518553  0.9359771   1.017 0.309170    
## ns(time, df = 18 * 9)94  -1.9549935  1.0415207  -1.877 0.060510 .  
## ns(time, df = 18 * 9)95   2.7517723  0.8155633   3.374 0.000741 ***
## ns(time, df = 18 * 9)96  -1.4916759  0.9257852  -1.611 0.107124    
## ns(time, df = 18 * 9)97   2.0110770  0.8101193   2.482 0.013048 *  
## ns(time, df = 18 * 9)98  -0.5520267  0.8826780  -0.625 0.531709    
## ns(time, df = 18 * 9)99   0.8732786  0.8242656   1.059 0.289389    
## ns(time, df = 18 * 9)100  0.6697110  0.7895447   0.848 0.396313    
## ns(time, df = 18 * 9)101  1.1689000  0.7677167   1.523 0.127867    
## ns(time, df = 18 * 9)102  0.6360461  0.7929890   0.802 0.422503    
## ns(time, df = 18 * 9)103  0.7483662  0.8208294   0.912 0.361916    
## ns(time, df = 18 * 9)104 -0.0348202  0.8505231  -0.041 0.967344    
## ns(time, df = 18 * 9)105  1.4300851  0.8053200   1.776 0.075766 .  
## ns(time, df = 18 * 9)106 -0.1702092  0.8774046  -0.194 0.846182    
## ns(time, df = 18 * 9)107  0.5319590  0.8637793   0.616 0.537993    
## ns(time, df = 18 * 9)108  0.7438736  0.8639773   0.861 0.389245    
## ns(time, df = 18 * 9)109 -0.2644606  0.9384641  -0.282 0.778096    
## ns(time, df = 18 * 9)110  0.1326311  0.8869853   0.150 0.881135    
## ns(time, df = 18 * 9)111  1.1147838  0.8025508   1.389 0.164817    
## ns(time, df = 18 * 9)112  0.7796789  0.8143564   0.957 0.338357    
## ns(time, df = 18 * 9)113  0.1019054  0.8720684   0.117 0.906975    
## ns(time, df = 18 * 9)114  0.7642698  0.8897733   0.859 0.390369    
## ns(time, df = 18 * 9)115 -0.7926951  0.9679305  -0.819 0.412810    
## ns(time, df = 18 * 9)116  1.1779423  0.8607283   1.369 0.171143    
## ns(time, df = 18 * 9)117 -0.0441898  0.8855611  -0.050 0.960202    
## ns(time, df = 18 * 9)118  0.5168096  0.8532990   0.606 0.544740    
## ns(time, df = 18 * 9)119  0.8805189  0.8326812   1.057 0.290306    
## ns(time, df = 18 * 9)120  0.2107525  0.8880839   0.237 0.812415    
## ns(time, df = 18 * 9)121  0.0547566  0.9334730   0.059 0.953224    
## ns(time, df = 18 * 9)122 -0.0313863  0.9067639  -0.035 0.972388    
## ns(time, df = 18 * 9)123  0.9823780  0.8260092   1.189 0.234319    
## ns(time, df = 18 * 9)124  0.4534979  0.8208911   0.552 0.580643    
## ns(time, df = 18 * 9)125  1.2661748  0.8411329   1.505 0.132242    
## ns(time, df = 18 * 9)126 -1.5323350  0.9950538  -1.540 0.123572    
## ns(time, df = 18 * 9)127  1.8624652  0.8224393   2.265 0.023540 *  
## ns(time, df = 18 * 9)128 -0.3606978  0.8536908  -0.423 0.672649    
## ns(time, df = 18 * 9)129  1.3109971  0.7889486   1.662 0.096573 .  
## ns(time, df = 18 * 9)130  0.4514083  0.7911874   0.571 0.568308    
## ns(time, df = 18 * 9)131  1.1889495  0.7752383   1.534 0.125114    
## ns(time, df = 18 * 9)132  0.4760909  0.8072319   0.590 0.555337    
## ns(time, df = 18 * 9)133  0.5416026  0.8097714   0.669 0.503601    
## ns(time, df = 18 * 9)134  1.1346529  0.7975093   1.423 0.154810    
## ns(time, df = 18 * 9)135 -0.1529164  0.8362902  -0.183 0.854915    
## ns(time, df = 18 * 9)136  1.8309214  0.7988357   2.292 0.021906 *  
## ns(time, df = 18 * 9)137 -1.1142054  0.9233188  -1.207 0.227532    
## ns(time, df = 18 * 9)138  1.5443264  0.8169038   1.890 0.058696 .  
## ns(time, df = 18 * 9)139 -0.0252911  0.8400177  -0.030 0.975981    
## ns(time, df = 18 * 9)140  1.0632398  0.8058351   1.319 0.187027    
## ns(time, df = 18 * 9)141  0.2816580  0.8090579   0.348 0.727742    
## ns(time, df = 18 * 9)142  1.3544183  0.7763939   1.744 0.081072 .  
## ns(time, df = 18 * 9)143  0.3971711  0.8237045   0.482 0.629680    
## ns(time, df = 18 * 9)144  0.2485938  0.8522256   0.292 0.770516    
## ns(time, df = 18 * 9)145  0.6867715  0.8103211   0.848 0.396700    
## ns(time, df = 18 * 9)146  1.0982549  0.7869816   1.396 0.162857    
## ns(time, df = 18 * 9)147  0.5718362  0.8353503   0.685 0.493630    
## ns(time, df = 18 * 9)148 -0.3304494  0.8891133  -0.372 0.710145    
## ns(time, df = 18 * 9)149  1.1943916  0.7940783   1.504 0.132550    
## ns(time, df = 18 * 9)150  1.1404570  0.8031827   1.420 0.155630    
## ns(time, df = 18 * 9)151 -0.8805716  0.9002917  -0.978 0.328027    
## ns(time, df = 18 * 9)152  2.0989352  0.8038414   2.611 0.009024 ** 
## ns(time, df = 18 * 9)153 -0.6826506  0.9302006  -0.734 0.463025    
## ns(time, df = 18 * 9)154 -0.0313917  0.9123902  -0.034 0.972553    
## ns(time, df = 18 * 9)155  1.3515400  0.8295648   1.629 0.103267    
## ns(time, df = 18 * 9)156 -0.5528514  0.8726880  -0.634 0.526405    
## ns(time, df = 18 * 9)157  1.6418414  0.7753219   2.118 0.034207 *  
## ns(time, df = 18 * 9)158  0.2134523  0.7830372   0.273 0.785164    
## ns(time, df = 18 * 9)159  1.6193401  0.7442411   2.176 0.029568 *  
## ns(time, df = 18 * 9)160 -0.0983570  0.6309164  -0.156 0.876115    
## ns(time, df = 18 * 9)161  2.0257809  1.3815813   1.466 0.142573    
## ns(time, df = 18 * 9)162 -0.3955311  0.5345344  -0.740 0.459328    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(26527.15) family taken to be 1)
## 
##     Null deviance: 1179.10  on 938  degrees of freedom
## Residual deviance:  951.76  on 776  degrees of freedom
## AIC: 3427.6
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  26527 
##           Std. Err.:  145815 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3099.643
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ ns(time, df = 18 * 10), data = week, 
##     init.theta = 27991.48742, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.91056  -0.74039  -0.08845   0.52603   2.34097  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                0.328177   0.570090   0.576  0.56485   
## ns(time, df = 18 * 10)1    0.272710   0.774593   0.352  0.72479   
## ns(time, df = 18 * 10)2   -1.567626   1.187767  -1.320  0.18690   
## ns(time, df = 18 * 10)3    1.512668   0.904639   1.672  0.09450 . 
## ns(time, df = 18 * 10)4   -0.992449   1.070074  -0.927  0.35369   
## ns(time, df = 18 * 10)5    0.047675   0.936392   0.051  0.95939   
## ns(time, df = 18 * 10)6    1.084460   0.834033   1.300  0.19351   
## ns(time, df = 18 * 10)7    0.572883   0.814315   0.704  0.48173   
## ns(time, df = 18 * 10)8    1.053133   0.820679   1.283  0.19941   
## ns(time, df = 18 * 10)9   -0.051862   0.877024  -0.059  0.95285   
## ns(time, df = 18 * 10)10   0.925157   0.862069   1.073  0.28319   
## ns(time, df = 18 * 10)11   0.008382   0.910878   0.009  0.99266   
## ns(time, df = 18 * 10)12   0.433568   0.918831   0.472  0.63702   
## ns(time, df = 18 * 10)13   0.231104   0.955639   0.242  0.80891   
## ns(time, df = 18 * 10)14   0.123373   1.065874   0.116  0.90785   
## ns(time, df = 18 * 10)15  -1.845005   1.273205  -1.449  0.14731   
## ns(time, df = 18 * 10)16   0.560543   0.973809   0.576  0.56487   
## ns(time, df = 18 * 10)17   0.719146   0.889132   0.809  0.41862   
## ns(time, df = 18 * 10)18  -0.206866   0.887275  -0.233  0.81565   
## ns(time, df = 18 * 10)19   1.753487   0.824609   2.126  0.03347 * 
## ns(time, df = 18 * 10)20  -0.796009   0.940264  -0.847  0.39723   
## ns(time, df = 18 * 10)21   0.876414   0.879657   0.996  0.31910   
## ns(time, df = 18 * 10)22   0.522330   0.897410   0.582  0.56054   
## ns(time, df = 18 * 10)23  -0.430867   0.973537  -0.443  0.65807   
## ns(time, df = 18 * 10)24   0.709871   0.923011   0.769  0.44184   
## ns(time, df = 18 * 10)25  -0.134075   0.953789  -0.141  0.88821   
## ns(time, df = 18 * 10)26   0.312515   0.931105   0.336  0.73714   
## ns(time, df = 18 * 10)27   0.326391   0.914759   0.357  0.72124   
## ns(time, df = 18 * 10)28   0.341566   0.919558   0.371  0.71031   
## ns(time, df = 18 * 10)29  -0.148800   0.914625  -0.163  0.87076   
## ns(time, df = 18 * 10)30   1.203262   0.839157   1.434  0.15160   
## ns(time, df = 18 * 10)31   0.001167   0.862145   0.001  0.99892   
## ns(time, df = 18 * 10)32   1.422742   0.850694   1.672  0.09444 . 
## ns(time, df = 18 * 10)33  -0.926597   0.999836  -0.927  0.35406   
## ns(time, df = 18 * 10)34   0.489351   0.941039   0.520  0.60306   
## ns(time, df = 18 * 10)35   0.413466   0.928593   0.445  0.65613   
## ns(time, df = 18 * 10)36  -0.300243   0.958737  -0.313  0.75416   
## ns(time, df = 18 * 10)37   1.117747   0.925215   1.208  0.22701   
## ns(time, df = 18 * 10)38  -0.920292   1.092789  -0.842  0.39970   
## ns(time, df = 18 * 10)39  -0.067065   1.138210  -0.059  0.95301   
## ns(time, df = 18 * 10)40  -1.079589   1.171461  -0.922  0.35675   
## ns(time, df = 18 * 10)41   0.319869   0.976926   0.327  0.74335   
## ns(time, df = 18 * 10)42   0.542887   0.887986   0.611  0.54096   
## ns(time, df = 18 * 10)43   0.613417   0.873939   0.702  0.48274   
## ns(time, df = 18 * 10)44   0.062842   0.892488   0.070  0.94387   
## ns(time, df = 18 * 10)45   1.030521   0.872070   1.182  0.23733   
## ns(time, df = 18 * 10)46  -0.049246   0.985800  -0.050  0.96016   
## ns(time, df = 18 * 10)47  -1.010258   1.122700  -0.900  0.36820   
## ns(time, df = 18 * 10)48   0.457300   0.991422   0.461  0.64461   
## ns(time, df = 18 * 10)49  -0.010812   0.963552  -0.011  0.99105   
## ns(time, df = 18 * 10)50   0.278779   0.926800   0.301  0.76357   
## ns(time, df = 18 * 10)51   0.208357   0.874364   0.238  0.81165   
## ns(time, df = 18 * 10)52   1.435340   0.827038   1.736  0.08265 . 
## ns(time, df = 18 * 10)53  -0.567000   0.909509  -0.623  0.53301   
## ns(time, df = 18 * 10)54   1.204806   0.845515   1.425  0.15418   
## ns(time, df = 18 * 10)55   0.140214   0.877840   0.160  0.87310   
## ns(time, df = 18 * 10)56   0.546845   0.887344   0.616  0.53772   
## ns(time, df = 18 * 10)57   0.123678   0.907049   0.136  0.89154   
## ns(time, df = 18 * 10)58   0.516711   0.886165   0.583  0.55984   
## ns(time, df = 18 * 10)59   1.021955   0.937228   1.090  0.27554   
## ns(time, df = 18 * 10)60  -2.427143   1.234881  -1.965  0.04936 * 
## ns(time, df = 18 * 10)61   1.649351   0.957725   1.722  0.08504 . 
## ns(time, df = 18 * 10)62  -0.997708   1.018619  -0.979  0.32735   
## ns(time, df = 18 * 10)63   0.686467   0.903782   0.760  0.44752   
## ns(time, df = 18 * 10)64   0.610324   0.864364   0.706  0.48013   
## ns(time, df = 18 * 10)65   0.511046   0.885056   0.577  0.56366   
## ns(time, df = 18 * 10)66   0.042854   0.937961   0.046  0.96356   
## ns(time, df = 18 * 10)67   0.054872   0.936789   0.059  0.95329   
## ns(time, df = 18 * 10)68   0.652577   0.899113   0.726  0.46796   
## ns(time, df = 18 * 10)69  -0.112425   0.910007  -0.124  0.90168   
## ns(time, df = 18 * 10)70   1.035580   0.858759   1.206  0.22786   
## ns(time, df = 18 * 10)71   0.038789   0.902406   0.043  0.96571   
## ns(time, df = 18 * 10)72   0.223378   0.889506   0.251  0.80172   
## ns(time, df = 18 * 10)73   0.815314   0.830364   0.982  0.32616   
## ns(time, df = 18 * 10)74   1.009421   0.832338   1.213  0.22522   
## ns(time, df = 18 * 10)75  -0.342665   0.912080  -0.376  0.70714   
## ns(time, df = 18 * 10)76   0.962918   0.869827   1.107  0.26828   
## ns(time, df = 18 * 10)77   0.073930   0.907454   0.081  0.93507   
## ns(time, df = 18 * 10)78   0.489452   0.931366   0.526  0.59922   
## ns(time, df = 18 * 10)79  -0.424919   0.988502  -0.430  0.66730   
## ns(time, df = 18 * 10)80   0.478794   0.921648   0.519  0.60341   
## ns(time, df = 18 * 10)81   0.380801   0.897356   0.424  0.67130   
## ns(time, df = 18 * 10)82   0.319501   0.888986   0.359  0.71930   
## ns(time, df = 18 * 10)83   0.754130   0.885699   0.851  0.39452   
## ns(time, df = 18 * 10)84  -0.217452   0.958402  -0.227  0.82051   
## ns(time, df = 18 * 10)85   0.270341   0.956684   0.283  0.77750   
## ns(time, df = 18 * 10)86  -0.072185   0.946614  -0.076  0.93922   
## ns(time, df = 18 * 10)87   0.737736   0.898627   0.821  0.41167   
## ns(time, df = 18 * 10)88  -0.069319   0.920806  -0.075  0.93999   
## ns(time, df = 18 * 10)89   1.097032   0.930749   1.179  0.23854   
## ns(time, df = 18 * 10)90  -1.907408   1.115767  -1.710  0.08736 . 
## ns(time, df = 18 * 10)91   1.574354   0.872993   1.803  0.07133 . 
## ns(time, df = 18 * 10)92   0.163170   0.879469   0.186  0.85281   
## ns(time, df = 18 * 10)93   0.210025   0.875579   0.240  0.81043   
## ns(time, df = 18 * 10)94   1.206228   0.836396   1.442  0.14925   
## ns(time, df = 18 * 10)95  -0.399162   0.889747  -0.449  0.65370   
## ns(time, df = 18 * 10)96   1.216464   0.804281   1.512  0.13041   
## ns(time, df = 18 * 10)97   0.861732   0.797726   1.080  0.28004   
## ns(time, df = 18 * 10)98   0.451094   0.817538   0.552  0.58111   
## ns(time, df = 18 * 10)99   1.217072   0.812834   1.497  0.13431   
## ns(time, df = 18 * 10)100  0.001087   0.895458   0.001  0.99903   
## ns(time, df = 18 * 10)101  0.433840   0.948731   0.457  0.64747   
## ns(time, df = 18 * 10)102 -0.698838   1.021318  -0.684  0.49382   
## ns(time, df = 18 * 10)103  0.990910   0.955846   1.037  0.29988   
## ns(time, df = 18 * 10)104 -0.853298   1.077933  -0.792  0.42859   
## ns(time, df = 18 * 10)105 -0.485285   0.960397  -0.505  0.61335   
## ns(time, df = 18 * 10)106  2.400622   0.838642   2.863  0.00420 **
## ns(time, df = 18 * 10)107 -2.166108   1.026625  -2.110  0.03486 * 
## ns(time, df = 18 * 10)108  2.418014   0.839737   2.879  0.00398 **
## ns(time, df = 18 * 10)109 -0.988585   0.945211  -1.046  0.29561   
## ns(time, df = 18 * 10)110  0.737629   0.869904   0.848  0.39647   
## ns(time, df = 18 * 10)111  0.721191   0.821942   0.877  0.38026   
## ns(time, df = 18 * 10)112  0.762757   0.803299   0.950  0.34235   
## ns(time, df = 18 * 10)113  1.064630   0.801760   1.328  0.18422   
## ns(time, df = 18 * 10)114  0.225586   0.850452   0.265  0.79081   
## ns(time, df = 18 * 10)115  0.794130   0.859448   0.924  0.35549   
## ns(time, df = 18 * 10)116 -0.232794   0.887265  -0.262  0.79303   
## ns(time, df = 18 * 10)117  1.601175   0.833610   1.921  0.05476 . 
## ns(time, df = 18 * 10)118 -0.654219   0.942995  -0.694  0.48783   
## ns(time, df = 18 * 10)119  0.619972   0.897633   0.691  0.48977   
## ns(time, df = 18 * 10)120  0.614874   0.894654   0.687  0.49191   
## ns(time, df = 18 * 10)121 -0.120912   0.974756  -0.124  0.90128   
## ns(time, df = 18 * 10)122 -0.401090   0.971204  -0.413  0.67962   
## ns(time, df = 18 * 10)123  1.065976   0.848233   1.257  0.20886   
## ns(time, df = 18 * 10)124  0.506642   0.837465   0.605  0.54520   
## ns(time, df = 18 * 10)125  0.915880   0.853851   1.073  0.28343   
## ns(time, df = 18 * 10)126 -0.379470   0.939596  -0.404  0.68631   
## ns(time, df = 18 * 10)127  0.929758   0.930425   0.999  0.31766   
## ns(time, df = 18 * 10)128 -1.143034   1.031222  -1.108  0.26768   
## ns(time, df = 18 * 10)129  1.249728   0.892319   1.401  0.16135   
## ns(time, df = 18 * 10)130 -0.132228   0.924488  -0.143  0.88627   
## ns(time, df = 18 * 10)131  0.285051   0.900623   0.317  0.75162   
## ns(time, df = 18 * 10)132  0.818538   0.860711   0.951  0.34160   
## ns(time, df = 18 * 10)133  0.318588   0.897167   0.355  0.72251   
## ns(time, df = 18 * 10)134  0.173323   0.954220   0.182  0.85587   
## ns(time, df = 18 * 10)135 -0.348022   0.993590  -0.350  0.72614   
## ns(time, df = 18 * 10)136  0.384840   0.908534   0.424  0.67187   
## ns(time, df = 18 * 10)137  0.741875   0.855150   0.868  0.38565   
## ns(time, df = 18 * 10)138  0.383524   0.851726   0.450  0.65250   
## ns(time, df = 18 * 10)139  1.364973   0.876464   1.557  0.11938   
## ns(time, df = 18 * 10)140 -2.118734   1.104669  -1.918  0.05511 . 
## ns(time, df = 18 * 10)141  1.874829   0.864891   2.168  0.03018 * 
## ns(time, df = 18 * 10)142 -0.339252   0.892539  -0.380  0.70387   
## ns(time, df = 18 * 10)143  0.864738   0.837499   1.033  0.30183   
## ns(time, df = 18 * 10)144  0.748667   0.818124   0.915  0.36014   
## ns(time, df = 18 * 10)145  0.527599   0.816736   0.646  0.51829   
## ns(time, df = 18 * 10)146  1.191234   0.803997   1.482  0.13844   
## ns(time, df = 18 * 10)147  0.077700   0.857947   0.091  0.92784   
## ns(time, df = 18 * 10)148  0.681009   0.835904   0.815  0.41524   
## ns(time, df = 18 * 10)149  0.979650   0.830125   1.180  0.23795   
## ns(time, df = 18 * 10)150 -0.271570   0.875270  -0.310  0.75636   
## ns(time, df = 18 * 10)151  1.681203   0.823613   2.041  0.04123 * 
## ns(time, df = 18 * 10)152 -0.641633   0.933063  -0.688  0.49166   
## ns(time, df = 18 * 10)153  0.586907   0.882800   0.665  0.50616   
## ns(time, df = 18 * 10)154  0.740416   0.851078   0.870  0.38431   
## ns(time, df = 18 * 10)155  0.218570   0.864917   0.253  0.80049   
## ns(time, df = 18 * 10)156  0.829017   0.836585   0.991  0.32171   
## ns(time, df = 18 * 10)157  0.352551   0.832940   0.423  0.67210   
## ns(time, df = 18 * 10)158  1.201222   0.805587   1.491  0.13593   
## ns(time, df = 18 * 10)159  0.387350   0.856534   0.452  0.65110   
## ns(time, df = 18 * 10)160  0.034485   0.897850   0.038  0.96936   
## ns(time, df = 18 * 10)161  0.667589   0.847841   0.787  0.43105   
## ns(time, df = 18 * 10)162  0.760227   0.819992   0.927  0.35387   
## ns(time, df = 18 * 10)163  0.969120   0.834938   1.161  0.24576   
## ns(time, df = 18 * 10)164 -0.271604   0.926637  -0.293  0.76944   
## ns(time, df = 18 * 10)165  0.260189   0.881266   0.295  0.76781   
## ns(time, df = 18 * 10)166  1.185052   0.812105   1.459  0.14450   
## ns(time, df = 18 * 10)167  0.748411   0.851208   0.879  0.37927   
## ns(time, df = 18 * 10)168 -0.831895   0.938881  -0.886  0.37559   
## ns(time, df = 18 * 10)169  1.902182   0.832076   2.286  0.02225 * 
## ns(time, df = 18 * 10)170 -0.379558   0.950262  -0.399  0.68958   
## ns(time, df = 18 * 10)171 -0.652353   1.004247  -0.650  0.51595   
## ns(time, df = 18 * 10)172  1.273461   0.868894   1.466  0.14275   
## ns(time, df = 18 * 10)173 -0.065542   0.897050  -0.073  0.94176   
## ns(time, df = 18 * 10)174  0.410781   0.852979   0.482  0.63010   
## ns(time, df = 18 * 10)175  1.234058   0.797146   1.548  0.12160   
## ns(time, df = 18 * 10)176  0.263424   0.805926   0.327  0.74377   
## ns(time, df = 18 * 10)177  1.592224   0.769621   2.069  0.03856 * 
## ns(time, df = 18 * 10)178 -0.252187   0.672789  -0.375  0.70778   
## ns(time, df = 18 * 10)179  1.564804   1.410393   1.109  0.26722   
## ns(time, df = 18 * 10)180 -0.170103   0.550610  -0.309  0.75737   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(27991.49) family taken to be 1)
## 
##     Null deviance: 1179.10  on 938  degrees of freedom
## Residual deviance:  932.82  on 758  degrees of freedom
## AIC: 3444.7
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  27991 
##           Std. Err.:  146817 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3080.692
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ ns(time, df = 18 * 14), data = week, 
##     init.theta = 32829.99587, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.77979  -0.76453  -0.07699   0.50521   2.32975  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)   
## (Intercept)               -0.259662   0.775115  -0.335  0.73763   
## ns(time, df = 18 * 14)1    0.362418   0.911854   0.397  0.69103   
## ns(time, df = 18 * 14)2    1.896747   1.280550   1.481  0.13855   
## ns(time, df = 18 * 14)3   -2.090643   1.548733  -1.350  0.17705   
## ns(time, df = 18 * 14)4    1.485666   1.252078   1.187  0.23540   
## ns(time, df = 18 * 14)5    1.249822   1.174186   1.064  0.28714   
## ns(time, df = 18 * 14)6   -0.678867   1.367417  -0.496  0.61957   
## ns(time, df = 18 * 14)7    1.422046   1.197886   1.187  0.23518   
## ns(time, df = 18 * 14)8   -0.125061   1.168317  -0.107  0.91475   
## ns(time, df = 18 * 14)9    2.588344   1.016677   2.546  0.01090 * 
## ns(time, df = 18 * 14)10   0.241197   1.064191   0.227  0.82070   
## ns(time, df = 18 * 14)11   2.419154   1.010638   2.394  0.01668 * 
## ns(time, df = 18 * 14)12   0.149411   1.094703   0.136  0.89144   
## ns(time, df = 18 * 14)13   2.184688   1.070836   2.040  0.04133 * 
## ns(time, df = 18 * 14)14  -0.760698   1.198972  -0.634  0.52578   
## ns(time, df = 18 * 14)15   2.894325   1.066808   2.713  0.00667 **
## ns(time, df = 18 * 14)16  -0.672447   1.253963  -0.536  0.59178   
## ns(time, df = 18 * 14)17   0.868575   1.177362   0.738  0.46068   
## ns(time, df = 18 * 14)18   1.753266   1.128236   1.554  0.12019   
## ns(time, df = 18 * 14)19  -0.453108   1.293802  -0.350  0.72618   
## ns(time, df = 18 * 14)20   1.789387   1.304307   1.372  0.17009   
## ns(time, df = 18 * 14)21  -2.021298   1.770771  -1.141  0.25367   
## ns(time, df = 18 * 14)22   0.372409   1.413091   0.264  0.79213   
## ns(time, df = 18 * 14)23   0.974144   1.185555   0.822  0.41126   
## ns(time, df = 18 * 14)24   1.173056   1.112745   1.054  0.29179   
## ns(time, df = 18 * 14)25   1.043230   1.113594   0.937  0.34885   
## ns(time, df = 18 * 14)26   0.486330   1.097206   0.443  0.65759   
## ns(time, df = 18 * 14)27   2.596256   1.028895   2.523  0.01162 * 
## ns(time, df = 18 * 14)28  -0.392315   1.189153  -0.330  0.74147   
## ns(time, df = 18 * 14)29   1.397361   1.131793   1.235  0.21696   
## ns(time, df = 18 * 14)30   0.643549   1.121201   0.574  0.56598   
## ns(time, df = 18 * 14)31   1.742700   1.097757   1.588  0.11240   
## ns(time, df = 18 * 14)32   0.070448   1.231399   0.057  0.95438   
## ns(time, df = 18 * 14)33   0.437784   1.208391   0.362  0.71714   
## ns(time, df = 18 * 14)34   1.822547   1.141568   1.597  0.11037   
## ns(time, df = 18 * 14)35  -0.742580   1.281562  -0.579  0.56230   
## ns(time, df = 18 * 14)36   2.115764   1.137210   1.860  0.06282 . 
## ns(time, df = 18 * 14)37  -0.384107   1.232180  -0.312  0.75525   
## ns(time, df = 18 * 14)38   1.678236   1.128155   1.488  0.13686   
## ns(time, df = 18 * 14)39   0.415661   1.162101   0.358  0.72058   
## ns(time, df = 18 * 14)40   1.340659   1.157283   1.158  0.24668   
## ns(time, df = 18 * 14)41  -0.352434   1.205853  -0.292  0.77008   
## ns(time, df = 18 * 14)42   2.417564   1.049536   2.303  0.02125 * 
## ns(time, df = 18 * 14)43   0.305605   1.111309   0.275  0.78332   
## ns(time, df = 18 * 14)44   1.297448   1.065388   1.218  0.22329   
## ns(time, df = 18 * 14)45   1.849729   1.057313   1.749  0.08021 . 
## ns(time, df = 18 * 14)46   0.047327   1.213887   0.039  0.96890   
## ns(time, df = 18 * 14)47   0.597327   1.222199   0.489  0.62503   
## ns(time, df = 18 * 14)48   1.040929   1.175573   0.885  0.37591   
## ns(time, df = 18 * 14)49   0.442261   1.186041   0.373  0.70923   
## ns(time, df = 18 * 14)50   1.356091   1.143872   1.186  0.23581   
## ns(time, df = 18 * 14)51   0.330569   1.203472   0.275  0.78356   
## ns(time, df = 18 * 14)52   0.878953   1.166109   0.754  0.45100   
## ns(time, df = 18 * 14)53   1.733473   1.202698   1.441  0.14949   
## ns(time, df = 18 * 14)54  -1.832056   1.636300  -1.120  0.26287   
## ns(time, df = 18 * 14)55   1.161269   1.402805   0.828  0.40777   
## ns(time, df = 18 * 14)56  -0.138088   1.470913  -0.094  0.92520   
## ns(time, df = 18 * 14)57  -0.606456   1.447016  -0.419  0.67514   
## ns(time, df = 18 * 14)58   1.563404   1.173578   1.332  0.18280   
## ns(time, df = 18 * 14)59   0.510122   1.135243   0.449  0.65318   
## ns(time, df = 18 * 14)60   1.739220   1.076214   1.616  0.10608   
## ns(time, df = 18 * 14)61   0.442802   1.128820   0.392  0.69486   
## ns(time, df = 18 * 14)62   1.382464   1.098772   1.258  0.20832   
## ns(time, df = 18 * 14)63   0.681103   1.109277   0.614  0.53921   
## ns(time, df = 18 * 14)64   1.866381   1.104657   1.690  0.09111 . 
## ns(time, df = 18 * 14)65  -0.166130   1.324861  -0.125  0.90021   
## ns(time, df = 18 * 14)66  -0.325025   1.440893  -0.226  0.82153   
## ns(time, df = 18 * 14)67   0.896887   1.282322   0.699  0.48429   
## ns(time, df = 18 * 14)68   0.293665   1.238061   0.237  0.81250   
## ns(time, df = 18 * 14)69   1.444852   1.174495   1.230  0.21863   
## ns(time, df = 18 * 14)70  -0.285161   1.245424  -0.229  0.81889   
## ns(time, df = 18 * 14)71   1.695023   1.106943   1.531  0.12570   
## ns(time, df = 18 * 14)72   0.582159   1.102295   0.528  0.59741   
## ns(time, df = 18 * 14)73   1.666135   1.043088   1.597  0.11020   
## ns(time, df = 18 * 14)74   1.425156   1.077258   1.323  0.18585   
## ns(time, df = 18 * 14)75  -0.251582   1.191801  -0.211  0.83281   
## ns(time, df = 18 * 14)76   2.001430   1.060890   1.887  0.05922 . 
## ns(time, df = 18 * 14)77   0.899897   1.092384   0.824  0.41006   
## ns(time, df = 18 * 14)78   0.735309   1.125007   0.654  0.51337   
## ns(time, df = 18 * 14)79   1.480445   1.110938   1.333  0.18266   
## ns(time, df = 18 * 14)80   0.020375   1.180471   0.017  0.98623   
## ns(time, df = 18 * 14)81   1.768044   1.089137   1.623  0.10452   
## ns(time, df = 18 * 14)82   0.588277   1.126640   0.522  0.60156   
## ns(time, df = 18 * 14)83   1.593327   1.160889   1.373  0.16991   
## ns(time, df = 18 * 14)84  -0.370006   1.441335  -0.257  0.79740   
## ns(time, df = 18 * 14)85  -1.246202   1.510798  -0.825  0.40945   
## ns(time, df = 18 * 14)86   2.521808   1.174467   2.147  0.03178 * 
## ns(time, df = 18 * 14)87  -0.525409   1.302504  -0.403  0.68667   
## ns(time, df = 18 * 14)88   0.707954   1.216414   0.582  0.56057   
## ns(time, df = 18 * 14)89   1.141713   1.103838   1.034  0.30099   
## ns(time, df = 18 * 14)90   1.508573   1.072331   1.407  0.15948   
## ns(time, df = 18 * 14)91   0.576444   1.122364   0.514  0.60753   
## ns(time, df = 18 * 14)92   1.482098   1.116770   1.327  0.18447   
## ns(time, df = 18 * 14)93   0.207345   1.212085   0.171  0.86417   
## ns(time, df = 18 * 14)94   0.797628   1.183745   0.674  0.50043   
## ns(time, df = 18 * 14)95   0.995214   1.138436   0.874  0.38201   
## ns(time, df = 18 * 14)96   1.058238   1.136660   0.931  0.35185   
## ns(time, df = 18 * 14)97   0.407778   1.153592   0.353  0.72372   
## ns(time, df = 18 * 14)98   1.639016   1.078049   1.520  0.12842   
## ns(time, df = 18 * 14)99   0.818957   1.107740   0.739  0.45972   
## ns(time, df = 18 * 14)100  1.093109   1.131145   0.966  0.33386   
## ns(time, df = 18 * 14)101  0.352585   1.155393   0.305  0.76024   
## ns(time, df = 18 * 14)102  1.565558   1.063818   1.472  0.14112   
## ns(time, df = 18 * 14)103  1.079766   1.045465   1.033  0.30169   
## ns(time, df = 18 * 14)104  1.866623   1.041187   1.793  0.07301 . 
## ns(time, df = 18 * 14)105  0.205754   1.150710   0.179  0.85809   
## ns(time, df = 18 * 14)106  1.207025   1.121328   1.076  0.28174   
## ns(time, df = 18 * 14)107  0.839201   1.107291   0.758  0.44852   
## ns(time, df = 18 * 14)108  1.651230   1.103265   1.497  0.13448   
## ns(time, df = 18 * 14)109 -0.297510   1.224490  -0.243  0.80803   
## ns(time, df = 18 * 14)110  1.974245   1.154264   1.710  0.08719 . 
## ns(time, df = 18 * 14)111 -0.764772   1.316492  -0.581  0.56130   
## ns(time, df = 18 * 14)112  1.467904   1.165341   1.260  0.20780   
## ns(time, df = 18 * 14)113  0.579544   1.149151   0.504  0.61403   
## ns(time, df = 18 * 14)114  1.320149   1.112989   1.186  0.23557   
## ns(time, df = 18 * 14)115  0.595612   1.129684   0.527  0.59803   
## ns(time, df = 18 * 14)116  1.472855   1.093544   1.347  0.17802   
## ns(time, df = 18 * 14)117  0.713751   1.138830   0.627  0.53083   
## ns(time, df = 18 * 14)118  1.063673   1.181636   0.900  0.36803   
## ns(time, df = 18 * 14)119 -0.188818   1.265055  -0.149  0.88135   
## ns(time, df = 18 * 14)120  1.649852   1.164853   1.416  0.15667   
## ns(time, df = 18 * 14)121 -0.284685   1.223682  -0.233  0.81604   
## ns(time, df = 18 * 14)122  2.024112   1.107615   1.827  0.06763 . 
## ns(time, df = 18 * 14)123 -0.058827   1.184248  -0.050  0.96038   
## ns(time, df = 18 * 14)124  1.627605   1.115642   1.459  0.14459   
## ns(time, df = 18 * 14)125  0.773599   1.189528   0.650  0.51547   
## ns(time, df = 18 * 14)126 -0.035333   1.349603  -0.026  0.97911   
## ns(time, df = 18 * 14)127 -0.050286   1.268896  -0.040  0.96839   
## ns(time, df = 18 * 14)128  1.935605   1.074012   1.802  0.07151 . 
## ns(time, df = 18 * 14)129  1.068843   1.091194   0.980  0.32732   
## ns(time, df = 18 * 14)130  0.444194   1.141698   0.389  0.69723   
## ns(time, df = 18 * 14)131  1.479120   1.070159   1.382  0.16693   
## ns(time, df = 18 * 14)132  1.183126   1.066921   1.109  0.26747   
## ns(time, df = 18 * 14)133  1.184990   1.099148   1.078  0.28099   
## ns(time, df = 18 * 14)134  0.139190   1.121694   0.124  0.90124   
## ns(time, df = 18 * 14)135  2.429599   1.001338   2.426  0.01525 * 
## ns(time, df = 18 * 14)136  0.683406   1.032261   0.662  0.50794   
## ns(time, df = 18 * 14)137  2.062265   1.008509   2.045  0.04087 * 
## ns(time, df = 18 * 14)138  0.511609   1.061480   0.482  0.62982   
## ns(time, df = 18 * 14)139  1.994992   1.021199   1.954  0.05075 . 
## ns(time, df = 18 * 14)140  0.991355   1.088504   0.911  0.36243   
## ns(time, df = 18 * 14)141  0.421777   1.186161   0.356  0.72215   
## ns(time, df = 18 * 14)142  1.172710   1.195445   0.981  0.32660   
## ns(time, df = 18 * 14)143 -0.134796   1.299930  -0.104  0.91741   
## ns(time, df = 18 * 14)144  0.857853   1.208296   0.710  0.47772   
## ns(time, df = 18 * 14)145  1.447703   1.208762   1.198  0.23104   
## ns(time, df = 18 * 14)146 -1.183501   1.456132  -0.813  0.41635   
## ns(time, df = 18 * 14)147  1.329292   1.218060   1.091  0.27513   
## ns(time, df = 18 * 14)148  0.247008   1.123436   0.220  0.82597   
## ns(time, df = 18 * 14)149  3.196230   1.050731   3.042  0.00235 **
## ns(time, df = 18 * 14)150 -1.876272   1.385128  -1.355  0.17555   
## ns(time, df = 18 * 14)151  1.543915   1.119054   1.380  0.16769   
## ns(time, df = 18 * 14)152  1.846747   1.057804   1.746  0.08084 . 
## ns(time, df = 18 * 14)153  0.328679   1.182168   0.278  0.78099   
## ns(time, df = 18 * 14)154  0.232972   1.189516   0.196  0.84472   
## ns(time, df = 18 * 14)155  1.790334   1.052044   1.702  0.08880 . 
## ns(time, df = 18 * 14)156  1.127898   1.044152   1.080  0.28005   
## ns(time, df = 18 * 14)157  1.215657   1.027622   1.183  0.23682   
## ns(time, df = 18 * 14)158  1.869919   1.001937   1.866  0.06200 . 
## ns(time, df = 18 * 14)159  0.953742   1.045896   0.912  0.36183   
## ns(time, df = 18 * 14)160  1.468252   1.060258   1.385  0.16611   
## ns(time, df = 18 * 14)161  0.640271   1.109402   0.577  0.56385   
## ns(time, df = 18 * 14)162  1.385243   1.093762   1.266  0.20534   
## ns(time, df = 18 * 14)163  0.514830   1.114568   0.462  0.64415   
## ns(time, df = 18 * 14)164  1.695027   1.050734   1.613  0.10670   
## ns(time, df = 18 * 14)165  1.339063   1.096708   1.221  0.22209   
## ns(time, df = 18 * 14)166 -0.234471   1.255973  -0.187  0.85191   
## ns(time, df = 18 * 14)167  1.030518   1.137084   0.906  0.36479   
## ns(time, df = 18 * 14)168  1.770427   1.089491   1.625  0.10416   
## ns(time, df = 18 * 14)169  0.023423   1.217193   0.019  0.98465   
## ns(time, df = 18 * 14)170  0.999944   1.207852   0.828  0.40774   
## ns(time, df = 18 * 14)171  0.376769   1.234313   0.305  0.76018   
## ns(time, df = 18 * 14)172  0.476340   1.154046   0.413  0.67979   
## ns(time, df = 18 * 14)173  2.033877   1.036383   1.962  0.04971 * 
## ns(time, df = 18 * 14)174  0.782087   1.064253   0.735  0.46242   
## ns(time, df = 18 * 14)175  1.577693   1.057738   1.492  0.13581   
## ns(time, df = 18 * 14)176  0.888256   1.121574   0.792  0.42838   
## ns(time, df = 18 * 14)177  0.441671   1.186060   0.372  0.70961   
## ns(time, df = 18 * 14)178  1.238445   1.162374   1.065  0.28668   
## ns(time, df = 18 * 14)179  0.502508   1.251110   0.402  0.68794   
## ns(time, df = 18 * 14)180 -0.377988   1.286434  -0.294  0.76889   
## ns(time, df = 18 * 14)181  2.146552   1.104650   1.943  0.05199 . 
## ns(time, df = 18 * 14)182  0.131282   1.170872   0.112  0.91073   
## ns(time, df = 18 * 14)183  1.294290   1.136516   1.139  0.25478   
## ns(time, df = 18 * 14)184  0.471345   1.141773   0.413  0.67974   
## ns(time, df = 18 * 14)185  1.553493   1.074685   1.446  0.14831   
## ns(time, df = 18 * 14)186  1.023656   1.095750   0.934  0.35020   
## ns(time, df = 18 * 14)187  0.949696   1.145224   0.829  0.40695   
## ns(time, df = 18 * 14)188  0.545917   1.210135   0.451  0.65190   
## ns(time, df = 18 * 14)189  0.653969   1.232857   0.530  0.59580   
## ns(time, df = 18 * 14)190  0.402661   1.231007   0.327  0.74359   
## ns(time, df = 18 * 14)191  0.814305   1.134821   0.718  0.47303   
## ns(time, df = 18 * 14)192  1.762939   1.063938   1.657  0.09752 . 
## ns(time, df = 18 * 14)193  0.422679   1.107156   0.382  0.70263   
## ns(time, df = 18 * 14)194  1.717457   1.049655   1.636  0.10180   
## ns(time, df = 18 * 14)195  1.624076   1.119136   1.451  0.14673   
## ns(time, df = 18 * 14)196 -1.403539   1.486751  -0.944  0.34515   
## ns(time, df = 18 * 14)197  0.822556   1.208148   0.681  0.49597   
## ns(time, df = 18 * 14)198  1.823399   1.075978   1.695  0.09014 . 
## ns(time, df = 18 * 14)199  0.552704   1.121725   0.493  0.62221   
## ns(time, df = 18 * 14)200  1.046036   1.088405   0.961  0.33652   
## ns(time, df = 18 * 14)201  1.554187   1.046255   1.485  0.13742   
## ns(time, df = 18 * 14)202  0.791065   1.052999   0.751  0.45250   
## ns(time, df = 18 * 14)203  2.123546   1.016075   2.090  0.03662 * 
## ns(time, df = 18 * 14)204  0.117444   1.074526   0.109  0.91297   
## ns(time, df = 18 * 14)205  2.799845   1.007334   2.779  0.00544 **
## ns(time, df = 18 * 14)206 -0.392535   1.145073  -0.343  0.73175   
## ns(time, df = 18 * 14)207  1.832315   1.058556   1.731  0.08346 . 
## ns(time, df = 18 * 14)208  0.979392   1.063140   0.921  0.35693   
## ns(time, df = 18 * 14)209  1.256037   1.057383   1.188  0.23488   
## ns(time, df = 18 * 14)210  1.450289   1.069386   1.356  0.17504   
## ns(time, df = 18 * 14)211  0.133956   1.117511   0.120  0.90459   
## ns(time, df = 18 * 14)212  2.537770   1.033592   2.455  0.01408 * 
## ns(time, df = 18 * 14)213  0.081670   1.173080   0.070  0.94450   
## ns(time, df = 18 * 14)214  0.416249   1.200658   0.347  0.72883   
## ns(time, df = 18 * 14)215  1.354094   1.088712   1.244  0.21359   
## ns(time, df = 18 * 14)216  1.393844   1.070639   1.302  0.19296   
## ns(time, df = 18 * 14)217  0.597425   1.111533   0.537  0.59094   
## ns(time, df = 18 * 14)218  1.425070   1.066436   1.336  0.18145   
## ns(time, df = 18 * 14)219  1.137518   1.066994   1.066  0.28638   
## ns(time, df = 18 * 14)220  0.975207   1.062685   0.918  0.35879   
## ns(time, df = 18 * 14)221  1.640697   1.021354   1.606  0.10819   
## ns(time, df = 18 * 14)222  1.299661   1.033376   1.258  0.20851   
## ns(time, df = 18 * 14)223  1.364408   1.074488   1.270  0.20415   
## ns(time, df = 18 * 14)224  0.328040   1.166115   0.281  0.77847   
## ns(time, df = 18 * 14)225  0.997236   1.111060   0.898  0.36942   
## ns(time, df = 18 * 14)226  1.497112   1.058549   1.414  0.15727   
## ns(time, df = 18 * 14)227  0.764085   1.057159   0.723  0.46982   
## ns(time, df = 18 * 14)228  2.242558   1.017117   2.205  0.02747 * 
## ns(time, df = 18 * 14)229  0.249941   1.120763   0.223  0.82353   
## ns(time, df = 18 * 14)230  1.538109   1.135960   1.354  0.17573   
## ns(time, df = 18 * 14)231 -0.493153   1.226767  -0.402  0.68769   
## ns(time, df = 18 * 14)232  2.047990   1.043797   1.962  0.04976 * 
## ns(time, df = 18 * 14)233  1.192901   1.030562   1.158  0.24706   
## ns(time, df = 18 * 14)234  1.641887   1.054045   1.558  0.11930   
## ns(time, df = 18 * 14)235  0.326463   1.170052   0.279  0.78023   
## ns(time, df = 18 * 14)236  0.545995   1.140081   0.479  0.63200   
## ns(time, df = 18 * 14)237  1.976773   1.040833   1.899  0.05754 . 
## ns(time, df = 18 * 14)238  1.284162   1.115521   1.151  0.24966   
## ns(time, df = 18 * 14)239 -0.700971   1.376879  -0.509  0.61068   
## ns(time, df = 18 * 14)240  0.689533   1.223277   0.564  0.57297   
## ns(time, df = 18 * 14)241  1.367572   1.101009   1.242  0.21420   
## ns(time, df = 18 * 14)242  1.148413   1.097117   1.047  0.29521   
## ns(time, df = 18 * 14)243  0.789152   1.136751   0.694  0.48755   
## ns(time, df = 18 * 14)244  0.540523   1.104202   0.490  0.62448   
## ns(time, df = 18 * 14)245  2.232277   1.007515   2.216  0.02672 * 
## ns(time, df = 18 * 14)246  0.735248   1.044296   0.704  0.48139   
## ns(time, df = 18 * 14)247  1.554842   1.008855   1.541  0.12327   
## ns(time, df = 18 * 14)248  1.665570   0.988680   1.685  0.09206 . 
## ns(time, df = 18 * 14)249  1.538081   1.010219   1.523  0.12788   
## ns(time, df = 18 * 14)250  0.004517   0.846507   0.005  0.99574   
## ns(time, df = 18 * 14)251  3.130414   1.836755   1.704  0.08832 . 
## ns(time, df = 18 * 14)252 -0.186752   0.612740  -0.305  0.76053   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(32830) family taken to be 1)
## 
##     Null deviance: 1179.11  on 938  degrees of freedom
## Residual deviance:  861.69  on 686  degrees of freedom
## AIC: 3517.6
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  32830 
##           Std. Err.:  153456 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3009.555
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ ns(time, df = 18 * 15), data = week, 
##     init.theta = 33805.25556, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.70939  -0.75578  -0.03452   0.50500   2.42892  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)   
## (Intercept)               -0.443263   0.841886  -0.527  0.59853   
## ns(time, df = 18 * 15)1    0.380749   0.962786   0.395  0.69250   
## ns(time, df = 18 * 15)2    2.373539   1.323327   1.794  0.07287 . 
## ns(time, df = 18 * 15)3   -1.500659   1.585080  -0.947  0.34377   
## ns(time, df = 18 * 15)4    0.338441   1.437296   0.235  0.81384   
## ns(time, df = 18 * 15)5    2.319432   1.211052   1.915  0.05546 . 
## ns(time, df = 18 * 15)6   -0.446395   1.417803  -0.315  0.75288   
## ns(time, df = 18 * 15)7    1.000544   1.323849   0.756  0.44978   
## ns(time, df = 18 * 15)8    0.783140   1.269764   0.617  0.53739   
## ns(time, df = 18 * 15)9    0.922306   1.164524   0.792  0.42836   
## ns(time, df = 18 * 15)10   2.486673   1.077291   2.308  0.02098 * 
## ns(time, df = 18 * 15)11   0.471835   1.129344   0.418  0.67610   
## ns(time, df = 18 * 15)12   2.637101   1.076602   2.449  0.01431 * 
## ns(time, df = 18 * 15)13   0.248680   1.169145   0.213  0.83156   
## ns(time, df = 18 * 15)14   2.333039   1.137082   2.052  0.04019 * 
## ns(time, df = 18 * 15)15  -0.277312   1.256958  -0.221  0.82539   
## ns(time, df = 18 * 15)16   2.351778   1.135764   2.071  0.03839 * 
## ns(time, df = 18 * 15)17   1.054785   1.230053   0.858  0.39116   
## ns(time, df = 18 * 15)18  -0.940585   1.401822  -0.671  0.50224   
## ns(time, df = 18 * 15)19   3.211485   1.178502   2.725  0.00643 **
## ns(time, df = 18 * 15)20  -0.983478   1.387732  -0.709  0.47851   
## ns(time, df = 18 * 15)21   2.096555   1.311118   1.599  0.10981   
## ns(time, df = 18 * 15)22  -0.377742   1.584407  -0.238  0.81156   
## ns(time, df = 18 * 15)23  -0.937516   1.777730  -0.527  0.59794   
## ns(time, df = 18 * 15)24   0.981917   1.378613   0.712  0.47631   
## ns(time, df = 18 * 15)25   1.074378   1.225629   0.877  0.38071   
## ns(time, df = 18 * 15)26   1.534906   1.167604   1.315  0.18865   
## ns(time, df = 18 * 15)27   0.950278   1.192504   0.797  0.42552   
## ns(time, df = 18 * 15)28   0.921354   1.151039   0.800  0.42345   
## ns(time, df = 18 * 15)29   2.630514   1.092406   2.408  0.01604 * 
## ns(time, df = 18 * 15)30   0.049328   1.244549   0.040  0.96838   
## ns(time, df = 18 * 15)31   1.184576   1.218096   0.972  0.33081   
## ns(time, df = 18 * 15)32   1.268228   1.177222   1.077  0.28134   
## ns(time, df = 18 * 15)33   1.235642   1.172310   1.054  0.29187   
## ns(time, df = 18 * 15)34   1.558597   1.216881   1.281  0.20026   
## ns(time, df = 18 * 15)35  -0.650901   1.384852  -0.470  0.63834   
## ns(time, df = 18 * 15)36   2.314583   1.203023   1.924  0.05436 . 
## ns(time, df = 18 * 15)37   0.134256   1.294485   0.104  0.91740   
## ns(time, df = 18 * 15)38   1.067707   1.253404   0.852  0.39430   
## ns(time, df = 18 * 15)39   1.281563   1.225368   1.046  0.29563   
## ns(time, df = 18 * 15)40   0.493412   1.260952   0.391  0.69557   
## ns(time, df = 18 * 15)41   1.539379   1.197974   1.285  0.19880   
## ns(time, df = 18 * 15)42   0.795178   1.222862   0.650  0.51552   
## ns(time, df = 18 * 15)43   1.404816   1.232832   1.140  0.25449   
## ns(time, df = 18 * 15)44  -0.186294   1.282555  -0.145  0.88451   
## ns(time, df = 18 * 15)45   2.571257   1.115184   2.306  0.02113 * 
## ns(time, df = 18 * 15)46   0.643181   1.169364   0.550  0.58230   
## ns(time, df = 18 * 15)47   1.312519   1.142797   1.149  0.25076   
## ns(time, df = 18 * 15)48   1.873916   1.112148   1.685  0.09200 . 
## ns(time, df = 18 * 15)49   1.229987   1.203172   1.022  0.30665   
## ns(time, df = 18 * 15)50  -0.319072   1.373058  -0.232  0.81624   
## ns(time, df = 18 * 15)51   1.836542   1.236677   1.485  0.13753   
## ns(time, df = 18 * 15)52   0.212280   1.282550   0.166  0.86854   
## ns(time, df = 18 * 15)53   1.622956   1.210453   1.341  0.17999   
## ns(time, df = 18 * 15)54   0.663494   1.249854   0.531  0.59552   
## ns(time, df = 18 * 15)55   1.084311   1.241769   0.873  0.38255   
## ns(time, df = 18 * 15)56   0.919888   1.233226   0.746  0.45572   
## ns(time, df = 18 * 15)57   1.920891   1.290455   1.489  0.13661   
## ns(time, df = 18 * 15)58  -1.963720   1.788038  -1.098  0.27209   
## ns(time, df = 18 * 15)59   1.537848   1.473939   1.043  0.29678   
## ns(time, df = 18 * 15)60  -0.033976   1.557807  -0.022  0.98260   
## ns(time, df = 18 * 15)61  -0.461669   1.558587  -0.296  0.76707   
## ns(time, df = 18 * 15)62   1.529720   1.268804   1.206  0.22796   
## ns(time, df = 18 * 15)63   0.851597   1.209149   0.704  0.48125   
## ns(time, df = 18 * 15)64   1.573823   1.150704   1.368  0.17140   
## ns(time, df = 18 * 15)65   1.284246   1.164009   1.103  0.26990   
## ns(time, df = 18 * 15)66   0.837712   1.194458   0.701  0.48310   
## ns(time, df = 18 * 15)67   1.555516   1.158077   1.343  0.17921   
## ns(time, df = 18 * 15)68   0.979607   1.171997   0.836  0.40324   
## ns(time, df = 18 * 15)69   2.028685   1.203319   1.686  0.09181 . 
## ns(time, df = 18 * 15)70  -0.821114   1.529658  -0.537  0.59141   
## ns(time, df = 18 * 15)71   0.524888   1.464285   0.358  0.72000   
## ns(time, df = 18 * 15)72   0.788882   1.353592   0.583  0.56002   
## ns(time, df = 18 * 15)73   0.672296   1.293658   0.520  0.60328   
## ns(time, df = 18 * 15)74   1.542694   1.243669   1.240  0.21481   
## ns(time, df = 18 * 15)75  -0.065322   1.319444  -0.050  0.96052   
## ns(time, df = 18 * 15)76   1.770421   1.182977   1.497  0.13450   
## ns(time, df = 18 * 15)77   0.877298   1.173281   0.748  0.45462   
## ns(time, df = 18 * 15)78   1.534938   1.118534   1.372  0.16998   
## ns(time, df = 18 * 15)79   1.971322   1.115327   1.767  0.07715 . 
## ns(time, df = 18 * 15)80   0.281049   1.240969   0.226  0.82083   
## ns(time, df = 18 * 15)81   1.157136   1.176362   0.984  0.32528   
## ns(time, df = 18 * 15)82   1.987852   1.119690   1.775  0.07584 . 
## ns(time, df = 18 * 15)83   0.719912   1.190156   0.605  0.54525   
## ns(time, df = 18 * 15)84   1.236507   1.182807   1.045  0.29584   
## ns(time, df = 18 * 15)85   1.463331   1.188845   1.231  0.21837   
## ns(time, df = 18 * 15)86   0.179826   1.252135   0.144  0.88580   
## ns(time, df = 18 * 15)87   2.111767   1.147237   1.841  0.06566 . 
## ns(time, df = 18 * 15)88   0.655858   1.200242   0.546  0.58476   
## ns(time, df = 18 * 15)89   1.735886   1.228425   1.413  0.15763   
## ns(time, df = 18 * 15)90   0.213647   1.497077   0.143  0.88652   
## ns(time, df = 18 * 15)91  -2.074724   1.779645  -1.166  0.24369   
## ns(time, df = 18 * 15)92   3.027062   1.260172   2.402  0.01630 * 
## ns(time, df = 18 * 15)93  -0.427889   1.358526  -0.315  0.75279   
## ns(time, df = 18 * 15)94   1.401835   1.285631   1.090  0.27554   
## ns(time, df = 18 * 15)95   0.114077   1.253590   0.091  0.92749   
## ns(time, df = 18 * 15)96   2.646049   1.121103   2.360  0.01826 * 
## ns(time, df = 18 * 15)97   0.001017   1.212596   0.001  0.99933   
## ns(time, df = 18 * 15)98   2.341534   1.149331   2.037  0.04162 * 
## ns(time, df = 18 * 15)99   0.031059   1.270187   0.024  0.98049   
## ns(time, df = 18 * 15)100  1.580893   1.236447   1.279  0.20105   
## ns(time, df = 18 * 15)101  0.174929   1.284535   0.136  0.89168   
## ns(time, df = 18 * 15)102  1.750152   1.186528   1.475  0.14021   
## ns(time, df = 18 * 15)103  0.846595   1.219660   0.694  0.48760   
## ns(time, df = 18 * 15)104  0.809474   1.215552   0.666  0.50546   
## ns(time, df = 18 * 15)105  1.663670   1.147171   1.450  0.14699   
## ns(time, df = 18 * 15)106  1.174252   1.165364   1.008  0.31363   
## ns(time, df = 18 * 15)107  1.145596   1.196676   0.957  0.33841   
## ns(time, df = 18 * 15)108  0.860390   1.219091   0.706  0.48034   
## ns(time, df = 18 * 15)109  1.090623   1.169079   0.933  0.35088   
## ns(time, df = 18 * 15)110  1.754586   1.104078   1.589  0.11202   
## ns(time, df = 18 * 15)111  1.475671   1.105449   1.335  0.18191   
## ns(time, df = 18 * 15)112  1.578768   1.140788   1.384  0.16638   
## ns(time, df = 18 * 15)113  0.472107   1.231297   0.383  0.70141   
## ns(time, df = 18 * 15)114  1.405717   1.180504   1.191  0.23374   
## ns(time, df = 18 * 15)115  1.205083   1.164602   1.035  0.30078   
## ns(time, df = 18 * 15)116  1.581514   1.185714   1.334  0.18227   
## ns(time, df = 18 * 15)117 -0.025002   1.293234  -0.019  0.98458   
## ns(time, df = 18 * 15)118  2.194557   1.223633   1.793  0.07290 . 
## ns(time, df = 18 * 15)119 -0.747027   1.407074  -0.531  0.59548   
## ns(time, df = 18 * 15)120  1.791655   1.234196   1.452  0.14659   
## ns(time, df = 18 * 15)121  0.543704   1.227520   0.443  0.65782   
## ns(time, df = 18 * 15)122  1.793066   1.173644   1.528  0.12657   
## ns(time, df = 18 * 15)123  0.367048   1.218293   0.301  0.76320   
## ns(time, df = 18 * 15)124  2.067149   1.149514   1.798  0.07213 . 
## ns(time, df = 18 * 15)125  0.374158   1.215955   0.308  0.75831   
## ns(time, df = 18 * 15)126  2.068835   1.197844   1.727  0.08414 . 
## ns(time, df = 18 * 15)127 -0.511222   1.382180  -0.370  0.71148   
## ns(time, df = 18 * 15)128  1.537469   1.253985   1.226  0.22017   
## ns(time, df = 18 * 15)129  0.844508   1.265190   0.667  0.50446   
## ns(time, df = 18 * 15)130  0.425505   1.260173   0.338  0.73562   
## ns(time, df = 18 * 15)131  2.186886   1.169946   1.869  0.06159 . 
## ns(time, df = 18 * 15)132 -0.163753   1.274430  -0.128  0.89776   
## ns(time, df = 18 * 15)133  2.159213   1.173649   1.840  0.06581 . 
## ns(time, df = 18 * 15)134  0.532820   1.272111   0.419  0.67533   
## ns(time, df = 18 * 15)135  0.840939   1.390545   0.605  0.54534   
## ns(time, df = 18 * 15)136 -0.947342   1.456470  -0.650  0.51541   
## ns(time, df = 18 * 15)137  2.701804   1.146450   2.357  0.01844 * 
## ns(time, df = 18 * 15)138  0.606084   1.170121   0.518  0.60448   
## ns(time, df = 18 * 15)139  1.868304   1.161622   1.608  0.10776   
## ns(time, df = 18 * 15)140 -0.038578   1.225774  -0.031  0.97489   
## ns(time, df = 18 * 15)141  2.702459   1.104361   2.447  0.01440 * 
## ns(time, df = 18 * 15)142  0.271711   1.190973   0.228  0.81954   
## ns(time, df = 18 * 15)143  1.819744   1.157548   1.572  0.11593   
## ns(time, df = 18 * 15)144  0.300041   1.164777   0.258  0.79672   
## ns(time, df = 18 * 15)145  2.917745   1.055442   2.764  0.00570 **
## ns(time, df = 18 * 15)146  0.432045   1.117295   0.387  0.69899   
## ns(time, df = 18 * 15)147  2.545785   1.070554   2.378  0.01741 * 
## ns(time, df = 18 * 15)148  0.473831   1.138547   0.416  0.67728   
## ns(time, df = 18 * 15)149  2.215072   1.085687   2.040  0.04133 * 
## ns(time, df = 18 * 15)150  1.344529   1.145493   1.174  0.24049   
## ns(time, df = 18 * 15)151  0.323024   1.268897   0.255  0.79905   
## ns(time, df = 18 * 15)152  1.631855   1.244568   1.311  0.18980   
## ns(time, df = 18 * 15)153  0.053972   1.374120   0.039  0.96867   
## ns(time, df = 18 * 15)154  0.651396   1.311570   0.497  0.61943   
## ns(time, df = 18 * 15)155  1.785733   1.243536   1.436  0.15100   
## ns(time, df = 18 * 15)156 -0.134223   1.415791  -0.095  0.92447   
## ns(time, df = 18 * 15)157  0.590233   1.391899   0.424  0.67153   
## ns(time, df = 18 * 15)158  0.563159   1.267320   0.444  0.65678   
## ns(time, df = 18 * 15)159  1.868283   1.117806   1.671  0.09465 . 
## ns(time, df = 18 * 15)160  2.219001   1.141878   1.943  0.05198 . 
## ns(time, df = 18 * 15)161 -1.332277   1.457453  -0.914  0.36066   
## ns(time, df = 18 * 15)162  1.935718   1.165954   1.660  0.09687 . 
## ns(time, df = 18 * 15)163  1.898842   1.123580   1.690  0.09103 . 
## ns(time, df = 18 * 15)164  0.633492   1.252557   0.506  0.61303   
## ns(time, df = 18 * 15)165  0.135781   1.290272   0.105  0.91619   
## ns(time, df = 18 * 15)166  2.058459   1.122548   1.834  0.06669 . 
## ns(time, df = 18 * 15)167  1.301351   1.113407   1.169  0.24248   
## ns(time, df = 18 * 15)168  1.336439   1.100510   1.214  0.22460   
## ns(time, df = 18 * 15)169  2.005796   1.067501   1.879  0.06025 . 
## ns(time, df = 18 * 15)170  1.294840   1.094437   1.183  0.23677   
## ns(time, df = 18 * 15)171  1.787309   1.111332   1.608  0.10778   
## ns(time, df = 18 * 15)172  0.615992   1.177182   0.523  0.60078   
## ns(time, df = 18 * 15)173  1.932602   1.144374   1.689  0.09126 . 
## ns(time, df = 18 * 15)174  0.413686   1.211746   0.341  0.73280   
## ns(time, df = 18 * 15)175  1.630357   1.141169   1.429  0.15310   
## ns(time, df = 18 * 15)176  1.405964   1.124472   1.250  0.21118   
## ns(time, df = 18 * 15)177  1.808258   1.167886   1.548  0.12155   
## ns(time, df = 18 * 15)178 -0.533317   1.372595  -0.389  0.69761   
## ns(time, df = 18 * 15)179  1.565691   1.196162   1.309  0.19056   
## ns(time, df = 18 * 15)180  1.601055   1.157179   1.384  0.16649   
## ns(time, df = 18 * 15)181  0.880868   1.244966   0.708  0.47923   
## ns(time, df = 18 * 15)182  0.351313   1.321436   0.266  0.79035   
## ns(time, df = 18 * 15)183  1.372830   1.267297   1.083  0.27869   
## ns(time, df = 18 * 15)184  0.105175   1.293817   0.081  0.93521   
## ns(time, df = 18 * 15)185  1.708148   1.133242   1.507  0.13173   
## ns(time, df = 18 * 15)186  1.916916   1.097512   1.747  0.08071 . 
## ns(time, df = 18 * 15)187  0.694941   1.151188   0.604  0.54606   
## ns(time, df = 18 * 15)188  2.222669   1.125187   1.975  0.04823 * 
## ns(time, df = 18 * 15)189  0.181873   1.253185   0.145  0.88461   
## ns(time, df = 18 * 15)190  1.338884   1.228488   1.090  0.27577   
## ns(time, df = 18 * 15)191  0.947076   1.251154   0.757  0.44907   
## ns(time, df = 18 * 15)192  0.914727   1.320594   0.693  0.48852   
## ns(time, df = 18 * 15)193 -0.378655   1.365714  -0.277  0.78158   
## ns(time, df = 18 * 15)194  2.508047   1.166297   2.150  0.03152 * 
## ns(time, df = 18 * 15)195  0.156448   1.244656   0.126  0.89997   
## ns(time, df = 18 * 15)196  1.644725   1.200880   1.370  0.17081   
## ns(time, df = 18 * 15)197  0.452379   1.227363   0.369  0.71244   
## ns(time, df = 18 * 15)198  1.756412   1.145234   1.534  0.12511   
## ns(time, df = 18 * 15)199  1.178906   1.153324   1.022  0.30670   
## ns(time, df = 18 * 15)200  1.415343   1.181618   1.198  0.23099   
## ns(time, df = 18 * 15)201  0.588177   1.263374   0.466  0.64153   
## ns(time, df = 18 * 15)202  1.172345   1.277357   0.918  0.35873   
## ns(time, df = 18 * 15)203  0.282350   1.342334   0.210  0.83340   
## ns(time, df = 18 * 15)204  0.961901   1.260705   0.763  0.44547   
## ns(time, df = 18 * 15)205  1.156500   1.174076   0.985  0.32461   
## ns(time, df = 18 * 15)206  1.849923   1.129803   1.637  0.10155   
## ns(time, df = 18 * 15)207  0.572815   1.175789   0.487  0.62613   
## ns(time, df = 18 * 15)208  2.001952   1.110903   1.802  0.07153 . 
## ns(time, df = 18 * 15)209  1.773241   1.189660   1.491  0.13608   
## ns(time, df = 18 * 15)210 -1.268602   1.598372  -0.794  0.42738   
## ns(time, df = 18 * 15)211  0.750256   1.313899   0.571  0.56799   
## ns(time, df = 18 * 15)212  2.070418   1.147188   1.805  0.07111 . 
## ns(time, df = 18 * 15)213  0.729590   1.179498   0.619  0.53621   
## ns(time, df = 18 * 15)214  1.590320   1.153900   1.378  0.16814   
## ns(time, df = 18 * 15)215  0.753970   1.153507   0.654  0.51335   
## ns(time, df = 18 * 15)216  2.303925   1.089372   2.115  0.03444 * 
## ns(time, df = 18 * 15)217  0.488870   1.134619   0.431  0.66656   
## ns(time, df = 18 * 15)218  2.659644   1.076521   2.471  0.01349 * 
## ns(time, df = 18 * 15)219 -0.036861   1.153001  -0.032  0.97450   
## ns(time, df = 18 * 15)220  3.422383   1.078516   3.173  0.00151 **
## ns(time, df = 18 * 15)221 -1.129237   1.291153  -0.875  0.38179   
## ns(time, df = 18 * 15)222  2.626869   1.115133   2.356  0.01849 * 
## ns(time, df = 18 * 15)223  0.777743   1.142809   0.681  0.49615   
## ns(time, df = 18 * 15)224  1.623302   1.120660   1.449  0.14747   
## ns(time, df = 18 * 15)225  1.549332   1.135593   1.364  0.17246   
## ns(time, df = 18 * 15)226  0.482848   1.189018   0.406  0.68468   
## ns(time, df = 18 * 15)227  2.111974   1.103695   1.914  0.05568 . 
## ns(time, df = 18 * 15)228  1.650334   1.169136   1.412  0.15807   
## ns(time, df = 18 * 15)229 -1.039361   1.421071  -0.731  0.46454   
## ns(time, df = 18 * 15)230  2.326445   1.165776   1.996  0.04598 * 
## ns(time, df = 18 * 15)231  0.740002   1.164152   0.636  0.52500   
## ns(time, df = 18 * 15)232  1.913229   1.136141   1.684  0.09219 . 
## ns(time, df = 18 * 15)233  0.432711   1.189061   0.364  0.71592   
## ns(time, df = 18 * 15)234  2.067355   1.117393   1.850  0.06429 . 
## ns(time, df = 18 * 15)235  0.848825   1.151019   0.737  0.46085   
## ns(time, df = 18 * 15)236  1.517168   1.113688   1.362  0.17311   
## ns(time, df = 18 * 15)237  1.697601   1.087210   1.561  0.11842   
## ns(time, df = 18 * 15)238  1.494750   1.099792   1.359  0.17411   
## ns(time, df = 18 * 15)239  1.617616   1.139442   1.420  0.15571   
## ns(time, df = 18 * 15)240  0.383777   1.248274   0.307  0.75850   
## ns(time, df = 18 * 15)241  1.182650   1.183801   0.999  0.31778   
## ns(time, df = 18 * 15)242  1.717423   1.130467   1.519  0.12871   
## ns(time, df = 18 * 15)243  0.751741   1.137716   0.661  0.50878   
## ns(time, df = 18 * 15)244  2.480440   1.075313   2.307  0.02107 * 
## ns(time, df = 18 * 15)245  0.669890   1.152167   0.581  0.56096   
## ns(time, df = 18 * 15)246  1.839453   1.175531   1.565  0.11763   
## ns(time, df = 18 * 15)247 -0.119179   1.315950  -0.091  0.92784   
## ns(time, df = 18 * 15)248  1.280264   1.182949   1.082  0.27914   
## ns(time, df = 18 * 15)249  1.765648   1.096528   1.610  0.10735   
## ns(time, df = 18 * 15)250  1.636572   1.091595   1.499  0.13381   
## ns(time, df = 18 * 15)251  1.542399   1.138494   1.355  0.17549   
## ns(time, df = 18 * 15)252  0.515710   1.250571   0.412  0.68006   
## ns(time, df = 18 * 15)253  0.765886   1.202078   0.637  0.52404   
## ns(time, df = 18 * 15)254  2.199876   1.101483   1.997  0.04580 * 
## ns(time, df = 18 * 15)255  1.404195   1.171831   1.198  0.23080   
## ns(time, df = 18 * 15)256  0.031020   1.406989   0.022  0.98241   
## ns(time, df = 18 * 15)257 -0.095017   1.385706  -0.069  0.94533   
## ns(time, df = 18 * 15)258  2.121853   1.169987   1.814  0.06974 . 
## ns(time, df = 18 * 15)259  0.713870   1.180763   0.605  0.54546   
## ns(time, df = 18 * 15)260  1.902512   1.165770   1.632  0.10268   
## ns(time, df = 18 * 15)261 -0.155097   1.254364  -0.124  0.90160   
## ns(time, df = 18 * 15)262  2.244411   1.096554   2.047  0.04068 * 
## ns(time, df = 18 * 15)263  1.443077   1.088803   1.325  0.18505   
## ns(time, df = 18 * 15)264  1.424847   1.095182   1.301  0.19325   
## ns(time, df = 18 * 15)265  1.576026   1.070999   1.472  0.14114   
## ns(time, df = 18 * 15)266  2.029655   1.051007   1.931  0.05346 . 
## ns(time, df = 18 * 15)267  1.480270   1.087695   1.361  0.17354   
## ns(time, df = 18 * 15)268  0.187847   0.887920   0.212  0.83245   
## ns(time, df = 18 * 15)269  3.621689   1.976319   1.833  0.06687 . 
## ns(time, df = 18 * 15)270 -0.216257   0.630661  -0.343  0.73167   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(33805.26) family taken to be 1)
## 
##     Null deviance: 1179.11  on 938  degrees of freedom
## Residual deviance:  837.74  on 668  degrees of freedom
## AIC: 3529.6
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  33805 
##           Std. Err.:  152584 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2985.607
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ ns(time, df = 18 * 16), data = week, 
##     init.theta = 33776.54728, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.85054  -0.76197  -0.06035   0.51821   2.42694  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)   
## (Intercept)               -0.56669    0.89831  -0.631  0.52814   
## ns(time, df = 18 * 16)1    0.52346    1.00282   0.522  0.60168   
## ns(time, df = 18 * 16)2    2.49790    1.35634   1.842  0.06553 . 
## ns(time, df = 18 * 16)3   -0.75167    1.52759  -0.492  0.62267   
## ns(time, df = 18 * 16)4    0.05489    1.59402   0.034  0.97253   
## ns(time, df = 18 * 16)5    1.72751    1.29295   1.336  0.18151   
## ns(time, df = 18 * 16)6    1.38888    1.33753   1.038  0.29909   
## ns(time, df = 18 * 16)7   -0.30680    1.50041  -0.204  0.83798   
## ns(time, df = 18 * 16)8    1.55719    1.35208   1.152  0.24945   
## ns(time, df = 18 * 16)9    0.46749    1.31447   0.356  0.72210   
## ns(time, df = 18 * 16)10   1.91961    1.17281   1.637  0.10168   
## ns(time, df = 18 * 16)11   1.97881    1.14164   1.733  0.08304 . 
## ns(time, df = 18 * 16)12   1.03520    1.17184   0.883  0.37702   
## ns(time, df = 18 * 16)13   2.52854    1.13797   2.222  0.02629 * 
## ns(time, df = 18 * 16)14   0.47887    1.22951   0.389  0.69692   
## ns(time, df = 18 * 16)15   2.31222    1.19699   1.932  0.05340 . 
## ns(time, df = 18 * 16)16   0.21531    1.30457   0.165  0.86891   
## ns(time, df = 18 * 16)17   1.75699    1.21089   1.451  0.14678   
## ns(time, df = 18 * 16)18   2.25715    1.24263   1.816  0.06931 . 
## ns(time, df = 18 * 16)19  -1.78530    1.60064  -1.115  0.26469   
## ns(time, df = 18 * 16)20   3.09796    1.24605   2.486  0.01291 * 
## ns(time, df = 18 * 16)21   0.30160    1.33686   0.226  0.82151   
## ns(time, df = 18 * 16)22   1.02728    1.37809   0.745  0.45601   
## ns(time, df = 18 * 16)23   1.28310    1.45176   0.884  0.37679   
## ns(time, df = 18 * 16)24  -0.73494    1.83604  -0.400  0.68895   
## ns(time, df = 18 * 16)25  -0.38358    1.72332  -0.223  0.82386   
## ns(time, df = 18 * 16)26   1.55141    1.36053   1.140  0.25416   
## ns(time, df = 18 * 16)27   0.97057    1.27381   0.762  0.44610   
## ns(time, df = 18 * 16)28   1.92177    1.21660   1.580  0.11419   
## ns(time, df = 18 * 16)29   0.71046    1.27113   0.559  0.57621   
## ns(time, df = 18 * 16)30   1.34813    1.19635   1.127  0.25980   
## ns(time, df = 18 * 16)31   2.57488    1.14870   2.242  0.02499 * 
## ns(time, df = 18 * 16)32   0.42921    1.29259   0.332  0.73985   
## ns(time, df = 18 * 16)33   0.95950    1.29849   0.739  0.45994   
## ns(time, df = 18 * 16)34   1.72113    1.23176   1.397  0.16233   
## ns(time, df = 18 * 16)35   0.86812    1.24754   0.696  0.48651   
## ns(time, df = 18 * 16)36   2.27948    1.23700   1.843  0.06537 . 
## ns(time, df = 18 * 16)37  -0.44015    1.46344  -0.301  0.76360   
## ns(time, df = 18 * 16)38   1.20981    1.31865   0.917  0.35890   
## ns(time, df = 18 * 16)39   2.09158    1.26983   1.647  0.09953 . 
## ns(time, df = 18 * 16)40  -0.72917    1.45816  -0.500  0.61703   
## ns(time, df = 18 * 16)41   2.53516    1.26477   2.004  0.04502 * 
## ns(time, df = 18 * 16)42   0.02610    1.35974   0.019  0.98468   
## ns(time, df = 18 * 16)43   1.67266    1.27509   1.312  0.18959   
## ns(time, df = 18 * 16)44   0.99451    1.27828   0.778  0.43656   
## ns(time, df = 18 * 16)45   1.35065    1.26959   1.064  0.28740   
## ns(time, df = 18 * 16)46   1.23888    1.30825   0.947  0.34365   
## ns(time, df = 18 * 16)47   0.04644    1.34689   0.034  0.97249   
## ns(time, df = 18 * 16)48   2.56182    1.17461   2.181  0.02918 * 
## ns(time, df = 18 * 16)49   1.03196    1.21515   0.849  0.39575   
## ns(time, df = 18 * 16)50   1.18646    1.21830   0.974  0.33012   
## ns(time, df = 18 * 16)51   1.91873    1.16680   1.644  0.10008   
## ns(time, df = 18 * 16)52   1.79366    1.21550   1.476  0.14004   
## ns(time, df = 18 * 16)53  -0.02878    1.41692  -0.020  0.98379   
## ns(time, df = 18 * 16)54   1.18627    1.33923   0.886  0.37574   
## ns(time, df = 18 * 16)55   1.37154    1.30511   1.051  0.29331   
## ns(time, df = 18 * 16)56   0.40794    1.33756   0.305  0.76038   
## ns(time, df = 18 * 16)57   2.12466    1.25425   1.694  0.09027 . 
## ns(time, df = 18 * 16)58   0.14396    1.36010   0.106  0.91571   
## ns(time, df = 18 * 16)59   1.61184    1.28262   1.257  0.20887   
## ns(time, df = 18 * 16)60   1.02196    1.29101   0.792  0.42860   
## ns(time, df = 18 * 16)61   1.87670    1.37886   1.361  0.17350   
## ns(time, df = 18 * 16)62  -1.97575    1.90650  -1.036  0.30005   
## ns(time, df = 18 * 16)63   1.87726    1.53411   1.224  0.22107   
## ns(time, df = 18 * 16)64  -0.17351    1.64687  -0.105  0.91609   
## ns(time, df = 18 * 16)65   0.01847    1.61764   0.011  0.99089   
## ns(time, df = 18 * 16)66   1.11395    1.37378   0.811  0.41744   
## ns(time, df = 18 * 16)67   1.33753    1.26806   1.055  0.29152   
## ns(time, df = 18 * 16)68   1.28443    1.22568   1.048  0.29467   
## ns(time, df = 18 * 16)69   1.82544    1.20330   1.517  0.12926   
## ns(time, df = 18 * 16)70   0.76800    1.26117   0.609  0.54255   
## ns(time, df = 18 * 16)71   1.65577    1.22402   1.353  0.17614   
## ns(time, df = 18 * 16)72   1.11346    1.22943   0.906  0.36511   
## ns(time, df = 18 * 16)73   1.79330    1.21582   1.475  0.14022   
## ns(time, df = 18 * 16)74   1.31932    1.33140   0.991  0.32172   
## ns(time, df = 18 * 16)75  -0.69713    1.65576  -0.421  0.67373   
## ns(time, df = 18 * 16)76   0.99001    1.49225   0.663  0.50705   
## ns(time, df = 18 * 16)77   0.67932    1.41966   0.479  0.63229   
## ns(time, df = 18 * 16)78   1.00770    1.34111   0.751  0.45242   
## ns(time, df = 18 * 16)79   1.51949    1.30727   1.162  0.24510   
## ns(time, df = 18 * 16)80   0.20338    1.37757   0.148  0.88263   
## ns(time, df = 18 * 16)81   1.69880    1.25476   1.354  0.17577   
## ns(time, df = 18 * 16)82   1.12539    1.23226   0.913  0.36110   
## ns(time, df = 18 * 16)83   1.54999    1.18535   1.308  0.19100   
## ns(time, df = 18 * 16)84   1.91309    1.16408   1.643  0.10029   
## ns(time, df = 18 * 16)85   1.38211    1.23366   1.120  0.26257   
## ns(time, df = 18 * 16)86   0.20499    1.31864   0.155  0.87646   
## ns(time, df = 18 * 16)87   2.28960    1.18154   1.938  0.05265 . 
## ns(time, df = 18 * 16)88   1.26127    1.20873   1.043  0.29673   
## ns(time, df = 18 * 16)89   1.17732    1.24827   0.943  0.34560   
## ns(time, df = 18 * 16)90   1.29128    1.24398   1.038  0.29926   
## ns(time, df = 18 * 16)91   1.53527    1.25609   1.222  0.22161   
## ns(time, df = 18 * 16)92   0.29601    1.31013   0.226  0.82125   
## ns(time, df = 18 * 16)93   2.36358    1.19913   1.971  0.04872 * 
## ns(time, df = 18 * 16)94   0.63943    1.26654   0.505  0.61366   
## ns(time, df = 18 * 16)95   1.93607    1.28477   1.507  0.13182   
## ns(time, df = 18 * 16)96   0.37842    1.55561   0.243  0.80780   
## ns(time, df = 18 * 16)97  -1.96576    1.92737  -1.020  0.30777   
## ns(time, df = 18 * 16)98   2.57368    1.34183   1.918  0.05511 . 
## ns(time, df = 18 * 16)99   0.60907    1.35030   0.451  0.65194   
## ns(time, df = 18 * 16)100  0.93386    1.37984   0.677  0.49854   
## ns(time, df = 18 * 16)101  0.60285    1.34682   0.448  0.65443   
## ns(time, df = 18 * 16)102  1.61906    1.21348   1.334  0.18213   
## ns(time, df = 18 * 16)103  2.07260    1.19072   1.741  0.08175 . 
## ns(time, df = 18 * 16)104  0.08685    1.29204   0.067  0.94641   
## ns(time, df = 18 * 16)105  2.83892    1.21328   2.340  0.01929 * 
## ns(time, df = 18 * 16)106 -0.72437    1.41825  -0.511  0.60953   
## ns(time, df = 18 * 16)107  2.32507    1.28410   1.811  0.07019 . 
## ns(time, df = 18 * 16)108 -0.15598    1.36833  -0.114  0.90924   
## ns(time, df = 18 * 16)109  2.21972    1.23667   1.795  0.07267 . 
## ns(time, df = 18 * 16)110  0.68721    1.29358   0.531  0.59525   
## ns(time, df = 18 * 16)111  1.11060    1.27127   0.874  0.38233   
## ns(time, df = 18 * 16)112  1.62678    1.20976   1.345  0.17872   
## ns(time, df = 18 * 16)113  1.47152    1.21542   1.211  0.22601   
## ns(time, df = 18 * 16)114  1.13506    1.25441   0.905  0.36554   
## ns(time, df = 18 * 16)115  1.30833    1.27282   1.028  0.30400   
## ns(time, df = 18 * 16)116  0.60557    1.27502   0.475  0.63483   
## ns(time, df = 18 * 16)117  2.25017    1.16581   1.930  0.05359 . 
## ns(time, df = 18 * 16)118  1.07682    1.17601   0.916  0.35985   
## ns(time, df = 18 * 16)119  2.41750    1.15783   2.088  0.03680 * 
## ns(time, df = 18 * 16)120  0.38428    1.28330   0.299  0.76460   
## ns(time, df = 18 * 16)121  1.53032    1.25529   1.219  0.22281   
## ns(time, df = 18 * 16)122  1.06235    1.24461   0.854  0.39335   
## ns(time, df = 18 * 16)123  1.75178    1.21273   1.444  0.14860   
## ns(time, df = 18 * 16)124  1.21228    1.27130   0.954  0.34030   
## ns(time, df = 18 * 16)125  0.44512    1.33868   0.333  0.73951   
## ns(time, df = 18 * 16)126  2.14708    1.28907   1.666  0.09579 . 
## ns(time, df = 18 * 16)127 -0.57223    1.47714  -0.387  0.69847   
## ns(time, df = 18 * 16)128  1.83656    1.29985   1.413  0.15768   
## ns(time, df = 18 * 16)129  0.76617    1.28726   0.595  0.55171   
## ns(time, df = 18 * 16)130  1.71447    1.23803   1.385  0.16610   
## ns(time, df = 18 * 16)131  0.88241    1.26332   0.698  0.48488   
## ns(time, df = 18 * 16)132  1.57050    1.22560   1.281  0.20005   
## ns(time, df = 18 * 16)133  1.34652    1.23283   1.092  0.27474   
## ns(time, df = 18 * 16)134  1.21789    1.26136   0.966  0.33428   
## ns(time, df = 18 * 16)135  1.38109    1.31414   1.051  0.29328   
## ns(time, df = 18 * 16)136 -0.12885    1.43728  -0.090  0.92857   
## ns(time, df = 18 * 16)137  1.93242    1.29327   1.494  0.13512   
## ns(time, df = 18 * 16)138  0.58356    1.34596   0.434  0.66460   
## ns(time, df = 18 * 16)139  0.87754    1.29611   0.677  0.49837   
## ns(time, df = 18 * 16)140  2.25240    1.22837   1.834  0.06671 . 
## ns(time, df = 18 * 16)141 -0.23129    1.35250  -0.171  0.86421   
## ns(time, df = 18 * 16)142  2.52697    1.22691   2.060  0.03943 * 
## ns(time, df = 18 * 16)143  0.36457    1.34574   0.271  0.78646   
## ns(time, df = 18 * 16)144  1.38851    1.44138   0.963  0.33539   
## ns(time, df = 18 * 16)145 -1.48731    1.63128  -0.912  0.36190   
## ns(time, df = 18 * 16)146  2.94253    1.22167   2.409  0.01601 * 
## ns(time, df = 18 * 16)147  0.62272    1.22823   0.507  0.61215   
## ns(time, df = 18 * 16)148  2.36699    1.20285   1.968  0.04909 * 
## ns(time, df = 18 * 16)149 -0.23978    1.32971  -0.180  0.85690   
## ns(time, df = 18 * 16)150  2.43767    1.17690   2.071  0.03834 * 
## ns(time, df = 18 * 16)151  1.20069    1.19919   1.001  0.31670   
## ns(time, df = 18 * 16)152  1.45335    1.22684   1.185  0.23617   
## ns(time, df = 18 * 16)153  0.94973    1.24681   0.762  0.44622   
## ns(time, df = 18 * 16)154  1.47813    1.16577   1.268  0.20482   
## ns(time, df = 18 * 16)155  2.55606    1.11394   2.295  0.02176 * 
## ns(time, df = 18 * 16)156  0.71103    1.17506   0.605  0.54511   
## ns(time, df = 18 * 16)157  2.62793    1.12930   2.327  0.01996 * 
## ns(time, df = 18 * 16)158  0.60327    1.20043   0.503  0.61528   
## ns(time, df = 18 * 16)159  2.24811    1.14388   1.965  0.04938 * 
## ns(time, df = 18 * 16)160  1.72127    1.19354   1.442  0.14926   
## ns(time, df = 18 * 16)161  0.08219    1.35106   0.061  0.95149   
## ns(time, df = 18 * 16)162  2.10157    1.28784   1.632  0.10271   
## ns(time, df = 18 * 16)163 -0.05560    1.44199  -0.039  0.96924   
## ns(time, df = 18 * 16)164  1.10734    1.38226   0.801  0.42307   
## ns(time, df = 18 * 16)165  0.89178    1.33017   0.670  0.50258   
## ns(time, df = 18 * 16)166  2.01868    1.34551   1.500  0.13353   
## ns(time, df = 18 * 16)167 -1.61082    1.70667  -0.944  0.34525   
## ns(time, df = 18 * 16)168  2.25136    1.35605   1.660  0.09687 . 
## ns(time, df = 18 * 16)169 -0.28818    1.32532  -0.217  0.82786   
## ns(time, df = 18 * 16)170  3.40780    1.14808   2.968  0.00299 **
## ns(time, df = 18 * 16)171  0.45733    1.29374   0.353  0.72372   
## ns(time, df = 18 * 16)172  0.02364    1.42409   0.017  0.98676   
## ns(time, df = 18 * 16)173  1.83555    1.21023   1.517  0.12934   
## ns(time, df = 18 * 16)174  2.11933    1.17710   1.800  0.07179 . 
## ns(time, df = 18 * 16)175  0.74742    1.32210   0.565  0.57185   
## ns(time, df = 18 * 16)176 -0.03741    1.39024  -0.027  0.97853   
## ns(time, df = 18 * 16)177  2.36511    1.18497   1.996  0.04594 * 
## ns(time, df = 18 * 16)178  1.18273    1.18012   1.002  0.31624   
## ns(time, df = 18 * 16)179  1.83925    1.15301   1.595  0.11067   
## ns(time, df = 18 * 16)180  1.46316    1.14266   1.280  0.20038   
## ns(time, df = 18 * 16)181  2.31547    1.12429   2.060  0.03945 * 
## ns(time, df = 18 * 16)182  0.87874    1.18660   0.741  0.45896   
## ns(time, df = 18 * 16)183  2.33161    1.17527   1.984  0.04727 * 
## ns(time, df = 18 * 16)184  0.06183    1.28173   0.048  0.96152   
## ns(time, df = 18 * 16)185  2.68037    1.19624   2.241  0.02505 * 
## ns(time, df = 18 * 16)186 -0.23555    1.31504  -0.179  0.85784   
## ns(time, df = 18 * 16)187  2.46652    1.17650   2.096  0.03604 * 
## ns(time, df = 18 * 16)188  1.02028    1.19936   0.851  0.39495   
## ns(time, df = 18 * 16)189  2.28540    1.23198   1.855  0.06359 . 
## ns(time, df = 18 * 16)190 -0.99332    1.50013  -0.662  0.50787   
## ns(time, df = 18 * 16)191  2.09714    1.24973   1.678  0.09333 . 
## ns(time, df = 18 * 16)192  1.30192    1.22247   1.065  0.28688   
## ns(time, df = 18 * 16)193  1.73833    1.27415   1.364  0.17247   
## ns(time, df = 18 * 16)194 -0.56625    1.46640  -0.386  0.69939   
## ns(time, df = 18 * 16)195  2.41868    1.30891   1.848  0.06462 . 
## ns(time, df = 18 * 16)196 -0.56891    1.45387  -0.391  0.69557   
## ns(time, df = 18 * 16)197  1.74392    1.22949   1.418  0.15607   
## ns(time, df = 18 * 16)198  1.93945    1.15763   1.675  0.09386 . 
## ns(time, df = 18 * 16)199  1.37537    1.18149   1.164  0.24439   
## ns(time, df = 18 * 16)200  1.50610    1.18746   1.268  0.20468   
## ns(time, df = 18 * 16)201  1.80984    1.21348   1.491  0.13585   
## ns(time, df = 18 * 16)202  0.23664    1.33774   0.177  0.85959   
## ns(time, df = 18 * 16)203  1.82541    1.27373   1.433  0.15182   
## ns(time, df = 18 * 16)204  0.64405    1.34180   0.480  0.63123   
## ns(time, df = 18 * 16)205  1.26623    1.37999   0.918  0.35885   
## ns(time, df = 18 * 16)206 -0.40411    1.43559  -0.281  0.77833   
## ns(time, df = 18 * 16)207  2.75637    1.22100   2.257  0.02398 * 
## ns(time, df = 18 * 16)208  0.20825    1.30728   0.159  0.87343   
## ns(time, df = 18 * 16)209  1.80301    1.26062   1.430  0.15264   
## ns(time, df = 18 * 16)210  0.57720    1.29589   0.445  0.65602   
## ns(time, df = 18 * 16)211  1.68642    1.21647   1.386  0.16565   
## ns(time, df = 18 * 16)212  1.47743    1.20207   1.229  0.21904   
## ns(time, df = 18 * 16)213  1.44945    1.22455   1.184  0.23655   
## ns(time, df = 18 * 16)214  1.17531    1.28423   0.915  0.36009   
## ns(time, df = 18 * 16)215  0.71573    1.35075   0.530  0.59620   
## ns(time, df = 18 * 16)216  1.27736    1.34817   0.947  0.34340   
## ns(time, df = 18 * 16)217  0.38193    1.40602   0.272  0.78590   
## ns(time, df = 18 * 16)218  1.09178    1.30044   0.840  0.40116   
## ns(time, df = 18 * 16)219  1.63678    1.20610   1.357  0.17475   
## ns(time, df = 18 * 16)220  1.67696    1.19706   1.401  0.16124   
## ns(time, df = 18 * 16)221  0.81525    1.23178   0.662  0.50807   
## ns(time, df = 18 * 16)222  2.11749    1.16650   1.815  0.06948 . 
## ns(time, df = 18 * 16)223  2.01008    1.25307   1.604  0.10869   
## ns(time, df = 18 * 16)224 -1.59669    1.74891  -0.913  0.36126   
## ns(time, df = 18 * 16)225  1.22017    1.38644   0.880  0.37882   
## ns(time, df = 18 * 16)226  1.57858    1.22822   1.285  0.19870   
## ns(time, df = 18 * 16)227  1.66190    1.20400   1.380  0.16749   
## ns(time, df = 18 * 16)228  1.02741    1.24315   0.826  0.40854   
## ns(time, df = 18 * 16)229  1.31770    1.20967   1.089  0.27602   
## ns(time, df = 18 * 16)230  1.90100    1.16363   1.634  0.10232   
## ns(time, df = 18 * 16)231  1.25390    1.17423   1.068  0.28559   
## ns(time, df = 18 * 16)232  1.95678    1.14627   1.707  0.08781 . 
## ns(time, df = 18 * 16)233  1.46136    1.16505   1.254  0.20972   
## ns(time, df = 18 * 16)234  1.41689    1.15739   1.224  0.22087   
## ns(time, df = 18 * 16)235  2.60747    1.15241   2.263  0.02366 * 
## ns(time, df = 18 * 16)236 -0.51848    1.33253  -0.389  0.69720   
## ns(time, df = 18 * 16)237  2.66518    1.16891   2.280  0.02260 * 
## ns(time, df = 18 * 16)238  0.93713    1.20038   0.781  0.43499   
## ns(time, df = 18 * 16)239  1.69991    1.17999   1.441  0.14969   
## ns(time, df = 18 * 16)240  1.73320    1.19067   1.456  0.14549   
## ns(time, df = 18 * 16)241  0.64242    1.25476   0.512  0.60866   
## ns(time, df = 18 * 16)242  1.88353    1.16947   1.611  0.10727   
## ns(time, df = 18 * 16)243  2.31049    1.19195   1.938  0.05257 . 
## ns(time, df = 18 * 16)244 -0.83026    1.46766  -0.566  0.57159   
## ns(time, df = 18 * 16)245  1.93954    1.26521   1.533  0.12528   
## ns(time, df = 18 * 16)246  1.03691    1.22515   0.846  0.39735   
## ns(time, df = 18 * 16)247  2.03352    1.18475   1.716  0.08609 . 
## ns(time, df = 18 * 16)248  0.86508    1.24191   0.697  0.48607   
## ns(time, df = 18 * 16)249  1.42326    1.20870   1.178  0.23899   
## ns(time, df = 18 * 16)250  1.84767    1.17910   1.567  0.11711   
## ns(time, df = 18 * 16)251  1.00000    1.21198   0.825  0.40932   
## ns(time, df = 18 * 16)252  1.74192    1.16255   1.498  0.13404   
## ns(time, df = 18 * 16)253  1.83373    1.14344   1.604  0.10878   
## ns(time, df = 18 * 16)254  1.49633    1.16145   1.288  0.19763   
## ns(time, df = 18 * 16)255  1.99332    1.19371   1.670  0.09495 . 
## ns(time, df = 18 * 16)256  0.03272    1.34253   0.024  0.98056   
## ns(time, df = 18 * 16)257  1.81298    1.23325   1.470  0.14154   
## ns(time, df = 18 * 16)258  1.18274    1.21369   0.975  0.32981   
## ns(time, df = 18 * 16)259  1.65544    1.17686   1.407  0.15953   
## ns(time, df = 18 * 16)260  1.53351    1.15401   1.329  0.18389   
## ns(time, df = 18 * 16)261  2.26178    1.15072   1.966  0.04935 * 
## ns(time, df = 18 * 16)262  0.45035    1.26412   0.356  0.72165   
## ns(time, df = 18 * 16)263  2.14164    1.26228   1.697  0.08977 . 
## ns(time, df = 18 * 16)264 -0.68797    1.42904  -0.481  0.63022   
## ns(time, df = 18 * 16)265  2.34642    1.18665   1.977  0.04800 * 
## ns(time, df = 18 * 16)266  1.47031    1.15410   1.274  0.20267   
## ns(time, df = 18 * 16)267  2.00213    1.14965   1.742  0.08159 . 
## ns(time, df = 18 * 16)268  1.33481    1.22043   1.094  0.27408   
## ns(time, df = 18 * 16)269  0.72896    1.31698   0.554  0.57992   
## ns(time, df = 18 * 16)270  0.89387    1.25722   0.711  0.47709   
## ns(time, df = 18 * 16)271  2.35769    1.15451   2.042  0.04113 * 
## ns(time, df = 18 * 16)272  1.50017    1.22094   1.229  0.21919   
## ns(time, df = 18 * 16)273  0.51514    1.43918   0.358  0.72039   
## ns(time, df = 18 * 16)274 -0.52178    1.53576  -0.340  0.73404   
## ns(time, df = 18 * 16)275  2.26470    1.24963   1.812  0.06994 . 
## ns(time, df = 18 * 16)276  0.85700    1.24074   0.691  0.48974   
## ns(time, df = 18 * 16)277  1.98254    1.21142   1.637  0.10173   
## ns(time, df = 18 * 16)278  0.67503    1.29503   0.521  0.60220   
## ns(time, df = 18 * 16)279  0.87790    1.23835   0.709  0.47837   
## ns(time, df = 18 * 16)280  2.60369    1.12888   2.306  0.02109 * 
## ns(time, df = 18 * 16)281  1.03171    1.16949   0.882  0.37768   
## ns(time, df = 18 * 16)282  1.87085    1.14139   1.639  0.10119   
## ns(time, df = 18 * 16)283  1.66261    1.12278   1.481  0.13866   
## ns(time, df = 18 * 16)284  2.21250    1.10891   1.995  0.04602 * 
## ns(time, df = 18 * 16)285  1.42631    1.15716   1.233  0.21773   
## ns(time, df = 18 * 16)286  0.34126    0.92566   0.369  0.71238   
## ns(time, df = 18 * 16)287  3.90707    2.09300   1.867  0.06194 . 
## ns(time, df = 18 * 16)288 -0.20846    0.64851  -0.321  0.74788   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(33776.55) family taken to be 1)
## 
##     Null deviance: 1179.11  on 938  degrees of freedom
## Residual deviance:  828.59  on 650  degrees of freedom
## AIC: 3556.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  33777 
##           Std. Err.:  149929 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2976.458
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ ns(time, df = 18 * 18), data = week, 
##     init.theta = 36901.64025, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.74944  -0.71174  -0.07771   0.50960   2.54735  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)   
## (Intercept)               -0.572375   0.955654  -0.599  0.54922   
## ns(time, df = 18 * 18)1    1.233831   1.038782   1.188  0.23493   
## ns(time, df = 18 * 18)2    1.459796   1.415150   1.032  0.30228   
## ns(time, df = 18 * 18)3    1.577896   1.370352   1.151  0.24955   
## ns(time, df = 18 * 18)4   -1.404053   1.992487  -0.705  0.48101   
## ns(time, df = 18 * 18)5    0.688440   1.547690   0.445  0.65645   
## ns(time, df = 18 * 18)6    1.996469   1.366873   1.461  0.14412   
## ns(time, df = 18 * 18)7    0.849645   1.440704   0.590  0.55536   
## ns(time, df = 18 * 18)8    0.174656   1.581702   0.110  0.91207   
## ns(time, df = 18 * 18)9    1.017026   1.460909   0.696  0.48633   
## ns(time, df = 18 * 18)10   1.213363   1.392267   0.872  0.38348   
## ns(time, df = 18 * 18)11   0.625962   1.321251   0.474  0.63567   
## ns(time, df = 18 * 18)12   2.978371   1.196984   2.488  0.01284 * 
## ns(time, df = 18 * 18)13   0.470559   1.275968   0.369  0.71229   
## ns(time, df = 18 * 18)14   2.297328   1.206779   1.904  0.05695 . 
## ns(time, df = 18 * 18)15   1.676171   1.231625   1.361  0.17353   
## ns(time, df = 18 * 18)16   0.956468   1.297948   0.737  0.46118   
## ns(time, df = 18 * 18)17   1.932379   1.276135   1.514  0.12996   
## ns(time, df = 18 * 18)18   0.907298   1.360552   0.667  0.50486   
## ns(time, df = 18 * 18)19   0.593816   1.346982   0.441  0.65932   
## ns(time, df = 18 * 18)20   3.198260   1.273795   2.511  0.01205 * 
## ns(time, df = 18 * 18)21  -1.001117   1.642971  -0.609  0.54230   
## ns(time, df = 18 * 18)22   0.300846   1.496623   0.201  0.84069   
## ns(time, df = 18 * 18)23   3.021104   1.303458   2.318  0.02046 * 
## ns(time, df = 18 * 18)24  -0.564661   1.523216  -0.371  0.71086   
## ns(time, df = 18 * 18)25   1.682676   1.441419   1.167  0.24306   
## ns(time, df = 18 * 18)26   0.838173   1.555291   0.539  0.58994   
## ns(time, df = 18 * 18)27  -0.319455   1.902839  -0.168  0.86668   
## ns(time, df = 18 * 18)28  -0.461869   1.934220  -0.239  0.81127   
## ns(time, df = 18 * 18)29   0.743950   1.550995   0.480  0.63147   
## ns(time, df = 18 * 18)30   1.629875   1.359666   1.199  0.23063   
## ns(time, df = 18 * 18)31   0.944374   1.329626   0.710  0.47755   
## ns(time, df = 18 * 18)32   2.128258   1.288002   1.652  0.09846 . 
## ns(time, df = 18 * 18)33   0.173486   1.391188   0.125  0.90076   
## ns(time, df = 18 * 18)34   1.835559   1.249068   1.470  0.14169   
## ns(time, df = 18 * 18)35   2.345114   1.217048   1.927  0.05399 . 
## ns(time, df = 18 * 18)36   0.668228   1.357145   0.492  0.62245   
## ns(time, df = 18 * 18)37   0.850667   1.396046   0.609  0.54230   
## ns(time, df = 18 * 18)38   1.504600   1.323897   1.136  0.25575   
## ns(time, df = 18 * 18)39   1.253052   1.310907   0.956  0.33914   
## ns(time, df = 18 * 18)40   1.513126   1.300110   1.164  0.24449   
## ns(time, df = 18 * 18)41   1.582892   1.360857   1.163  0.24477   
## ns(time, df = 18 * 18)42  -0.278257   1.568839  -0.177  0.85922   
## ns(time, df = 18 * 18)43   1.352642   1.385597   0.976  0.32896   
## ns(time, df = 18 * 18)44   1.998198   1.344787   1.486  0.13731   
## ns(time, df = 18 * 18)45  -0.417761   1.544074  -0.271  0.78673   
## ns(time, df = 18 * 18)46   1.743712   1.367129   1.275  0.20215   
## ns(time, df = 18 * 18)47   1.348175   1.370668   0.984  0.32532   
## ns(time, df = 18 * 18)48   0.152201   1.452034   0.105  0.91652   
## ns(time, df = 18 * 18)49   2.159177   1.323215   1.632  0.10273   
## ns(time, df = 18 * 18)50   0.442903   1.389311   0.319  0.74988   
## ns(time, df = 18 * 18)51   1.778668   1.339328   1.328  0.18417   
## ns(time, df = 18 * 18)52   0.897207   1.417795   0.633  0.52685   
## ns(time, df = 18 * 18)53   0.160290   1.443259   0.111  0.91157   
## ns(time, df = 18 * 18)54   2.344281   1.250861   1.874  0.06091 . 
## ns(time, df = 18 * 18)55   1.481805   1.267518   1.169  0.24238   
## ns(time, df = 18 * 18)56   0.808937   1.322015   0.612  0.54061   
## ns(time, df = 18 * 18)57   1.886203   1.244704   1.515  0.12968   
## ns(time, df = 18 * 18)58   1.730130   1.245602   1.389  0.16484   
## ns(time, df = 18 * 18)59   1.538312   1.340071   1.148  0.25100   
## ns(time, df = 18 * 18)60  -0.313656   1.563977  -0.201  0.84105   
## ns(time, df = 18 * 18)61   1.586126   1.403686   1.130  0.25849   
## ns(time, df = 18 * 18)62   1.090864   1.397903   0.780  0.43518   
## ns(time, df = 18 * 18)63   0.639698   1.414760   0.452  0.65115   
## ns(time, df = 18 * 18)64   1.811404   1.336907   1.355  0.17544   
## ns(time, df = 18 * 18)65   0.675030   1.398044   0.483  0.62921   
## ns(time, df = 18 * 18)66   1.330190   1.383842   0.961  0.33644   
## ns(time, df = 18 * 18)67   0.737317   1.384778   0.532  0.59442   
## ns(time, df = 18 * 18)68   2.089424   1.347554   1.551  0.12101   
## ns(time, df = 18 * 18)69   0.443124   1.602351   0.277  0.78213   
## ns(time, df = 18 * 18)70  -1.398410   1.991020  -0.702  0.48246   
## ns(time, df = 18 * 18)71   2.146239   1.616844   1.327  0.18437   
## ns(time, df = 18 * 18)72  -0.990340   1.824607  -0.543  0.58729   
## ns(time, df = 18 * 18)73   1.441056   1.646414   0.875  0.38143   
## ns(time, df = 18 * 18)74  -0.845236   1.678162  -0.504  0.61449   
## ns(time, df = 18 * 18)75   2.421710   1.346344   1.799  0.07206 . 
## ns(time, df = 18 * 18)76   0.521804   1.358359   0.384  0.70087   
## ns(time, df = 18 * 18)77   1.851727   1.276882   1.450  0.14700   
## ns(time, df = 18 * 18)78   1.514220   1.287910   1.176  0.23971   
## ns(time, df = 18 * 18)79   0.869155   1.345106   0.646  0.51818   
## ns(time, df = 18 * 18)80   1.544632   1.303153   1.185  0.23590   
## ns(time, df = 18 * 18)81   1.350671   1.296815   1.042  0.29763   
## ns(time, df = 18 * 18)82   1.390810   1.294545   1.074  0.28266   
## ns(time, df = 18 * 18)83   1.882019   1.336688   1.408  0.15914   
## ns(time, df = 18 * 18)84   0.020415   1.636356   0.012  0.99005   
## ns(time, df = 18 * 18)85  -0.503235   1.789534  -0.281  0.77855   
## ns(time, df = 18 * 18)86   1.650999   1.519858   1.086  0.27735   
## ns(time, df = 18 * 18)87  -0.020864   1.544747  -0.014  0.98922   
## ns(time, df = 18 * 18)88   1.702213   1.390978   1.224  0.22105   
## ns(time, df = 18 * 18)89   0.863501   1.410340   0.612  0.54036   
## ns(time, df = 18 * 18)90   1.050835   1.425486   0.737  0.46101   
## ns(time, df = 18 * 18)91   0.638380   1.398080   0.457  0.64795   
## ns(time, df = 18 * 18)92   2.016183   1.286841   1.567  0.11717   
## ns(time, df = 18 * 18)93   0.838826   1.305302   0.643  0.52046   
## ns(time, df = 18 * 18)94   1.909313   1.234634   1.546  0.12199   
## ns(time, df = 18 * 18)95   1.906103   1.242835   1.534  0.12511   
## ns(time, df = 18 * 18)96   0.844864   1.362784   0.620  0.53529   
## ns(time, df = 18 * 18)97   0.646439   1.378520   0.469  0.63911   
## ns(time, df = 18 * 18)98   2.050080   1.254765   1.634  0.10229   
## ns(time, df = 18 * 18)99   1.563870   1.269103   1.232  0.21785   
## ns(time, df = 18 * 18)100  0.945672   1.335079   0.708  0.47874   
## ns(time, df = 18 * 18)101  1.460277   1.315146   1.110  0.26685   
## ns(time, df = 18 * 18)102  1.356946   1.326749   1.023  0.30642   
## ns(time, df = 18 * 18)103  0.985941   1.369464   0.720  0.47156   
## ns(time, df = 18 * 18)104  0.998147   1.336473   0.747  0.45515   
## ns(time, df = 18 * 18)105  2.084770   1.272377   1.638  0.10132   
## ns(time, df = 18 * 18)106  0.677996   1.342178   0.505  0.61346   
## ns(time, df = 18 * 18)107  2.115303   1.351401   1.565  0.11752   
## ns(time, df = 18 * 18)108 -0.065553   1.643095  -0.040  0.96818   
## ns(time, df = 18 * 18)109 -0.150534   1.874619  -0.080  0.93600   
## ns(time, df = 18 * 18)110 -0.234815   1.606209  -0.146  0.88377   
## ns(time, df = 18 * 18)111  3.121197   1.352813   2.307  0.02104 * 
## ns(time, df = 18 * 18)112 -1.075500   1.608947  -0.668  0.50385   
## ns(time, df = 18 * 18)113  1.963200   1.421716   1.381  0.16732   
## ns(time, df = 18 * 18)114  0.185108   1.435950   0.129  0.89743   
## ns(time, df = 18 * 18)115  1.834146   1.274957   1.439  0.15027   
## ns(time, df = 18 * 18)116  2.154584   1.261867   1.707  0.08774 . 
## ns(time, df = 18 * 18)117 -0.271378   1.408956  -0.193  0.84726   
## ns(time, df = 18 * 18)118  2.996508   1.277310   2.346  0.01898 * 
## ns(time, df = 18 * 18)119 -0.288592   1.461715  -0.197  0.84349   
## ns(time, df = 18 * 18)120  1.591179   1.394165   1.141  0.25374   
## ns(time, df = 18 * 18)121  0.849391   1.408004   0.603  0.54634   
## ns(time, df = 18 * 18)122  0.958516   1.378305   0.695  0.48679   
## ns(time, df = 18 * 18)123  1.731016   1.317152   1.314  0.18878   
## ns(time, df = 18 * 18)124  0.883459   1.367597   0.646  0.51828   
## ns(time, df = 18 * 18)125  1.112265   1.350939   0.823  0.41032   
## ns(time, df = 18 * 18)126  1.489603   1.293163   1.152  0.24936   
## ns(time, df = 18 * 18)127  1.601377   1.277255   1.254  0.20993   
## ns(time, df = 18 * 18)128  1.338558   1.317336   1.016  0.30958   
## ns(time, df = 18 * 18)129  0.894741   1.367146   0.654  0.51282   
## ns(time, df = 18 * 18)130  1.449943   1.343998   1.079  0.28066   
## ns(time, df = 18 * 18)131  0.676434   1.330283   0.508  0.61111   
## ns(time, df = 18 * 18)132  2.424270   1.223321   1.982  0.04751 * 
## ns(time, df = 18 * 18)133  0.910457   1.252816   0.727  0.46739   
## ns(time, df = 18 * 18)134  2.541700   1.224027   2.077  0.03785 * 
## ns(time, df = 18 * 18)135  0.422981   1.359465   0.311  0.75570   
## ns(time, df = 18 * 18)136  1.387289   1.347645   1.029  0.30328   
## ns(time, df = 18 * 18)137  1.187396   1.329159   0.893  0.37167   
## ns(time, df = 18 * 18)138  1.379947   1.297045   1.064  0.28737   
## ns(time, df = 18 * 18)139  1.846021   1.296185   1.424  0.15439   
## ns(time, df = 18 * 18)140  0.434343   1.418658   0.306  0.75948   
## ns(time, df = 18 * 18)141  1.287088   1.375737   0.936  0.34950   
## ns(time, df = 18 * 18)142  1.573912   1.390208   1.132  0.25757   
## ns(time, df = 18 * 18)143 -0.256522   1.564300  -0.164  0.86974   
## ns(time, df = 18 * 18)144  1.558857   1.394281   1.118  0.26355   
## ns(time, df = 18 * 18)145  1.112998   1.362282   0.817  0.41392   
## ns(time, df = 18 * 18)146  1.122786   1.339452   0.838  0.40189   
## ns(time, df = 18 * 18)147  1.767332   1.310120   1.349  0.17734   
## ns(time, df = 18 * 18)148  0.470037   1.363885   0.345  0.73037   
## ns(time, df = 18 * 18)149  2.212222   1.277104   1.732  0.08323 . 
## ns(time, df = 18 * 18)150  0.713210   1.344229   0.531  0.59572   
## ns(time, df = 18 * 18)151  1.575934   1.329408   1.185  0.23584   
## ns(time, df = 18 * 18)152  1.350899   1.405062   0.961  0.33633   
## ns(time, df = 18 * 18)153 -0.565186   1.590504  -0.355  0.72233   
## ns(time, df = 18 * 18)154  2.305777   1.370254   1.683  0.09243 . 
## ns(time, df = 18 * 18)155  0.224815   1.452282   0.155  0.87698   
## ns(time, df = 18 * 18)156  1.340614   1.383107   0.969  0.33241   
## ns(time, df = 18 * 18)157  1.121879   1.335832   0.840  0.40100   
## ns(time, df = 18 * 18)158  1.914973   1.318259   1.453  0.14632   
## ns(time, df = 18 * 18)159 -0.067585   1.426930  -0.047  0.96222   
## ns(time, df = 18 * 18)160  2.543207   1.295712   1.963  0.04967 * 
## ns(time, df = 18 * 18)161  0.413045   1.427457   0.289  0.77231   
## ns(time, df = 18 * 18)162  1.152590   1.535727   0.751  0.45294   
## ns(time, df = 18 * 18)163 -0.608935   1.709588  -0.356  0.72170   
## ns(time, df = 18 * 18)164  1.270579   1.379115   0.921  0.35689   
## ns(time, df = 18 * 18)165  2.257614   1.253924   1.800  0.07179 . 
## ns(time, df = 18 * 18)166  0.758837   1.306226   0.581  0.56128   
## ns(time, df = 18 * 18)167  2.227136   1.293358   1.722  0.08507 . 
## ns(time, df = 18 * 18)168 -0.349509   1.427264  -0.245  0.80655   
## ns(time, df = 18 * 18)169  2.639297   1.239603   2.129  0.03324 * 
## ns(time, df = 18 * 18)170  1.194980   1.274762   0.937  0.34855   
## ns(time, df = 18 * 18)171  1.180686   1.315003   0.898  0.36926   
## ns(time, df = 18 * 18)172  1.547986   1.307707   1.184  0.23652   
## ns(time, df = 18 * 18)173  0.614332   1.303170   0.471  0.63735   
## ns(time, df = 18 * 18)174  2.738500   1.182746   2.315  0.02059 * 
## ns(time, df = 18 * 18)175  1.300389   1.218824   1.067  0.28601   
## ns(time, df = 18 * 18)176  1.632753   1.219925   1.338  0.18076   
## ns(time, df = 18 * 18)177  2.067206   1.212012   1.706  0.08808 . 
## ns(time, df = 18 * 18)178  0.933203   1.267124   0.736  0.46144   
## ns(time, df = 18 * 18)179  2.015135   1.215206   1.658  0.09726 . 
## ns(time, df = 18 * 18)180  2.064368   1.248306   1.654  0.09818 . 
## ns(time, df = 18 * 18)181 -0.086545   1.443406  -0.060  0.95219   
## ns(time, df = 18 * 18)182  1.967644   1.360461   1.446  0.14809   
## ns(time, df = 18 * 18)183  0.570310   1.462672   0.390  0.69660   
## ns(time, df = 18 * 18)184  0.629963   1.513434   0.416  0.67723   
## ns(time, df = 18 * 18)185  0.974681   1.449194   0.673  0.50122   
## ns(time, df = 18 * 18)186  1.140757   1.395721   0.817  0.41374   
## ns(time, df = 18 * 18)187  1.794176   1.448870   1.238  0.21559   
## ns(time, df = 18 * 18)188 -1.546998   1.859399  -0.832  0.40542   
## ns(time, df = 18 * 18)189  1.864665   1.469518   1.269  0.20448   
## ns(time, df = 18 * 18)190  0.441512   1.409957   0.313  0.75418   
## ns(time, df = 18 * 18)191  1.758363   1.249699   1.407  0.15942   
## ns(time, df = 18 * 18)192  2.989381   1.249263   2.393  0.01672 * 
## ns(time, df = 18 * 18)193 -1.661740   1.696375  -0.980  0.32729   
## ns(time, df = 18 * 18)194  1.740682   1.387661   1.254  0.20970   
## ns(time, df = 18 * 18)195  1.290932   1.276290   1.011  0.31179   
## ns(time, df = 18 * 18)196  2.466196   1.243269   1.984  0.04730 * 
## ns(time, df = 18 * 18)197  0.507938   1.437304   0.353  0.72379   
## ns(time, df = 18 * 18)198 -0.328913   1.546801  -0.213  0.83161   
## ns(time, df = 18 * 18)199  2.423840   1.274729   1.901  0.05724 . 
## ns(time, df = 18 * 18)200  1.067806   1.261982   0.846  0.39748   
## ns(time, df = 18 * 18)201  2.053829   1.222341   1.680  0.09291 . 
## ns(time, df = 18 * 18)202  1.211527   1.236636   0.980  0.32724   
## ns(time, df = 18 * 18)203  2.063695   1.193517   1.729  0.08379 . 
## ns(time, df = 18 * 18)204  1.928987   1.207590   1.597  0.11018   
## ns(time, df = 18 * 18)205  0.925549   1.265240   0.732  0.46446   
## ns(time, df = 18 * 18)206  2.539979   1.246851   2.037  0.04164 * 
## ns(time, df = 18 * 18)207 -0.399444   1.403423  -0.285  0.77593   
## ns(time, df = 18 * 18)208  2.968568   1.263620   2.349  0.01881 * 
## ns(time, df = 18 * 18)209 -0.073588   1.407437  -0.052  0.95830   
## ns(time, df = 18 * 18)210  1.514432   1.297092   1.168  0.24298   
## ns(time, df = 18 * 18)211  2.144024   1.236572   1.734  0.08295 . 
## ns(time, df = 18 * 18)212  0.836368   1.298746   0.644  0.51959   
## ns(time, df = 18 * 18)213  2.495645   1.331375   1.874  0.06086 . 
## ns(time, df = 18 * 18)214 -1.732228   1.718138  -1.008  0.31336   
## ns(time, df = 18 * 18)215  2.520601   1.327168   1.899  0.05753 . 
## ns(time, df = 18 * 18)216  0.964574   1.302314   0.741  0.45890   
## ns(time, df = 18 * 18)217  2.272942   1.320888   1.721  0.08529 . 
## ns(time, df = 18 * 18)218 -0.914603   1.596465  -0.573  0.56672   
## ns(time, df = 18 * 18)219  2.232910   1.396081   1.599  0.10973   
## ns(time, df = 18 * 18)220  0.191433   1.491329   0.128  0.89786   
## ns(time, df = 18 * 18)221  0.922500   1.424117   0.648  0.51713   
## ns(time, df = 18 * 18)222  1.355678   1.288646   1.052  0.29279   
## ns(time, df = 18 * 18)223  2.224751   1.216179   1.829  0.06736 . 
## ns(time, df = 18 * 18)224  1.222407   1.260273   0.970  0.33207   
## ns(time, df = 18 * 18)225  1.483275   1.263281   1.174  0.24034   
## ns(time, df = 18 * 18)226  1.853115   1.268403   1.461  0.14402   
## ns(time, df = 18 * 18)227  0.857312   1.381967   0.620  0.53502   
## ns(time, df = 18 * 18)228  0.550627   1.418890   0.388  0.69796   
## ns(time, df = 18 * 18)229  2.140188   1.342410   1.594  0.11087   
## ns(time, df = 18 * 18)230 -0.011672   1.498700  -0.008  0.99379   
## ns(time, df = 18 * 18)231  1.555071   1.469420   1.058  0.28992   
## ns(time, df = 18 * 18)232 -0.484329   1.523560  -0.318  0.75057   
## ns(time, df = 18 * 18)233  2.818418   1.289496   2.186  0.02884 * 
## ns(time, df = 18 * 18)234  0.338497   1.379451   0.245  0.80616   
## ns(time, df = 18 * 18)235  1.531118   1.351982   1.132  0.25742   
## ns(time, df = 18 * 18)236  0.996157   1.363968   0.730  0.46518   
## ns(time, df = 18 * 18)237  1.119637   1.332331   0.840  0.40071   
## ns(time, df = 18 * 18)238  1.730063   1.271302   1.361  0.17356   
## ns(time, df = 18 * 18)239  1.402532   1.281359   1.095  0.27371   
## ns(time, df = 18 * 18)240  1.412508   1.308611   1.079  0.28041   
## ns(time, df = 18 * 18)241  1.262592   1.372496   0.920  0.35761   
## ns(time, df = 18 * 18)242  0.360653   1.460370   0.247  0.80494   
## ns(time, df = 18 * 18)243  1.893715   1.412956   1.340  0.18016   
## ns(time, df = 18 * 18)244 -0.487104   1.581988  -0.308  0.75815   
## ns(time, df = 18 * 18)245  1.803655   1.383345   1.304  0.19229   
## ns(time, df = 18 * 18)246  0.678954   1.348085   0.504  0.61451   
## ns(time, df = 18 * 18)247  2.144035   1.251293   1.713  0.08663 . 
## ns(time, df = 18 * 18)248  1.274348   1.289523   0.988  0.32304   
## ns(time, df = 18 * 18)249  0.897287   1.312521   0.684  0.49420   
## ns(time, df = 18 * 18)250  2.172850   1.235586   1.759  0.07865 . 
## ns(time, df = 18 * 18)251  2.301574   1.352953   1.701  0.08892 . 
## ns(time, df = 18 * 18)252 -3.238658   2.203370  -1.470  0.14160   
## ns(time, df = 18 * 18)253  2.714385   1.487980   1.824  0.06812 . 
## ns(time, df = 18 * 18)254 -0.489835   1.441942  -0.340  0.73408   
## ns(time, df = 18 * 18)255  3.416249   1.245640   2.743  0.00610 **
## ns(time, df = 18 * 18)256 -0.464419   1.398674  -0.332  0.73986   
## ns(time, df = 18 * 18)257  2.466871   1.275371   1.934  0.05308 . 
## ns(time, df = 18 * 18)258  0.472360   1.313830   0.360  0.71920   
## ns(time, df = 18 * 18)259  2.345585   1.223109   1.918  0.05515 . 
## ns(time, df = 18 * 18)260  1.246055   1.252114   0.995  0.31966   
## ns(time, df = 18 * 18)261  1.420450   1.236171   1.149  0.25053   
## ns(time, df = 18 * 18)262  2.510582   1.212219   2.071  0.03835 * 
## ns(time, df = 18 * 18)263 -0.122891   1.312241  -0.094  0.92539   
## ns(time, df = 18 * 18)264  3.685789   1.195265   3.084  0.00204 **
## ns(time, df = 18 * 18)265 -0.486764   1.392788  -0.349  0.72672   
## ns(time, df = 18 * 18)266  1.866100   1.292267   1.444  0.14872   
## ns(time, df = 18 * 18)267  1.475517   1.255974   1.175  0.24008   
## ns(time, df = 18 * 18)268  1.678485   1.250160   1.343  0.17940   
## ns(time, df = 18 * 18)269  1.278911   1.263218   1.012  0.31134   
## ns(time, df = 18 * 18)270  1.988484   1.255439   1.584  0.11322   
## ns(time, df = 18 * 18)271  0.650348   1.332587   0.488  0.62553   
## ns(time, df = 18 * 18)272  1.708320   1.262040   1.354  0.17586   
## ns(time, df = 18 * 18)273  1.813212   1.236726   1.466  0.14261   
## ns(time, df = 18 * 18)274  2.071083   1.334585   1.552  0.12070   
## ns(time, df = 18 * 18)275 -2.169006   1.798853  -1.206  0.22791   
## ns(time, df = 18 * 18)276  3.133460   1.316757   2.380  0.01733 * 
## ns(time, df = 18 * 18)277  0.217420   1.337251   0.163  0.87084   
## ns(time, df = 18 * 18)278  2.506907   1.249419   2.006  0.04481 * 
## ns(time, df = 18 * 18)279  0.651918   1.330157   0.490  0.62406   
## ns(time, df = 18 * 18)280  1.421339   1.296614   1.096  0.27299   
## ns(time, df = 18 * 18)281  1.731784   1.255296   1.380  0.16772   
## ns(time, df = 18 * 18)282  1.394547   1.272111   1.096  0.27297   
## ns(time, df = 18 * 18)283  1.280374   1.271371   1.007  0.31390   
## ns(time, df = 18 * 18)284  1.759799   1.222533   1.439  0.15002   
## ns(time, df = 18 * 18)285  1.949845   1.211336   1.610  0.10747   
## ns(time, df = 18 * 18)286  1.167567   1.245102   0.938  0.34838   
## ns(time, df = 18 * 18)287  2.628486   1.262782   2.082  0.03739 * 
## ns(time, df = 18 * 18)288 -1.256235   1.548593  -0.811  0.41724   
## ns(time, df = 18 * 18)289  3.056307   1.301457   2.348  0.01886 * 
## ns(time, df = 18 * 18)290 -0.419843   1.390003  -0.302  0.76262   
## ns(time, df = 18 * 18)291  3.052311   1.232013   2.477  0.01323 * 
## ns(time, df = 18 * 18)292  0.078252   1.306976   0.060  0.95226   
## ns(time, df = 18 * 18)293  2.840204   1.195357   2.376  0.01750 * 
## ns(time, df = 18 * 18)294  1.213868   1.262248   0.962  0.33621   
## ns(time, df = 18 * 18)295  0.919422   1.337188   0.688  0.49172   
## ns(time, df = 18 * 18)296  2.071795   1.348420   1.536  0.12443   
## ns(time, df = 18 * 18)297 -0.893911   1.578888  -0.566  0.57128   
## ns(time, df = 18 * 18)298  2.213078   1.286115   1.721  0.08530 . 
## ns(time, df = 18 * 18)299  1.479675   1.232050   1.201  0.22976   
## ns(time, df = 18 * 18)300  1.971262   1.208832   1.631  0.10295   
## ns(time, df = 18 * 18)301  1.697172   1.244590   1.364  0.17268   
## ns(time, df = 18 * 18)302  1.066669   1.341926   0.795  0.42668   
## ns(time, df = 18 * 18)303  0.841172   1.399454   0.601  0.54779   
## ns(time, df = 18 * 18)304  0.970388   1.323389   0.733  0.46340   
## ns(time, df = 18 * 18)305  2.317833   1.218070   1.903  0.05706 . 
## ns(time, df = 18 * 18)306  1.667206   1.273926   1.309  0.19063   
## ns(time, df = 18 * 18)307  0.584419   1.487508   0.393  0.69440   
## ns(time, df = 18 * 18)308 -0.009096   1.654113  -0.005  0.99561   
## ns(time, df = 18 * 18)309  0.680304   1.447576   0.470  0.63838   
## ns(time, df = 18 * 18)310  2.254735   1.284460   1.755  0.07919 . 
## ns(time, df = 18 * 18)311  0.672395   1.325953   0.507  0.61208   
## ns(time, df = 18 * 18)312  2.097009   1.288218   1.628  0.10356   
## ns(time, df = 18 * 18)313  0.550730   1.392859   0.395  0.69255   
## ns(time, df = 18 * 18)314  0.825465   1.325694   0.623  0.53350   
## ns(time, df = 18 * 18)315  2.634957   1.197648   2.200  0.02780 * 
## ns(time, df = 18 * 18)316  1.120627   1.236010   0.907  0.36459   
## ns(time, df = 18 * 18)317  1.856875   1.219347   1.523  0.12780   
## ns(time, df = 18 * 18)318  1.506846   1.209882   1.245  0.21297   
## ns(time, df = 18 * 18)319  2.080473   1.176521   1.768  0.07701 . 
## ns(time, df = 18 * 18)320  1.995399   1.189009   1.678  0.09331 . 
## ns(time, df = 18 * 18)321  1.259673   1.250543   1.007  0.31379   
## ns(time, df = 18 * 18)322  0.540276   0.980453   0.551  0.58160   
## ns(time, df = 18 * 18)323  3.689444   2.208552   1.671  0.09482 . 
## ns(time, df = 18 * 18)324 -0.070705   0.684392  -0.103  0.91772   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(36901.64) family taken to be 1)
## 
##     Null deviance: 1179.12  on 938  degrees of freedom
## Residual deviance:  786.45  on 614  degrees of freedom
## AIC: 3586.3
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  36902 
##           Std. Err.:  159515 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2934.306
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ ns(time, df = 18 * 20), data = week, 
##     init.theta = 40190.30999, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.69421  -0.67670  -0.03714   0.49498   2.38726  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)  
## (Intercept)               -0.57185    1.01053  -0.566   0.5715  
## ns(time, df = 18 * 20)1    1.90841    1.08168   1.764   0.0777 .
## ns(time, df = 18 * 20)2    0.42021    1.51835   0.277   0.7820  
## ns(time, df = 18 * 20)3    3.03887    1.35424   2.244   0.0248 *
## ns(time, df = 18 * 20)4   -2.24653    2.12598  -1.057   0.2906  
## ns(time, df = 18 * 20)5    1.28707    1.74814   0.736   0.4616  
## ns(time, df = 18 * 20)6   -0.15937    1.62563  -0.098   0.9219  
## ns(time, df = 18 * 20)7    2.81987    1.39718   2.018   0.0436 *
## ns(time, df = 18 * 20)8   -0.13261    1.61603  -0.082   0.9346  
## ns(time, df = 18 * 20)9    0.67247    1.64764   0.408   0.6832  
## ns(time, df = 18 * 20)10   0.83338    1.56136   0.534   0.5935  
## ns(time, df = 18 * 20)11   1.16768    1.48512   0.786   0.4317  
## ns(time, df = 18 * 20)12   0.80904    1.42598   0.567   0.5705  
## ns(time, df = 18 * 20)13   1.96737    1.29064   1.524   0.1274  
## ns(time, df = 18 * 20)14   2.18287    1.27129   1.717   0.0860 .
## ns(time, df = 18 * 20)15   0.63906    1.34524   0.475   0.6347  
## ns(time, df = 18 * 20)16   2.50829    1.26466   1.983   0.0473 *
## ns(time, df = 18 * 20)17   1.38098    1.31747   1.048   0.2945  
## ns(time, df = 18 * 20)18   1.06111    1.37463   0.772   0.4402  
## ns(time, df = 18 * 20)19   1.83247    1.34749   1.360   0.1739  
## ns(time, df = 18 * 20)20   1.22038    1.42825   0.854   0.3929  
## ns(time, df = 18 * 20)21  -0.05616    1.48199  -0.038   0.9698  
## ns(time, df = 18 * 20)22   3.31107    1.31403   2.520   0.0117 *
## ns(time, df = 18 * 20)23  -0.02512    1.53537  -0.016   0.9869  
## ns(time, df = 18 * 20)24   0.39160    1.65098   0.237   0.8125  
## ns(time, df = 18 * 20)25   0.90932    1.45285   0.626   0.5314  
## ns(time, df = 18 * 20)26   2.86446    1.37258   2.087   0.0369 *
## ns(time, df = 18 * 20)27  -1.21121    1.71059  -0.708   0.4789  
## ns(time, df = 18 * 20)28   2.21692    1.50928   1.469   0.1419  
## ns(time, df = 18 * 20)29   0.35637    1.66376   0.214   0.8304  
## ns(time, df = 18 * 20)30   0.29210    1.94941   0.150   0.8809  
## ns(time, df = 18 * 20)31  -1.00176    2.21178  -0.453   0.6506  
## ns(time, df = 18 * 20)32   0.54559    1.74733   0.312   0.7549  
## ns(time, df = 18 * 20)33   1.37034    1.48228   0.924   0.3552  
## ns(time, df = 18 * 20)34   1.29156    1.41159   0.915   0.3602  
## ns(time, df = 18 * 20)35   1.26090    1.37728   0.915   0.3599  
## ns(time, df = 18 * 20)36   2.00046    1.36976   1.460   0.1442  
## ns(time, df = 18 * 20)37  -0.13058    1.50140  -0.087   0.9307  
## ns(time, df = 18 * 20)38   2.17642    1.30155   1.672   0.0945 .
## ns(time, df = 18 * 20)39   2.21732    1.28211   1.729   0.0837 .
## ns(time, df = 18 * 20)40   0.69179    1.42684   0.485   0.6278  
## ns(time, df = 18 * 20)41   1.09826    1.47094   0.747   0.4553  
## ns(time, df = 18 * 20)42   0.86530    1.43867   0.601   0.5475  
## ns(time, df = 18 * 20)43   1.99721    1.36510   1.463   0.1435  
## ns(time, df = 18 * 20)44   0.50760    1.41446   0.359   0.7197  
## ns(time, df = 18 * 20)45   2.53903    1.35583   1.873   0.0611 .
## ns(time, df = 18 * 20)46   0.01602    1.57046   0.010   0.9919  
## ns(time, df = 18 * 20)47   0.72920    1.58252   0.461   0.6450  
## ns(time, df = 18 * 20)48   1.07038    1.45584   0.735   0.4622  
## ns(time, df = 18 * 20)49   2.07329    1.40905   1.471   0.1412  
## ns(time, df = 18 * 20)50  -0.11496    1.61328  -0.071   0.9432  
## ns(time, df = 18 * 20)51   0.97569    1.49525   0.653   0.5141  
## ns(time, df = 18 * 20)52   2.08952    1.41076   1.481   0.1386  
## ns(time, df = 18 * 20)53  -0.13052    1.56939  -0.083   0.9337  
## ns(time, df = 18 * 20)54   1.67931    1.42986   1.174   0.2402  
## ns(time, df = 18 * 20)55   1.24207    1.41766   0.876   0.3810  
## ns(time, df = 18 * 20)56   0.99755    1.44166   0.692   0.4890  
## ns(time, df = 18 * 20)57   1.46888    1.42335   1.032   0.3021  
## ns(time, df = 18 * 20)58   1.09012    1.49938   0.727   0.4672  
## ns(time, df = 18 * 20)59  -0.13832    1.55954  -0.089   0.9293  
## ns(time, df = 18 * 20)60   2.45303    1.32015   1.858   0.0631 .
## ns(time, df = 18 * 20)61   1.42837    1.32990   1.074   0.2828  
## ns(time, df = 18 * 20)62   1.19771    1.37870   0.869   0.3850  
## ns(time, df = 18 * 20)63   1.23001    1.35497   0.908   0.3640  
## ns(time, df = 18 * 20)64   1.99731    1.29640   1.541   0.1234  
## ns(time, df = 18 * 20)65   1.66101    1.33531   1.244   0.2135  
## ns(time, df = 18 * 20)66   1.09293    1.48905   0.734   0.4630  
## ns(time, df = 18 * 20)67  -0.40960    1.67939  -0.244   0.8073  
## ns(time, df = 18 * 20)68   2.05236    1.45826   1.407   0.1593  
## ns(time, df = 18 * 20)69   0.45756    1.50326   0.304   0.7608  
## ns(time, df = 18 * 20)70   1.54678    1.45883   1.060   0.2890  
## ns(time, df = 18 * 20)71   0.40456    1.47472   0.274   0.7838  
## ns(time, df = 18 * 20)72   2.57973    1.40193   1.840   0.0658 .
## ns(time, df = 18 * 20)73  -1.05975    1.64869  -0.643   0.5204  
## ns(time, df = 18 * 20)74   2.80968    1.41313   1.988   0.0468 *
## ns(time, df = 18 * 20)75  -0.39582    1.52556  -0.259   0.7953  
## ns(time, df = 18 * 20)76   3.19263    1.45344   2.197   0.0280 *
## ns(time, df = 18 * 20)77  -1.52063    2.03174  -0.748   0.4542  
## ns(time, df = 18 * 20)78  -0.71570    2.07127  -0.346   0.7297  
## ns(time, df = 18 * 20)79   2.31973    1.71401   1.353   0.1759  
## ns(time, df = 18 * 20)80  -1.87100    2.06080  -0.908   0.3639  
## ns(time, df = 18 * 20)81   2.66511    1.73816   1.533   0.1252  
## ns(time, df = 18 * 20)82  -2.73798    2.16671  -1.264   0.2064  
## ns(time, df = 18 * 20)83   2.95054    1.47489   2.001   0.0454 *
## ns(time, df = 18 * 20)84   0.15330    1.47660   0.104   0.9173  
## ns(time, df = 18 * 20)85   2.00334    1.36038   1.473   0.1409  
## ns(time, df = 18 * 20)86   1.10035    1.36324   0.807   0.4196  
## ns(time, df = 18 * 20)87   1.89164    1.35319   1.398   0.1621  
## ns(time, df = 18 * 20)88   0.63285    1.43583   0.441   0.6594  
## ns(time, df = 18 * 20)89   1.53705    1.37654   1.117   0.2642  
## ns(time, df = 18 * 20)90   1.58459    1.36005   1.165   0.2440  
## ns(time, df = 18 * 20)91   0.89750    1.38417   0.648   0.5167  
## ns(time, df = 18 * 20)92   2.43082    1.35999   1.787   0.0739 .
## ns(time, df = 18 * 20)93  -0.02081    1.62096  -0.013   0.9898  
## ns(time, df = 18 * 20)94   0.67479    1.79594   0.376   0.7071  
## ns(time, df = 18 * 20)95  -0.76532    1.86358  -0.411   0.6813  
## ns(time, df = 18 * 20)96   2.28924    1.56026   1.467   0.1423  
## ns(time, df = 18 * 20)97  -0.84749    1.69533  -0.500   0.6171  
## ns(time, df = 18 * 20)98   2.48872    1.44152   1.726   0.0843 .
## ns(time, df = 18 * 20)99  -0.01783    1.53321  -0.012   0.9907  
## ns(time, df = 18 * 20)100  2.13669    1.47083   1.453   0.1463  
## ns(time, df = 18 * 20)101 -0.90585    1.62097  -0.559   0.5763  
## ns(time, df = 18 * 20)102  3.12877    1.35486   2.309   0.0209 *
## ns(time, df = 18 * 20)103 -0.24413    1.45611  -0.168   0.8669  
## ns(time, df = 18 * 20)104  2.54820    1.30647   1.950   0.0511 .
## ns(time, df = 18 * 20)105  0.97240    1.32398   0.734   0.4627  
## ns(time, df = 18 * 20)106  2.55198    1.31732   1.937   0.0527 .
## ns(time, df = 18 * 20)107 -0.16399    1.53450  -0.107   0.9149  
## ns(time, df = 18 * 20)108  1.30140    1.42712   0.912   0.3618  
## ns(time, df = 18 * 20)109  1.69059    1.32789   1.273   0.2030  
## ns(time, df = 18 * 20)110  1.89940    1.32400   1.435   0.1514  
## ns(time, df = 18 * 20)111  0.69157    1.41577   0.488   0.6252  
## ns(time, df = 18 * 20)112  1.72894    1.38371   1.250   0.2115  
## ns(time, df = 18 * 20)113  0.84135    1.41304   0.595   0.5516  
## ns(time, df = 18 * 20)114  2.01052    1.39808   1.438   0.1504  
## ns(time, df = 18 * 20)115 -0.22353    1.53415  -0.146   0.8842  
## ns(time, df = 18 * 20)116  2.28426    1.35136   1.690   0.0910 .
## ns(time, df = 18 * 20)117  1.14481    1.37581   0.832   0.4054  
## ns(time, df = 18 * 20)118  1.20700    1.39476   0.865   0.3868  
## ns(time, df = 18 * 20)119  1.94708    1.42374   1.368   0.1714  
## ns(time, df = 18 * 20)120 -0.23083    1.72339  -0.134   0.8934  
## ns(time, df = 18 * 20)121  0.98595    1.88667   0.523   0.6013  
## ns(time, df = 18 * 20)122 -2.34277    2.13290  -1.098   0.2720  
## ns(time, df = 18 * 20)123  3.36638    1.45552   2.313   0.0207 *
## ns(time, df = 18 * 20)124  0.08127    1.55072   0.052   0.9582  
## ns(time, df = 18 * 20)125  0.84298    1.58187   0.533   0.5941  
## ns(time, df = 18 * 20)126  0.95839    1.52271   0.629   0.5291  
## ns(time, df = 18 * 20)127  0.92606    1.45727   0.635   0.5251  
## ns(time, df = 18 * 20)128  1.54377    1.34165   1.151   0.2499  
## ns(time, df = 18 * 20)129  2.37427    1.32263   1.795   0.0726 .
## ns(time, df = 18 * 20)130 -0.34157    1.50513  -0.227   0.8205  
## ns(time, df = 18 * 20)131  2.52587    1.34664   1.876   0.0607 .
## ns(time, df = 18 * 20)132  1.01870    1.44527   0.705   0.4809  
## ns(time, df = 18 * 20)133 -0.11061    1.58835  -0.070   0.9445  
## ns(time, df = 18 * 20)134  2.45250    1.43809   1.705   0.0881 .
## ns(time, df = 18 * 20)135 -0.61417    1.60562  -0.383   0.7021  
## ns(time, df = 18 * 20)136  2.28569    1.39265   1.641   0.1007  
## ns(time, df = 18 * 20)137  0.83834    1.42881   0.587   0.5574  
## ns(time, df = 18 * 20)138  1.25144    1.43126   0.874   0.3819  
## ns(time, df = 18 * 20)139  1.20179    1.42425   0.844   0.3988  
## ns(time, df = 18 * 20)140  0.98528    1.39133   0.708   0.4788  
## ns(time, df = 18 * 20)141  2.26319    1.32277   1.711   0.0871 .
## ns(time, df = 18 * 20)142  0.63444    1.41501   0.448   0.6539  
## ns(time, df = 18 * 20)143  1.69126    1.39825   1.210   0.2264  
## ns(time, df = 18 * 20)144  0.82317    1.45426   0.566   0.5714  
## ns(time, df = 18 * 20)145  1.14674    1.42972   0.802   0.4225  
## ns(time, df = 18 * 20)146  1.28541    1.35356   0.950   0.3423  
## ns(time, df = 18 * 20)147  2.14788    1.29060   1.664   0.0961 .
## ns(time, df = 18 * 20)148  1.03628    1.31837   0.786   0.4319  
## ns(time, df = 18 * 20)149  2.46514    1.28917   1.912   0.0559 .
## ns(time, df = 18 * 20)150  0.62496    1.42072   0.440   0.6600  
## ns(time, df = 18 * 20)151  1.16123    1.44125   0.806   0.4204  
## ns(time, df = 18 * 20)152  1.24096    1.40692   0.882   0.3778  
## ns(time, df = 18 * 20)153  1.44135    1.37848   1.046   0.2957  
## ns(time, df = 18 * 20)154  1.24482    1.36860   0.910   0.3631  
## ns(time, df = 18 * 20)155  2.13185    1.38675   1.537   0.1242  
## ns(time, df = 18 * 20)156 -0.70938    1.62698  -0.436   0.6628  
## ns(time, df = 18 * 20)157  2.37459    1.41872   1.674   0.0942 .
## ns(time, df = 18 * 20)158  0.70293    1.52499   0.461   0.6448  
## ns(time, df = 18 * 20)159  0.07758    1.64855   0.047   0.9625  
## ns(time, df = 18 * 20)160  1.50923    1.47837   1.021   0.3073  
## ns(time, df = 18 * 20)161  0.98789    1.45051   0.681   0.4958  
## ns(time, df = 18 * 20)162  1.29626    1.41203   0.918   0.3586  
## ns(time, df = 18 * 20)163  1.39972    1.38869   1.008   0.3135  
## ns(time, df = 18 * 20)164  1.33667    1.40599   0.951   0.3418  
## ns(time, df = 18 * 20)165  0.72706    1.41661   0.513   0.6078  
## ns(time, df = 18 * 20)166  2.36792    1.33984   1.767   0.0772 .
## ns(time, df = 18 * 20)167  0.27492    1.45660   0.189   0.8503  
## ns(time, df = 18 * 20)168  1.90672    1.39586   1.366   0.1719  
## ns(time, df = 18 * 20)169  1.15648    1.49834   0.772   0.4402  
## ns(time, df = 18 * 20)170 -0.58982    1.70652  -0.346   0.7296  
## ns(time, df = 18 * 20)171  2.22480    1.45611   1.528   0.1265  
## ns(time, df = 18 * 20)172  0.27556    1.51803   0.182   0.8560  
## ns(time, df = 18 * 20)173  1.68559    1.46130   1.153   0.2487  
## ns(time, df = 18 * 20)174  0.17572    1.49226   0.118   0.9063  
## ns(time, df = 18 * 20)175  2.51909    1.36041   1.852   0.0641 .
## ns(time, df = 18 * 20)176  0.32097    1.48403   0.216   0.8288  
## ns(time, df = 18 * 20)177  1.14752    1.43546   0.799   0.4241  
## ns(time, df = 18 * 20)178  1.86501    1.37395   1.357   0.1746  
## ns(time, df = 18 * 20)179  1.04620    1.48089   0.706   0.4799  
## ns(time, df = 18 * 20)180  0.28134    1.66283   0.169   0.8656  
## ns(time, df = 18 * 20)181  0.95681    1.70478   0.561   0.5746  
## ns(time, df = 18 * 20)182 -0.97681    1.70376  -0.573   0.5664  
## ns(time, df = 18 * 20)183  3.28449    1.33120   2.467   0.0136 *
## ns(time, df = 18 * 20)184  0.36426    1.39076   0.262   0.7934  
## ns(time, df = 18 * 20)185  2.16119    1.34323   1.609   0.1076  
## ns(time, df = 18 * 20)186  0.94483    1.42925   0.661   0.5086  
## ns(time, df = 18 * 20)187  0.48983    1.45205   0.337   0.7359  
## ns(time, df = 18 * 20)188  2.36104    1.30307   1.812   0.0700 .
## ns(time, df = 18 * 20)189  1.45766    1.33877   1.089   0.2762  
## ns(time, df = 18 * 20)190  0.77053    1.41060   0.546   0.5849  
## ns(time, df = 18 * 20)191  2.03711    1.36597   1.491   0.1359  
## ns(time, df = 18 * 20)192  0.24732    1.43959   0.172   0.8636  
## ns(time, df = 18 * 20)193  2.08453    1.27811   1.631   0.1029  
## ns(time, df = 18 * 20)194  2.41121    1.24625   1.935   0.0530 .
## ns(time, df = 18 * 20)195  0.65794    1.33087   0.494   0.6210  
## ns(time, df = 18 * 20)196  2.46622    1.26322   1.952   0.0509 .
## ns(time, df = 18 * 20)197  1.31579    1.30841   1.006   0.3146  
## ns(time, df = 18 * 20)198  1.36029    1.32464   1.027   0.3045  
## ns(time, df = 18 * 20)199  1.84030    1.28241   1.435   0.1513  
## ns(time, df = 18 * 20)200  2.13188    1.30446   1.634   0.1022  
## ns(time, df = 18 * 20)201  0.36953    1.48374   0.249   0.8033  
## ns(time, df = 18 * 20)202  1.11063    1.47265   0.754   0.4507  
## ns(time, df = 18 * 20)203  1.58049    1.46122   1.082   0.2794  
## ns(time, df = 18 * 20)204  0.27165    1.61960   0.168   0.8668  
## ns(time, df = 18 * 20)205  0.65931    1.59612   0.413   0.6796  
## ns(time, df = 18 * 20)206  1.24947    1.49063   0.838   0.4019  
## ns(time, df = 18 * 20)207  1.08120    1.46976   0.736   0.4620  
## ns(time, df = 18 * 20)208  1.75968    1.55093   1.135   0.2565  
## ns(time, df = 18 * 20)209 -1.71623    2.04111  -0.841   0.4004  
## ns(time, df = 18 * 20)210  1.71255    1.57816   1.085   0.2779  
## ns(time, df = 18 * 20)211  0.78147    1.50063   0.521   0.6025  
## ns(time, df = 18 * 20)212  0.92705    1.37507   0.674   0.5002  
## ns(time, df = 18 * 20)213  3.12455    1.27274   2.455   0.0141 *
## ns(time, df = 18 * 20)214  0.66789    1.48174   0.451   0.6522  
## ns(time, df = 18 * 20)215 -1.19721    1.83136  -0.654   0.5133  
## ns(time, df = 18 * 20)216  2.45770    1.39955   1.756   0.0791 .
## ns(time, df = 18 * 20)217  0.83309    1.35193   0.616   0.5377  
## ns(time, df = 18 * 20)218  2.87234    1.30845   2.195   0.0281 *
## ns(time, df = 18 * 20)219  0.01547    1.56948   0.010   0.9921  
## ns(time, df = 18 * 20)220 -0.12197    1.66827  -0.073   0.9417  
## ns(time, df = 18 * 20)221  1.93525    1.37833   1.404   0.1603  
## ns(time, df = 18 * 20)222  1.55819    1.31975   1.181   0.2377  
## ns(time, df = 18 * 20)223  1.59300    1.30681   1.219   0.2228  
## ns(time, df = 18 * 20)224  1.68982    1.29723   1.303   0.1927  
## ns(time, df = 18 * 20)225  1.43774    1.28919   1.115   0.2648  
## ns(time, df = 18 * 20)226  2.18224    1.25214   1.743   0.0814 .
## ns(time, df = 18 * 20)227  1.68353    1.28875   1.306   0.1914  
## ns(time, df = 18 * 20)228  1.00558    1.33609   0.753   0.4517  
## ns(time, df = 18 * 20)229  2.57562    1.31556   1.958   0.0503 .
## ns(time, df = 18 * 20)230 -0.48532    1.49622  -0.324   0.7457  
## ns(time, df = 18 * 20)231  2.88275    1.33510   2.159   0.0308 *
## ns(time, df = 18 * 20)232  0.21263    1.45003   0.147   0.8834  
## ns(time, df = 18 * 20)233  1.61788    1.39044   1.164   0.2446  
## ns(time, df = 18 * 20)234  1.12004    1.34519   0.833   0.4051  
## ns(time, df = 18 * 20)235  2.46405    1.29389   1.904   0.0569 .
## ns(time, df = 18 * 20)236  0.46256    1.40256   0.330   0.7416  
## ns(time, df = 18 * 20)237  2.57116    1.42934   1.799   0.0720 .
## ns(time, df = 18 * 20)238 -1.93461    1.88061  -1.029   0.3036  
## ns(time, df = 18 * 20)239  2.34839    1.40883   1.667   0.0955 .
## ns(time, df = 18 * 20)240  1.42730    1.35478   1.054   0.2921  
## ns(time, df = 18 * 20)241  1.44115    1.39451   1.033   0.3014  
## ns(time, df = 18 * 20)242  1.19771    1.51345   0.791   0.4287  
## ns(time, df = 18 * 20)243 -0.71297    1.68398  -0.423   0.6720  
## ns(time, df = 18 * 20)244  3.06751    1.46824   2.089   0.0367 *
## ns(time, df = 18 * 20)245 -1.64896    1.79809  -0.917   0.3591  
## ns(time, df = 18 * 20)246  2.27752    1.42500   1.598   0.1100  
## ns(time, df = 18 * 20)247  0.78857    1.36275   0.579   0.5628  
## ns(time, df = 18 * 20)248  2.55832    1.27240   2.011   0.0444 *
## ns(time, df = 18 * 20)249  1.09288    1.33788   0.817   0.4140  
## ns(time, df = 18 * 20)250  1.26658    1.34521   0.942   0.3464  
## ns(time, df = 18 * 20)251  2.21641    1.31837   1.681   0.0927 .
## ns(time, df = 18 * 20)252  0.63364    1.45349   0.436   0.6629  
## ns(time, df = 18 * 20)253  0.94989    1.48296   0.641   0.5218  
## ns(time, df = 18 * 20)254  1.33525    1.43651   0.930   0.3526  
## ns(time, df = 18 * 20)255  1.29033    1.45983   0.884   0.3768  
## ns(time, df = 18 * 20)256  0.62688    1.56248   0.401   0.6883  
## ns(time, df = 18 * 20)257  0.90721    1.59640   0.568   0.5698  
## ns(time, df = 18 * 20)258  0.06493    1.56214   0.042   0.9668  
## ns(time, df = 18 * 20)259  2.48405    1.35599   1.832   0.0670 .
## ns(time, df = 18 * 20)260  0.84815    1.42754   0.594   0.5524  
## ns(time, df = 18 * 20)261  0.84405    1.46425   0.576   0.5643  
## ns(time, df = 18 * 20)262  1.73347    1.41090   1.229   0.2192  
## ns(time, df = 18 * 20)263  0.47685    1.46692   0.325   0.7451  
## ns(time, df = 18 * 20)264  1.73881    1.36050   1.278   0.2012  
## ns(time, df = 18 * 20)265  1.52989    1.33817   1.143   0.2529  
## ns(time, df = 18 * 20)266  1.44467    1.35897   1.063   0.2878  
## ns(time, df = 18 * 20)267  1.27755    1.39367   0.917   0.3593  
## ns(time, df = 18 * 20)268  1.40697    1.45103   0.970   0.3322  
## ns(time, df = 18 * 20)269  0.03208    1.56737   0.020   0.9837  
## ns(time, df = 18 * 20)270  2.32687    1.48003   1.572   0.1159  
## ns(time, df = 18 * 20)271 -1.10778    1.74076  -0.636   0.5245  
## ns(time, df = 18 * 20)272  2.37635    1.47423   1.612   0.1070  
## ns(time, df = 18 * 20)273 -0.28607    1.52221  -0.188   0.8509  
## ns(time, df = 18 * 20)274  2.66669    1.32685   2.010   0.0445 *
## ns(time, df = 18 * 20)275  0.67309    1.36735   0.492   0.6225  
## ns(time, df = 18 * 20)276  2.29995    1.33686   1.720   0.0854 .
## ns(time, df = 18 * 20)277  0.01719    1.43394   0.012   0.9904  
## ns(time, df = 18 * 20)278  2.81012    1.29533   2.169   0.0301 *
## ns(time, df = 18 * 20)279  1.94261    1.46526   1.326   0.1849  
## ns(time, df = 18 * 20)280 -4.01422    2.65370  -1.513   0.1304  
## ns(time, df = 18 * 20)281  3.06712    1.62602   1.886   0.0593 .
## ns(time, df = 18 * 20)282 -0.88518    1.62824  -0.544   0.5867  
## ns(time, df = 18 * 20)283  2.73421    1.33116   2.054   0.0400 *
## ns(time, df = 18 * 20)284  1.30933    1.36338   0.960   0.3369  
## ns(time, df = 18 * 20)285  0.47412    1.44134   0.329   0.7422  
## ns(time, df = 18 * 20)286  2.34937    1.33891   1.755   0.0793 .
## ns(time, df = 18 * 20)287  0.30693    1.39887   0.219   0.8263  
## ns(time, df = 18 * 20)288  2.56747    1.28183   2.003   0.0452 *
## ns(time, df = 18 * 20)289  1.14409    1.32910   0.861   0.3893  
## ns(time, df = 18 * 20)290  1.26734    1.31636   0.963   0.3357  
## ns(time, df = 18 * 20)291  2.63778    1.26963   2.078   0.0377 *
## ns(time, df = 18 * 20)292  0.29037    1.38795   0.209   0.8343  
## ns(time, df = 18 * 20)293  2.11124    1.27933   1.650   0.0989 .
## ns(time, df = 18 * 20)294  2.67432    1.30552   2.048   0.0405 *
## ns(time, df = 18 * 20)295 -1.71207    1.67756  -1.021   0.3075  
## ns(time, df = 18 * 20)296  3.29987    1.32537   2.490   0.0128 *
## ns(time, df = 18 * 20)297  0.33838    1.37727   0.246   0.8059  
## ns(time, df = 18 * 20)298  2.29126    1.30473   1.756   0.0791 .
## ns(time, df = 18 * 20)299  1.07320    1.34138   0.800   0.4237  
## ns(time, df = 18 * 20)300  1.75364    1.32795   1.321   0.1866  
## ns(time, df = 18 * 20)301  1.52264    1.36919   1.112   0.2661  
## ns(time, df = 18 * 20)302  0.26959    1.42323   0.189   0.8498  
## ns(time, df = 18 * 20)303  2.84365    1.27660   2.228   0.0259 *
## ns(time, df = 18 * 20)304  1.02362    1.35647   0.755   0.4505  
## ns(time, df = 18 * 20)305  1.65093    1.49132   1.107   0.2683  
## ns(time, df = 18 * 20)306 -1.64172    1.78886  -0.918   0.3587  
## ns(time, df = 18 * 20)307  3.33047    1.36661   2.437   0.0148 *
## ns(time, df = 18 * 20)308 -0.09054    1.42867  -0.063   0.9495  
## ns(time, df = 18 * 20)309  2.72718    1.31311   2.077   0.0378 *
## ns(time, df = 18 * 20)310  0.52348    1.40903   0.372   0.7103  
## ns(time, df = 18 * 20)311  1.51175    1.37580   1.099   0.2718  
## ns(time, df = 18 * 20)312  1.39683    1.33866   1.043   0.2967  
## ns(time, df = 18 * 20)313  1.92700    1.32023   1.460   0.1444  
## ns(time, df = 18 * 20)314  0.80382    1.37676   0.584   0.5593  
## ns(time, df = 18 * 20)315  1.87898    1.30905   1.435   0.1512  
## ns(time, df = 18 * 20)316  1.52953    1.28856   1.187   0.2352  
## ns(time, df = 18 * 20)317  2.11125    1.27860   1.651   0.0987 .
## ns(time, df = 18 * 20)318  0.89314    1.32680   0.673   0.5009  
## ns(time, df = 18 * 20)319  3.08065    1.33607   2.306   0.0211 *
## ns(time, df = 18 * 20)320 -2.16834    1.77196  -1.224   0.2211  
## ns(time, df = 18 * 20)321  3.45495    1.38393   2.496   0.0125 *
## ns(time, df = 18 * 20)322 -0.57020    1.50419  -0.379   0.7046  
## ns(time, df = 18 * 20)323  2.50371    1.32107   1.895   0.0581 .
## ns(time, df = 18 * 20)324  1.18130    1.33587   0.884   0.3765  
## ns(time, df = 18 * 20)325  1.32936    1.31332   1.012   0.3114  
## ns(time, df = 18 * 20)326  2.48762    1.26128   1.972   0.0486 *
## ns(time, df = 18 * 20)327  1.08699    1.35689   0.801   0.4231  
## ns(time, df = 18 * 20)328  0.96160    1.41463   0.680   0.4967  
## ns(time, df = 18 * 20)329  2.14773    1.42611   1.506   0.1321  
## ns(time, df = 18 * 20)330 -1.05661    1.71815  -0.615   0.5386  
## ns(time, df = 18 * 20)331  2.04674    1.38898   1.474   0.1406  
## ns(time, df = 18 * 20)332  1.41312    1.31142   1.078   0.2812  
## ns(time, df = 18 * 20)333  2.09195    1.26920   1.648   0.0993 .
## ns(time, df = 18 * 20)334  1.50433    1.29365   1.163   0.2449  
## ns(time, df = 18 * 20)335  1.94420    1.33450   1.457   0.1451  
## ns(time, df = 18 * 20)336  0.35905    1.49220   0.241   0.8099  
## ns(time, df = 18 * 20)337  1.30127    1.45589   0.894   0.3714  
## ns(time, df = 18 * 20)338  0.84964    1.39227   0.610   0.5417  
## ns(time, df = 18 * 20)339  2.37484    1.27772   1.859   0.0631 .
## ns(time, df = 18 * 20)340  1.71303    1.32720   1.291   0.1968  
## ns(time, df = 18 * 20)341  0.74690    1.52335   0.490   0.6239  
## ns(time, df = 18 * 20)342  0.30234    1.73145   0.175   0.8614  
## ns(time, df = 18 * 20)343 -0.11360    1.68069  -0.068   0.9461  
## ns(time, df = 18 * 20)344  2.04014    1.39479   1.463   0.1436  
## ns(time, df = 18 * 20)345  1.22356    1.36972   0.893   0.3717  
## ns(time, df = 18 * 20)346  1.53773    1.36122   1.130   0.2586  
## ns(time, df = 18 * 20)347  1.37774    1.38967   0.991   0.3215  
## ns(time, df = 18 * 20)348  1.01051    1.45218   0.696   0.4865  
## ns(time, df = 18 * 20)349  0.61312    1.41484   0.433   0.6648  
## ns(time, df = 18 * 20)350  2.56740    1.26574   2.028   0.0425 *
## ns(time, df = 18 * 20)351  1.45271    1.28724   1.129   0.2591  
## ns(time, df = 18 * 20)352  1.54391    1.30384   1.184   0.2364  
## ns(time, df = 18 * 20)353  1.61338    1.28374   1.257   0.2088  
## ns(time, df = 18 * 20)354  1.92753    1.25170   1.540   0.1236  
## ns(time, df = 18 * 20)355  1.88733    1.24413   1.517   0.1293  
## ns(time, df = 18 * 20)356  2.08357    1.26459   1.648   0.0994 .
## ns(time, df = 18 * 20)357  0.88650    1.35179   0.656   0.5120  
## ns(time, df = 18 * 20)358  0.87523    1.02628   0.853   0.3938  
## ns(time, df = 18 * 20)359  3.45442    2.32143   1.488   0.1367  
## ns(time, df = 18 * 20)360  0.04381    0.72752   0.060   0.9520  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(40190.31) family taken to be 1)
## 
##     Null deviance: 1179.12  on 938  degrees of freedom
## Residual deviance:  740.58  on 578  degrees of freedom
## AIC: 3612.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  40190 
##           Std. Err.:  167921 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2888.433
##      model      aic      theta
## 1   ns1 py 3334.422    29.5223
## 2   ns5 py 3386.524 13518.6673
## 3   ns6 py 3405.698 17043.3342
## 4   ns7 py 3412.745 20836.3592
## 5   ns8 py 3423.554 23590.1831
## 6   ns9 py 3427.643 26527.1497
## 7  ns10 py 3444.692 27991.4874
## 8  ns14 py 3517.555 32829.9959
## 9  ns15 py 3529.607 33805.2556
## 10 ns16 py 3556.458 33776.5473
## 11 ns18 py 3586.306 36901.6402
## 12 ns20 py 3612.433 40190.3100
## 
## Call:
## glm.nb(formula = ptbBM ~ ns(time, df = 18 * 15), data = week, 
##     init.theta = 33805.25556, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.70939  -0.75578  -0.03452   0.50500   2.42892  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)   
## (Intercept)               -0.443263   0.841886  -0.527  0.59853   
## ns(time, df = 18 * 15)1    0.380749   0.962786   0.395  0.69250   
## ns(time, df = 18 * 15)2    2.373539   1.323327   1.794  0.07287 . 
## ns(time, df = 18 * 15)3   -1.500659   1.585080  -0.947  0.34377   
## ns(time, df = 18 * 15)4    0.338441   1.437296   0.235  0.81384   
## ns(time, df = 18 * 15)5    2.319432   1.211052   1.915  0.05546 . 
## ns(time, df = 18 * 15)6   -0.446395   1.417803  -0.315  0.75288   
## ns(time, df = 18 * 15)7    1.000544   1.323849   0.756  0.44978   
## ns(time, df = 18 * 15)8    0.783140   1.269764   0.617  0.53739   
## ns(time, df = 18 * 15)9    0.922306   1.164524   0.792  0.42836   
## ns(time, df = 18 * 15)10   2.486673   1.077291   2.308  0.02098 * 
## ns(time, df = 18 * 15)11   0.471835   1.129344   0.418  0.67610   
## ns(time, df = 18 * 15)12   2.637101   1.076602   2.449  0.01431 * 
## ns(time, df = 18 * 15)13   0.248680   1.169145   0.213  0.83156   
## ns(time, df = 18 * 15)14   2.333039   1.137082   2.052  0.04019 * 
## ns(time, df = 18 * 15)15  -0.277312   1.256958  -0.221  0.82539   
## ns(time, df = 18 * 15)16   2.351778   1.135764   2.071  0.03839 * 
## ns(time, df = 18 * 15)17   1.054785   1.230053   0.858  0.39116   
## ns(time, df = 18 * 15)18  -0.940585   1.401822  -0.671  0.50224   
## ns(time, df = 18 * 15)19   3.211485   1.178502   2.725  0.00643 **
## ns(time, df = 18 * 15)20  -0.983478   1.387732  -0.709  0.47851   
## ns(time, df = 18 * 15)21   2.096555   1.311118   1.599  0.10981   
## ns(time, df = 18 * 15)22  -0.377742   1.584407  -0.238  0.81156   
## ns(time, df = 18 * 15)23  -0.937516   1.777730  -0.527  0.59794   
## ns(time, df = 18 * 15)24   0.981917   1.378613   0.712  0.47631   
## ns(time, df = 18 * 15)25   1.074378   1.225629   0.877  0.38071   
## ns(time, df = 18 * 15)26   1.534906   1.167604   1.315  0.18865   
## ns(time, df = 18 * 15)27   0.950278   1.192504   0.797  0.42552   
## ns(time, df = 18 * 15)28   0.921354   1.151039   0.800  0.42345   
## ns(time, df = 18 * 15)29   2.630514   1.092406   2.408  0.01604 * 
## ns(time, df = 18 * 15)30   0.049328   1.244549   0.040  0.96838   
## ns(time, df = 18 * 15)31   1.184576   1.218096   0.972  0.33081   
## ns(time, df = 18 * 15)32   1.268228   1.177222   1.077  0.28134   
## ns(time, df = 18 * 15)33   1.235642   1.172310   1.054  0.29187   
## ns(time, df = 18 * 15)34   1.558597   1.216881   1.281  0.20026   
## ns(time, df = 18 * 15)35  -0.650901   1.384852  -0.470  0.63834   
## ns(time, df = 18 * 15)36   2.314583   1.203023   1.924  0.05436 . 
## ns(time, df = 18 * 15)37   0.134256   1.294485   0.104  0.91740   
## ns(time, df = 18 * 15)38   1.067707   1.253404   0.852  0.39430   
## ns(time, df = 18 * 15)39   1.281563   1.225368   1.046  0.29563   
## ns(time, df = 18 * 15)40   0.493412   1.260952   0.391  0.69557   
## ns(time, df = 18 * 15)41   1.539379   1.197974   1.285  0.19880   
## ns(time, df = 18 * 15)42   0.795178   1.222862   0.650  0.51552   
## ns(time, df = 18 * 15)43   1.404816   1.232832   1.140  0.25449   
## ns(time, df = 18 * 15)44  -0.186294   1.282555  -0.145  0.88451   
## ns(time, df = 18 * 15)45   2.571257   1.115184   2.306  0.02113 * 
## ns(time, df = 18 * 15)46   0.643181   1.169364   0.550  0.58230   
## ns(time, df = 18 * 15)47   1.312519   1.142797   1.149  0.25076   
## ns(time, df = 18 * 15)48   1.873916   1.112148   1.685  0.09200 . 
## ns(time, df = 18 * 15)49   1.229987   1.203172   1.022  0.30665   
## ns(time, df = 18 * 15)50  -0.319072   1.373058  -0.232  0.81624   
## ns(time, df = 18 * 15)51   1.836542   1.236677   1.485  0.13753   
## ns(time, df = 18 * 15)52   0.212280   1.282550   0.166  0.86854   
## ns(time, df = 18 * 15)53   1.622956   1.210453   1.341  0.17999   
## ns(time, df = 18 * 15)54   0.663494   1.249854   0.531  0.59552   
## ns(time, df = 18 * 15)55   1.084311   1.241769   0.873  0.38255   
## ns(time, df = 18 * 15)56   0.919888   1.233226   0.746  0.45572   
## ns(time, df = 18 * 15)57   1.920891   1.290455   1.489  0.13661   
## ns(time, df = 18 * 15)58  -1.963720   1.788038  -1.098  0.27209   
## ns(time, df = 18 * 15)59   1.537848   1.473939   1.043  0.29678   
## ns(time, df = 18 * 15)60  -0.033976   1.557807  -0.022  0.98260   
## ns(time, df = 18 * 15)61  -0.461669   1.558587  -0.296  0.76707   
## ns(time, df = 18 * 15)62   1.529720   1.268804   1.206  0.22796   
## ns(time, df = 18 * 15)63   0.851597   1.209149   0.704  0.48125   
## ns(time, df = 18 * 15)64   1.573823   1.150704   1.368  0.17140   
## ns(time, df = 18 * 15)65   1.284246   1.164009   1.103  0.26990   
## ns(time, df = 18 * 15)66   0.837712   1.194458   0.701  0.48310   
## ns(time, df = 18 * 15)67   1.555516   1.158077   1.343  0.17921   
## ns(time, df = 18 * 15)68   0.979607   1.171997   0.836  0.40324   
## ns(time, df = 18 * 15)69   2.028685   1.203319   1.686  0.09181 . 
## ns(time, df = 18 * 15)70  -0.821114   1.529658  -0.537  0.59141   
## ns(time, df = 18 * 15)71   0.524888   1.464285   0.358  0.72000   
## ns(time, df = 18 * 15)72   0.788882   1.353592   0.583  0.56002   
## ns(time, df = 18 * 15)73   0.672296   1.293658   0.520  0.60328   
## ns(time, df = 18 * 15)74   1.542694   1.243669   1.240  0.21481   
## ns(time, df = 18 * 15)75  -0.065322   1.319444  -0.050  0.96052   
## ns(time, df = 18 * 15)76   1.770421   1.182977   1.497  0.13450   
## ns(time, df = 18 * 15)77   0.877298   1.173281   0.748  0.45462   
## ns(time, df = 18 * 15)78   1.534938   1.118534   1.372  0.16998   
## ns(time, df = 18 * 15)79   1.971322   1.115327   1.767  0.07715 . 
## ns(time, df = 18 * 15)80   0.281049   1.240969   0.226  0.82083   
## ns(time, df = 18 * 15)81   1.157136   1.176362   0.984  0.32528   
## ns(time, df = 18 * 15)82   1.987852   1.119690   1.775  0.07584 . 
## ns(time, df = 18 * 15)83   0.719912   1.190156   0.605  0.54525   
## ns(time, df = 18 * 15)84   1.236507   1.182807   1.045  0.29584   
## ns(time, df = 18 * 15)85   1.463331   1.188845   1.231  0.21837   
## ns(time, df = 18 * 15)86   0.179826   1.252135   0.144  0.88580   
## ns(time, df = 18 * 15)87   2.111767   1.147237   1.841  0.06566 . 
## ns(time, df = 18 * 15)88   0.655858   1.200242   0.546  0.58476   
## ns(time, df = 18 * 15)89   1.735886   1.228425   1.413  0.15763   
## ns(time, df = 18 * 15)90   0.213647   1.497077   0.143  0.88652   
## ns(time, df = 18 * 15)91  -2.074724   1.779645  -1.166  0.24369   
## ns(time, df = 18 * 15)92   3.027062   1.260172   2.402  0.01630 * 
## ns(time, df = 18 * 15)93  -0.427889   1.358526  -0.315  0.75279   
## ns(time, df = 18 * 15)94   1.401835   1.285631   1.090  0.27554   
## ns(time, df = 18 * 15)95   0.114077   1.253590   0.091  0.92749   
## ns(time, df = 18 * 15)96   2.646049   1.121103   2.360  0.01826 * 
## ns(time, df = 18 * 15)97   0.001017   1.212596   0.001  0.99933   
## ns(time, df = 18 * 15)98   2.341534   1.149331   2.037  0.04162 * 
## ns(time, df = 18 * 15)99   0.031059   1.270187   0.024  0.98049   
## ns(time, df = 18 * 15)100  1.580893   1.236447   1.279  0.20105   
## ns(time, df = 18 * 15)101  0.174929   1.284535   0.136  0.89168   
## ns(time, df = 18 * 15)102  1.750152   1.186528   1.475  0.14021   
## ns(time, df = 18 * 15)103  0.846595   1.219660   0.694  0.48760   
## ns(time, df = 18 * 15)104  0.809474   1.215552   0.666  0.50546   
## ns(time, df = 18 * 15)105  1.663670   1.147171   1.450  0.14699   
## ns(time, df = 18 * 15)106  1.174252   1.165364   1.008  0.31363   
## ns(time, df = 18 * 15)107  1.145596   1.196676   0.957  0.33841   
## ns(time, df = 18 * 15)108  0.860390   1.219091   0.706  0.48034   
## ns(time, df = 18 * 15)109  1.090623   1.169079   0.933  0.35088   
## ns(time, df = 18 * 15)110  1.754586   1.104078   1.589  0.11202   
## ns(time, df = 18 * 15)111  1.475671   1.105449   1.335  0.18191   
## ns(time, df = 18 * 15)112  1.578768   1.140788   1.384  0.16638   
## ns(time, df = 18 * 15)113  0.472107   1.231297   0.383  0.70141   
## ns(time, df = 18 * 15)114  1.405717   1.180504   1.191  0.23374   
## ns(time, df = 18 * 15)115  1.205083   1.164602   1.035  0.30078   
## ns(time, df = 18 * 15)116  1.581514   1.185714   1.334  0.18227   
## ns(time, df = 18 * 15)117 -0.025002   1.293234  -0.019  0.98458   
## ns(time, df = 18 * 15)118  2.194557   1.223633   1.793  0.07290 . 
## ns(time, df = 18 * 15)119 -0.747027   1.407074  -0.531  0.59548   
## ns(time, df = 18 * 15)120  1.791655   1.234196   1.452  0.14659   
## ns(time, df = 18 * 15)121  0.543704   1.227520   0.443  0.65782   
## ns(time, df = 18 * 15)122  1.793066   1.173644   1.528  0.12657   
## ns(time, df = 18 * 15)123  0.367048   1.218293   0.301  0.76320   
## ns(time, df = 18 * 15)124  2.067149   1.149514   1.798  0.07213 . 
## ns(time, df = 18 * 15)125  0.374158   1.215955   0.308  0.75831   
## ns(time, df = 18 * 15)126  2.068835   1.197844   1.727  0.08414 . 
## ns(time, df = 18 * 15)127 -0.511222   1.382180  -0.370  0.71148   
## ns(time, df = 18 * 15)128  1.537469   1.253985   1.226  0.22017   
## ns(time, df = 18 * 15)129  0.844508   1.265190   0.667  0.50446   
## ns(time, df = 18 * 15)130  0.425505   1.260173   0.338  0.73562   
## ns(time, df = 18 * 15)131  2.186886   1.169946   1.869  0.06159 . 
## ns(time, df = 18 * 15)132 -0.163753   1.274430  -0.128  0.89776   
## ns(time, df = 18 * 15)133  2.159213   1.173649   1.840  0.06581 . 
## ns(time, df = 18 * 15)134  0.532820   1.272111   0.419  0.67533   
## ns(time, df = 18 * 15)135  0.840939   1.390545   0.605  0.54534   
## ns(time, df = 18 * 15)136 -0.947342   1.456470  -0.650  0.51541   
## ns(time, df = 18 * 15)137  2.701804   1.146450   2.357  0.01844 * 
## ns(time, df = 18 * 15)138  0.606084   1.170121   0.518  0.60448   
## ns(time, df = 18 * 15)139  1.868304   1.161622   1.608  0.10776   
## ns(time, df = 18 * 15)140 -0.038578   1.225774  -0.031  0.97489   
## ns(time, df = 18 * 15)141  2.702459   1.104361   2.447  0.01440 * 
## ns(time, df = 18 * 15)142  0.271711   1.190973   0.228  0.81954   
## ns(time, df = 18 * 15)143  1.819744   1.157548   1.572  0.11593   
## ns(time, df = 18 * 15)144  0.300041   1.164777   0.258  0.79672   
## ns(time, df = 18 * 15)145  2.917745   1.055442   2.764  0.00570 **
## ns(time, df = 18 * 15)146  0.432045   1.117295   0.387  0.69899   
## ns(time, df = 18 * 15)147  2.545785   1.070554   2.378  0.01741 * 
## ns(time, df = 18 * 15)148  0.473831   1.138547   0.416  0.67728   
## ns(time, df = 18 * 15)149  2.215072   1.085687   2.040  0.04133 * 
## ns(time, df = 18 * 15)150  1.344529   1.145493   1.174  0.24049   
## ns(time, df = 18 * 15)151  0.323024   1.268897   0.255  0.79905   
## ns(time, df = 18 * 15)152  1.631855   1.244568   1.311  0.18980   
## ns(time, df = 18 * 15)153  0.053972   1.374120   0.039  0.96867   
## ns(time, df = 18 * 15)154  0.651396   1.311570   0.497  0.61943   
## ns(time, df = 18 * 15)155  1.785733   1.243536   1.436  0.15100   
## ns(time, df = 18 * 15)156 -0.134223   1.415791  -0.095  0.92447   
## ns(time, df = 18 * 15)157  0.590233   1.391899   0.424  0.67153   
## ns(time, df = 18 * 15)158  0.563159   1.267320   0.444  0.65678   
## ns(time, df = 18 * 15)159  1.868283   1.117806   1.671  0.09465 . 
## ns(time, df = 18 * 15)160  2.219001   1.141878   1.943  0.05198 . 
## ns(time, df = 18 * 15)161 -1.332277   1.457453  -0.914  0.36066   
## ns(time, df = 18 * 15)162  1.935718   1.165954   1.660  0.09687 . 
## ns(time, df = 18 * 15)163  1.898842   1.123580   1.690  0.09103 . 
## ns(time, df = 18 * 15)164  0.633492   1.252557   0.506  0.61303   
## ns(time, df = 18 * 15)165  0.135781   1.290272   0.105  0.91619   
## ns(time, df = 18 * 15)166  2.058459   1.122548   1.834  0.06669 . 
## ns(time, df = 18 * 15)167  1.301351   1.113407   1.169  0.24248   
## ns(time, df = 18 * 15)168  1.336439   1.100510   1.214  0.22460   
## ns(time, df = 18 * 15)169  2.005796   1.067501   1.879  0.06025 . 
## ns(time, df = 18 * 15)170  1.294840   1.094437   1.183  0.23677   
## ns(time, df = 18 * 15)171  1.787309   1.111332   1.608  0.10778   
## ns(time, df = 18 * 15)172  0.615992   1.177182   0.523  0.60078   
## ns(time, df = 18 * 15)173  1.932602   1.144374   1.689  0.09126 . 
## ns(time, df = 18 * 15)174  0.413686   1.211746   0.341  0.73280   
## ns(time, df = 18 * 15)175  1.630357   1.141169   1.429  0.15310   
## ns(time, df = 18 * 15)176  1.405964   1.124472   1.250  0.21118   
## ns(time, df = 18 * 15)177  1.808258   1.167886   1.548  0.12155   
## ns(time, df = 18 * 15)178 -0.533317   1.372595  -0.389  0.69761   
## ns(time, df = 18 * 15)179  1.565691   1.196162   1.309  0.19056   
## ns(time, df = 18 * 15)180  1.601055   1.157179   1.384  0.16649   
## ns(time, df = 18 * 15)181  0.880868   1.244966   0.708  0.47923   
## ns(time, df = 18 * 15)182  0.351313   1.321436   0.266  0.79035   
## ns(time, df = 18 * 15)183  1.372830   1.267297   1.083  0.27869   
## ns(time, df = 18 * 15)184  0.105175   1.293817   0.081  0.93521   
## ns(time, df = 18 * 15)185  1.708148   1.133242   1.507  0.13173   
## ns(time, df = 18 * 15)186  1.916916   1.097512   1.747  0.08071 . 
## ns(time, df = 18 * 15)187  0.694941   1.151188   0.604  0.54606   
## ns(time, df = 18 * 15)188  2.222669   1.125187   1.975  0.04823 * 
## ns(time, df = 18 * 15)189  0.181873   1.253185   0.145  0.88461   
## ns(time, df = 18 * 15)190  1.338884   1.228488   1.090  0.27577   
## ns(time, df = 18 * 15)191  0.947076   1.251154   0.757  0.44907   
## ns(time, df = 18 * 15)192  0.914727   1.320594   0.693  0.48852   
## ns(time, df = 18 * 15)193 -0.378655   1.365714  -0.277  0.78158   
## ns(time, df = 18 * 15)194  2.508047   1.166297   2.150  0.03152 * 
## ns(time, df = 18 * 15)195  0.156448   1.244656   0.126  0.89997   
## ns(time, df = 18 * 15)196  1.644725   1.200880   1.370  0.17081   
## ns(time, df = 18 * 15)197  0.452379   1.227363   0.369  0.71244   
## ns(time, df = 18 * 15)198  1.756412   1.145234   1.534  0.12511   
## ns(time, df = 18 * 15)199  1.178906   1.153324   1.022  0.30670   
## ns(time, df = 18 * 15)200  1.415343   1.181618   1.198  0.23099   
## ns(time, df = 18 * 15)201  0.588177   1.263374   0.466  0.64153   
## ns(time, df = 18 * 15)202  1.172345   1.277357   0.918  0.35873   
## ns(time, df = 18 * 15)203  0.282350   1.342334   0.210  0.83340   
## ns(time, df = 18 * 15)204  0.961901   1.260705   0.763  0.44547   
## ns(time, df = 18 * 15)205  1.156500   1.174076   0.985  0.32461   
## ns(time, df = 18 * 15)206  1.849923   1.129803   1.637  0.10155   
## ns(time, df = 18 * 15)207  0.572815   1.175789   0.487  0.62613   
## ns(time, df = 18 * 15)208  2.001952   1.110903   1.802  0.07153 . 
## ns(time, df = 18 * 15)209  1.773241   1.189660   1.491  0.13608   
## ns(time, df = 18 * 15)210 -1.268602   1.598372  -0.794  0.42738   
## ns(time, df = 18 * 15)211  0.750256   1.313899   0.571  0.56799   
## ns(time, df = 18 * 15)212  2.070418   1.147188   1.805  0.07111 . 
## ns(time, df = 18 * 15)213  0.729590   1.179498   0.619  0.53621   
## ns(time, df = 18 * 15)214  1.590320   1.153900   1.378  0.16814   
## ns(time, df = 18 * 15)215  0.753970   1.153507   0.654  0.51335   
## ns(time, df = 18 * 15)216  2.303925   1.089372   2.115  0.03444 * 
## ns(time, df = 18 * 15)217  0.488870   1.134619   0.431  0.66656   
## ns(time, df = 18 * 15)218  2.659644   1.076521   2.471  0.01349 * 
## ns(time, df = 18 * 15)219 -0.036861   1.153001  -0.032  0.97450   
## ns(time, df = 18 * 15)220  3.422383   1.078516   3.173  0.00151 **
## ns(time, df = 18 * 15)221 -1.129237   1.291153  -0.875  0.38179   
## ns(time, df = 18 * 15)222  2.626869   1.115133   2.356  0.01849 * 
## ns(time, df = 18 * 15)223  0.777743   1.142809   0.681  0.49615   
## ns(time, df = 18 * 15)224  1.623302   1.120660   1.449  0.14747   
## ns(time, df = 18 * 15)225  1.549332   1.135593   1.364  0.17246   
## ns(time, df = 18 * 15)226  0.482848   1.189018   0.406  0.68468   
## ns(time, df = 18 * 15)227  2.111974   1.103695   1.914  0.05568 . 
## ns(time, df = 18 * 15)228  1.650334   1.169136   1.412  0.15807   
## ns(time, df = 18 * 15)229 -1.039361   1.421071  -0.731  0.46454   
## ns(time, df = 18 * 15)230  2.326445   1.165776   1.996  0.04598 * 
## ns(time, df = 18 * 15)231  0.740002   1.164152   0.636  0.52500   
## ns(time, df = 18 * 15)232  1.913229   1.136141   1.684  0.09219 . 
## ns(time, df = 18 * 15)233  0.432711   1.189061   0.364  0.71592   
## ns(time, df = 18 * 15)234  2.067355   1.117393   1.850  0.06429 . 
## ns(time, df = 18 * 15)235  0.848825   1.151019   0.737  0.46085   
## ns(time, df = 18 * 15)236  1.517168   1.113688   1.362  0.17311   
## ns(time, df = 18 * 15)237  1.697601   1.087210   1.561  0.11842   
## ns(time, df = 18 * 15)238  1.494750   1.099792   1.359  0.17411   
## ns(time, df = 18 * 15)239  1.617616   1.139442   1.420  0.15571   
## ns(time, df = 18 * 15)240  0.383777   1.248274   0.307  0.75850   
## ns(time, df = 18 * 15)241  1.182650   1.183801   0.999  0.31778   
## ns(time, df = 18 * 15)242  1.717423   1.130467   1.519  0.12871   
## ns(time, df = 18 * 15)243  0.751741   1.137716   0.661  0.50878   
## ns(time, df = 18 * 15)244  2.480440   1.075313   2.307  0.02107 * 
## ns(time, df = 18 * 15)245  0.669890   1.152167   0.581  0.56096   
## ns(time, df = 18 * 15)246  1.839453   1.175531   1.565  0.11763   
## ns(time, df = 18 * 15)247 -0.119179   1.315950  -0.091  0.92784   
## ns(time, df = 18 * 15)248  1.280264   1.182949   1.082  0.27914   
## ns(time, df = 18 * 15)249  1.765648   1.096528   1.610  0.10735   
## ns(time, df = 18 * 15)250  1.636572   1.091595   1.499  0.13381   
## ns(time, df = 18 * 15)251  1.542399   1.138494   1.355  0.17549   
## ns(time, df = 18 * 15)252  0.515710   1.250571   0.412  0.68006   
## ns(time, df = 18 * 15)253  0.765886   1.202078   0.637  0.52404   
## ns(time, df = 18 * 15)254  2.199876   1.101483   1.997  0.04580 * 
## ns(time, df = 18 * 15)255  1.404195   1.171831   1.198  0.23080   
## ns(time, df = 18 * 15)256  0.031020   1.406989   0.022  0.98241   
## ns(time, df = 18 * 15)257 -0.095017   1.385706  -0.069  0.94533   
## ns(time, df = 18 * 15)258  2.121853   1.169987   1.814  0.06974 . 
## ns(time, df = 18 * 15)259  0.713870   1.180763   0.605  0.54546   
## ns(time, df = 18 * 15)260  1.902512   1.165770   1.632  0.10268   
## ns(time, df = 18 * 15)261 -0.155097   1.254364  -0.124  0.90160   
## ns(time, df = 18 * 15)262  2.244411   1.096554   2.047  0.04068 * 
## ns(time, df = 18 * 15)263  1.443077   1.088803   1.325  0.18505   
## ns(time, df = 18 * 15)264  1.424847   1.095182   1.301  0.19325   
## ns(time, df = 18 * 15)265  1.576026   1.070999   1.472  0.14114   
## ns(time, df = 18 * 15)266  2.029655   1.051007   1.931  0.05346 . 
## ns(time, df = 18 * 15)267  1.480270   1.087695   1.361  0.17354   
## ns(time, df = 18 * 15)268  0.187847   0.887920   0.212  0.83245   
## ns(time, df = 18 * 15)269  3.621689   1.976319   1.833  0.06687 . 
## ns(time, df = 18 * 15)270 -0.216257   0.630661  -0.343  0.73167   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(33805.26) family taken to be 1)
## 
##     Null deviance: 1179.11  on 938  degrees of freedom
## Residual deviance:  837.74  on 668  degrees of freedom
## AIC: 3529.6
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  33805 
##           Std. Err.:  152584 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2985.607
## 
## Call:
## glm.nb(formula = ptbBM ~ poly(time, degree = 3), data = week, 
##     init.theta = 24.42315882, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.18075  -0.76899  -0.03902   0.62369   2.93967  
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              0.73518    0.02359  31.171  < 2e-16 ***
## poly(time, degree = 3)1  2.60782    0.71408   3.652  0.00026 ***
## poly(time, degree = 3)2  0.95835    0.71620   1.338  0.18086    
## poly(time, degree = 3)3 -0.41157    0.71535  -0.575  0.56506    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(24.4232) family taken to be 1)
## 
##     Null deviance: 1098.4  on 938  degrees of freedom
## Residual deviance: 1082.7  on 935  degrees of freedom
## AIC: 3316.8
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  24.4 
##           Std. Err.:  14.7 
## 
##  2 x log-likelihood:  -3306.795

## [1] model aic   theta
## <0 rows> (or 0-length row.names)
## 
## Call:
## glm.nb(formula = smptbBM ~ ns(time, df = 18 * 1), data = week, 
##     init.theta = 58.23420512, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.9295  -0.6842  -0.3054   0.5374   3.3332  
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)   
## (Intercept)              -0.4337     0.2990  -1.451  0.14683   
## ns(time, df = 18 * 1)1    0.5296     0.3309   1.600  0.10955   
## ns(time, df = 18 * 1)2    1.1221     0.4231   2.652  0.00800 **
## ns(time, df = 18 * 1)3    0.5287     0.3780   1.399  0.16195   
## ns(time, df = 18 * 1)4    1.1183     0.3958   2.826  0.00472 **
## ns(time, df = 18 * 1)5    0.7862     0.3807   2.065  0.03890 * 
## ns(time, df = 18 * 1)6    1.2486     0.3839   3.253  0.00114 **
## ns(time, df = 18 * 1)7    0.6162     0.3874   1.590  0.11174   
## ns(time, df = 18 * 1)8    1.1660     0.3832   3.042  0.00235 **
## ns(time, df = 18 * 1)9    0.9940     0.3868   2.570  0.01018 * 
## ns(time, df = 18 * 1)10   0.5744     0.4002   1.435  0.15124   
## ns(time, df = 18 * 1)11   0.8929     0.4019   2.222  0.02631 * 
## ns(time, df = 18 * 1)12   0.3594     0.4092   0.878  0.37977   
## ns(time, df = 18 * 1)13   0.9298     0.3938   2.361  0.01821 * 
## ns(time, df = 18 * 1)14   1.0534     0.3859   2.730  0.00633 **
## ns(time, df = 18 * 1)15   0.9277     0.3906   2.375  0.01756 * 
## ns(time, df = 18 * 1)16   0.1379     0.3179   0.434  0.66437   
## ns(time, df = 18 * 1)17   1.8052     0.7156   2.523  0.01165 * 
## ns(time, df = 18 * 1)18   0.3119     0.2570   1.214  0.22487   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(58.2342) family taken to be 1)
## 
##     Null deviance: 1124.9  on 938  degrees of freedom
## Residual deviance: 1092.2  on 920  degrees of freedom
## AIC: 2937.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  58 
##           Std. Err.:  108 
## 
##  2 x log-likelihood:  -2897.858
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ ns(time, df = 18 * 2), data = week, 
##     init.theta = 6921.417412, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1153  -0.8301  -0.1799   0.6110   4.0007  
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)   
## (Intercept)              -0.3857     0.4374  -0.882  0.37783   
## ns(time, df = 18 * 2)1    1.5335     0.4715   3.252  0.00114 **
## ns(time, df = 18 * 2)2   -0.1305     0.6334  -0.206  0.83671   
## ns(time, df = 18 * 2)3    1.3753     0.5358   2.567  0.01027 * 
## ns(time, df = 18 * 2)4    0.4561     0.5835   0.782  0.43437   
## ns(time, df = 18 * 2)5    0.8117     0.5566   1.458  0.14473   
## ns(time, df = 18 * 2)6    1.1433     0.5631   2.031  0.04231 * 
## ns(time, df = 18 * 2)7    0.1532     0.5776   0.265  0.79078   
## ns(time, df = 18 * 2)8    1.3032     0.5599   2.328  0.01993 * 
## ns(time, df = 18 * 2)9    0.2699     0.5650   0.478  0.63287   
## ns(time, df = 18 * 2)10   1.5792     0.5437   2.904  0.00368 **
## ns(time, df = 18 * 2)11   0.3638     0.5596   0.650  0.51570   
## ns(time, df = 18 * 2)12   1.2315     0.5478   2.248  0.02456 * 
## ns(time, df = 18 * 2)13   0.7191     0.5491   1.310  0.19034   
## ns(time, df = 18 * 2)14   1.3806     0.5457   2.530  0.01141 * 
## ns(time, df = 18 * 2)15   0.2220     0.5696   0.390  0.69673   
## ns(time, df = 18 * 2)16   1.2132     0.5525   2.196  0.02811 * 
## ns(time, df = 18 * 2)17   0.7024     0.5531   1.270  0.20407   
## ns(time, df = 18 * 2)18   1.0726     0.5425   1.977  0.04801 * 
## ns(time, df = 18 * 2)19   1.4892     0.5479   2.718  0.00657 **
## ns(time, df = 18 * 2)20  -0.4326     0.6041  -0.716  0.47390   
## ns(time, df = 18 * 2)21   1.2345     0.5673   2.176  0.02955 * 
## ns(time, df = 18 * 2)22   0.7952     0.5703   1.394  0.16323   
## ns(time, df = 18 * 2)23   0.3502     0.5906   0.593  0.55325   
## ns(time, df = 18 * 2)24   0.7369     0.5850   1.260  0.20780   
## ns(time, df = 18 * 2)25   0.5630     0.5878   0.958  0.33815   
## ns(time, df = 18 * 2)26   0.5140     0.5873   0.875  0.38152   
## ns(time, df = 18 * 2)27   0.6128     0.5700   1.075  0.28231   
## ns(time, df = 18 * 2)28   1.2095     0.5463   2.214  0.02682 * 
## ns(time, df = 18 * 2)29   1.0188     0.5489   1.856  0.06344 . 
## ns(time, df = 18 * 2)30   0.5980     0.5626   1.063  0.28782   
## ns(time, df = 18 * 2)31   0.9868     0.5581   1.768  0.07702 . 
## ns(time, df = 18 * 2)32   0.8979     0.5680   1.581  0.11392   
## ns(time, df = 18 * 2)33   0.1362     0.5910   0.230  0.81775   
## ns(time, df = 18 * 2)34   0.8567     0.4451   1.925  0.05424 . 
## ns(time, df = 18 * 2)35   1.0664     1.0444   1.021  0.30724   
## ns(time, df = 18 * 2)36   0.6927     0.3698   1.873  0.06101 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(6921.417) family taken to be 1)
## 
##     Null deviance: 1149.6  on 938  degrees of freedom
## Residual deviance: 1080.7  on 902  degrees of freedom
## AIC: 2938.8
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  6921 
##           Std. Err.:  77227 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2862.753
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ ns(time, df = 18 * 5), data = week, 
##     init.theta = 13015.44671, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1183  -0.8442  -0.1538   0.5311   3.4656  
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)  
## (Intercept)             -0.21961    0.64835  -0.339   0.7348  
## ns(time, df = 18 * 5)1   0.15243    0.81836   0.186   0.8522  
## ns(time, df = 18 * 5)2   0.62271    0.94600   0.658   0.5104  
## ns(time, df = 18 * 5)3   0.58638    0.82664   0.709   0.4781  
## ns(time, df = 18 * 5)4   0.89049    0.85639   1.040   0.2984  
## ns(time, df = 18 * 5)5   0.77466    0.84066   0.921   0.3568  
## ns(time, df = 18 * 5)6   0.59089    0.90407   0.654   0.5134  
## ns(time, df = 18 * 5)7  -0.73883    0.96429  -0.766   0.4436  
## ns(time, df = 18 * 5)8   1.25421    0.86010   1.458   0.1448  
## ns(time, df = 18 * 5)9   0.49274    0.84820   0.581   0.5613  
## ns(time, df = 18 * 5)10  0.95117    0.84207   1.130   0.2587  
## ns(time, df = 18 * 5)11  0.52282    0.86437   0.605   0.5453  
## ns(time, df = 18 * 5)12  0.37953    0.88110   0.431   0.6667  
## ns(time, df = 18 * 5)13  0.66044    0.87069   0.759   0.4481  
## ns(time, df = 18 * 5)14  0.34849    0.86191   0.404   0.6860  
## ns(time, df = 18 * 5)15  1.24025    0.83105   1.492   0.1356  
## ns(time, df = 18 * 5)16  0.37267    0.86022   0.433   0.6648  
## ns(time, df = 18 * 5)17  0.49700    0.85770   0.579   0.5623  
## ns(time, df = 18 * 5)18  1.44072    0.85582   1.683   0.0923 .
## ns(time, df = 18 * 5)19 -1.08010    0.97996  -1.102   0.2704  
## ns(time, df = 18 * 5)20  1.01256    0.87839   1.153   0.2490  
## ns(time, df = 18 * 5)21  0.55838    0.84630   0.660   0.5094  
## ns(time, df = 18 * 5)22  1.36007    0.84018   1.619   0.1055  
## ns(time, df = 18 * 5)23 -0.51718    0.91884  -0.563   0.5735  
## ns(time, df = 18 * 5)24  0.96755    0.85655   1.130   0.2587  
## ns(time, df = 18 * 5)25  0.72175    0.83265   0.867   0.3860  
## ns(time, df = 18 * 5)26  1.01001    0.82102   1.230   0.2186  
## ns(time, df = 18 * 5)27  0.66487    0.82744   0.804   0.4217  
## ns(time, df = 18 * 5)28  1.06528    0.82524   1.291   0.1967  
## ns(time, df = 18 * 5)29  0.55329    0.85650   0.646   0.5183  
## ns(time, df = 18 * 5)30  0.25463    0.87597   0.291   0.7713  
## ns(time, df = 18 * 5)31  0.81233    0.83600   0.972   0.3312  
## ns(time, df = 18 * 5)32  1.24804    0.81887   1.524   0.1275  
## ns(time, df = 18 * 5)33  0.13707    0.84721   0.162   0.8715  
## ns(time, df = 18 * 5)34  1.48400    0.82028   1.809   0.0704 .
## ns(time, df = 18 * 5)35 -0.09590    0.84861  -0.113   0.9100  
## ns(time, df = 18 * 5)36  1.79854    0.80293   2.240   0.0251 *
## ns(time, df = 18 * 5)37  0.31129    0.84397   0.369   0.7122  
## ns(time, df = 18 * 5)38  0.77458    0.86909   0.891   0.3728  
## ns(time, df = 18 * 5)39 -0.01948    0.89876  -0.022   0.9827  
## ns(time, df = 18 * 5)40  0.87211    0.85226   1.023   0.3062  
## ns(time, df = 18 * 5)41  0.88731    0.84120   1.055   0.2915  
## ns(time, df = 18 * 5)42  0.30391    0.85416   0.356   0.7220  
## ns(time, df = 18 * 5)43  1.23190    0.82859   1.487   0.1371  
## ns(time, df = 18 * 5)44  0.32228    0.85066   0.379   0.7048  
## ns(time, df = 18 * 5)45  0.87241    0.83126   1.049   0.2940  
## ns(time, df = 18 * 5)46  0.97077    0.82043   1.183   0.2367  
## ns(time, df = 18 * 5)47  0.54682    0.82059   0.666   0.5052  
## ns(time, df = 18 * 5)48  1.44297    0.79244   1.821   0.0686 .
## ns(time, df = 18 * 5)49  1.10430    0.81721   1.351   0.1766  
## ns(time, df = 18 * 5)50  0.17423    0.91120   0.191   0.8484  
## ns(time, df = 18 * 5)51 -0.38983    0.99305  -0.393   0.6946  
## ns(time, df = 18 * 5)52  0.26245    0.93020   0.282   0.7778  
## ns(time, df = 18 * 5)53  0.82821    0.87475   0.947   0.3437  
## ns(time, df = 18 * 5)54  0.35423    0.87188   0.406   0.6845  
## ns(time, df = 18 * 5)55  0.83207    0.84845   0.981   0.3267  
## ns(time, df = 18 * 5)56  0.71399    0.84499   0.845   0.3981  
## ns(time, df = 18 * 5)57  0.90920    0.86331   1.053   0.2923  
## ns(time, df = 18 * 5)58 -0.31866    0.92683  -0.344   0.7310  
## ns(time, df = 18 * 5)59  1.02871    0.89295   1.152   0.2493  
## ns(time, df = 18 * 5)60 -0.20885    0.93546  -0.223   0.8233  
## ns(time, df = 18 * 5)61  0.47419    0.89619   0.529   0.5967  
## ns(time, df = 18 * 5)62  1.00786    0.87369   1.154   0.2487  
## ns(time, df = 18 * 5)63 -0.18731    0.93143  -0.201   0.8406  
## ns(time, df = 18 * 5)64  0.44041    0.90419   0.487   0.6262  
## ns(time, df = 18 * 5)65  0.79291    0.88164   0.899   0.3685  
## ns(time, df = 18 * 5)66  0.31589    0.92495   0.342   0.7327  
## ns(time, df = 18 * 5)67 -0.56301    0.95349  -0.590   0.5549  
## ns(time, df = 18 * 5)68  1.58592    0.86078   1.842   0.0654 .
## ns(time, df = 18 * 5)69 -0.28813    0.90546  -0.318   0.7503  
## ns(time, df = 18 * 5)70  0.71985    0.85454   0.842   0.3996  
## ns(time, df = 18 * 5)71  1.14383    0.81530   1.403   0.1606  
## ns(time, df = 18 * 5)72  0.81332    0.82036   0.991   0.3215  
## ns(time, df = 18 * 5)73  0.69956    0.82288   0.850   0.3953  
## ns(time, df = 18 * 5)74  1.24764    0.81465   1.532   0.1256  
## ns(time, df = 18 * 5)75  0.52602    0.85648   0.614   0.5391  
## ns(time, df = 18 * 5)76  0.12421    0.89029   0.140   0.8890  
## ns(time, df = 18 * 5)77  0.80979    0.85112   0.951   0.3414  
## ns(time, df = 18 * 5)78  0.88291    0.83573   1.056   0.2908  
## ns(time, df = 18 * 5)79  0.69490    0.84931   0.818   0.4132  
## ns(time, df = 18 * 5)80  0.36483    0.86167   0.423   0.6720  
## ns(time, df = 18 * 5)81  1.08453    0.84414   1.285   0.1989  
## ns(time, df = 18 * 5)82  0.34968    0.87969   0.398   0.6910  
## ns(time, df = 18 * 5)83  0.39082    0.90475   0.432   0.6658  
## ns(time, df = 18 * 5)84  0.33304    0.92009   0.362   0.7174  
## ns(time, df = 18 * 5)85  0.11204    0.92613   0.121   0.9037  
## ns(time, df = 18 * 5)86  0.51091    0.88813   0.575   0.5651  
## ns(time, df = 18 * 5)87  0.61758    0.85264   0.724   0.4689  
## ns(time, df = 18 * 5)88  1.12156    0.65183   1.721   0.0853 .
## ns(time, df = 18 * 5)89  0.30596    1.63929   0.187   0.8519  
## ns(time, df = 18 * 5)90  0.53120    0.62688   0.847   0.3968  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(13015.45) family taken to be 1)
## 
##     Null deviance: 1149.7  on 938  degrees of freedom
## Residual deviance: 1036.6  on 848  degrees of freedom
## AIC: 3002.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  13015 
##           Std. Err.:  92150 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2818.534
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ ns(time, df = 18 * 7), data = week, 
##     init.theta = 16102.46868, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1547  -0.8797  -0.1749   0.5475   3.3908  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)   
## (Intercept)              -0.75023    0.85548  -0.877  0.38050   
## ns(time, df = 18 * 7)1   -1.02642    1.15633  -0.888  0.37473   
## ns(time, df = 18 * 7)2    1.82906    1.23720   1.478  0.13930   
## ns(time, df = 18 * 7)3    0.27142    1.10183   0.246  0.80542   
## ns(time, df = 18 * 7)4    1.62011    1.10382   1.468  0.14218   
## ns(time, df = 18 * 7)5    1.01767    1.06594   0.955  0.33972   
## ns(time, df = 18 * 7)6    1.25643    1.06780   1.177  0.23934   
## ns(time, df = 18 * 7)7    1.72628    1.04975   1.644  0.10008   
## ns(time, df = 18 * 7)8    0.60874    1.10857   0.549  0.58292   
## ns(time, df = 18 * 7)9    1.84867    1.13571   1.628  0.10358   
## ns(time, df = 18 * 7)10  -1.53340    1.34950  -1.136  0.25584   
## ns(time, df = 18 * 7)11   2.22843    1.10561   2.016  0.04384 * 
## ns(time, df = 18 * 7)12   0.59107    1.09496   0.540  0.58933   
## ns(time, df = 18 * 7)13   1.72043    1.05545   1.630  0.10309   
## ns(time, df = 18 * 7)14   1.07969    1.06691   1.012  0.31155   
## ns(time, df = 18 * 7)15   1.35341    1.07140   1.263  0.20651   
## ns(time, df = 18 * 7)16   1.07445    1.09352   0.983  0.32583   
## ns(time, df = 18 * 7)17   0.94546    1.11275   0.850  0.39551   
## ns(time, df = 18 * 7)18   1.00915    1.10891   0.910  0.36280   
## ns(time, df = 18 * 7)19   1.15468    1.09691   1.053  0.29250   
## ns(time, df = 18 * 7)20   0.97964    1.08850   0.900  0.36813   
## ns(time, df = 18 * 7)21   1.40629    1.05536   1.333  0.18269   
## ns(time, df = 18 * 7)22   1.67565    1.05362   1.590  0.11175   
## ns(time, df = 18 * 7)23   0.48497    1.10686   0.438  0.66128   
## ns(time, df = 18 * 7)24   1.58197    1.07092   1.477  0.13962   
## ns(time, df = 18 * 7)25   1.03340    1.07589   0.961  0.33680   
## ns(time, df = 18 * 7)26   1.75188    1.09619   1.598  0.11001   
## ns(time, df = 18 * 7)27  -0.30132    1.25314  -0.240  0.80998   
## ns(time, df = 18 * 7)28   0.43840    1.18055   0.371  0.71037   
## ns(time, df = 18 * 7)29   1.92382    1.06634   1.804  0.07121 . 
## ns(time, df = 18 * 7)30   0.82810    1.07032   0.774  0.43911   
## ns(time, df = 18 * 7)31   1.87404    1.05141   1.782  0.07468 . 
## ns(time, df = 18 * 7)32   0.85448    1.11430   0.767  0.44318   
## ns(time, df = 18 * 7)33   0.28367    1.16587   0.243  0.80777   
## ns(time, df = 18 * 7)34   1.46036    1.08397   1.347  0.17791   
## ns(time, df = 18 * 7)35   1.24856    1.05690   1.181  0.23747   
## ns(time, df = 18 * 7)36   1.55519    1.04408   1.490  0.13635   
## ns(time, df = 18 * 7)37   1.04260    1.04870   0.994  0.32013   
## ns(time, df = 18 * 7)38   2.02693    1.03252   1.963  0.04964 * 
## ns(time, df = 18 * 7)39   0.38694    1.07783   0.359  0.71960   
## ns(time, df = 18 * 7)40   2.31252    1.03493   2.234  0.02545 * 
## ns(time, df = 18 * 7)41   0.59303    1.10173   0.538  0.59039   
## ns(time, df = 18 * 7)42   0.86982    1.12195   0.775  0.43818   
## ns(time, df = 18 * 7)43   1.16035    1.08642   1.068  0.28550   
## ns(time, df = 18 * 7)44   1.27855    1.05221   1.215  0.22432   
## ns(time, df = 18 * 7)45   1.82390    1.03238   1.767  0.07728 . 
## ns(time, df = 18 * 7)46   0.93400    1.06521   0.877  0.38058   
## ns(time, df = 18 * 7)47   1.37574    1.05882   1.299  0.19384   
## ns(time, df = 18 * 7)48   1.24930    1.05088   1.189  0.23451   
## ns(time, df = 18 * 7)49   1.71851    1.04925   1.638  0.10145   
## ns(time, df = 18 * 7)50   0.27255    1.07789   0.253  0.80038   
## ns(time, df = 18 * 7)51   2.79068    1.00924   2.765  0.00569 **
## ns(time, df = 18 * 7)52   0.47918    1.07372   0.446  0.65540   
## ns(time, df = 18 * 7)53   1.49591    1.08287   1.381  0.16714   
## ns(time, df = 18 * 7)54   0.84092    1.11962   0.751  0.45260   
## ns(time, df = 18 * 7)55   0.76061    1.13487   0.670  0.50272   
## ns(time, df = 18 * 7)56   1.07568    1.09533   0.982  0.32607   
## ns(time, df = 18 * 7)57   1.48502    1.06019   1.401  0.16130   
## ns(time, df = 18 * 7)58   1.26770    1.06627   1.189  0.23447   
## ns(time, df = 18 * 7)59   1.03050    1.07974   0.954  0.33988   
## ns(time, df = 18 * 7)60   1.27371    1.06216   1.199  0.23046   
## ns(time, df = 18 * 7)61   1.54346    1.04998   1.470  0.14156   
## ns(time, df = 18 * 7)62   1.11755    1.07353   1.041  0.29787   
## ns(time, df = 18 * 7)63   0.94093    1.07788   0.873  0.38269   
## ns(time, df = 18 * 7)64   1.62153    1.03903   1.561  0.11861   
## ns(time, df = 18 * 7)65   1.58924    1.04209   1.525  0.12725   
## ns(time, df = 18 * 7)66   0.54260    1.06529   0.509  0.61051   
## ns(time, df = 18 * 7)67   2.40323    1.00376   2.394  0.01666 * 
## ns(time, df = 18 * 7)68   0.99356    1.01980   0.974  0.32992   
## ns(time, df = 18 * 7)69   2.52377    1.01962   2.475  0.01332 * 
## ns(time, df = 18 * 7)70  -0.16126    1.15287  -0.140  0.88875   
## ns(time, df = 18 * 7)71   1.54565    1.17372   1.317  0.18788   
## ns(time, df = 18 * 7)72  -0.57452    1.30862  -0.439  0.66065   
## ns(time, df = 18 * 7)73   0.94323    1.18730   0.794  0.42695   
## ns(time, df = 18 * 7)74   1.11380    1.11620   0.998  0.31835   
## ns(time, df = 18 * 7)75   1.17398    1.09385   1.073  0.28315   
## ns(time, df = 18 * 7)76   1.17063    1.09418   1.070  0.28468   
## ns(time, df = 18 * 7)77   0.78082    1.09315   0.714  0.47505   
## ns(time, df = 18 * 7)78   1.82088    1.05194   1.731  0.08346 . 
## ns(time, df = 18 * 7)79   0.84108    1.07610   0.782  0.43445   
## ns(time, df = 18 * 7)80   1.67694    1.07462   1.561  0.11864   
## ns(time, df = 18 * 7)81   0.53291    1.14352   0.466  0.64119   
## ns(time, df = 18 * 7)82   0.80444    1.15642   0.696  0.48666   
## ns(time, df = 18 * 7)83   0.92868    1.13176   0.821  0.41189   
## ns(time, df = 18 * 7)84   1.46226    1.13611   1.287  0.19807   
## ns(time, df = 18 * 7)85  -0.55265    1.23079  -0.449  0.65342   
## ns(time, df = 18 * 7)86   2.10641    1.09585   1.922  0.05459 . 
## ns(time, df = 18 * 7)87   0.36975    1.11960   0.330  0.74121   
## ns(time, df = 18 * 7)88   2.00756    1.10824   1.811  0.07007 . 
## ns(time, df = 18 * 7)89  -0.76242    1.24779  -0.611  0.54119   
## ns(time, df = 18 * 7)90   1.81504    1.11887   1.622  0.10476   
## ns(time, df = 18 * 7)91   0.55858    1.12007   0.499  0.61799   
## ns(time, df = 18 * 7)92   1.77309    1.10503   1.605  0.10859   
## ns(time, df = 18 * 7)93  -0.01019    1.21066  -0.008  0.99329   
## ns(time, df = 18 * 7)94   0.82930    1.18549   0.700  0.48421   
## ns(time, df = 18 * 7)95   0.69143    1.12772   0.613  0.53980   
## ns(time, df = 18 * 7)96   1.97574    1.07406   1.839  0.06584 . 
## ns(time, df = 18 * 7)97   0.34116    1.14793   0.297  0.76632   
## ns(time, df = 18 * 7)98   0.73875    1.12357   0.658  0.51086   
## ns(time, df = 18 * 7)99   1.66410    1.04636   1.590  0.11175   
## ns(time, df = 18 * 7)100  1.50144    1.03143   1.456  0.14548   
## ns(time, df = 18 * 7)101  1.42205    1.03806   1.370  0.17072   
## ns(time, df = 18 * 7)102  1.27965    1.04629   1.223  0.22132   
## ns(time, df = 18 * 7)103  1.35417    1.03790   1.305  0.19199   
## ns(time, df = 18 * 7)104  1.74914    1.02943   1.699  0.08929 . 
## ns(time, df = 18 * 7)105  1.17080    1.06643   1.098  0.27226   
## ns(time, df = 18 * 7)106  0.98909    1.11081   0.890  0.37324   
## ns(time, df = 18 * 7)107  0.66169    1.12949   0.586  0.55799   
## ns(time, df = 18 * 7)108  1.29168    1.08125   1.195  0.23224   
## ns(time, df = 18 * 7)109  1.41442    1.05940   1.335  0.18184   
## ns(time, df = 18 * 7)110  1.11219    1.05969   1.050  0.29393   
## ns(time, df = 18 * 7)111  1.93111    1.06332   1.816  0.06935 . 
## ns(time, df = 18 * 7)112 -0.36815    1.15874  -0.318  0.75070   
## ns(time, df = 18 * 7)113  2.27359    1.05166   2.162  0.03063 * 
## ns(time, df = 18 * 7)114  1.03321    1.08525   0.952  0.34107   
## ns(time, df = 18 * 7)115  0.36201    1.13026   0.320  0.74875   
## ns(time, df = 18 * 7)116  2.27659    1.09331   2.082  0.03732 * 
## ns(time, df = 18 * 7)117 -0.88943    1.24304  -0.716  0.47428   
## ns(time, df = 18 * 7)118  2.11795    1.13169   1.871  0.06128 . 
## ns(time, df = 18 * 7)119 -0.23797    1.20060  -0.198  0.84288   
## ns(time, df = 18 * 7)120  1.62279    1.13452   1.430  0.15261   
## ns(time, df = 18 * 7)121  0.03464    1.14644   0.030  0.97589   
## ns(time, df = 18 * 7)122  2.31028    1.06026   2.179  0.02933 * 
## ns(time, df = 18 * 7)123  0.07349    1.10273   0.067  0.94686   
## ns(time, df = 18 * 7)124  2.04063    0.78462   2.601  0.00930 **
## ns(time, df = 18 * 7)125  2.09203    2.11783   0.988  0.32324   
## ns(time, df = 18 * 7)126 -0.53996    0.80683  -0.669  0.50334   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(16102.47) family taken to be 1)
## 
##     Null deviance: 1149.71  on 938  degrees of freedom
## Residual deviance:  993.98  on 812  degrees of freedom
## AIC: 3031.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  16102 
##           Std. Err.:  95313 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2775.901
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ ns(time, df = 18 * 9), data = week, 
##     init.theta = 19631.96389, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3571  -0.9046  -0.1515   0.5473   2.5685  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)   
## (Intercept)              -0.46108    0.87852  -0.525  0.59970   
## ns(time, df = 18 * 9)1    0.50835    1.18543   0.429  0.66804   
## ns(time, df = 18 * 9)2   -1.38563    1.55946  -0.889  0.37425   
## ns(time, df = 18 * 9)3    2.26354    1.17453   1.927  0.05396 . 
## ns(time, df = 18 * 9)4   -1.14405    1.33504  -0.857  0.39148   
## ns(time, df = 18 * 9)5    2.26562    1.13251   2.001  0.04544 * 
## ns(time, df = 18 * 9)6   -0.30179    1.20584  -0.250  0.80238   
## ns(time, df = 18 * 9)7    1.85672    1.11879   1.660  0.09700 . 
## ns(time, df = 18 * 9)8    0.14807    1.15340   0.128  0.89785   
## ns(time, df = 18 * 9)9    2.01154    1.10053   1.828  0.06758 . 
## ns(time, df = 18 * 9)10   0.11372    1.17778   0.097  0.92308   
## ns(time, df = 18 * 9)11   1.32748    1.16847   1.136  0.25592   
## ns(time, df = 18 * 9)12   0.62474    1.26482   0.494  0.62135   
## ns(time, df = 18 * 9)13  -0.89218    1.47006  -0.607  0.54392   
## ns(time, df = 18 * 9)14   0.41011    1.26660   0.324  0.74610   
## ns(time, df = 18 * 9)15   1.70862    1.14735   1.489  0.13644   
## ns(time, df = 18 * 9)16  -0.07847    1.18085  -0.066  0.94702   
## ns(time, df = 18 * 9)17   2.12560    1.10773   1.919  0.05500 . 
## ns(time, df = 18 * 9)18  -0.23160    1.17347  -0.197  0.84354   
## ns(time, df = 18 * 9)19   2.19846    1.11043   1.980  0.04772 * 
## ns(time, df = 18 * 9)20  -0.29132    1.20297  -0.242  0.80865   
## ns(time, df = 18 * 9)21   1.62867    1.15198   1.414  0.15742   
## ns(time, df = 18 * 9)22   0.24009    1.21011   0.198  0.84273   
## ns(time, df = 18 * 9)23   0.72570    1.20026   0.605  0.54543   
## ns(time, df = 18 * 9)24   0.90740    1.17400   0.773  0.43957   
## ns(time, df = 18 * 9)25   0.80889    1.17972   0.686  0.49293   
## ns(time, df = 18 * 9)26   0.45587    1.17574   0.388  0.69821   
## ns(time, df = 18 * 9)27   1.48697    1.11486   1.334  0.18228   
## ns(time, df = 18 * 9)28   0.77422    1.12336   0.689  0.49070   
## ns(time, df = 18 * 9)29   1.53721    1.12820   1.363  0.17303   
## ns(time, df = 18 * 9)30  -0.21423    1.21296  -0.177  0.85981   
## ns(time, df = 18 * 9)31   1.68763    1.13523   1.487  0.13712   
## ns(time, df = 18 * 9)32   0.28894    1.15937   0.249  0.80319   
## ns(time, df = 18 * 9)33   1.73704    1.12597   1.543  0.12290   
## ns(time, df = 18 * 9)34   0.37594    1.22438   0.307  0.75881   
## ns(time, df = 18 * 9)35   0.14409    1.34924   0.107  0.91495   
## ns(time, df = 18 * 9)36  -0.39412    1.35381  -0.291  0.77096   
## ns(time, df = 18 * 9)37   1.26041    1.17061   1.077  0.28161   
## ns(time, df = 18 * 9)38   1.09079    1.12550   0.969  0.33246   
## ns(time, df = 18 * 9)39   1.06695    1.12720   0.947  0.34387   
## ns(time, df = 18 * 9)40   0.73080    1.13127   0.646  0.51828   
## ns(time, df = 18 * 9)41   1.99492    1.13770   1.753  0.07952 . 
## ns(time, df = 18 * 9)42  -1.26231    1.37164  -0.920  0.35742   
## ns(time, df = 18 * 9)43   1.22996    1.21626   1.011  0.31189   
## ns(time, df = 18 * 9)44   0.60752    1.17078   0.519  0.60383   
## ns(time, df = 18 * 9)45   1.21414    1.12445   1.080  0.28025   
## ns(time, df = 18 * 9)46   1.01414    1.11294   0.911  0.36218   
## ns(time, df = 18 * 9)47   1.26218    1.10919   1.138  0.25515   
## ns(time, df = 18 * 9)48   0.62213    1.11902   0.556  0.57824   
## ns(time, df = 18 * 9)49   1.93133    1.08646   1.778  0.07546 . 
## ns(time, df = 18 * 9)50   0.18150    1.15554   0.157  0.87519   
## ns(time, df = 18 * 9)51   1.32026    1.11427   1.185  0.23607   
## ns(time, df = 18 * 9)52   1.22620    1.10596   1.109  0.26755   
## ns(time, df = 18 * 9)53   1.34212    1.16596   1.151  0.24970   
## ns(time, df = 18 * 9)54  -1.35709    1.34647  -1.008  0.31351   
## ns(time, df = 18 * 9)55   2.54873    1.14834   2.219  0.02645 * 
## ns(time, df = 18 * 9)56  -0.76790    1.22905  -0.625  0.53211   
## ns(time, df = 18 * 9)57   2.01457    1.09678   1.837  0.06624 . 
## ns(time, df = 18 * 9)58   0.93352    1.10126   0.848  0.39661   
## ns(time, df = 18 * 9)59   1.18156    1.11794   1.057  0.29055   
## ns(time, df = 18 * 9)60   0.67465    1.14177   0.591  0.55460   
## ns(time, df = 18 * 9)61   1.25840    1.12405   1.120  0.26292   
## ns(time, df = 18 * 9)62   0.62535    1.12755   0.555  0.57916   
## ns(time, df = 18 * 9)63   1.86872    1.10105   1.697  0.08966 . 
## ns(time, df = 18 * 9)64  -0.04099    1.18580  -0.035  0.97243   
## ns(time, df = 18 * 9)65   1.10809    1.10535   1.002  0.31611   
## ns(time, df = 18 * 9)66   2.13312    1.06074   2.011  0.04433 * 
## ns(time, df = 18 * 9)67   0.34640    1.13782   0.304  0.76079   
## ns(time, df = 18 * 9)68   1.24098    1.14982   1.079  0.28046   
## ns(time, df = 18 * 9)69   0.40522    1.19363   0.339  0.73424   
## ns(time, df = 18 * 9)70   1.07135    1.19269   0.898  0.36905   
## ns(time, df = 18 * 9)71   0.15460    1.24346   0.124  0.90106   
## ns(time, df = 18 * 9)72   0.75620    1.18994   0.635  0.52510   
## ns(time, df = 18 * 9)73   1.10560    1.13661   0.973  0.33069   
## ns(time, df = 18 * 9)74   1.05005    1.12560   0.933  0.35088   
## ns(time, df = 18 * 9)75   1.05189    1.13618   0.926  0.35454   
## ns(time, df = 18 * 9)76   0.65307    1.16098   0.563  0.57377   
## ns(time, df = 18 * 9)77   0.96772    1.13851   0.850  0.39533   
## ns(time, df = 18 * 9)78   1.18195    1.11959   1.056  0.29111   
## ns(time, df = 18 * 9)79   0.84588    1.12459   0.752  0.45195   
## ns(time, df = 18 * 9)80   1.61147    1.13376   1.421  0.15521   
## ns(time, df = 18 * 9)81  -0.76500    1.23810  -0.618  0.53665   
## ns(time, df = 18 * 9)82   2.40743    1.09461   2.199  0.02785 * 
## ns(time, df = 18 * 9)83   0.17412    1.13417   0.154  0.87798   
## ns(time, df = 18 * 9)84   1.78280    1.09829   1.623  0.10454   
## ns(time, df = 18 * 9)85   0.48400    1.13963   0.425  0.67105   
## ns(time, df = 18 * 9)86   0.92934    1.09479   0.849  0.39595   
## ns(time, df = 18 * 9)87   2.28398    1.04557   2.184  0.02893 * 
## ns(time, df = 18 * 9)88   0.24707    1.09622   0.225  0.82168   
## ns(time, df = 18 * 9)89   2.52851    1.06893   2.365  0.01801 * 
## ns(time, df = 18 * 9)90  -0.22175    1.21662  -0.182  0.85537   
## ns(time, df = 18 * 9)91   0.56836    1.27674   0.445  0.65620   
## ns(time, df = 18 * 9)92   0.50928    1.31115   0.388  0.69771   
## ns(time, df = 18 * 9)93   0.11088    1.43886   0.077  0.93857   
## ns(time, df = 18 * 9)94  -1.60130    1.46590  -1.092  0.27467   
## ns(time, df = 18 * 9)95   3.09522    1.18599   2.610  0.00906 **
## ns(time, df = 18 * 9)96  -2.02409    1.35995  -1.488  0.13666   
## ns(time, df = 18 * 9)97   2.91553    1.13632   2.566  0.01029 * 
## ns(time, df = 18 * 9)98  -0.66925    1.23927  -0.540  0.58917   
## ns(time, df = 18 * 9)99   1.34911    1.16530   1.158  0.24697   
## ns(time, df = 18 * 9)100  0.60458    1.14335   0.529  0.59696   
## ns(time, df = 18 * 9)101  1.67937    1.11091   1.512  0.13061   
## ns(time, df = 18 * 9)102  0.18538    1.16366   0.159  0.87343   
## ns(time, df = 18 * 9)103  1.74245    1.13220   1.539  0.12381   
## ns(time, df = 18 * 9)104  0.04050    1.22194   0.033  0.97356   
## ns(time, df = 18 * 9)105  0.96393    1.22799   0.785  0.43247   
## ns(time, df = 18 * 9)106  0.04127    1.27191   0.032  0.97412   
## ns(time, df = 18 * 9)107  0.83793    1.20876   0.693  0.48817   
## ns(time, df = 18 * 9)108  1.12708    1.20241   0.937  0.34858   
## ns(time, df = 18 * 9)109 -0.09186    1.32229  -0.069  0.94462   
## ns(time, df = 18 * 9)110 -0.06136    1.28650  -0.048  0.96196   
## ns(time, df = 18 * 9)111  1.72759    1.15831   1.491  0.13584   
## ns(time, df = 18 * 9)112  0.12189    1.20168   0.101  0.91921   
## ns(time, df = 18 * 9)113  1.32217    1.17150   1.129  0.25906   
## ns(time, df = 18 * 9)114  0.61535    1.24906   0.493  0.62226   
## ns(time, df = 18 * 9)115 -0.70483    1.37593  -0.512  0.60847   
## ns(time, df = 18 * 9)116  1.23954    1.20260   1.031  0.30267   
## ns(time, df = 18 * 9)117  0.90272    1.18197   0.764  0.44502   
## ns(time, df = 18 * 9)118  0.27810    1.20445   0.231  0.81740   
## ns(time, df = 18 * 9)119  1.81668    1.18838   1.529  0.12634   
## ns(time, df = 18 * 9)120 -1.23217    1.41275  -0.872  0.38311   
## ns(time, df = 18 * 9)121  1.15754    1.27828   0.906  0.36518   
## ns(time, df = 18 * 9)122 -0.11051    1.26176  -0.088  0.93021   
## ns(time, df = 18 * 9)123  1.42177    1.15315   1.233  0.21759   
## ns(time, df = 18 * 9)124  0.83922    1.15601   0.726  0.46786   
## ns(time, df = 18 * 9)125  1.16710    1.21607   0.960  0.33719   
## ns(time, df = 18 * 9)126 -1.47506    1.37522  -1.073  0.28345   
## ns(time, df = 18 * 9)127  2.47153    1.12089   2.205  0.02746 * 
## ns(time, df = 18 * 9)128  0.12123    1.13372   0.107  0.91484   
## ns(time, df = 18 * 9)129  2.03423    1.07744   1.888  0.05902 . 
## ns(time, df = 18 * 9)130  0.53597    1.11486   0.481  0.63070   
## ns(time, df = 18 * 9)131  1.50574    1.10229   1.366  0.17194   
## ns(time, df = 18 * 9)132  0.58763    1.12571   0.522  0.60167   
## ns(time, df = 18 * 9)133  1.44725    1.08868   1.329  0.18373   
## ns(time, df = 18 * 9)134  1.26211    1.09074   1.157  0.24723   
## ns(time, df = 18 * 9)135  1.00298    1.12267   0.893  0.37165   
## ns(time, df = 18 * 9)136  0.94975    1.16615   0.814  0.41540   
## ns(time, df = 18 * 9)137  0.22668    1.22773   0.185  0.85352   
## ns(time, df = 18 * 9)138  0.98850    1.20019   0.824  0.41015   
## ns(time, df = 18 * 9)139  0.16918    1.18915   0.142  0.88687   
## ns(time, df = 18 * 9)140  1.96417    1.11042   1.769  0.07692 . 
## ns(time, df = 18 * 9)141  0.07020    1.16562   0.060  0.95198   
## ns(time, df = 18 * 9)142  1.55931    1.10845   1.407  0.15950   
## ns(time, df = 18 * 9)143  1.32826    1.14054   1.165  0.24418   
## ns(time, df = 18 * 9)144 -0.62576    1.28521  -0.487  0.62634   
## ns(time, df = 18 * 9)145  1.39186    1.14566   1.215  0.22441   
## ns(time, df = 18 * 9)146  1.22905    1.11572   1.102  0.27065   
## ns(time, df = 18 * 9)147  1.00047    1.15737   0.864  0.38735   
## ns(time, df = 18 * 9)148  0.05387    1.22510   0.044  0.96493   
## ns(time, df = 18 * 9)149  1.33053    1.16293   1.144  0.25257   
## ns(time, df = 18 * 9)150  0.92641    1.21463   0.763  0.44564   
## ns(time, df = 18 * 9)151 -0.75061    1.37288  -0.547  0.58455   
## ns(time, df = 18 * 9)152  1.16280    1.22703   0.948  0.34330   
## ns(time, df = 18 * 9)153  0.91069    1.24102   0.734  0.46306   
## ns(time, df = 18 * 9)154 -0.89236    1.35219  -0.660  0.50929   
## ns(time, df = 18 * 9)155  2.08839    1.19787   1.743  0.08126 . 
## ns(time, df = 18 * 9)156 -1.13392    1.28677  -0.881  0.37820   
## ns(time, df = 18 * 9)157  2.61125    1.12145   2.328  0.01989 * 
## ns(time, df = 18 * 9)158 -0.45513    1.20609  -0.377  0.70591   
## ns(time, df = 18 * 9)159  1.51720    1.11886   1.356  0.17509   
## ns(time, df = 18 * 9)160  1.17830    0.87074   1.353  0.17598   
## ns(time, df = 18 * 9)161  0.78064    2.20573   0.354  0.72340   
## ns(time, df = 18 * 9)162  0.06558    0.88240   0.074  0.94076   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(19631.96) family taken to be 1)
## 
##     Null deviance: 1149.7  on 938  degrees of freedom
## Residual deviance:  936.9  on 776  degrees of freedom
## AIC: 3046.8
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  19632 
##           Std. Err.:  101551 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2718.814
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ ns(time, df = 18 * 10), data = week, 
##     init.theta = 20157.87656, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2730  -0.8592  -0.1481   0.5279   2.2001  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)   
## (Intercept)               -0.14084    0.83490  -0.169  0.86604   
## ns(time, df = 18 * 10)1    1.73260    1.18476   1.462  0.14363   
## ns(time, df = 18 * 10)2   -4.08005    2.03095  -2.009  0.04454 * 
## ns(time, df = 18 * 10)3    2.43982    1.22649   1.989  0.04667 * 
## ns(time, df = 18 * 10)4   -1.01121    1.35389  -0.747  0.45513   
## ns(time, df = 18 * 10)5    0.48527    1.19631   0.406  0.68501   
## ns(time, df = 18 * 10)6    1.14861    1.14612   1.002  0.31626   
## ns(time, df = 18 * 10)7   -0.30342    1.18465  -0.256  0.79785   
## ns(time, df = 18 * 10)8    1.45450    1.11241   1.308  0.19103   
## ns(time, df = 18 * 10)9   -0.12331    1.14342  -0.108  0.91412   
## ns(time, df = 18 * 10)10   1.59125    1.08834   1.462  0.14372   
## ns(time, df = 18 * 10)11   0.01069    1.15237   0.009  0.99260   
## ns(time, df = 18 * 10)12   0.98338    1.15456   0.852  0.39436   
## ns(time, df = 18 * 10)13   0.03027    1.23197   0.025  0.98040   
## ns(time, df = 18 * 10)14   0.70830    1.33511   0.531  0.59575   
## ns(time, df = 18 * 10)15  -2.55458    1.66231  -1.537  0.12435   
## ns(time, df = 18 * 10)16   1.55667    1.19981   1.297  0.19448   
## ns(time, df = 18 * 10)17   0.51303    1.16051   0.442  0.65844   
## ns(time, df = 18 * 10)18   0.00747    1.16473   0.006  0.99488   
## ns(time, df = 18 * 10)19   1.69644    1.09526   1.549  0.12141   
## ns(time, df = 18 * 10)20  -0.51233    1.17474  -0.436  0.66275   
## ns(time, df = 18 * 10)21   1.65228    1.09807   1.505  0.13240   
## ns(time, df = 18 * 10)22   0.04105    1.16525   0.035  0.97190   
## ns(time, df = 18 * 10)23   0.48883    1.17099   0.417  0.67635   
## ns(time, df = 18 * 10)24   0.77932    1.16247   0.670  0.50260   
## ns(time, df = 18 * 10)25   0.05070    1.21831   0.042  0.96681   
## ns(time, df = 18 * 10)26   0.35249    1.19885   0.294  0.76874   
## ns(time, df = 18 * 10)27   0.69784    1.16303   0.600  0.54849   
## ns(time, df = 18 * 10)28   0.47024    1.18332   0.397  0.69108   
## ns(time, df = 18 * 10)29  -0.10887    1.18660  -0.092  0.92690   
## ns(time, df = 18 * 10)30   1.54679    1.09708   1.410  0.15856   
## ns(time, df = 18 * 10)31  -0.08007    1.13404  -0.071  0.94371   
## ns(time, df = 18 * 10)32   1.72377    1.09604   1.573  0.11578   
## ns(time, df = 18 * 10)33  -0.50925    1.21771  -0.418  0.67580   
## ns(time, df = 18 * 10)34   0.62777    1.16295   0.540  0.58933   
## ns(time, df = 18 * 10)35   1.01345    1.12600   0.900  0.36810   
## ns(time, df = 18 * 10)36  -0.06083    1.15719  -0.053  0.95808   
## ns(time, df = 18 * 10)37   1.71270    1.11328   1.538  0.12394   
## ns(time, df = 18 * 10)38  -0.50550    1.27219  -0.397  0.69111   
## ns(time, df = 18 * 10)39   0.18728    1.35686   0.138  0.89022   
## ns(time, df = 18 * 10)40  -0.88807    1.40347  -0.633  0.52689   
## ns(time, df = 18 * 10)41   0.73560    1.19450   0.616  0.53801   
## ns(time, df = 18 * 10)42   0.81466    1.11877   0.728  0.46650   
## ns(time, df = 18 * 10)43   0.84244    1.11077   0.758  0.44819   
## ns(time, df = 18 * 10)44   0.39406    1.12699   0.350  0.72660   
## ns(time, df = 18 * 10)45   1.09433    1.10346   0.992  0.32133   
## ns(time, df = 18 * 10)46   0.84655    1.17625   0.720  0.47171   
## ns(time, df = 18 * 10)47  -1.33768    1.40303  -0.953  0.34038   
## ns(time, df = 18 * 10)48   0.93202    1.21105   0.770  0.44154   
## ns(time, df = 18 * 10)49   0.32707    1.16524   0.281  0.77895   
## ns(time, df = 18 * 10)50   0.80604    1.12079   0.719  0.47203   
## ns(time, df = 18 * 10)51   0.71989    1.10081   0.654  0.51313   
## ns(time, df = 18 * 10)52   1.02903    1.09500   0.940  0.34734   
## ns(time, df = 18 * 10)53   0.19612    1.12199   0.175  0.86124   
## ns(time, df = 18 * 10)54   1.35439    1.07214   1.263  0.20650   
## ns(time, df = 18 * 10)55   0.68205    1.10309   0.618  0.53637   
## ns(time, df = 18 * 10)56   0.31453    1.13797   0.276  0.78225   
## ns(time, df = 18 * 10)57   0.93877    1.09907   0.854  0.39302   
## ns(time, df = 18 * 10)58   0.88580    1.09447   0.809  0.41832   
## ns(time, df = 18 * 10)59   1.17691    1.16487   1.010  0.31234   
## ns(time, df = 18 * 10)60  -2.14745    1.43785  -1.494  0.13530   
## ns(time, df = 18 * 10)61   2.24996    1.15128   1.954  0.05066 . 
## ns(time, df = 18 * 10)62  -0.70932    1.22392  -0.580  0.56222   
## ns(time, df = 18 * 10)63   0.91252    1.12312   0.812  0.41651   
## ns(time, df = 18 * 10)64   1.11398    1.07323   1.038  0.29929   
## ns(time, df = 18 * 10)65   0.81613    1.09110   0.748  0.45446   
## ns(time, df = 18 * 10)66   0.57401    1.12499   0.510  0.60989   
## ns(time, df = 18 * 10)67   0.50337    1.13100   0.445  0.65627   
## ns(time, df = 18 * 10)68   0.96072    1.11476   0.862  0.38879   
## ns(time, df = 18 * 10)69   0.11959    1.12628   0.106  0.91544   
## ns(time, df = 18 * 10)70   1.81334    1.08092   1.678  0.09343 . 
## ns(time, df = 18 * 10)71  -0.57087    1.19566  -0.477  0.63304   
## ns(time, df = 18 * 10)72   0.95831    1.11201   0.862  0.38881   
## ns(time, df = 18 * 10)73   0.90298    1.05721   0.854  0.39304   
## ns(time, df = 18 * 10)74   1.88468    1.05581   1.785  0.07425 . 
## ns(time, df = 18 * 10)75  -1.08976    1.22110  -0.892  0.37216   
## ns(time, df = 18 * 10)76   1.96602    1.12956   1.741  0.08177 . 
## ns(time, df = 18 * 10)77  -0.97400    1.25690  -0.775  0.43838   
## ns(time, df = 18 * 10)78   1.44014    1.17855   1.222  0.22173   
## ns(time, df = 18 * 10)79  -0.59616    1.27788  -0.467  0.64084   
## ns(time, df = 18 * 10)80   0.47535    1.19922   0.396  0.69182   
## ns(time, df = 18 * 10)81   0.82262    1.13213   0.727  0.46747   
## ns(time, df = 18 * 10)82   0.56906    1.12153   0.507  0.61187   
## ns(time, df = 18 * 10)83   0.99268    1.11367   0.891  0.37274   
## ns(time, df = 18 * 10)84   0.20536    1.15728   0.177  0.85916   
## ns(time, df = 18 * 10)85   0.77871    1.13908   0.684  0.49421   
## ns(time, df = 18 * 10)86   0.38694    1.13390   0.341  0.73292   
## ns(time, df = 18 * 10)87   1.10495    1.10134   1.003  0.31573   
## ns(time, df = 18 * 10)88   0.31224    1.12114   0.279  0.78063   
## ns(time, df = 18 * 10)89   1.52297    1.12303   1.356  0.17506   
## ns(time, df = 18 * 10)90  -1.33977    1.27966  -1.047  0.29511   
## ns(time, df = 18 * 10)91   1.85989    1.09112   1.705  0.08828 . 
## ns(time, df = 18 * 10)92   0.42648    1.10540   0.386  0.69963   
## ns(time, df = 18 * 10)93   0.67662    1.10488   0.612  0.54028   
## ns(time, df = 18 * 10)94   1.20332    1.09551   1.098  0.27203   
## ns(time, df = 18 * 10)95  -0.21824    1.15010  -0.190  0.84950   
## ns(time, df = 18 * 10)96   1.38459    1.04779   1.321  0.18635   
## ns(time, df = 18 * 10)97   1.48716    1.03218   1.441  0.14964   
## ns(time, df = 18 * 10)98   0.09743    1.08091   0.090  0.92818   
## ns(time, df = 18 * 10)99   2.17818    1.04814   2.078  0.03770 * 
## ns(time, df = 18 * 10)100 -0.45219    1.20379  -0.376  0.70719   
## ns(time, df = 18 * 10)101  0.33053    1.27553   0.259  0.79553   
## ns(time, df = 18 * 10)102 -0.10582    1.32074  -0.080  0.93614   
## ns(time, df = 18 * 10)103  0.40449    1.37315   0.295  0.76832   
## ns(time, df = 18 * 10)104 -1.39265    1.59466  -0.873  0.38249   
## ns(time, df = 18 * 10)105 -0.31412    1.31281  -0.239  0.81089   
## ns(time, df = 18 * 10)106  2.31712    1.17203   1.977  0.04804 * 
## ns(time, df = 18 * 10)107 -2.77345    1.44064  -1.925  0.05421 . 
## ns(time, df = 18 * 10)108  3.04404    1.12973   2.694  0.00705 **
## ns(time, df = 18 * 10)109 -1.37848    1.28095  -1.076  0.28187   
## ns(time, df = 18 * 10)110  0.93768    1.17542   0.798  0.42502   
## ns(time, df = 18 * 10)111  0.58373    1.13375   0.515  0.60665   
## ns(time, df = 18 * 10)112  0.70416    1.11322   0.633  0.52703   
## ns(time, df = 18 * 10)113  1.08326    1.11378   0.973  0.33075   
## ns(time, df = 18 * 10)114 -0.29013    1.17405  -0.247  0.80482   
## ns(time, df = 18 * 10)115  1.90095    1.12749   1.686  0.09180 . 
## ns(time, df = 18 * 10)116 -1.35063    1.32051  -1.023  0.30640   
## ns(time, df = 18 * 10)117  1.41780    1.21650   1.165  0.24382   
## ns(time, df = 18 * 10)118 -0.85746    1.31738  -0.651  0.51512   
## ns(time, df = 18 * 10)119  0.78552    1.20420   0.652  0.51420   
## ns(time, df = 18 * 10)120  0.63891    1.19603   0.534  0.59321   
## ns(time, df = 18 * 10)121  0.12765    1.31289   0.097  0.92254   
## ns(time, df = 18 * 10)122 -1.38940    1.41212  -0.984  0.32516   
## ns(time, df = 18 * 10)123  1.84178    1.16414   1.582  0.11363   
## ns(time, df = 18 * 10)124 -0.51374    1.21500  -0.423  0.67242   
## ns(time, df = 18 * 10)125  1.25506    1.14929   1.092  0.27482   
## ns(time, df = 18 * 10)126  0.02939    1.20549   0.024  0.98055   
## ns(time, df = 18 * 10)127  0.78068    1.26073   0.619  0.53577   
## ns(time, df = 18 * 10)128 -1.52639    1.44020  -1.060  0.28921   
## ns(time, df = 18 * 10)129  1.27970    1.19376   1.072  0.28373   
## ns(time, df = 18 * 10)130  0.28385    1.18610   0.239  0.81087   
## ns(time, df = 18 * 10)131  0.33100    1.18937   0.278  0.78078   
## ns(time, df = 18 * 10)132  0.83859    1.17676   0.713  0.47608   
## ns(time, df = 18 * 10)133  0.17182    1.28165   0.134  0.89336   
## ns(time, df = 18 * 10)134 -0.94267    1.42063  -0.664  0.50698   
## ns(time, df = 18 * 10)135  0.70913    1.26778   0.559  0.57592   
## ns(time, df = 18 * 10)136 -0.20090    1.23208  -0.163  0.87048   
## ns(time, df = 18 * 10)137  1.20331    1.13449   1.061  0.28884   
## ns(time, df = 18 * 10)138  0.29888    1.15703   0.258  0.79616   
## ns(time, df = 18 * 10)139  1.25674    1.21888   1.031  0.30251   
## ns(time, df = 18 * 10)140 -2.69701    1.53820  -1.753  0.07954 . 
## ns(time, df = 18 * 10)141  2.34050    1.13010   2.071  0.03835 * 
## ns(time, df = 18 * 10)142 -0.16389    1.13477  -0.144  0.88517   
## ns(time, df = 18 * 10)143  1.33162    1.07177   1.242  0.21407   
## ns(time, df = 18 * 10)144  0.91905    1.07747   0.853  0.39367   
## ns(time, df = 18 * 10)145  0.41812    1.10804   0.377  0.70591   
## ns(time, df = 18 * 10)146  1.21920    1.08946   1.119  0.26310   
## ns(time, df = 18 * 10)147  0.10075    1.12452   0.090  0.92861   
## ns(time, df = 18 * 10)148  1.32603    1.06825   1.241  0.21449   
## ns(time, df = 18 * 10)149  0.79488    1.07895   0.737  0.46129   
## ns(time, df = 18 * 10)150  0.81042    1.10485   0.734  0.46324   
## ns(time, df = 18 * 10)151  0.62470    1.15381   0.541  0.58822   
## ns(time, df = 18 * 10)152 -0.01602    1.22382  -0.013  0.98956   
## ns(time, df = 18 * 10)153  0.58093    1.20744   0.481  0.63042   
## ns(time, df = 18 * 10)154  0.02444    1.21456   0.020  0.98394   
## ns(time, df = 18 * 10)155  0.64048    1.13731   0.563  0.57333   
## ns(time, df = 18 * 10)156  1.28265    1.10256   1.163  0.24469   
## ns(time, df = 18 * 10)157 -0.25006    1.16519  -0.215  0.83007   
## ns(time, df = 18 * 10)158  1.41199    1.08959   1.296  0.19501   
## ns(time, df = 18 * 10)159  0.82497    1.13608   0.726  0.46775   
## ns(time, df = 18 * 10)160 -0.61443    1.28658  -0.478  0.63296   
## ns(time, df = 18 * 10)161  0.47015    1.17502   0.400  0.68907   
## ns(time, df = 18 * 10)162  1.26703    1.09434   1.158  0.24694   
## ns(time, df = 18 * 10)163  0.58629    1.13145   0.518  0.60433   
## ns(time, df = 18 * 10)164  0.30990    1.19435   0.259  0.79527   
## ns(time, df = 18 * 10)165  0.07368    1.20265   0.061  0.95115   
## ns(time, df = 18 * 10)166  1.13333    1.15290   0.983  0.32560   
## ns(time, df = 18 * 10)167  0.16311    1.25239   0.130  0.89638   
## ns(time, df = 18 * 10)168 -0.72316    1.38575  -0.522  0.60177   
## ns(time, df = 18 * 10)169  0.38789    1.24365   0.312  0.75512   
## ns(time, df = 18 * 10)170  1.29432    1.22298   1.058  0.28991   
## ns(time, df = 18 * 10)171 -2.06785    1.48543  -1.392  0.16390   
## ns(time, df = 18 * 10)172  1.74938    1.20944   1.446  0.14805   
## ns(time, df = 18 * 10)173 -0.53191    1.27107  -0.418  0.67560   
## ns(time, df = 18 * 10)174  0.26516    1.18126   0.224  0.82239   
## ns(time, df = 18 * 10)175  1.80614    1.10988   1.627  0.10367   
## ns(time, df = 18 * 10)176 -1.15633    1.24454  -0.929  0.35283   
## ns(time, df = 18 * 10)177  1.77791    1.08953   1.632  0.10272   
## ns(time, df = 18 * 10)178  0.76317    0.91270   0.836  0.40306   
## ns(time, df = 18 * 10)179 -0.69084    2.16626  -0.319  0.74980   
## ns(time, df = 18 * 10)180  0.64417    0.93293   0.690  0.48989   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(20157.88) family taken to be 1)
## 
##     Null deviance: 1149.73  on 938  degrees of freedom
## Residual deviance:  912.95  on 758  degrees of freedom
## AIC: 3058.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  20158 
##           Std. Err.:  98126 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2694.863
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ ns(time, df = 18 * 14), data = week, 
##     init.theta = 20479.9809, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.6587  -0.8307  -0.1010   0.5224   2.2124  
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)               -0.7607151  1.1179569  -0.680  0.49622   
## ns(time, df = 18 * 14)1   -1.1584761  1.6329522  -0.709  0.47805   
## ns(time, df = 18 * 14)2    3.4775806  1.9928994   1.745  0.08099 . 
## ns(time, df = 18 * 14)3   -6.0047750  3.5839754  -1.675  0.09385 . 
## ns(time, df = 18 * 14)4    1.4915804  1.8547128   0.804  0.42128   
## ns(time, df = 18 * 14)5    1.7112833  1.5297101   1.119  0.26327   
## ns(time, df = 18 * 14)6   -0.0280834  1.6708738  -0.017  0.98659   
## ns(time, df = 18 * 14)7    1.0639155  1.5595804   0.682  0.49512   
## ns(time, df = 18 * 14)8    0.8123412  1.4850467   0.547  0.58437   
## ns(time, df = 18 * 14)9    2.3281154  1.4245285   1.634  0.10219   
## ns(time, df = 18 * 14)10  -0.6114241  1.5870365  -0.385  0.70004   
## ns(time, df = 18 * 14)11   2.4568481  1.4153427   1.736  0.08259 . 
## ns(time, df = 18 * 14)12   0.4266640  1.4540158   0.293  0.76919   
## ns(time, df = 18 * 14)13   2.2208800  1.4081089   1.577  0.11475   
## ns(time, df = 18 * 14)14  -0.1502065  1.4782725  -0.102  0.91907   
## ns(time, df = 18 * 14)15   3.2879970  1.3708910   2.398  0.01647 * 
## ns(time, df = 18 * 14)16  -0.6280094  1.5791451  -0.398  0.69086   
## ns(time, df = 18 * 14)17   1.4437958  1.4795500   0.976  0.32915   
## ns(time, df = 18 * 14)18   1.8490520  1.4659001   1.261  0.20717   
## ns(time, df = 18 * 14)19  -0.4278341  1.6690544  -0.256  0.79769   
## ns(time, df = 18 * 14)20   2.2651980  1.6719174   1.355  0.17547   
## ns(time, df = 18 * 14)21  -2.3933572  2.3495922  -1.019  0.30838   
## ns(time, df = 18 * 14)22   0.3228619  1.7855357   0.181  0.85651   
## ns(time, df = 18 * 14)23   1.7875172  1.4728989   1.214  0.22490   
## ns(time, df = 18 * 14)24   1.3278819  1.4481109   0.917  0.35916   
## ns(time, df = 18 * 14)25   0.8447929  1.4901448   0.567  0.57077   
## ns(time, df = 18 * 14)26   1.0402229  1.4423004   0.721  0.47077   
## ns(time, df = 18 * 14)27   2.1260310  1.3864854   1.533  0.12518   
## ns(time, df = 18 * 14)28   0.6271667  1.4720074   0.426  0.67006   
## ns(time, df = 18 * 14)29   1.0977945  1.4469997   0.759  0.44805   
## ns(time, df = 18 * 14)30   1.8756520  1.3932294   1.346  0.17822   
## ns(time, df = 18 * 14)31   1.1494186  1.4528213   0.791  0.42885   
## ns(time, df = 18 * 14)32   0.5901095  1.5288890   0.386  0.69952   
## ns(time, df = 18 * 14)33   1.2247915  1.4662291   0.835  0.40353   
## ns(time, df = 18 * 14)34   1.8115963  1.4586969   1.242  0.21426   
## ns(time, df = 18 * 14)35  -0.3145724  1.6122169  -0.195  0.84530   
## ns(time, df = 18 * 14)36   2.0155986  1.4895055   1.353  0.17599   
## ns(time, df = 18 * 14)37   0.0912163  1.5591226   0.059  0.95335   
## ns(time, df = 18 * 14)38   1.6759688  1.4623509   1.146  0.25176   
## ns(time, df = 18 * 14)39   1.0374602  1.4759108   0.703  0.48210   
## ns(time, df = 18 * 14)40   1.1898331  1.5242401   0.781  0.43503   
## ns(time, df = 18 * 14)41  -0.1719529  1.5623497  -0.110  0.91236   
## ns(time, df = 18 * 14)42   2.7419179  1.3861635   1.978  0.04792 * 
## ns(time, df = 18 * 14)43   0.3879895  1.4621078   0.265  0.79073   
## ns(time, df = 18 * 14)44   1.4633557  1.4108520   1.037  0.29964   
## ns(time, df = 18 * 14)45   1.9439637  1.3856557   1.403  0.16064   
## ns(time, df = 18 * 14)46   0.7707589  1.4864726   0.519  0.60410   
## ns(time, df = 18 * 14)47   0.7444193  1.5302881   0.486  0.62664   
## ns(time, df = 18 * 14)48   1.2213485  1.4731619   0.829  0.40707   
## ns(time, df = 18 * 14)49   1.2598586  1.4389300   0.876  0.38127   
## ns(time, df = 18 * 14)50   1.4393214  1.4284049   1.008  0.31363   
## ns(time, df = 18 * 14)51   1.0079005  1.4519043   0.694  0.48756   
## ns(time, df = 18 * 14)52   1.3010462  1.4226392   0.915  0.36044   
## ns(time, df = 18 * 14)53   2.2754280  1.4543008   1.565  0.11767   
## ns(time, df = 18 * 14)54  -1.3144887  1.8696310  -0.703  0.48201   
## ns(time, df = 18 * 14)55   1.1122086  1.7115539   0.650  0.51581   
## ns(time, df = 18 * 14)56   0.6683905  1.7320710   0.386  0.69958   
## ns(time, df = 18 * 14)57  -0.8167683  1.8032962  -0.453  0.65060   
## ns(time, df = 18 * 14)58   2.1135913  1.4661068   1.442  0.14941   
## ns(time, df = 18 * 14)59   0.9429708  1.4319662   0.659  0.51021   
## ns(time, df = 18 * 14)60   1.8039480  1.3978251   1.291  0.19686   
## ns(time, df = 18 * 14)61   0.9334636  1.4299108   0.653  0.51388   
## ns(time, df = 18 * 14)62   1.6579978  1.4132369   1.173  0.24072   
## ns(time, df = 18 * 14)63   0.7816605  1.4296058   0.547  0.58454   
## ns(time, df = 18 * 14)64   2.3637391  1.3911403   1.699  0.08929 . 
## ns(time, df = 18 * 14)65   0.5614459  1.5703409   0.358  0.72069   
## ns(time, df = 18 * 14)66  -0.5616808  1.8177605  -0.309  0.75732   
## ns(time, df = 18 * 14)67   1.3162301  1.5950060   0.825  0.40925   
## ns(time, df = 18 * 14)68   0.5647349  1.5276806   0.370  0.71163   
## ns(time, df = 18 * 14)69   1.9555777  1.4430856   1.355  0.17537   
## ns(time, df = 18 * 14)70   0.1747635  1.4933428   0.117  0.90684   
## ns(time, df = 18 * 14)71   2.3020709  1.3816717   1.666  0.09568 . 
## ns(time, df = 18 * 14)72   0.8864431  1.4201166   0.624  0.53249   
## ns(time, df = 18 * 14)73   1.4500913  1.4022830   1.034  0.30109   
## ns(time, df = 18 * 14)74   1.7101181  1.3969714   1.224  0.22089   
## ns(time, df = 18 * 14)75   0.6182759  1.4479974   0.427  0.66939   
## ns(time, df = 18 * 14)76   1.8577513  1.3674950   1.359  0.17430   
## ns(time, df = 18 * 14)77   1.9689668  1.3737162   1.433  0.15177   
## ns(time, df = 18 * 14)78   0.1814270  1.4925228   0.122  0.90325   
## ns(time, df = 18 * 14)79   2.0136675  1.4167059   1.421  0.15521   
## ns(time, df = 18 * 14)80   0.5256877  1.4394819   0.365  0.71497   
## ns(time, df = 18 * 14)81   2.3250494  1.3616913   1.707  0.08773 . 
## ns(time, df = 18 * 14)82   0.9835676  1.4135151   0.696  0.48653   
## ns(time, df = 18 * 14)83   1.7480618  1.4701685   1.189  0.23443   
## ns(time, df = 18 * 14)84   0.0131366  1.7301559   0.008  0.99394   
## ns(time, df = 18 * 14)85  -0.9092103  1.7458293  -0.521  0.60251   
## ns(time, df = 18 * 14)86   3.2857109  1.4377624   2.285  0.02230 * 
## ns(time, df = 18 * 14)87  -0.5569303  1.5963932  -0.349  0.72719   
## ns(time, df = 18 * 14)88   1.4623053  1.4853036   0.985  0.32486   
## ns(time, df = 18 * 14)89   1.0924066  1.4096390   0.775  0.43837   
## ns(time, df = 18 * 14)90   2.2599346  1.3515881   1.672  0.09451 . 
## ns(time, df = 18 * 14)91   0.8220970  1.4038167   0.586  0.55813   
## ns(time, df = 18 * 14)92   1.9865022  1.3888002   1.430  0.15261   
## ns(time, df = 18 * 14)93   0.6849490  1.4601203   0.469  0.63899   
## ns(time, df = 18 * 14)94   1.3951196  1.4367985   0.971  0.33155   
## ns(time, df = 18 * 14)95   1.2996415  1.4237456   0.913  0.36133   
## ns(time, df = 18 * 14)96   1.3830809  1.4278603   0.969  0.33273   
## ns(time, df = 18 * 14)97   0.8652274  1.4328449   0.604  0.54594   
## ns(time, df = 18 * 14)98   2.0513504  1.3703990   1.497  0.13442   
## ns(time, df = 18 * 14)99   1.3467568  1.4221411   0.947  0.34364   
## ns(time, df = 18 * 14)100  0.5174127  1.5268291   0.339  0.73470   
## ns(time, df = 18 * 14)101  1.0072562  1.4544191   0.693  0.48859   
## ns(time, df = 18 * 14)102  1.9546961  1.3589011   1.438  0.15031   
## ns(time, df = 18 * 14)103  1.3847808  1.3418582   1.032  0.30208   
## ns(time, df = 18 * 14)104  2.6308754  1.3388438   1.965  0.04941 * 
## ns(time, df = 18 * 14)105 -0.0543329  1.5279799  -0.036  0.97163   
## ns(time, df = 18 * 14)106  1.1085020  1.4902338   0.744  0.45697   
## ns(time, df = 18 * 14)107  1.7298345  1.4384339   1.203  0.22914   
## ns(time, df = 18 * 14)108  0.8425473  1.5345740   0.549  0.58298   
## ns(time, df = 18 * 14)109 -0.0172532  1.5931232  -0.011  0.99136   
## ns(time, df = 18 * 14)110  2.6464135  1.4828049   1.785  0.07430 . 
## ns(time, df = 18 * 14)111 -1.2996344  1.7492539  -0.743  0.45750   
## ns(time, df = 18 * 14)112  2.1631208  1.5138072   1.429  0.15303   
## ns(time, df = 18 * 14)113  0.0152711  1.5275129   0.010  0.99202   
## ns(time, df = 18 * 14)114  2.3896177  1.4051835   1.701  0.08902 . 
## ns(time, df = 18 * 14)115  0.3010189  1.4615809   0.206  0.83683   
## ns(time, df = 18 * 14)116  2.2405926  1.3918540   1.610  0.10744   
## ns(time, df = 18 * 14)117  0.6008519  1.4544157   0.413  0.67952   
## ns(time, df = 18 * 14)118  1.7823571  1.4426581   1.235  0.21666   
## ns(time, df = 18 * 14)119  0.2417519  1.5066328   0.160  0.87252   
## ns(time, df = 18 * 14)120  2.1287501  1.4190935   1.500  0.13359   
## ns(time, df = 18 * 14)121  0.3440393  1.4671323   0.234  0.81460   
## ns(time, df = 18 * 14)122  2.2260559  1.3889645   1.603  0.10901   
## ns(time, df = 18 * 14)123  0.6355986  1.4396358   0.441  0.65885   
## ns(time, df = 18 * 14)124  1.8053596  1.3972770   1.292  0.19634   
## ns(time, df = 18 * 14)125  1.4471417  1.4393513   1.005  0.31470   
## ns(time, df = 18 * 14)126  0.3862605  1.5815515   0.244  0.80705   
## ns(time, df = 18 * 14)127  0.4597052  1.5247180   0.302  0.76303   
## ns(time, df = 18 * 14)128  2.2640308  1.3717599   1.650  0.09885 . 
## ns(time, df = 18 * 14)129  1.3421057  1.3943518   0.963  0.33578   
## ns(time, df = 18 * 14)130  0.9026636  1.4326463   0.630  0.52865   
## ns(time, df = 18 * 14)131  1.8330375  1.3852440   1.323  0.18575   
## ns(time, df = 18 * 14)132  1.2358099  1.4102169   0.876  0.38085   
## ns(time, df = 18 * 14)133  1.3591155  1.4423114   0.942  0.34603   
## ns(time, df = 18 * 14)134  0.4276405  1.4521229   0.294  0.76838   
## ns(time, df = 18 * 14)135  2.4838154  1.3211096   1.880  0.06009 . 
## ns(time, df = 18 * 14)136  1.6463478  1.3239043   1.244  0.21366   
## ns(time, df = 18 * 14)137  1.7033105  1.3515972   1.260  0.20759   
## ns(time, df = 18 * 14)138  0.9983808  1.3741742   0.727  0.46751   
## ns(time, df = 18 * 14)139  2.5006680  1.3312811   1.878  0.06033 . 
## ns(time, df = 18 * 14)140  1.2462343  1.4399275   0.865  0.38677   
## ns(time, df = 18 * 14)141 -0.3410688  1.6818252  -0.203  0.83929   
## ns(time, df = 18 * 14)142  1.5949390  1.5857400   1.006  0.31451   
## ns(time, df = 18 * 14)143 -0.0007113  1.6858314   0.000  0.99966   
## ns(time, df = 18 * 14)144  1.1206759  1.6505805   0.679  0.49716   
## ns(time, df = 18 * 14)145  0.8326147  1.8304299   0.455  0.64920   
## ns(time, df = 18 * 14)146 -2.7015538  2.4102302  -1.121  0.26234   
## ns(time, df = 18 * 14)147  2.3641644  1.6704025   1.415  0.15697   
## ns(time, df = 18 * 14)148 -0.7027851  1.6142026  -0.435  0.66329   
## ns(time, df = 18 * 14)149  4.2399860  1.5229048   2.784  0.00537 **
## ns(time, df = 18 * 14)150 -4.8671426  2.4777609  -1.964  0.04949 * 
## ns(time, df = 18 * 14)151  2.8808882  1.5024294   1.917  0.05518 . 
## ns(time, df = 18 * 14)152  1.5219539  1.4431007   1.055  0.29159   
## ns(time, df = 18 * 14)153  0.1583604  1.5923359   0.099  0.92078   
## ns(time, df = 18 * 14)154  1.1573133  1.5283937   0.757  0.44892   
## ns(time, df = 18 * 14)155  0.8894921  1.4726556   0.604  0.54584   
## ns(time, df = 18 * 14)156  1.9068139  1.4121727   1.350  0.17693   
## ns(time, df = 18 * 14)157  0.4914303  1.4487819   0.339  0.73446   
## ns(time, df = 18 * 14)158  2.3995495  1.3822303   1.736  0.08256 . 
## ns(time, df = 18 * 14)159  0.3940602  1.4806934   0.266  0.79014   
## ns(time, df = 18 * 14)160  1.4211404  1.4511086   0.979  0.32741   
## ns(time, df = 18 * 14)161  1.2074472  1.4348438   0.842  0.40006   
## ns(time, df = 18 * 14)162  1.9090608  1.4739076   1.295  0.19524   
## ns(time, df = 18 * 14)163 -1.0365246  1.7483432  -0.593  0.55327   
## ns(time, df = 18 * 14)164  2.0726496  1.5304424   1.354  0.17565   
## ns(time, df = 18 * 14)165  0.3227759  1.6065731   0.201  0.84077   
## ns(time, df = 18 * 14)166  0.7065757  1.6323284   0.433  0.66511   
## ns(time, df = 18 * 14)167  0.4088168  1.5516887   0.263  0.79219   
## ns(time, df = 18 * 14)168  2.5037823  1.4498974   1.727  0.08419 . 
## ns(time, df = 18 * 14)169 -0.5012680  1.6637759  -0.301  0.76320   
## ns(time, df = 18 * 14)170  1.4034362  1.6267913   0.863  0.38830   
## ns(time, df = 18 * 14)171  0.1072761  1.7593073   0.061  0.95138   
## ns(time, df = 18 * 14)172 -0.4611873  1.6744388  -0.275  0.78299   
## ns(time, df = 18 * 14)173  3.1826144  1.4350365   2.218  0.02657 * 
## ns(time, df = 18 * 14)174 -0.8167034  1.6213250  -0.504  0.61445   
## ns(time, df = 18 * 14)175  1.8578603  1.4643574   1.269  0.20454   
## ns(time, df = 18 * 14)176  1.2294892  1.4639316   0.840  0.40099   
## ns(time, df = 18 * 14)177  0.7271639  1.5295662   0.475  0.63450   
## ns(time, df = 18 * 14)178  1.4342615  1.5629887   0.918  0.35881   
## ns(time, df = 18 * 14)179 -0.1180036  1.8083415  -0.065  0.94797   
## ns(time, df = 18 * 14)180 -0.6294394  1.7843450  -0.353  0.72427   
## ns(time, df = 18 * 14)181  2.5405864  1.4816002   1.715  0.08639 . 
## ns(time, df = 18 * 14)182 -0.1403399  1.5499555  -0.091  0.92785   
## ns(time, df = 18 * 14)183  2.1759174  1.4516450   1.499  0.13389   
## ns(time, df = 18 * 14)184  0.1822596  1.5407181   0.118  0.90583   
## ns(time, df = 18 * 14)185  1.5012880  1.4777635   1.016  0.30967   
## ns(time, df = 18 * 14)186  1.3364007  1.5141548   0.883  0.37745   
## ns(time, df = 18 * 14)187  0.4056699  1.7534099   0.231  0.81703   
## ns(time, df = 18 * 14)188 -1.4888393  1.9809620  -0.752  0.45231   
## ns(time, df = 18 * 14)189  2.6901996  1.5870365   1.695  0.09005 . 
## ns(time, df = 18 * 14)190 -1.1007431  1.7521312  -0.628  0.52985   
## ns(time, df = 18 * 14)191  1.8804887  1.4922801   1.260  0.20762   
## ns(time, df = 18 * 14)192  0.9660152  1.4534537   0.665  0.50628   
## ns(time, df = 18 * 14)193  1.6470192  1.4313404   1.151  0.24986   
## ns(time, df = 18 * 14)194  0.7876442  1.4773157   0.533  0.59392   
## ns(time, df = 18 * 14)195  2.3856942  1.5684410   1.521  0.12824   
## ns(time, df = 18 * 14)196 -3.2125552  2.4327670  -1.321  0.18666   
## ns(time, df = 18 * 14)197  1.2787498  1.6130017   0.793  0.42791   
## ns(time, df = 18 * 14)198  1.9907644  1.4132419   1.409  0.15894   
## ns(time, df = 18 * 14)199  0.9730773  1.4281799   0.681  0.49566   
## ns(time, df = 18 * 14)200  1.3968366  1.3921744   1.003  0.31569   
## ns(time, df = 18 * 14)201  1.8862938  1.3580566   1.389  0.16484   
## ns(time, df = 18 * 14)202  1.1870860  1.3822867   0.859  0.39046   
## ns(time, df = 18 * 14)203  1.9519144  1.3874308   1.407  0.15947   
## ns(time, df = 18 * 14)204  0.1660387  1.4573863   0.114  0.90929   
## ns(time, df = 18 * 14)205  2.9380085  1.3745057   2.138  0.03256 * 
## ns(time, df = 18 * 14)206 -0.6318886  1.5301437  -0.413  0.67964   
## ns(time, df = 18 * 14)207  2.5345247  1.3671093   1.854  0.06375 . 
## ns(time, df = 18 * 14)208  1.1342028  1.3811989   0.821  0.41155   
## ns(time, df = 18 * 14)209  1.5065730  1.3753506   1.095  0.27334   
## ns(time, df = 18 * 14)210  1.9065773  1.3772409   1.384  0.16625   
## ns(time, df = 18 * 14)211  0.5986723  1.4670241   0.408  0.68321   
## ns(time, df = 18 * 14)212  1.6523314  1.4559708   1.135  0.25643   
## ns(time, df = 18 * 14)213  0.6873997  1.5397220   0.446  0.65528   
## ns(time, df = 18 * 14)214  0.6328050  1.5680726   0.404  0.68654   
## ns(time, df = 18 * 14)215  1.3470581  1.5169942   0.888  0.37455   
## ns(time, df = 18 * 14)216  0.5423109  1.5480527   0.350  0.72610   
## ns(time, df = 18 * 14)217  1.1618345  1.4723662   0.789  0.43006   
## ns(time, df = 18 * 14)218  1.4708049  1.4045254   1.047  0.29501   
## ns(time, df = 18 * 14)219  1.8644539  1.4036733   1.328  0.18409   
## ns(time, df = 18 * 14)220  0.1828629  1.5092146   0.121  0.90356   
## ns(time, df = 18 * 14)221  1.7697930  1.4032337   1.261  0.20723   
## ns(time, df = 18 * 14)222  1.5834420  1.3829761   1.145  0.25223   
## ns(time, df = 18 * 14)223  1.5158407  1.4328017   1.058  0.29008   
## ns(time, df = 18 * 14)224  0.6143011  1.5892224   0.387  0.69910   
## ns(time, df = 18 * 14)225 -0.1681759  1.6745412  -0.100  0.92000   
## ns(time, df = 18 * 14)226  1.6394172  1.4513871   1.130  0.25867   
## ns(time, df = 18 * 14)227  1.5288425  1.3912443   1.099  0.27181   
## ns(time, df = 18 * 14)228  1.6042685  1.3979384   1.148  0.25114   
## ns(time, df = 18 * 14)229  0.9876617  1.4568014   0.678  0.49779   
## ns(time, df = 18 * 14)230  1.3735524  1.5028806   0.914  0.36074   
## ns(time, df = 18 * 14)231 -0.1205391  1.6008291  -0.075  0.93998   
## ns(time, df = 18 * 14)232  1.9698222  1.4483709   1.360  0.17382   
## ns(time, df = 18 * 14)233  0.8961776  1.4726464   0.609  0.54282   
## ns(time, df = 18 * 14)234  1.5191487  1.5262938   0.995  0.31958   
## ns(time, df = 18 * 14)235 -0.3660315  1.7492611  -0.209  0.83425   
## ns(time, df = 18 * 14)236  0.9785231  1.6875924   0.580  0.56203   
## ns(time, df = 18 * 14)237 -0.1779380  1.6252707  -0.109  0.91282   
## ns(time, df = 18 * 14)238  3.0627832  1.4904968   2.055  0.03989 * 
## ns(time, df = 18 * 14)239 -1.4132881  1.9061069  -0.741  0.45842   
## ns(time, df = 18 * 14)240  0.0215156  1.7829441   0.012  0.99037   
## ns(time, df = 18 * 14)241  1.8699557  1.5217681   1.229  0.21915   
## ns(time, df = 18 * 14)242  0.5316348  1.5609712   0.341  0.73342   
## ns(time, df = 18 * 14)243  1.0167356  1.5663802   0.649  0.51627   
## ns(time, df = 18 * 14)244  0.2506600  1.5268834   0.164  0.86960   
## ns(time, df = 18 * 14)245  2.5808008  1.3883613   1.859  0.06304 . 
## ns(time, df = 18 * 14)246  0.6965160  1.4943486   0.466  0.64114   
## ns(time, df = 18 * 14)247  0.0945839  1.5664128   0.060  0.95185   
## ns(time, df = 18 * 14)248  2.1111443  1.3947002   1.514  0.13010   
## ns(time, df = 18 * 14)249  1.3371960  1.3936054   0.960  0.33730   
## ns(time, df = 18 * 14)250  1.0035833  1.1153518   0.900  0.36823   
## ns(time, df = 18 * 14)251  1.8574769  2.7989203   0.664  0.50692   
## ns(time, df = 18 * 14)252 -0.3135889  1.0777250  -0.291  0.77107   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(20479.98) family taken to be 1)
## 
##     Null deviance: 1149.73  on 938  degrees of freedom
## Residual deviance:  843.44  on 686  degrees of freedom
## AIC: 3133.3
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  20480 
##           Std. Err.:  84363 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2625.347
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ ns(time, df = 18 * 15), data = week, 
##     init.theta = 21819.86914, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5398  -0.8189  -0.1214   0.5090   2.2049  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)  
## (Intercept)               -1.09154    1.26513  -0.863   0.3883  
## ns(time, df = 18 * 15)1   -2.10234    1.91810  -1.096   0.2731  
## ns(time, df = 18 * 15)2    4.62206    2.17796   2.122   0.0338 *
## ns(time, df = 18 * 15)3   -5.31501    3.58915  -1.481   0.1386  
## ns(time, df = 18 * 15)4    0.06596    2.29180   0.029   0.9770  
## ns(time, df = 18 * 15)5    2.49150    1.68355   1.480   0.1389  
## ns(time, df = 18 * 15)6    0.80090    1.74701   0.458   0.6466  
## ns(time, df = 18 * 15)7    0.86386    1.75354   0.493   0.6223  
## ns(time, df = 18 * 15)8    1.22863    1.66663   0.737   0.4610  
## ns(time, df = 18 * 15)9    1.79068    1.57462   1.137   0.2554  
## ns(time, df = 18 * 15)10   1.93344    1.58610   1.219   0.2228  
## ns(time, df = 18 * 15)11   0.26995    1.68146   0.161   0.8725  
## ns(time, df = 18 * 15)12   2.57728    1.54883   1.664   0.0961 .
## ns(time, df = 18 * 15)13   0.93239    1.58224   0.589   0.5557  
## ns(time, df = 18 * 15)14   2.33497    1.54738   1.509   0.1313  
## ns(time, df = 18 * 15)15   0.59284    1.59968   0.371   0.7109  
## ns(time, df = 18 * 15)16   2.82578    1.50727   1.875   0.0608 .
## ns(time, df = 18 * 15)17   1.45666    1.60809   0.906   0.3650  
## ns(time, df = 18 * 15)18  -0.54551    1.77742  -0.307   0.7589  
## ns(time, df = 18 * 15)19   3.86620    1.57688   2.452   0.0142 *
## ns(time, df = 18 * 15)20  -1.21687    1.86609  -0.652   0.5143  
## ns(time, df = 18 * 15)21   2.79801    1.73072   1.617   0.1059  
## ns(time, df = 18 * 15)22  -0.34816    2.07274  -0.168   0.8666  
## ns(time, df = 18 * 15)23  -0.77515    2.31267  -0.335   0.7375  
## ns(time, df = 18 * 15)24   1.21125    1.76675   0.686   0.4930  
## ns(time, df = 18 * 15)25   2.11826    1.57787   1.342   0.1794  
## ns(time, df = 18 * 15)26   1.55474    1.58862   0.979   0.3277  
## ns(time, df = 18 * 15)27   1.09506    1.63143   0.671   0.5021  
## ns(time, df = 18 * 15)28   1.52927    1.56859   0.975   0.3296  
## ns(time, df = 18 * 15)29   2.33340    1.52253   1.533   0.1254  
## ns(time, df = 18 * 15)30   1.18283    1.59886   0.740   0.4594  
## ns(time, df = 18 * 15)31   1.08285    1.60387   0.675   0.4996  
## ns(time, df = 18 * 15)32   2.42948    1.52455   1.594   0.1110  
## ns(time, df = 18 * 15)33   1.27724    1.57686   0.810   0.4179  
## ns(time, df = 18 * 15)34   1.70561    1.62260   1.051   0.2932  
## ns(time, df = 18 * 15)35   0.32597    1.68095   0.194   0.8462  
## ns(time, df = 18 * 15)36   2.94135    1.56376   1.881   0.0600 .
## ns(time, df = 18 * 15)37   0.08199    1.71726   0.048   0.9619  
## ns(time, df = 18 * 15)38   1.82533    1.65027   1.106   0.2687  
## ns(time, df = 18 * 15)39   1.09213    1.66300   0.657   0.5114  
## ns(time, df = 18 * 15)40   1.31972    1.64305   0.803   0.4219  
## ns(time, df = 18 * 15)41   1.56489    1.60334   0.976   0.3291  
## ns(time, df = 18 * 15)42   1.65670    1.60393   1.033   0.3016  
## ns(time, df = 18 * 15)43   1.29399    1.67786   0.771   0.4406  
## ns(time, df = 18 * 15)44   0.13684    1.70766   0.080   0.9361  
## ns(time, df = 18 * 15)45   3.10055    1.52180   2.037   0.0416 *
## ns(time, df = 18 * 15)46   0.77430    1.59248   0.486   0.6268  
## ns(time, df = 18 * 15)47   1.76333    1.55448   1.134   0.2566  
## ns(time, df = 18 * 15)48   2.00150    1.52155   1.315   0.1884  
## ns(time, df = 18 * 15)49   1.88274    1.56665   1.202   0.2295  
## ns(time, df = 18 * 15)50   0.49875    1.69787   0.294   0.7689  
## ns(time, df = 18 * 15)51   1.76442    1.62422   1.086   0.2773  
## ns(time, df = 18 * 15)52   1.17611    1.60206   0.734   0.4629  
## ns(time, df = 18 * 15)53   2.14741    1.55298   1.383   0.1667  
## ns(time, df = 18 * 15)54   1.08525    1.59537   0.680   0.4963  
## ns(time, df = 18 * 15)55   1.85227    1.56274   1.185   0.2359  
## ns(time, df = 18 * 15)56   1.50716    1.55821   0.967   0.3334  
## ns(time, df = 18 * 15)57   2.59962    1.60692   1.618   0.1057  
## ns(time, df = 18 * 15)58  -1.28490    2.07751  -0.618   0.5363  
## ns(time, df = 18 * 15)59   1.54463    1.84830   0.836   0.4033  
## ns(time, df = 18 * 15)60   1.05716    1.86742   0.566   0.5713  
## ns(time, df = 18 * 15)61  -0.63270    2.00036  -0.316   0.7518  
## ns(time, df = 18 * 15)62   2.15365    1.63040   1.321   0.1865  
## ns(time, df = 18 * 15)63   1.57508    1.56594   1.006   0.3145  
## ns(time, df = 18 * 15)64   1.69895    1.54498   1.100   0.2715  
## ns(time, df = 18 * 15)65   1.95382    1.53933   1.269   0.2043  
## ns(time, df = 18 * 15)66   1.17784    1.57692   0.747   0.4551  
## ns(time, df = 18 * 15)67   2.05650    1.54297   1.333   0.1826  
## ns(time, df = 18 * 15)68   1.22129    1.55368   0.786   0.4318  
## ns(time, df = 18 * 15)69   2.85629    1.54613   1.847   0.0647 .
## ns(time, df = 18 * 15)70  -0.12643    1.83958  -0.069   0.9452  
## ns(time, df = 18 * 15)71   0.38638    1.90807   0.202   0.8395  
## ns(time, df = 18 * 15)72   1.48341    1.72055   0.862   0.3886  
## ns(time, df = 18 * 15)73   1.02162    1.65162   0.619   0.5362  
## ns(time, df = 18 * 15)74   2.22853    1.57850   1.412   0.1580  
## ns(time, df = 18 * 15)75   0.56274    1.63047   0.345   0.7300  
## ns(time, df = 18 * 15)76   2.45360    1.52379   1.610   0.1074  
## ns(time, df = 18 * 15)77   1.49842    1.54405   0.970   0.3318  
## ns(time, df = 18 * 15)78   1.51440    1.54865   0.978   0.3281  
## ns(time, df = 18 * 15)79   2.18819    1.52493   1.435   0.1513  
## ns(time, df = 18 * 15)80   1.14485    1.57805   0.725   0.4682  
## ns(time, df = 18 * 15)81   1.68663    1.53592   1.098   0.2721  
## ns(time, df = 18 * 15)82   2.27915    1.49328   1.526   0.1269  
## ns(time, df = 18 * 15)83   1.88891    1.54316   1.224   0.2209  
## ns(time, df = 18 * 15)84   0.39608    1.64754   0.240   0.8100  
## ns(time, df = 18 * 15)85   2.71731    1.53929   1.765   0.0775 .
## ns(time, df = 18 * 15)86   0.45455    1.59044   0.286   0.7750  
## ns(time, df = 18 * 15)87   3.04095    1.49110   2.039   0.0414 *
## ns(time, df = 18 * 15)88   0.97599    1.56538   0.623   0.5330  
## ns(time, df = 18 * 15)89   2.20497    1.60383   1.375   0.1692  
## ns(time, df = 18 * 15)90   0.56385    1.86032   0.303   0.7618  
## ns(time, df = 18 * 15)91  -1.39849    2.03781  -0.686   0.4925  
## ns(time, df = 18 * 15)92   3.72405    1.58532   2.349   0.0188 *
## ns(time, df = 18 * 15)93   0.11009    1.68480   0.065   0.9479  
## ns(time, df = 18 * 15)94   1.85501    1.63754   1.133   0.2573  
## ns(time, df = 18 * 15)95   0.69467    1.60696   0.432   0.6655  
## ns(time, df = 18 * 15)96   2.98449    1.48801   2.006   0.0449 *
## ns(time, df = 18 * 15)97   0.96273    1.53637   0.627   0.5309  
## ns(time, df = 18 * 15)98   2.61024    1.50583   1.733   0.0830 .
## ns(time, df = 18 * 15)99   0.88271    1.58339   0.557   0.5772  
## ns(time, df = 18 * 15)100  2.09998    1.56183   1.345   0.1788  
## ns(time, df = 18 * 15)101  0.95686    1.59889   0.598   0.5495  
## ns(time, df = 18 * 15)102  2.18664    1.54492   1.415   0.1570  
## ns(time, df = 18 * 15)103  1.27781    1.57865   0.809   0.4183  
## ns(time, df = 18 * 15)104  1.55186    1.55933   0.995   0.3196  
## ns(time, df = 18 * 15)105  1.98347    1.51380   1.310   0.1901  
## ns(time, df = 18 * 15)106  2.24417    1.53595   1.461   0.1440  
## ns(time, df = 18 * 15)107  0.28463    1.69227   0.168   0.8664  
## ns(time, df = 18 * 15)108  1.87389    1.59220   1.177   0.2392  
## ns(time, df = 18 * 15)109  1.37998    1.53952   0.896   0.3701  
## ns(time, df = 18 * 15)110  2.46343    1.46821   1.678   0.0934 .
## ns(time, df = 18 * 15)111  1.98704    1.47193   1.350   0.1770  
## ns(time, df = 18 * 15)112  2.37728    1.51988   1.564   0.1178  
## ns(time, df = 18 * 15)113  0.01313    1.72218   0.008   0.9939  
## ns(time, df = 18 * 15)114  1.88840    1.59681   1.183   0.2370  
## ns(time, df = 18 * 15)115  2.00398    1.58112   1.267   0.2050  
## ns(time, df = 18 * 15)116  0.69099    1.72110   0.401   0.6881  
## ns(time, df = 18 * 15)117  0.76572    1.69459   0.452   0.6514  
## ns(time, df = 18 * 15)118  2.86350    1.62269   1.765   0.0776 .
## ns(time, df = 18 * 15)119 -1.27487    1.92719  -0.662   0.5083  
## ns(time, df = 18 * 15)120  2.91845    1.64783   1.771   0.0765 .
## ns(time, df = 18 * 15)121 -0.31559    1.71438  -0.184   0.8539  
## ns(time, df = 18 * 15)122  3.24115    1.53977   2.105   0.0353 *
## ns(time, df = 18 * 15)123  0.04992    1.63006   0.031   0.9756  
## ns(time, df = 18 * 15)124  3.03717    1.52173   1.996   0.0459 *
## ns(time, df = 18 * 15)125  0.42059    1.60596   0.262   0.7934  
## ns(time, df = 18 * 15)126  2.74719    1.55210   1.770   0.0767 .
## ns(time, df = 18 * 15)127  0.14674    1.68074   0.087   0.9304  
## ns(time, df = 18 * 15)128  2.18985    1.57196   1.393   0.1636  
## ns(time, df = 18 * 15)129  1.47102    1.58135   0.930   0.3523  
## ns(time, df = 18 * 15)130  1.14645    1.58219   0.725   0.4687  
## ns(time, df = 18 * 15)131  2.56096    1.52189   1.683   0.0924 .
## ns(time, df = 18 * 15)132  0.68430    1.59239   0.430   0.6674  
## ns(time, df = 18 * 15)133  2.47424    1.52552   1.622   0.1048  
## ns(time, df = 18 * 15)134  1.38147    1.58467   0.872   0.3833  
## ns(time, df = 18 * 15)135  1.38534    1.69045   0.820   0.4125  
## ns(time, df = 18 * 15)136 -0.28147    1.75646  -0.160   0.8727  
## ns(time, df = 18 * 15)137  3.25223    1.51095   2.152   0.0314 *
## ns(time, df = 18 * 15)138  0.94832    1.54697   0.613   0.5399  
## ns(time, df = 18 * 15)139  2.43769    1.52839   1.595   0.1107  
## ns(time, df = 18 * 15)140  0.57083    1.58728   0.360   0.7191  
## ns(time, df = 18 * 15)141  3.03395    1.50598   2.015   0.0439 *
## ns(time, df = 18 * 15)142  0.46268    1.61299   0.287   0.7742  
## ns(time, df = 18 * 15)143  2.23224    1.56566   1.426   0.1539  
## ns(time, df = 18 * 15)144  0.58474    1.56639   0.373   0.7089  
## ns(time, df = 18 * 15)145  3.36101    1.44268   2.330   0.0198 *
## ns(time, df = 18 * 15)146  1.36467    1.48216   0.921   0.3572  
## ns(time, df = 18 * 15)147  2.38162    1.48469   1.604   0.1087  
## ns(time, df = 18 * 15)148  1.13125    1.51654   0.746   0.4557  
## ns(time, df = 18 * 15)149  2.92135    1.46575   1.993   0.0463 *
## ns(time, df = 18 * 15)150  1.63323    1.56544   1.043   0.2968  
## ns(time, df = 18 * 15)151  0.03945    1.81540   0.022   0.9827  
## ns(time, df = 18 * 15)152  1.61050    1.72898   0.931   0.3516  
## ns(time, df = 18 * 15)153  1.03035    1.78093   0.579   0.5629  
## ns(time, df = 18 * 15)154  0.21899    1.84878   0.118   0.9057  
## ns(time, df = 18 * 15)155  2.90008    1.86105   1.558   0.1192  
## ns(time, df = 18 * 15)156 -3.84551    2.96347  -1.298   0.1944  
## ns(time, df = 18 * 15)157  2.54981    1.93766   1.316   0.1882  
## ns(time, df = 18 * 15)158 -0.39396    1.85833  -0.212   0.8321  
## ns(time, df = 18 * 15)159  2.59848    1.59457   1.630   0.1032  
## ns(time, df = 18 * 15)160  1.98273    1.68454   1.177   0.2392  
## ns(time, df = 18 * 15)161 -2.62010    2.30672  -1.136   0.2560  
## ns(time, df = 18 * 15)162  3.18642    1.60002   1.991   0.0464 *
## ns(time, df = 18 * 15)163  1.73402    1.57838   1.099   0.2719  
## ns(time, df = 18 * 15)164  0.55352    1.72830   0.320   0.7488  
## ns(time, df = 18 * 15)165  1.35691    1.67582   0.810   0.4181  
## ns(time, df = 18 * 15)166  1.30891    1.61046   0.813   0.4164  
## ns(time, df = 18 * 15)167  2.07373    1.55426   1.334   0.1821  
## ns(time, df = 18 * 15)168  1.09389    1.57660   0.694   0.4878  
## ns(time, df = 18 * 15)169  2.25997    1.52504   1.482   0.1384  
## ns(time, df = 18 * 15)170  1.46931    1.56345   0.940   0.3473  
## ns(time, df = 18 * 15)171  1.49445    1.60433   0.932   0.3516  
## ns(time, df = 18 * 15)172  0.99940    1.60208   0.624   0.5328  
## ns(time, df = 18 * 15)173  2.83463    1.54918   1.830   0.0673 .
## ns(time, df = 18 * 15)174  0.09657    1.75815   0.055   0.9562  
## ns(time, df = 18 * 15)175  1.07059    1.74720   0.613   0.5400  
## ns(time, df = 18 * 15)176  1.52871    1.67506   0.913   0.3614  
## ns(time, df = 18 * 15)177  1.24903    1.71856   0.727   0.4674  
## ns(time, df = 18 * 15)178  0.46726    1.80349   0.259   0.7956  
## ns(time, df = 18 * 15)179  1.22692    1.66575   0.737   0.4614  
## ns(time, df = 18 * 15)180  2.28687    1.58384   1.444   0.1488  
## ns(time, df = 18 * 15)181  0.90171    1.71327   0.526   0.5987  
## ns(time, df = 18 * 15)182  0.43737    1.83055   0.239   0.8112  
## ns(time, df = 18 * 15)183  1.78258    1.79056   0.996   0.3195  
## ns(time, df = 18 * 15)184 -0.79232    1.96539  -0.403   0.6868  
## ns(time, df = 18 * 15)185  2.24813    1.60793   1.398   0.1621  
## ns(time, df = 18 * 15)186  2.29335    1.59350   1.439   0.1501  
## ns(time, df = 18 * 15)187 -0.92192    1.83258  -0.503   0.6149  
## ns(time, df = 18 * 15)188  3.28238    1.56892   2.092   0.0364 *
## ns(time, df = 18 * 15)189  0.35799    1.66748   0.215   0.8300  
## ns(time, df = 18 * 15)190  1.86208    1.64813   1.130   0.2586  
## ns(time, df = 18 * 15)191  1.12002    1.74067   0.643   0.5199  
## ns(time, df = 18 * 15)192  0.47955    1.95225   0.246   0.8060  
## ns(time, df = 18 * 15)193 -0.48153    1.92609  -0.250   0.8026  
## ns(time, df = 18 * 15)194  3.08344    1.61146   1.913   0.0557 .
## ns(time, df = 18 * 15)195 -0.03336    1.69993  -0.020   0.9843  
## ns(time, df = 18 * 15)196  2.61621    1.58366   1.652   0.0985 .
## ns(time, df = 18 * 15)197  0.54519    1.67107   0.326   0.7442  
## ns(time, df = 18 * 15)198  1.70233    1.62088   1.050   0.2936  
## ns(time, df = 18 * 15)199  1.57113    1.62220   0.969   0.3328  
## ns(time, df = 18 * 15)200  1.68523    1.75699   0.959   0.3375  
## ns(time, df = 18 * 15)201 -1.62601    2.26741  -0.717   0.4733  
## ns(time, df = 18 * 15)202  1.97666    1.78935   1.105   0.2693  
## ns(time, df = 18 * 15)203  1.01946    1.75768   0.580   0.5619  
## ns(time, df = 18 * 15)204  0.48739    1.76519   0.276   0.7825  
## ns(time, df = 18 * 15)205  1.96264    1.60329   1.224   0.2209  
## ns(time, df = 18 * 15)206  1.43321    1.57832   0.908   0.3638  
## ns(time, df = 18 * 15)207  1.89429    1.56880   1.207   0.2272  
## ns(time, df = 18 * 15)208  1.15342    1.61270   0.715   0.4745  
## ns(time, df = 18 * 15)209  2.74938    1.71039   1.607   0.1080  
## ns(time, df = 18 * 15)210 -2.97450    2.67134  -1.113   0.2655  
## ns(time, df = 18 * 15)211  1.19387    1.81703   0.657   0.5112  
## ns(time, df = 18 * 15)212  2.36196    1.55939   1.515   0.1299  
## ns(time, df = 18 * 15)213  1.45198    1.55435   0.934   0.3502  
## ns(time, df = 18 * 15)214  1.73049    1.53980   1.124   0.2611  
## ns(time, df = 18 * 15)215  1.72086    1.51170   1.138   0.2550  
## ns(time, df = 18 * 15)216  2.39314    1.49075   1.605   0.1084  
## ns(time, df = 18 * 15)217  1.13495    1.54389   0.735   0.4623  
## ns(time, df = 18 * 15)218  2.44871    1.52622   1.604   0.1086  
## ns(time, df = 18 * 15)219  0.42103    1.59271   0.264   0.7915  
## ns(time, df = 18 * 15)220  3.44173    1.51478   2.272   0.0231 *
## ns(time, df = 18 * 15)221 -0.79409    1.70634  -0.465   0.6417  
## ns(time, df = 18 * 15)222  3.29328    1.49683   2.200   0.0278 *
## ns(time, df = 18 * 15)223  1.13894    1.52881   0.745   0.4563  
## ns(time, df = 18 * 15)224  2.04258    1.50904   1.354   0.1759  
## ns(time, df = 18 * 15)225  2.01765    1.51416   1.333   0.1827  
## ns(time, df = 18 * 15)226  1.43945    1.58220   0.910   0.3629  
## ns(time, df = 18 * 15)227  1.08044    1.61914   0.667   0.5046  
## ns(time, df = 18 * 15)228  2.47329    1.61662   1.530   0.1260  
## ns(time, df = 18 * 15)229 -0.95930    1.87244  -0.512   0.6084  
## ns(time, df = 18 * 15)230  3.03623    1.62990   1.863   0.0625 .
## ns(time, df = 18 * 15)231 -0.20019    1.76243  -0.114   0.9096  
## ns(time, df = 18 * 15)232  2.05442    1.62376   1.265   0.2058  
## ns(time, df = 18 * 15)233  1.01812    1.59674   0.638   0.5237  
## ns(time, df = 18 * 15)234  2.36172    1.52140   1.552   0.1206  
## ns(time, df = 18 * 15)235  1.61358    1.56764   1.029   0.3033  
## ns(time, df = 18 * 15)236  0.71373    1.63800   0.436   0.6630  
## ns(time, df = 18 * 15)237  2.19842    1.52961   1.437   0.1506  
## ns(time, df = 18 * 15)238  1.82258    1.51994   1.199   0.2305  
## ns(time, df = 18 * 15)239  1.96497    1.56445   1.256   0.2091  
## ns(time, df = 18 * 15)240  0.79867    1.73191   0.461   0.6447  
## ns(time, df = 18 * 15)241  0.33760    1.80611   0.187   0.8517  
## ns(time, df = 18 * 15)242  1.74847    1.61701   1.081   0.2796  
## ns(time, df = 18 * 15)243  1.62059    1.53927   1.053   0.2924  
## ns(time, df = 18 * 15)244  2.50060    1.51203   1.654   0.0982 .
## ns(time, df = 18 * 15)245  0.63674    1.60705   0.396   0.6919  
## ns(time, df = 18 * 15)246  2.64535    1.58481   1.669   0.0951 .
## ns(time, df = 18 * 15)247 -0.31797    1.79715  -0.177   0.8596  
## ns(time, df = 18 * 15)248  1.82904    1.63332   1.120   0.2628  
## ns(time, df = 18 * 15)249  1.65054    1.58544   1.041   0.2978  
## ns(time, df = 18 * 15)250  1.54524    1.60853   0.961   0.3367  
## ns(time, df = 18 * 15)251  1.47288    1.69275   0.870   0.3842  
## ns(time, df = 18 * 15)252  0.13050    1.89128   0.069   0.9450  
## ns(time, df = 18 * 15)253  1.13429    1.83136   0.619   0.5357  
## ns(time, df = 18 * 15)254  0.41102    1.74723   0.235   0.8140  
## ns(time, df = 18 * 15)255  2.92189    1.61513   1.809   0.0704 .
## ns(time, df = 18 * 15)256  0.34036    1.91255   0.178   0.8588  
## ns(time, df = 18 * 15)257 -2.21664    2.36531  -0.937   0.3487  
## ns(time, df = 18 * 15)258  3.55680    1.68858   2.106   0.0352 *
## ns(time, df = 18 * 15)259 -0.35537    1.77150  -0.201   0.8410  
## ns(time, df = 18 * 15)260  2.57515    1.65780   1.553   0.1203  
## ns(time, df = 18 * 15)261 -0.44824    1.79554  -0.250   0.8029  
## ns(time, df = 18 * 15)262  2.41928    1.55611   1.555   0.1200  
## ns(time, df = 18 * 15)263  2.01726    1.54246   1.308   0.1909  
## ns(time, df = 18 * 15)264  1.02382    1.66884   0.613   0.5396  
## ns(time, df = 18 * 15)265  0.39838    1.68447   0.237   0.8130  
## ns(time, df = 18 * 15)266  2.85906    1.51243   1.890   0.0587 .
## ns(time, df = 18 * 15)267  1.24045    1.54765   0.802   0.4228  
## ns(time, df = 18 * 15)268  1.27426    1.18394   1.076   0.2818  
## ns(time, df = 18 * 15)269  3.03017    3.12832   0.969   0.3327  
## ns(time, df = 18 * 15)270 -0.67333    1.12614  -0.598   0.5499  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(21819.87) family taken to be 1)
## 
##     Null deviance: 1149.74  on 938  degrees of freedom
## Residual deviance:  819.81  on 668  degrees of freedom
## AIC: 3145.7
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  21820 
##           Std. Err.:  89240 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2601.71
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ ns(time, df = 18 * 16), data = week, 
##     init.theta = 19516.88827, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5333  -0.7909  -0.1167   0.5088   2.0898  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)   
## (Intercept)               -1.32761    1.38795  -0.957  0.33881   
## ns(time, df = 18 * 16)1   -2.38737    2.08750  -1.144  0.25277   
## ns(time, df = 18 * 16)2    4.54881    2.18132   2.085  0.03704 * 
## ns(time, df = 18 * 16)3   -2.72724    2.75264  -0.991  0.32180   
## ns(time, df = 18 * 16)4   -0.42149    2.69682  -0.156  0.87580   
## ns(time, df = 18 * 16)5    1.65110    1.89190   0.873  0.38282   
## ns(time, df = 18 * 16)6    2.40678    1.78118   1.351  0.17662   
## ns(time, df = 18 * 16)7    0.44532    1.90693   0.234  0.81535   
## ns(time, df = 18 * 16)8    1.58457    1.84156   0.860  0.38954   
## ns(time, df = 18 * 16)9    1.22729    1.75476   0.699  0.48430   
## ns(time, df = 18 * 16)10   2.77156    1.66965   1.660  0.09692 . 
## ns(time, df = 18 * 16)11   0.97149    1.76722   0.550  0.58250   
## ns(time, df = 18 * 16)12   1.56179    1.73818   0.899  0.36891   
## ns(time, df = 18 * 16)13   2.24166    1.67240   1.340  0.18012   
## ns(time, df = 18 * 16)14   1.57857    1.68602   0.936  0.34913   
## ns(time, df = 18 * 16)15   2.21326    1.67158   1.324  0.18548   
## ns(time, df = 18 * 16)16   1.32824    1.70307   0.780  0.43545   
## ns(time, df = 18 * 16)17   2.24660    1.63954   1.370  0.17061   
## ns(time, df = 18 * 16)18   2.99699    1.67970   1.784  0.07438 . 
## ns(time, df = 18 * 16)19  -1.81335    2.09832  -0.864  0.38748   
## ns(time, df = 18 * 16)20   4.17905    1.69928   2.459  0.01392 * 
## ns(time, df = 18 * 16)21   0.18531    1.84808   0.100  0.92013   
## ns(time, df = 18 * 16)22   1.55659    1.86099   0.836  0.40291   
## ns(time, df = 18 * 16)23   1.95597    1.93332   1.012  0.31167   
## ns(time, df = 18 * 16)24  -0.89719    2.51568  -0.357  0.72136   
## ns(time, df = 18 * 16)25  -0.01282    2.24529  -0.006  0.99545   
## ns(time, df = 18 * 16)26   2.12520    1.78157   1.193  0.23292   
## ns(time, df = 18 * 16)27   2.04316    1.68843   1.210  0.22624   
## ns(time, df = 18 * 16)28   1.89014    1.70790   1.107  0.26842   
## ns(time, df = 18 * 16)29   1.16153    1.75831   0.661  0.50887   
## ns(time, df = 18 * 16)30   1.94558    1.67690   1.160  0.24596   
## ns(time, df = 18 * 16)31   2.46652    1.63972   1.504  0.13252   
## ns(time, df = 18 * 16)32   1.54671    1.71058   0.904  0.36589   
## ns(time, df = 18 * 16)33   1.20638    1.73410   0.696  0.48663   
## ns(time, df = 18 * 16)34   2.55280    1.64577   1.551  0.12087   
## ns(time, df = 18 * 16)35   1.75576    1.67304   1.049  0.29397   
## ns(time, df = 18 * 16)36   1.93155    1.72372   1.121  0.26247   
## ns(time, df = 18 * 16)37   0.82681    1.81111   0.457  0.64801   
## ns(time, df = 18 * 16)38   2.01269    1.70648   1.179  0.23822   
## ns(time, df = 18 * 16)39   2.50359    1.71175   1.463  0.14358   
## ns(time, df = 18 * 16)40  -0.36005    1.93130  -0.186  0.85211   
## ns(time, df = 18 * 16)41   3.12520    1.73608   1.800  0.07184 . 
## ns(time, df = 18 * 16)42   0.12827    1.85692   0.069  0.94493   
## ns(time, df = 18 * 16)43   2.47392    1.72455   1.435  0.15142   
## ns(time, df = 18 * 16)44   1.20983    1.73989   0.695  0.48684   
## ns(time, df = 18 * 16)45   2.29201    1.71406   1.337  0.18116   
## ns(time, df = 18 * 16)46   1.19263    1.82228   0.654  0.51281   
## ns(time, df = 18 * 16)47   0.44098    1.83251   0.241  0.80983   
## ns(time, df = 18 * 16)48   3.28033    1.63970   2.001  0.04544 * 
## ns(time, df = 18 * 16)49   1.16479    1.69952   0.685  0.49311   
## ns(time, df = 18 * 16)50   1.92423    1.68178   1.144  0.25256   
## ns(time, df = 18 * 16)51   1.99902    1.64573   1.215  0.22449   
## ns(time, df = 18 * 16)52   2.54599    1.65146   1.542  0.12316   
## ns(time, df = 18 * 16)53   0.83361    1.79593   0.464  0.64253   
## ns(time, df = 18 * 16)54   1.55288    1.77532   0.875  0.38173   
## ns(time, df = 18 * 16)55   1.85927    1.72535   1.078  0.28121   
## ns(time, df = 18 * 16)56   1.45957    1.70694   0.855  0.39251   
## ns(time, df = 18 * 16)57   2.59214    1.66356   1.558  0.11919   
## ns(time, df = 18 * 16)58   0.87415    1.74251   0.502  0.61590   
## ns(time, df = 18 * 16)59   2.39722    1.66596   1.439  0.15017   
## ns(time, df = 18 * 16)60   1.77602    1.67255   1.062  0.28830   
## ns(time, df = 18 * 16)61   2.62206    1.74679   1.501  0.13334   
## ns(time, df = 18 * 16)62  -1.10823    2.23654  -0.496  0.62024   
## ns(time, df = 18 * 16)63   1.86569    1.96435   0.950  0.34223   
## ns(time, df = 18 * 16)64   1.22957    1.98872   0.618  0.53640   
## ns(time, df = 18 * 16)65  -0.23957    2.13262  -0.112  0.91056   
## ns(time, df = 18 * 16)66   1.97921    1.78539   1.109  0.26762   
## ns(time, df = 18 * 16)67   1.99996    1.68594   1.186  0.23552   
## ns(time, df = 18 * 16)68   1.82770    1.66530   1.098  0.27241   
## ns(time, df = 18 * 16)69   2.28580    1.65084   1.385  0.16617   
## ns(time, df = 18 * 16)70   1.43637    1.69086   0.849  0.39561   
## ns(time, df = 18 * 16)71   2.24089    1.66614   1.345  0.17864   
## ns(time, df = 18 * 16)72   1.45036    1.68133   0.863  0.38834   
## ns(time, df = 18 * 16)73   2.50760    1.63811   1.531  0.12582   
## ns(time, df = 18 * 16)74   2.13650    1.71504   1.246  0.21286   
## ns(time, df = 18 * 16)75   0.11371    2.02828   0.056  0.95529   
## ns(time, df = 18 * 16)76   0.91079    1.98515   0.459  0.64638   
## ns(time, df = 18 * 16)77   1.59938    1.82983   0.874  0.38208   
## ns(time, df = 18 * 16)78   1.40643    1.75732   0.800  0.42352   
## ns(time, df = 18 * 16)79   2.34665    1.69689   1.383  0.16669   
## ns(time, df = 18 * 16)80   0.96088    1.74310   0.551  0.58146   
## ns(time, df = 18 * 16)81   2.43256    1.65010   1.474  0.14043   
## ns(time, df = 18 * 16)82   1.97844    1.64943   1.199  0.23034   
## ns(time, df = 18 * 16)83   1.74961    1.66846   1.049  0.29435   
## ns(time, df = 18 * 16)84   2.07082    1.65018   1.255  0.20951   
## ns(time, df = 18 * 16)85   2.14545    1.66148   1.291  0.19660   
## ns(time, df = 18 * 16)86   1.13679    1.70437   0.667  0.50478   
## ns(time, df = 18 * 16)87   2.61176    1.61603   1.616  0.10606   
## ns(time, df = 18 * 16)88   2.22154    1.62427   1.368  0.17140   
## ns(time, df = 18 * 16)89   1.74114    1.69902   1.025  0.30546   
## ns(time, df = 18 * 16)90   0.98265    1.74195   0.564  0.57268   
## ns(time, df = 18 * 16)91   2.91029    1.65193   1.762  0.07811 . 
## ns(time, df = 18 * 16)92   0.61559    1.70785   0.360  0.71851   
## ns(time, df = 18 * 16)93   3.48471    1.60450   2.172  0.02987 * 
## ns(time, df = 18 * 16)94   0.92554    1.69737   0.545  0.58556   
## ns(time, df = 18 * 16)95   2.65521    1.71649   1.547  0.12189   
## ns(time, df = 18 * 16)96   0.64732    1.98396   0.326  0.74422   
## ns(time, df = 18 * 16)97  -0.89994    2.19459  -0.410  0.68175   
## ns(time, df = 18 * 16)98   3.11345    1.71780   1.812  0.06992 . 
## ns(time, df = 18 * 16)99   1.68248    1.72225   0.977  0.32862   
## ns(time, df = 18 * 16)100  0.96864    1.81269   0.534  0.59309   
## ns(time, df = 18 * 16)101  1.83104    1.72878   1.059  0.28953   
## ns(time, df = 18 * 16)102  1.66264    1.65402   1.005  0.31480   
## ns(time, df = 18 * 16)103  3.19464    1.60013   1.996  0.04588 * 
## ns(time, df = 18 * 16)104  0.58577    1.69357   0.346  0.72944   
## ns(time, df = 18 * 16)105  3.53608    1.62236   2.180  0.02929 * 
## ns(time, df = 18 * 16)106  0.11012    1.76973   0.062  0.95038   
## ns(time, df = 18 * 16)107  3.04283    1.66781   1.824  0.06809 . 
## ns(time, df = 18 * 16)108  0.65536    1.73997   0.377  0.70643   
## ns(time, df = 18 * 16)109  2.80227    1.65584   1.692  0.09058 . 
## ns(time, df = 18 * 16)110  1.18094    1.70948   0.691  0.48968   
## ns(time, df = 18 * 16)111  2.07534    1.67021   1.243  0.21403   
## ns(time, df = 18 * 16)112  1.88398    1.63918   1.149  0.25041   
## ns(time, df = 18 * 16)113  2.88131    1.63780   1.759  0.07853 . 
## ns(time, df = 18 * 16)114  0.24725    1.81669   0.136  0.89174   
## ns(time, df = 18 * 16)115  2.43497    1.71938   1.416  0.15672   
## ns(time, df = 18 * 16)116  0.83384    1.71156   0.487  0.62613   
## ns(time, df = 18 * 16)117  3.27622    1.58881   2.062  0.03920 * 
## ns(time, df = 18 * 16)118  1.38321    1.60911   0.860  0.39000   
## ns(time, df = 18 * 16)119  3.62759    1.58732   2.285  0.02229 * 
## ns(time, df = 18 * 16)120  0.24407    1.78978   0.136  0.89153   
## ns(time, df = 18 * 16)121  1.81749    1.75886   1.033  0.30145   
## ns(time, df = 18 * 16)122  1.68606    1.70660   0.988  0.32317   
## ns(time, df = 18 * 16)123  2.50594    1.70634   1.469  0.14194   
## ns(time, df = 18 * 16)124  0.24699    1.90636   0.130  0.89692   
## ns(time, df = 18 * 16)125  1.61978    1.77924   0.910  0.36263   
## ns(time, df = 18 * 16)126  2.76808    1.74996   1.582  0.11370   
## ns(time, df = 18 * 16)127 -1.03745    2.06678  -0.502  0.61569   
## ns(time, df = 18 * 16)128  3.20593    1.76838   1.813  0.06984 . 
## ns(time, df = 18 * 16)129 -0.11900    1.85048  -0.064  0.94873   
## ns(time, df = 18 * 16)130  3.19498    1.66381   1.920  0.05482 . 
## ns(time, df = 18 * 16)131  0.95127    1.71664   0.554  0.57948   
## ns(time, df = 18 * 16)132  2.32162    1.65969   1.399  0.16187   
## ns(time, df = 18 * 16)133  1.95605    1.66580   1.174  0.24030   
## ns(time, df = 18 * 16)134  1.57007    1.69626   0.926  0.35465   
## ns(time, df = 18 * 16)135  2.30897    1.69836   1.360  0.17398   
## ns(time, df = 18 * 16)136  0.56424    1.79147   0.315  0.75279   
## ns(time, df = 18 * 16)137  2.70023    1.67265   1.614  0.10645   
## ns(time, df = 18 * 16)138  1.38057    1.71366   0.806  0.42046   
## ns(time, df = 18 * 16)139  1.57085    1.68872   0.930  0.35227   
## ns(time, df = 18 * 16)140  2.85265    1.63762   1.742  0.08152 . 
## ns(time, df = 18 * 16)141  0.64961    1.72742   0.376  0.70687   
## ns(time, df = 18 * 16)142  2.99158    1.63752   1.827  0.06772 . 
## ns(time, df = 18 * 16)143  1.32170    1.71100   0.772  0.43983   
## ns(time, df = 18 * 16)144  2.04445    1.79643   1.138  0.25509   
## ns(time, df = 18 * 16)145 -0.71071    1.96210  -0.362  0.71719   
## ns(time, df = 18 * 16)146  3.67975    1.63985   2.244  0.02484 * 
## ns(time, df = 18 * 16)147  0.99786    1.66683   0.599  0.54940   
## ns(time, df = 18 * 16)148  3.10615    1.63109   1.904  0.05687 . 
## ns(time, df = 18 * 16)149  0.37383    1.74215   0.215  0.83009   
## ns(time, df = 18 * 16)150  3.09577    1.62600   1.904  0.05692 . 
## ns(time, df = 18 * 16)151  1.45350    1.67639   0.867  0.38592   
## ns(time, df = 18 * 16)152  1.88884    1.69977   1.111  0.26647   
## ns(time, df = 18 * 16)153  1.52553    1.70749   0.893  0.37162   
## ns(time, df = 18 * 16)154  1.72079    1.62838   1.057  0.29063   
## ns(time, df = 18 * 16)155  3.43342    1.55563   2.207  0.02731 * 
## ns(time, df = 18 * 16)156  1.40668    1.61420   0.871  0.38352   
## ns(time, df = 18 * 16)157  2.73319    1.60279   1.705  0.08814 . 
## ns(time, df = 18 * 16)158  1.30909    1.63607   0.800  0.42363   
## ns(time, df = 18 * 16)159  3.16357    1.58145   2.000  0.04546 * 
## ns(time, df = 18 * 16)160  1.99418    1.67203   1.193  0.23300   
## ns(time, df = 18 * 16)161  0.19715    1.93400   0.102  0.91880   
## ns(time, df = 18 * 16)162  1.88050    1.84544   1.019  0.30821   
## ns(time, df = 18 * 16)163  1.12256    1.88663   0.595  0.55184   
## ns(time, df = 18 * 16)164  1.08904    1.92084   0.567  0.57074   
## ns(time, df = 18 * 16)165  1.49477    1.92135   0.778  0.43658   
## ns(time, df = 18 * 16)166  1.63591    2.18440   0.749  0.45391   
## ns(time, df = 18 * 16)167 -4.30816    3.35269  -1.285  0.19880   
## ns(time, df = 18 * 16)168  4.45898    2.00837   2.220  0.02641 * 
## ns(time, df = 18 * 16)169 -2.06868    2.11032  -0.980  0.32695   
## ns(time, df = 18 * 16)170  5.10282    1.73157   2.947  0.00321 **
## ns(time, df = 18 * 16)171 -1.26069    2.13790  -0.590  0.55540   
## ns(time, df = 18 * 16)172 -0.21932    2.12545  -0.103  0.91781   
## ns(time, df = 18 * 16)173  3.07917    1.68782   1.824  0.06810 . 
## ns(time, df = 18 * 16)174  2.02425    1.69163   1.197  0.23145   
## ns(time, df = 18 * 16)175  0.82055    1.84976   0.444  0.65733   
## ns(time, df = 18 * 16)176  1.33261    1.81239   0.735  0.46217   
## ns(time, df = 18 * 16)177  1.90881    1.72244   1.108  0.26777   
## ns(time, df = 18 * 16)178  1.69619    1.69128   1.003  0.31591   
## ns(time, df = 18 * 16)179  2.25716    1.66627   1.355  0.17554   
## ns(time, df = 18 * 16)180  1.20822    1.68731   0.716  0.47395   
## ns(time, df = 18 * 16)181  3.13369    1.63686   1.914  0.05556 . 
## ns(time, df = 18 * 16)182  0.33184    1.77536   0.187  0.85173   
## ns(time, df = 18 * 16)183  2.80175    1.68865   1.659  0.09708 . 
## ns(time, df = 18 * 16)184  0.55853    1.73936   0.321  0.74813   
## ns(time, df = 18 * 16)185  3.95891    1.69413   2.337  0.01945 * 
## ns(time, df = 18 * 16)186 -1.99737    2.19864  -0.908  0.36364   
## ns(time, df = 18 * 16)187  2.97668    1.81097   1.644  0.10024   
## ns(time, df = 18 * 16)188  0.60028    1.84504   0.325  0.74492   
## ns(time, df = 18 * 16)189  2.32951    1.81491   1.284  0.19930   
## ns(time, df = 18 * 16)190 -0.13650    1.99004  -0.069  0.94531   
## ns(time, df = 18 * 16)191  2.13161    1.76519   1.208  0.22721   
## ns(time, df = 18 * 16)192  1.76818    1.71485   1.031  0.30250   
## ns(time, df = 18 * 16)193  2.40674    1.77923   1.353  0.17616   
## ns(time, df = 18 * 16)194 -1.25761    2.16821  -0.580  0.56190   
## ns(time, df = 18 * 16)195  3.57778    1.89334   1.890  0.05880 . 
## ns(time, df = 18 * 16)196 -1.71508    2.35311  -0.729  0.46609   
## ns(time, df = 18 * 16)197  1.69551    1.81961   0.932  0.35144   
## ns(time, df = 18 * 16)198  3.11612    1.68264   1.852  0.06404 . 
## ns(time, df = 18 * 16)199  0.11116    1.87254   0.059  0.95266   
## ns(time, df = 18 * 16)200  1.85240    1.74456   1.062  0.28832   
## ns(time, df = 18 * 16)201  2.36004    1.69005   1.396  0.16258   
## ns(time, df = 18 * 16)202  0.98547    1.77810   0.554  0.57943   
## ns(time, df = 18 * 16)203  2.13544    1.76714   1.208  0.22689   
## ns(time, df = 18 * 16)204  0.99112    1.90457   0.520  0.60279   
## ns(time, df = 18 * 16)205  0.91737    2.07058   0.443  0.65773   
## ns(time, df = 18 * 16)206 -0.37577    2.04970  -0.183  0.85454   
## ns(time, df = 18 * 16)207  3.45814    1.72453   2.005  0.04493 * 
## ns(time, df = 18 * 16)208  0.10680    1.82582   0.058  0.95336   
## ns(time, df = 18 * 16)209  2.79139    1.70096   1.641  0.10078   
## ns(time, df = 18 * 16)210  1.02895    1.77247   0.581  0.56156   
## ns(time, df = 18 * 16)211  1.59772    1.75428   0.911  0.36242   
## ns(time, df = 18 * 16)212  2.05395    1.72016   1.194  0.23246   
## ns(time, df = 18 * 16)213  1.60266    1.80343   0.889  0.37418   
## ns(time, df = 18 * 16)214  1.15392    2.06259   0.559  0.57585   
## ns(time, df = 18 * 16)215 -1.90284    2.45167  -0.776  0.43767   
## ns(time, df = 18 * 16)216  3.85281    1.85750   2.074  0.03806 * 
## ns(time, df = 18 * 16)217 -0.85063    2.07423  -0.410  0.68174   
## ns(time, df = 18 * 16)218  2.06320    1.80090   1.146  0.25194   
## ns(time, df = 18 * 16)219  1.72863    1.71588   1.007  0.31373   
## ns(time, df = 18 * 16)220  1.92666    1.68661   1.142  0.25332   
## ns(time, df = 18 * 16)221  1.95349    1.69163   1.155  0.24817   
## ns(time, df = 18 * 16)222  1.49537    1.72750   0.866  0.38670   
## ns(time, df = 18 * 16)223  2.97648    1.83465   1.622  0.10472   
## ns(time, df = 18 * 16)224 -2.86660    2.88969  -0.992  0.32119   
## ns(time, df = 18 * 16)225  1.29208    2.00097   0.646  0.51845   
## ns(time, df = 18 * 16)226  2.26670    1.69814   1.335  0.18194   
## ns(time, df = 18 * 16)227  2.23378    1.65315   1.351  0.17662   
## ns(time, df = 18 * 16)228  1.48029    1.68210   0.880  0.37884   
## ns(time, df = 18 * 16)229  2.18102    1.63318   1.335  0.18173   
## ns(time, df = 18 * 16)230  2.29902    1.61254   1.426  0.15395   
## ns(time, df = 18 * 16)231  2.01185    1.63074   1.234  0.21731   
## ns(time, df = 18 * 16)232  2.02426    1.65009   1.227  0.21991   
## ns(time, df = 18 * 16)233  1.74689    1.67299   1.044  0.29641   
## ns(time, df = 18 * 16)234  1.88337    1.65539   1.138  0.25524   
## ns(time, df = 18 * 16)235  2.60354    1.65315   1.575  0.11528   
## ns(time, df = 18 * 16)236  0.31769    1.76062   0.180  0.85680   
## ns(time, df = 18 * 16)237  3.24831    1.60963   2.018  0.04359 * 
## ns(time, df = 18 * 16)238  1.52717    1.64122   0.931  0.35211   
## ns(time, df = 18 * 16)239  2.18215    1.62891   1.340  0.18036   
## ns(time, df = 18 * 16)240  2.29035    1.62793   1.407  0.15945   
## ns(time, df = 18 * 16)241  1.81708    1.69124   1.074  0.28264   
## ns(time, df = 18 * 16)242  1.02947    1.74839   0.589  0.55599   
## ns(time, df = 18 * 16)243  3.03940    1.71541   1.772  0.07642 . 
## ns(time, df = 18 * 16)244 -0.75088    1.99702  -0.376  0.70692   
## ns(time, df = 18 * 16)245  2.86398    1.75921   1.628  0.10353   
## ns(time, df = 18 * 16)246  0.75102    1.82603   0.411  0.68086   
## ns(time, df = 18 * 16)247  1.71094    1.78258   0.960  0.33715   
## ns(time, df = 18 * 16)248  1.45997    1.74110   0.839  0.40173   
## ns(time, df = 18 * 16)249  1.98595    1.66844   1.190  0.23393   
## ns(time, df = 18 * 16)250  2.37396    1.64215   1.446  0.14828   
## ns(time, df = 18 * 16)251  1.63722    1.70805   0.959  0.33779   
## ns(time, df = 18 * 16)252  1.10526    1.74142   0.635  0.52563   
## ns(time, df = 18 * 16)253  2.52888    1.63922   1.543  0.12290   
## ns(time, df = 18 * 16)254  1.90954    1.63936   1.165  0.24410   
## ns(time, df = 18 * 16)255  2.47662    1.67569   1.478  0.13942   
## ns(time, df = 18 * 16)256  0.49151    1.87981   0.261  0.79373   
## ns(time, df = 18 * 16)257  1.45656    1.87188   0.778  0.43649   
## ns(time, df = 18 * 16)258  0.95792    1.80647   0.530  0.59592   
## ns(time, df = 18 * 16)259  2.41559    1.65342   1.461  0.14403   
## ns(time, df = 18 * 16)260  2.20861    1.63275   1.353  0.17615   
## ns(time, df = 18 * 16)261  1.81952    1.67293   1.088  0.27676   
## ns(time, df = 18 * 16)262  1.73364    1.70743   1.015  0.30994   
## ns(time, df = 18 * 16)263  1.95649    1.75968   1.112  0.26620   
## ns(time, df = 18 * 16)264  0.21788    1.89779   0.115  0.90860   
## ns(time, df = 18 * 16)265  2.41151    1.71337   1.407  0.15929   
## ns(time, df = 18 * 16)266  1.69639    1.70419   0.995  0.31953   
## ns(time, df = 18 * 16)267  1.88658    1.73590   1.087  0.27713   
## ns(time, df = 18 * 16)268  1.34927    1.84790   0.730  0.46529   
## ns(time, df = 18 * 16)269  0.64884    1.99945   0.325  0.74555   
## ns(time, df = 18 * 16)270  1.13015    1.96554   0.575  0.56530   
## ns(time, df = 18 * 16)271  0.87219    1.85774   0.469  0.63872   
## ns(time, df = 18 * 16)272  2.79877    1.73028   1.618  0.10576   
## ns(time, df = 18 * 16)273  1.54436    1.97642   0.781  0.43457   
## ns(time, df = 18 * 16)274 -3.89672    3.09122  -1.261  0.20746   
## ns(time, df = 18 * 16)275  4.12647    1.87545   2.200  0.02779 * 
## ns(time, df = 18 * 16)276 -0.12778    1.89668  -0.067  0.94629   
## ns(time, df = 18 * 16)277  2.75458    1.76825   1.558  0.11928   
## ns(time, df = 18 * 16)278  0.39169    1.90139   0.206  0.83679   
## ns(time, df = 18 * 16)279  1.28023    1.77092   0.723  0.46973   
## ns(time, df = 18 * 16)280  2.89530    1.63850   1.767  0.07722 . 
## ns(time, df = 18 * 16)281  1.57545    1.70394   0.925  0.35518   
## ns(time, df = 18 * 16)282  1.34067    1.80066   0.745  0.45655   
## ns(time, df = 18 * 16)283  0.85415    1.76230   0.485  0.62790   
## ns(time, df = 18 * 16)284  3.24951    1.61900   2.007  0.04474 * 
## ns(time, df = 18 * 16)285  1.20067    1.68045   0.714  0.47492   
## ns(time, df = 18 * 16)286  1.48074    1.25136   1.183  0.23669   
## ns(time, df = 18 * 16)287  3.75931    3.39476   1.107  0.26813   
## ns(time, df = 18 * 16)288 -0.86431    1.17320  -0.737  0.46130   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(19516.89) family taken to be 1)
## 
##     Null deviance: 1149.7  on 938  degrees of freedom
## Residual deviance:  801.4  on 650  degrees of freedom
## AIC: 3163.3
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  19517 
##           Std. Err.:  71769 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2583.313
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ ns(time, df = 18 * 18), data = week, 
##     init.theta = 23118.62024, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2971  -0.7967  -0.1101   0.4761   2.2569  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)   
## (Intercept)               -1.45136    1.51753  -0.956  0.33887   
## ns(time, df = 18 * 18)1   -1.21722    2.14263  -0.568  0.56997   
## ns(time, df = 18 * 18)2    1.91737    2.36648   0.810  0.41781   
## ns(time, df = 18 * 18)3    3.03722    2.36556   1.284  0.19916   
## ns(time, df = 18 * 18)4   -7.40177    6.92602  -1.069  0.28521   
## ns(time, df = 18 * 18)5    1.47389    2.59019   0.569  0.56934   
## ns(time, df = 18 * 18)6    1.95860    2.02400   0.968  0.33320   
## ns(time, df = 18 * 18)7    2.08832    1.91269   1.092  0.27491   
## ns(time, df = 18 * 18)8    1.22011    2.03812   0.599  0.54941   
## ns(time, df = 18 * 18)9    0.66407    2.05893   0.323  0.74705   
## ns(time, df = 18 * 18)10   2.54355    1.88080   1.352  0.17625   
## ns(time, df = 18 * 18)11   1.02132    1.87052   0.546  0.58506   
## ns(time, df = 18 * 18)12   3.74741    1.81833   2.061  0.03931 * 
## ns(time, df = 18 * 18)13  -1.30244    2.16996  -0.600  0.54836   
## ns(time, df = 18 * 18)14   3.63738    1.82410   1.994  0.04614 * 
## ns(time, df = 18 * 18)15   0.97968    1.86137   0.526  0.59866   
## ns(time, df = 18 * 18)16   2.60814    1.80267   1.447  0.14795   
## ns(time, df = 18 * 18)17   1.64235    1.82878   0.898  0.36915   
## ns(time, df = 18 * 18)18   2.21072    1.82483   1.211  0.22572   
## ns(time, df = 18 * 18)19   1.26885    1.81957   0.697  0.48559   
## ns(time, df = 18 * 18)20   4.04622    1.77556   2.279  0.02268 * 
## ns(time, df = 18 * 18)21  -0.76125    2.17857  -0.349  0.72677   
## ns(time, df = 18 * 18)22   1.22002    1.97210   0.619  0.53616   
## ns(time, df = 18 * 18)23   3.70499    1.82434   2.031  0.04227 * 
## ns(time, df = 18 * 18)24  -0.31501    2.10885  -0.149  0.88126   
## ns(time, df = 18 * 18)25   2.12055    1.99327   1.064  0.28739   
## ns(time, df = 18 * 18)26   1.89554    2.08616   0.909  0.36355   
## ns(time, df = 18 * 18)27  -0.78715    2.70445  -0.291  0.77101   
## ns(time, df = 18 * 18)28   0.50870    2.48678   0.205  0.83791   
## ns(time, df = 18 * 18)29   1.01248    2.05923   0.492  0.62295   
## ns(time, df = 18 * 18)30   2.79687    1.82475   1.533  0.12534   
## ns(time, df = 18 * 18)31   1.68088    1.83709   0.915  0.36021   
## ns(time, df = 18 * 18)32   2.14743    1.85831   1.156  0.24785   
## ns(time, df = 18 * 18)33   1.04614    1.91593   0.546  0.58505   
## ns(time, df = 18 * 18)34   2.35145    1.80048   1.306  0.19155   
## ns(time, df = 18 * 18)35   2.47083    1.77531   1.392  0.16399   
## ns(time, df = 18 * 18)36   1.73464    1.84382   0.941  0.34681   
## ns(time, df = 18 * 18)37   1.50978    1.88171   0.802  0.42235   
## ns(time, df = 18 * 18)38   1.96950    1.81251   1.087  0.27721   
## ns(time, df = 18 * 18)39   2.73823    1.77379   1.544  0.12266   
## ns(time, df = 18 * 18)40   1.36559    1.85733   0.735  0.46219   
## ns(time, df = 18 * 18)41   2.27336    1.87853   1.210  0.22621   
## ns(time, df = 18 * 18)42   0.67871    1.97634   0.343  0.73128   
## ns(time, df = 18 * 18)43   2.42980    1.83324   1.325  0.18503   
## ns(time, df = 18 * 18)44   2.47404    1.85460   1.334  0.18220   
## ns(time, df = 18 * 18)45  -0.10792    2.09510  -0.052  0.95892   
## ns(time, df = 18 * 18)46   2.77068    1.88822   1.467  0.14228   
## ns(time, df = 18 * 18)47   1.23226    1.94437   0.634  0.52624   
## ns(time, df = 18 * 18)48   1.32317    1.93595   0.683  0.49431   
## ns(time, df = 18 * 18)49   2.46875    1.84756   1.336  0.18148   
## ns(time, df = 18 * 18)50   1.22078    1.88956   0.646  0.51824   
## ns(time, df = 18 * 18)51   2.60521    1.85685   1.403  0.16061   
## ns(time, df = 18 * 18)52   0.98562    2.01181   0.490  0.62419   
## ns(time, df = 18 * 18)53   0.63156    1.99571   0.316  0.75165   
## ns(time, df = 18 * 18)54   3.21917    1.77818   1.810  0.07024 . 
## ns(time, df = 18 * 18)55   1.73388    1.81325   0.956  0.33896   
## ns(time, df = 18 * 18)56   1.69106    1.84482   0.917  0.35933   
## ns(time, df = 18 * 18)57   2.11366    1.79449   1.178  0.23885   
## ns(time, df = 18 * 18)58   2.46320    1.76864   1.393  0.16371   
## ns(time, df = 18 * 18)59   2.13677    1.82668   1.170  0.24210   
## ns(time, df = 18 * 18)60   1.00102    1.96386   0.510  0.61025   
## ns(time, df = 18 * 18)61   1.78213    1.91291   0.932  0.35153   
## ns(time, df = 18 * 18)62   1.90848    1.87069   1.020  0.30763   
## ns(time, df = 18 * 18)63   1.61497    1.84837   0.874  0.38227   
## ns(time, df = 18 * 18)64   2.64295    1.80022   1.468  0.14207   
## ns(time, df = 18 * 18)65   1.22936    1.86567   0.659  0.50994   
## ns(time, df = 18 * 18)66   2.39293    1.81918   1.315  0.18838   
## ns(time, df = 18 * 18)67   1.50468    1.82369   0.825  0.40933   
## ns(time, df = 18 * 18)68   3.05355    1.79123   1.705  0.08825 . 
## ns(time, df = 18 * 18)69   1.20147    1.99993   0.601  0.54800   
## ns(time, df = 18 * 18)70  -0.21130    2.35212  -0.090  0.92842   
## ns(time, df = 18 * 18)71   2.06283    2.10028   0.982  0.32602   
## ns(time, df = 18 * 18)72   0.82663    2.16040   0.383  0.70199   
## ns(time, df = 18 * 18)73   1.18067    2.18549   0.540  0.58904   
## ns(time, df = 18 * 18)74   0.42361    2.10407   0.201  0.84044   
## ns(time, df = 18 * 18)75   2.74893    1.83247   1.500  0.13358   
## ns(time, df = 18 * 18)76   1.85166    1.81547   1.020  0.30776   
## ns(time, df = 18 * 18)77   1.93475    1.80376   1.073  0.28344   
## ns(time, df = 18 * 18)78   2.56175    1.78349   1.436  0.15090   
## ns(time, df = 18 * 18)79   1.37502    1.84658   0.745  0.45649   
## ns(time, df = 18 * 18)80   2.32367    1.80675   1.286  0.19841   
## ns(time, df = 18 * 18)81   1.89016    1.81043   1.044  0.29647   
## ns(time, df = 18 * 18)82   2.01776    1.79058   1.127  0.25979   
## ns(time, df = 18 * 18)83   2.89576    1.79432   1.614  0.10656   
## ns(time, df = 18 * 18)84   0.92792    2.04569   0.454  0.65012   
## ns(time, df = 18 * 18)85  -0.07619    2.32857  -0.033  0.97390   
## ns(time, df = 18 * 18)86   2.03260    2.04181   0.995  0.31950   
## ns(time, df = 18 * 18)87   1.00256    1.99409   0.503  0.61513   
## ns(time, df = 18 * 18)88   2.20480    1.86847   1.180  0.23800   
## ns(time, df = 18 * 18)89   1.82879    1.85110   0.988  0.32318   
## ns(time, df = 18 * 18)90   1.94941    1.85444   1.051  0.29316   
## ns(time, df = 18 * 18)91   1.40244    1.83959   0.762  0.44584   
## ns(time, df = 18 * 18)92   3.11229    1.75905   1.769  0.07684 . 
## ns(time, df = 18 * 18)93   1.24091    1.83466   0.676  0.49881   
## ns(time, df = 18 * 18)94   2.30542    1.79297   1.286  0.19851   
## ns(time, df = 18 * 18)95   2.24744    1.78319   1.260  0.20754   
## ns(time, df = 18 * 18)96   1.94325    1.82221   1.066  0.28623   
## ns(time, df = 18 * 18)97   1.47570    1.83476   0.804  0.42122   
## ns(time, df = 18 * 18)98   2.69870    1.75037   1.542  0.12312   
## ns(time, df = 18 * 18)99   2.29535    1.75535   1.308  0.19100   
## ns(time, df = 18 * 18)100  2.23802    1.81470   1.233  0.21747   
## ns(time, df = 18 * 18)101  0.78634    1.92470   0.409  0.68287   
## ns(time, df = 18 * 18)102  2.70435    1.80503   1.498  0.13407   
## ns(time, df = 18 * 18)103  1.71776    1.82193   0.943  0.34577   
## ns(time, df = 18 * 18)104  1.80134    1.79072   1.006  0.31445   
## ns(time, df = 18 * 18)105  3.21054    1.74093   1.844  0.06516 . 
## ns(time, df = 18 * 18)106  1.00614    1.84506   0.545  0.58554   
## ns(time, df = 18 * 18)107  3.07401    1.84655   1.665  0.09597 . 
## ns(time, df = 18 * 18)108  0.12283    2.15614   0.057  0.95457   
## ns(time, df = 18 * 18)109  1.05803    2.22692   0.475  0.63471   
## ns(time, df = 18 * 18)110  0.44645    2.01132   0.222  0.82434   
## ns(time, df = 18 * 18)111  4.16980    1.80536   2.310  0.02091 * 
## ns(time, df = 18 * 18)112 -0.46675    2.05835  -0.227  0.82061   
## ns(time, df = 18 * 18)113  2.52259    1.89683   1.330  0.18355   
## ns(time, df = 18 * 18)114  1.33370    1.88149   0.709  0.47842   
## ns(time, df = 18 * 18)115  2.05428    1.77942   1.154  0.24831   
## ns(time, df = 18 * 18)116  3.37509    1.73319   1.947  0.05150 . 
## ns(time, df = 18 * 18)117  0.43853    1.85715   0.236  0.81333   
## ns(time, df = 18 * 18)118  3.71419    1.75285   2.119  0.03410 * 
## ns(time, df = 18 * 18)119  0.71477    1.87785   0.381  0.70348   
## ns(time, df = 18 * 18)120  2.38930    1.82979   1.306  0.19163   
## ns(time, df = 18 * 18)121  1.80606    1.83813   0.983  0.32583   
## ns(time, df = 18 * 18)122  1.76437    1.83427   0.962  0.33610   
## ns(time, df = 18 * 18)123  2.42527    1.80238   1.346  0.17843   
## ns(time, df = 18 * 18)124  1.49721    1.84380   0.812  0.41678   
## ns(time, df = 18 * 18)125  2.24105    1.80705   1.240  0.21491   
## ns(time, df = 18 * 18)126  1.81358    1.78686   1.015  0.31013   
## ns(time, df = 18 * 18)127  3.02485    1.75690   1.722  0.08512 . 
## ns(time, df = 18 * 18)128  1.34876    1.89210   0.713  0.47595   
## ns(time, df = 18 * 18)129  0.88818    1.96967   0.451  0.65204   
## ns(time, df = 18 * 18)130  2.67445    1.83265   1.459  0.14447   
## ns(time, df = 18 * 18)131  0.99924    1.82754   0.547  0.58454   
## ns(time, df = 18 * 18)132  3.61765    1.71116   2.114  0.03450 * 
## ns(time, df = 18 * 18)133  1.27288    1.75068   0.727  0.46718   
## ns(time, df = 18 * 18)134  3.90985    1.71718   2.277  0.02279 * 
## ns(time, df = 18 * 18)135  0.43857    1.92411   0.228  0.81970   
## ns(time, df = 18 * 18)136  1.72404    1.93171   0.892  0.37213   
## ns(time, df = 18 * 18)137  1.78577    1.86284   0.959  0.33775   
## ns(time, df = 18 * 18)138  2.34282    1.82453   1.284  0.19912   
## ns(time, df = 18 * 18)139  1.93180    1.91452   1.009  0.31296   
## ns(time, df = 18 * 18)140  0.02039    2.12171   0.010  0.99233   
## ns(time, df = 18 * 18)141  2.60917    1.87678   1.390  0.16446   
## ns(time, df = 18 * 18)142  2.18640    1.92212   1.137  0.25533   
## ns(time, df = 18 * 18)143 -0.64670    2.24044  -0.289  0.77285   
## ns(time, df = 18 * 18)144  3.03212    1.92075   1.579  0.11443   
## ns(time, df = 18 * 18)145  0.65263    1.98375   0.329  0.74217   
## ns(time, df = 18 * 18)146  2.01626    1.84971   1.090  0.27570   
## ns(time, df = 18 * 18)147  2.76036    1.79798   1.535  0.12472   
## ns(time, df = 18 * 18)148  0.67790    1.88958   0.359  0.71978   
## ns(time, df = 18 * 18)149  3.22636    1.77413   1.819  0.06898 . 
## ns(time, df = 18 * 18)150  1.25633    1.84613   0.681  0.49617   
## ns(time, df = 18 * 18)151  2.12191    1.82381   1.163  0.24465   
## ns(time, df = 18 * 18)152  2.42581    1.84365   1.316  0.18825   
## ns(time, df = 18 * 18)153  0.17301    1.99165   0.087  0.93078   
## ns(time, df = 18 * 18)154  3.29255    1.80790   1.821  0.06858 . 
## ns(time, df = 18 * 18)155  0.95498    1.87784   0.509  0.61107   
## ns(time, df = 18 * 18)156  2.45843    1.81776   1.352  0.17623   
## ns(time, df = 18 * 18)157  1.57992    1.81264   0.872  0.38342   
## ns(time, df = 18 * 18)158  2.97365    1.77851   1.672  0.09453 . 
## ns(time, df = 18 * 18)159  0.63294    1.87929   0.337  0.73627   
## ns(time, df = 18 * 18)160  3.26347    1.76819   1.846  0.06494 . 
## ns(time, df = 18 * 18)161  1.44156    1.85076   0.779  0.43604   
## ns(time, df = 18 * 18)162  1.90279    1.94331   0.979  0.32751   
## ns(time, df = 18 * 18)163  0.42256    2.07405   0.204  0.83856   
## ns(time, df = 18 * 18)164  1.99113    1.84138   1.081  0.27955   
## ns(time, df = 18 * 18)165  3.04077    1.74954   1.738  0.08220 . 
## ns(time, df = 18 * 18)166  1.31536    1.80607   0.728  0.46643   
## ns(time, df = 18 * 18)167  3.05729    1.78037   1.717  0.08594 . 
## ns(time, df = 18 * 18)168  0.44709    1.89162   0.236  0.81316   
## ns(time, df = 18 * 18)169  3.38480    1.75616   1.927  0.05393 . 
## ns(time, df = 18 * 18)170  1.50621    1.81976   0.828  0.40784   
## ns(time, df = 18 * 18)171  1.88130    1.84833   1.018  0.30876   
## ns(time, df = 18 * 18)172  1.94427    1.84427   1.054  0.29178   
## ns(time, df = 18 * 18)173  1.43974    1.81528   0.793  0.42771   
## ns(time, df = 18 * 18)174  3.06266    1.70267   1.799  0.07206 . 
## ns(time, df = 18 * 18)175  2.73294    1.70244   1.605  0.10843   
## ns(time, df = 18 * 18)176  1.79149    1.75648   1.020  0.30776   
## ns(time, df = 18 * 18)177  2.70623    1.74514   1.551  0.12097   
## ns(time, df = 18 * 18)178  1.49183    1.77040   0.843  0.39943   
## ns(time, df = 18 * 18)179  3.31666    1.70986   1.940  0.05241 . 
## ns(time, df = 18 * 18)180  2.12767    1.79164   1.188  0.23501   
## ns(time, df = 18 * 18)181  0.86922    2.02050   0.430  0.66705   
## ns(time, df = 18 * 18)182  1.21440    2.04708   0.593  0.55302   
## ns(time, df = 18 * 18)183  1.84511    1.99198   0.926  0.35431   
## ns(time, df = 18 * 18)184  1.07480    2.06319   0.521  0.60241   
## ns(time, df = 18 * 18)185  1.36540    2.06054   0.663  0.50756   
## ns(time, df = 18 * 18)186  1.69431    2.08842   0.811  0.41720   
## ns(time, df = 18 * 18)187  1.41345    2.48162   0.570  0.56897   
## ns(time, df = 18 * 18)188 -4.73173    4.04784  -1.169  0.24242   
## ns(time, df = 18 * 18)189  4.35966    2.22034   1.964  0.04959 * 
## ns(time, df = 18 * 18)190 -1.02662    2.25966  -0.454  0.64960   
## ns(time, df = 18 * 18)191  3.03415    1.86083   1.631  0.10299   
## ns(time, df = 18 * 18)192  2.85651    1.92784   1.482  0.13842   
## ns(time, df = 18 * 18)193 -2.41216    2.90074  -0.832  0.40565   
## ns(time, df = 18 * 18)194  1.63251    2.03836   0.801  0.42319   
## ns(time, df = 18 * 18)195  2.90264    1.79508   1.617  0.10588   
## ns(time, df = 18 * 18)196  2.13383    1.83243   1.164  0.24423   
## ns(time, df = 18 * 18)197  0.99212    2.01017   0.494  0.62162   
## ns(time, df = 18 * 18)198  1.08110    1.99636   0.542  0.58814   
## ns(time, df = 18 * 18)199  2.42639    1.86301   1.302  0.19278   
## ns(time, df = 18 * 18)200  1.21800    1.86667   0.653  0.51408   
## ns(time, df = 18 * 18)201  2.89409    1.79144   1.616  0.10620   
## ns(time, df = 18 * 18)202  1.09652    1.85701   0.590  0.55487   
## ns(time, df = 18 * 18)203  2.55700    1.77991   1.437  0.15083   
## ns(time, df = 18 * 18)204  2.42218    1.79862   1.347  0.17808   
## ns(time, df = 18 * 18)205  0.75219    1.91611   0.393  0.69464   
## ns(time, df = 18 * 18)206  2.97217    1.82806   1.626  0.10398   
## ns(time, df = 18 * 18)207  0.40300    1.90478   0.212  0.83244   
## ns(time, df = 18 * 18)208  4.06015    1.80516   2.249  0.02450 * 
## ns(time, df = 18 * 18)209 -0.43018    2.16443  -0.199  0.84246   
## ns(time, df = 18 * 18)210  0.77428    2.11735   0.366  0.71460   
## ns(time, df = 18 * 18)211  2.95425    1.91902   1.539  0.12369   
## ns(time, df = 18 * 18)212 -0.06342    2.07627  -0.031  0.97563   
## ns(time, df = 18 * 18)213  3.33420    1.95745   1.703  0.08850 . 
## ns(time, df = 18 * 18)214 -1.32777    2.31331  -0.574  0.56599   
## ns(time, df = 18 * 18)215  3.23091    1.89952   1.701  0.08896 . 
## ns(time, df = 18 * 18)216  0.76455    1.89855   0.403  0.68717   
## ns(time, df = 18 * 18)217  4.15224    1.90399   2.181  0.02920 * 
## ns(time, df = 18 * 18)218 -3.73591    2.84588  -1.313  0.18927   
## ns(time, df = 18 * 18)219  4.61035    2.05980   2.238  0.02520 * 
## ns(time, df = 18 * 18)220 -1.34695    2.42662  -0.555  0.57884   
## ns(time, df = 18 * 18)221  1.55957    2.15073   0.725  0.46837   
## ns(time, df = 18 * 18)222  1.19046    1.92102   0.620  0.53546   
## ns(time, df = 18 * 18)223  3.63467    1.80795   2.010  0.04439 * 
## ns(time, df = 18 * 18)224 -0.09231    2.06789  -0.045  0.96439   
## ns(time, df = 18 * 18)225  1.67693    1.92647   0.870  0.38405   
## ns(time, df = 18 * 18)226  2.66397    1.81701   1.466  0.14261   
## ns(time, df = 18 * 18)227  1.47117    1.89592   0.776  0.43777   
## ns(time, df = 18 * 18)228  1.34248    1.93305   0.694  0.48738   
## ns(time, df = 18 * 18)229  2.61896    1.92489   1.361  0.17365   
## ns(time, df = 18 * 18)230 -0.16073    2.23943  -0.072  0.94278   
## ns(time, df = 18 * 18)231  1.90661    2.18473   0.873  0.38283   
## ns(time, df = 18 * 18)232 -0.67725    2.22962  -0.304  0.76132   
## ns(time, df = 18 * 18)233  3.83152    1.85784   2.062  0.03917 * 
## ns(time, df = 18 * 18)234  0.20002    1.97658   0.101  0.91940   
## ns(time, df = 18 * 18)235  2.62648    1.85145   1.419  0.15601   
## ns(time, df = 18 * 18)236  1.60467    1.87830   0.854  0.39293   
## ns(time, df = 18 * 18)237  1.63770    1.90928   0.858  0.39103   
## ns(time, df = 18 * 18)238  1.58787    1.88409   0.843  0.39935   
## ns(time, df = 18 * 18)239  2.53914    1.85363   1.370  0.17074   
## ns(time, df = 18 * 18)240  1.05134    2.01551   0.522  0.60193   
## ns(time, df = 18 * 18)241  1.82317    2.26314   0.806  0.42048   
## ns(time, df = 18 * 18)242 -3.04319    2.98384  -1.020  0.30778   
## ns(time, df = 18 * 18)243  4.48056    2.04378   2.192  0.02836 * 
## ns(time, df = 18 * 18)244 -0.82071    2.25784  -0.363  0.71624   
## ns(time, df = 18 * 18)245  1.95783    2.00349   0.977  0.32847   
## ns(time, df = 18 * 18)246  1.66856    1.89136   0.882  0.37767   
## ns(time, df = 18 * 18)247  2.12029    1.82696   1.161  0.24582   
## ns(time, df = 18 * 18)248  2.08904    1.81854   1.149  0.25066   
## ns(time, df = 18 * 18)249  1.81195    1.84706   0.981  0.32660   
## ns(time, df = 18 * 18)250  1.89161    1.85742   1.018  0.30849   
## ns(time, df = 18 * 18)251  3.00104    1.99303   1.506  0.13213   
## ns(time, df = 18 * 18)252 -2.96618    3.24437  -0.914  0.36058   
## ns(time, df = 18 * 18)253  1.44031    2.28294   0.631  0.52811   
## ns(time, df = 18 * 18)254  1.50548    1.91254   0.787  0.43119   
## ns(time, df = 18 * 18)255  3.09949    1.77336   1.748  0.08050 . 
## ns(time, df = 18 * 18)256  1.29273    1.83286   0.705  0.48062   
## ns(time, df = 18 * 18)257  2.33668    1.79047   1.305  0.19187   
## ns(time, df = 18 * 18)258  2.02843    1.77112   1.145  0.25209   
## ns(time, df = 18 * 18)259  2.49158    1.74474   1.428  0.15328   
## ns(time, df = 18 * 18)260  2.36262    1.76549   1.338  0.18082   
## ns(time, df = 18 * 18)261  1.42675    1.81276   0.787  0.43125   
## ns(time, df = 18 * 18)262  3.21214    1.78430   1.800  0.07183 . 
## ns(time, df = 18 * 18)263 -0.22370    1.92612  -0.116  0.90754   
## ns(time, df = 18 * 18)264  4.72840    1.76986   2.672  0.00755 **
## ns(time, df = 18 * 18)265 -1.26068    2.07448  -0.608  0.54338   
## ns(time, df = 18 * 18)266  3.41929    1.78433   1.916  0.05533 . 
## ns(time, df = 18 * 18)267  1.68452    1.77278   0.950  0.34200   
## ns(time, df = 18 * 18)268  2.75079    1.75111   1.571  0.11621   
## ns(time, df = 18 * 18)269  1.53692    1.78630   0.860  0.38957   
## ns(time, df = 18 * 18)270  2.99002    1.75095   1.708  0.08770 . 
## ns(time, df = 18 * 18)271  1.41979    1.83214   0.775  0.43838   
## ns(time, df = 18 * 18)272  2.21845    1.85169   1.198  0.23089   
## ns(time, df = 18 * 18)273  1.10805    1.89597   0.584  0.55893   
## ns(time, df = 18 * 18)274  3.38508    1.89389   1.787  0.07388 . 
## ns(time, df = 18 * 18)275 -2.13563    2.41016  -0.886  0.37557   
## ns(time, df = 18 * 18)276  4.19044    1.90053   2.205  0.02746 * 
## ns(time, df = 18 * 18)277 -0.21193    2.06800  -0.102  0.91837   
## ns(time, df = 18 * 18)278  2.27711    1.92361   1.184  0.23650   
## ns(time, df = 18 * 18)279  1.46646    1.89462   0.774  0.43892   
## ns(time, df = 18 * 18)280  1.97349    1.82698   1.080  0.28006   
## ns(time, df = 18 * 18)281  2.38388    1.77557   1.343  0.17940   
## ns(time, df = 18 * 18)282  2.35961    1.80335   1.308  0.19072   
## ns(time, df = 18 * 18)283  0.98920    1.92088   0.515  0.60657   
## ns(time, df = 18 * 18)284  2.02164    1.83019   1.105  0.26933   
## ns(time, df = 18 * 18)285  2.48240    1.77130   1.401  0.16108   
## ns(time, df = 18 * 18)286  1.85811    1.78005   1.044  0.29655   
## ns(time, df = 18 * 18)287  3.24860    1.81198   1.793  0.07300 . 
## ns(time, df = 18 * 18)288 -1.13820    2.20076  -0.517  0.60503   
## ns(time, df = 18 * 18)289  3.97791    1.98298   2.006  0.04485 * 
## ns(time, df = 18 * 18)290 -2.46737    2.43718  -1.012  0.31135   
## ns(time, df = 18 * 18)291  4.24476    1.82490   2.326  0.02002 * 
## ns(time, df = 18 * 18)292  0.68089    1.83815   0.370  0.71107   
## ns(time, df = 18 * 18)293  3.53596    1.75364   2.016  0.04376 * 
## ns(time, df = 18 * 18)294  0.85725    1.86816   0.459  0.64632   
## ns(time, df = 18 * 18)295  2.44261    1.83738   1.329  0.18372   
## ns(time, df = 18 * 18)296  1.85136    1.91713   0.966  0.33420   
## ns(time, df = 18 * 18)297  0.18822    2.09794   0.090  0.92851   
## ns(time, df = 18 * 18)298  2.46921    1.86910   1.321  0.18648   
## ns(time, df = 18 * 18)299  1.88904    1.84285   1.025  0.30533   
## ns(time, df = 18 * 18)300  1.83251    1.85601   0.987  0.32348   
## ns(time, df = 18 * 18)301  2.29217    1.90061   1.206  0.22781   
## ns(time, df = 18 * 18)302  0.26517    2.14757   0.123  0.90173   
## ns(time, df = 18 * 18)303  1.80750    2.09348   0.863  0.38792   
## ns(time, df = 18 * 18)304  0.62713    2.17642   0.288  0.77323   
## ns(time, df = 18 * 18)305  1.04167    2.00585   0.519  0.60354   
## ns(time, df = 18 * 18)306  3.04413    1.84282   1.652  0.09856 . 
## ns(time, df = 18 * 18)307  1.45273    2.02019   0.719  0.47208   
## ns(time, df = 18 * 18)308 -0.32063    2.60030  -0.123  0.90186   
## ns(time, df = 18 * 18)309 -0.27046    2.30187  -0.117  0.90647   
## ns(time, df = 18 * 18)310  3.84517    1.90476   2.019  0.04352 * 
## ns(time, df = 18 * 18)311 -0.52012    2.09123  -0.249  0.80358   
## ns(time, df = 18 * 18)312  3.36966    1.90536   1.769  0.07697 . 
## ns(time, df = 18 * 18)313 -0.11820    2.11503  -0.056  0.95543   
## ns(time, df = 18 * 18)314  1.82219    1.90502   0.957  0.33881   
## ns(time, df = 18 * 18)315  2.54760    1.77960   1.432  0.15227   
## ns(time, df = 18 * 18)316  2.41664    1.80191   1.341  0.17987   
## ns(time, df = 18 * 18)317  1.07229    1.96100   0.547  0.58451   
## ns(time, df = 18 * 18)318  1.20949    1.95644   0.618  0.53644   
## ns(time, df = 18 * 18)319  2.19926    1.80392   1.219  0.22279   
## ns(time, df = 18 * 18)320  2.78247    1.75633   1.584  0.11314   
## ns(time, df = 18 * 18)321  1.48182    1.82397   0.812  0.41655   
## ns(time, df = 18 * 18)322  1.48865    1.35587   1.098  0.27223   
## ns(time, df = 18 * 18)323  3.87955    3.66740   1.058  0.29013   
## ns(time, df = 18 * 18)324 -0.77668    1.23656  -0.628  0.52994   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(23118.62) family taken to be 1)
## 
##     Null deviance: 1149.74  on 938  degrees of freedom
## Residual deviance:  761.04  on 614  degrees of freedom
## AIC: 3194.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  23119 
##           Std. Err.:  88324 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2542.938
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ ns(time, df = 18 * 20), data = week, 
##     init.theta = 21065.09862, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4767  -0.7110  -0.1282   0.4877   2.2062  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)  
## (Intercept)               -1.66890    1.70108  -0.981   0.3266  
## ns(time, df = 18 * 20)1   -0.41032    2.21548  -0.185   0.8531  
## ns(time, df = 18 * 20)2    0.46717    2.66490   0.175   0.8608  
## ns(time, df = 18 * 20)3    4.30619    2.23081   1.930   0.0536 .
## ns(time, df = 18 * 20)4   -3.24328    3.92050  -0.827   0.4081  
## ns(time, df = 18 * 20)5    0.46662    3.41267   0.137   0.8912  
## ns(time, df = 18 * 20)6   -0.01969    2.59608  -0.008   0.9939  
## ns(time, df = 18 * 20)7    3.56924    2.08151   1.715   0.0864 .
## ns(time, df = 18 * 20)8    1.06025    2.15787   0.491   0.6232  
## ns(time, df = 18 * 20)9    2.36551    2.17423   1.088   0.2766  
## ns(time, df = 18 * 20)10   0.15735    2.32174   0.068   0.9460  
## ns(time, df = 18 * 20)11   3.09333    2.07109   1.494   0.1353  
## ns(time, df = 18 * 20)12   0.95207    2.08870   0.456   0.6485  
## ns(time, df = 18 * 20)13   3.54689    1.97691   1.794   0.0728 .
## ns(time, df = 18 * 20)14   1.30363    2.12637   0.613   0.5398  
## ns(time, df = 18 * 20)15   0.74875    2.18524   0.343   0.7319  
## ns(time, df = 18 * 20)16   3.58614    1.98479   1.807   0.0708 .
## ns(time, df = 18 * 20)17   1.01738    2.05951   0.494   0.6213  
## ns(time, df = 18 * 20)18   3.04584    1.97909   1.539   0.1238  
## ns(time, df = 18 * 20)19   1.66914    2.01921   0.827   0.4084  
## ns(time, df = 18 * 20)20   2.63144    2.00685   1.311   0.1898  
## ns(time, df = 18 * 20)21   1.17551    2.02675   0.580   0.5619  
## ns(time, df = 18 * 20)22   4.02012    1.92749   2.086   0.0370 *
## ns(time, df = 18 * 20)23   1.24832    2.11593   0.590   0.5552  
## ns(time, df = 18 * 20)24   0.31896    2.34453   0.136   0.8918  
## ns(time, df = 18 * 20)25   2.68620    2.03405   1.321   0.1866  
## ns(time, df = 18 * 20)26   3.07077    2.02116   1.519   0.1287  
## ns(time, df = 18 * 20)27  -0.07193    2.34654  -0.031   0.9755  
## ns(time, df = 18 * 20)28   2.46235    2.17123   1.134   0.2568  
## ns(time, df = 18 * 20)29   2.04914    2.26888   0.903   0.3664  
## ns(time, df = 18 * 20)30  -0.44962    2.88114  -0.156   0.8760  
## ns(time, df = 18 * 20)31   0.85300    2.78754   0.306   0.7596  
## ns(time, df = 18 * 20)32   0.36483    2.44218   0.149   0.8812  
## ns(time, df = 18 * 20)33   2.96036    2.04489   1.448   0.1477  
## ns(time, df = 18 * 20)34   2.14035    2.00590   1.067   0.2860  
## ns(time, df = 18 * 20)35   2.24009    2.01845   1.110   0.2671  
## ns(time, df = 18 * 20)36   2.09114    2.06291   1.014   0.3107  
## ns(time, df = 18 * 20)37   1.24853    2.10384   0.593   0.5529  
## ns(time, df = 18 * 20)38   2.76631    1.97026   1.404   0.1603  
## ns(time, df = 18 * 20)39   2.58538    1.95714   1.321   0.1865  
## ns(time, df = 18 * 20)40   2.02516    2.02172   1.002   0.3165  
## ns(time, df = 18 * 20)41   1.81512    2.07007   0.877   0.3806  
## ns(time, df = 18 * 20)42   1.86742    2.02739   0.921   0.3570  
## ns(time, df = 18 * 20)43   2.90124    1.95322   1.485   0.1374  
## ns(time, df = 18 * 20)44   2.16374    1.99045   1.087   0.2770  
## ns(time, df = 18 * 20)45   2.02556    2.04791   0.989   0.3226  
## ns(time, df = 18 * 20)46   1.92349    2.10299   0.915   0.3604  
## ns(time, df = 18 * 20)47   1.28854    2.12883   0.605   0.5450  
## ns(time, df = 18 * 20)48   2.65568    2.00547   1.324   0.1854  
## ns(time, df = 18 * 20)49   2.57623    2.03492   1.266   0.2055  
## ns(time, df = 18 * 20)50   0.54887    2.25553   0.243   0.8077  
## ns(time, df = 18 * 20)51   2.17381    2.10934   1.031   0.3027  
## ns(time, df = 18 * 20)52   2.40643    2.07674   1.159   0.2466  
## ns(time, df = 18 * 20)53   0.91453    2.18408   0.419   0.6754  
## ns(time, df = 18 * 20)54   2.48427    2.05402   1.209   0.2265  
## ns(time, df = 18 * 20)55   2.06172    2.04256   1.009   0.3128  
## ns(time, df = 18 * 20)56   1.89310    2.05422   0.922   0.3568  
## ns(time, df = 18 * 20)57   2.52094    2.05467   1.227   0.2198  
## ns(time, df = 18 * 20)58   1.28773    2.21227   0.582   0.5605  
## ns(time, df = 18 * 20)59   0.73523    2.20733   0.333   0.7391  
## ns(time, df = 18 * 20)60   3.31008    1.96304   1.686   0.0918 .
## ns(time, df = 18 * 20)61   2.30074    1.97669   1.164   0.2444  
## ns(time, df = 18 * 20)62   1.66650    2.04154   0.816   0.4143  
## ns(time, df = 18 * 20)63   2.45563    1.99181   1.233   0.2176  
## ns(time, df = 18 * 20)64   2.12620    1.96837   1.080   0.2801  
## ns(time, df = 18 * 20)65   3.08173    1.94812   1.582   0.1137  
## ns(time, df = 18 * 20)66   1.58910    2.07640   0.765   0.4441  
## ns(time, df = 18 * 20)67   1.40776    2.15611   0.653   0.5138  
## ns(time, df = 18 * 20)68   2.23429    2.08393   1.072   0.2837  
## ns(time, df = 18 * 20)69   1.66519    2.07151   0.804   0.4215  
## ns(time, df = 18 * 20)70   2.56544    2.01176   1.275   0.2022  
## ns(time, df = 18 * 20)71   1.66384    2.01915   0.824   0.4099  
## ns(time, df = 18 * 20)72   3.27741    1.98658   1.650   0.0990 .
## ns(time, df = 18 * 20)73   0.23048    2.14325   0.108   0.9144  
## ns(time, df = 18 * 20)74   3.82880    1.96962   1.944   0.0519 .
## ns(time, df = 18 * 20)75   0.73735    2.04873   0.360   0.7189  
## ns(time, df = 18 * 20)76   4.28554    1.99671   2.146   0.0318 *
## ns(time, df = 18 * 20)77  -0.46361    2.45360  -0.189   0.8501  
## ns(time, df = 18 * 20)78   0.64195    2.52735   0.254   0.7995  
## ns(time, df = 18 * 20)79   2.58580    2.28506   1.132   0.2578  
## ns(time, df = 18 * 20)80  -0.08132    2.45626  -0.033   0.9736  
## ns(time, df = 18 * 20)81   3.33435    2.32538   1.434   0.1516  
## ns(time, df = 18 * 20)82  -2.52729    2.90300  -0.871   0.3840  
## ns(time, df = 18 * 20)83   4.24840    2.07014   2.052   0.0401 *
## ns(time, df = 18 * 20)84   0.84636    2.06476   0.410   0.6819  
## ns(time, df = 18 * 20)85   3.43992    1.96015   1.755   0.0793 .
## ns(time, df = 18 * 20)86   1.19391    2.02217   0.590   0.5549  
## ns(time, df = 18 * 20)87   3.35749    1.95775   1.715   0.0864 .
## ns(time, df = 18 * 20)88   1.23868    2.05355   0.603   0.5464  
## ns(time, df = 18 * 20)89   2.44830    1.99558   1.227   0.2199  
## ns(time, df = 18 * 20)90   2.59609    1.98093   1.311   0.1900  
## ns(time, df = 18 * 20)91   1.30657    2.01677   0.648   0.5171  
## ns(time, df = 18 * 20)92   3.93686    1.94225   2.027   0.0427 *
## ns(time, df = 18 * 20)93   0.70797    2.15527   0.328   0.7425  
## ns(time, df = 18 * 20)94   2.19429    2.30715   0.951   0.3416  
## ns(time, df = 18 * 20)95  -0.86592    2.63150  -0.329   0.7421  
## ns(time, df = 18 * 20)96   3.30822    2.17198   1.523   0.1277  
## ns(time, df = 18 * 20)97   0.31853    2.22766   0.143   0.8863  
## ns(time, df = 18 * 20)98   3.20248    2.02779   1.579   0.1143  
## ns(time, df = 18 * 20)99   1.22959    2.06353   0.596   0.5513  
## ns(time, df = 18 * 20)100  3.18320    2.01460   1.580   0.1141  
## ns(time, df = 18 * 20)101  0.16775    2.12958   0.079   0.9372  
## ns(time, df = 18 * 20)102  4.29563    1.93644   2.218   0.0265 *
## ns(time, df = 18 * 20)103  0.70882    2.04685   0.346   0.7291  
## ns(time, df = 18 * 20)104  3.25507    1.96831   1.654   0.0982 .
## ns(time, df = 18 * 20)105  1.35512    2.00941   0.674   0.5001  
## ns(time, df = 18 * 20)106  3.39996    1.95165   1.742   0.0815 .
## ns(time, df = 18 * 20)107  1.16826    2.06286   0.566   0.5712  
## ns(time, df = 18 * 20)108  2.31619    1.99720   1.160   0.2462  
## ns(time, df = 18 * 20)109  2.59235    1.93607   1.339   0.1806  
## ns(time, df = 18 * 20)110  2.75157    1.92737   1.428   0.1534  
## ns(time, df = 18 * 20)111  2.31844    1.98509   1.168   0.2428  
## ns(time, df = 18 * 20)112  1.64051    2.08453   0.787   0.4313  
## ns(time, df = 18 * 20)113  1.65754    2.05074   0.808   0.4189  
## ns(time, df = 18 * 20)114  3.27036    1.97094   1.659   0.0971 .
## ns(time, df = 18 * 20)115  0.86697    2.06377   0.420   0.6744  
## ns(time, df = 18 * 20)116  3.23084    1.93006   1.674   0.0941 .
## ns(time, df = 18 * 20)117  2.57864    1.94403   1.326   0.1847  
## ns(time, df = 18 * 20)118  1.59049    2.02009   0.787   0.4311  
## ns(time, df = 18 * 20)119  3.29869    2.02680   1.628   0.1036  
## ns(time, df = 18 * 20)120 -0.03963    2.36494  -0.017   0.9866  
## ns(time, df = 18 * 20)121  2.42030    2.35756   1.027   0.3046  
## ns(time, df = 18 * 20)122 -1.24325    2.53775  -0.490   0.6242  
## ns(time, df = 18 * 20)123  4.34597    2.00286   2.170   0.0300 *
## ns(time, df = 18 * 20)124  1.44905    2.07340   0.699   0.4846  
## ns(time, df = 18 * 20)125  1.25788    2.18600   0.575   0.5650  
## ns(time, df = 18 * 20)126  2.21790    2.07756   1.068   0.2857  
## ns(time, df = 18 * 20)127  1.93194    2.03874   0.948   0.3433  
## ns(time, df = 18 * 20)128  2.13849    1.95838   1.092   0.2748  
## ns(time, df = 18 * 20)129  3.71594    1.91039   1.945   0.0518 .
## ns(time, df = 18 * 20)130  0.70110    2.04802   0.342   0.7321  
## ns(time, df = 18 * 20)131  3.38269    1.93839   1.745   0.0810 .
## ns(time, df = 18 * 20)132  2.21991    1.99526   1.113   0.2659  
## ns(time, df = 18 * 20)133  0.96064    2.09917   0.458   0.6472  
## ns(time, df = 18 * 20)134  3.52952    1.98696   1.776   0.0757 .
## ns(time, df = 18 * 20)135  0.56275    2.11149   0.267   0.7898  
## ns(time, df = 18 * 20)136  3.27598    1.97606   1.658   0.0974 .
## ns(time, df = 18 * 20)137  1.69832    2.02387   0.839   0.4014  
## ns(time, df = 18 * 20)138  2.11911    2.01569   1.051   0.2931  
## ns(time, df = 18 * 20)139  2.53694    1.98906   1.275   0.2022  
## ns(time, df = 18 * 20)140  1.55008    1.99604   0.777   0.4374  
## ns(time, df = 18 * 20)141  3.66001    1.92151   1.905   0.0568 .
## ns(time, df = 18 * 20)142  1.50489    2.05059   0.734   0.4630  
## ns(time, df = 18 * 20)143  1.44328    2.14528   0.673   0.5011  
## ns(time, df = 18 * 20)144  2.18407    2.06685   1.057   0.2906  
## ns(time, df = 18 * 20)145  1.93264    2.02981   0.952   0.3410  
## ns(time, df = 18 * 20)146  2.27613    1.94925   1.168   0.2429  
## ns(time, df = 18 * 20)147  3.32607    1.89401   1.756   0.0791 .
## ns(time, df = 18 * 20)148  1.75468    1.92562   0.911   0.3622  
## ns(time, df = 18 * 20)149  3.97607    1.89544   2.098   0.0359 *
## ns(time, df = 18 * 20)150  0.99685    2.08239   0.479   0.6321  
## ns(time, df = 18 * 20)151  1.62245    2.14946   0.755   0.4504  
## ns(time, df = 18 * 20)152  2.02655    2.06410   0.982   0.3262  
## ns(time, df = 18 * 20)153  2.35591    2.00952   1.172   0.2410  
## ns(time, df = 18 * 20)154  2.38267    2.02976   1.174   0.2404  
## ns(time, df = 18 * 20)155  1.74397    2.17903   0.800   0.4235  
## ns(time, df = 18 * 20)156  0.04978    2.33053   0.021   0.9830  
## ns(time, df = 18 * 20)157  3.53967    2.03847   1.736   0.0825 .
## ns(time, df = 18 * 20)158  1.62596    2.16555   0.751   0.4528  
## ns(time, df = 18 * 20)159 -0.17766    2.45581  -0.072   0.9423  
## ns(time, df = 18 * 20)160  3.04752    2.11555   1.441   0.1497  
## ns(time, df = 18 * 20)161  1.26166    2.15952   0.584   0.5591  
## ns(time, df = 18 * 20)162  1.58744    2.09038   0.759   0.4476  
## ns(time, df = 18 * 20)163  3.09989    1.97304   1.571   0.1162  
## ns(time, df = 18 * 20)164  1.75163    2.03593   0.860   0.3896  
## ns(time, df = 18 * 20)165  1.67177    2.02695   0.825   0.4095  
## ns(time, df = 18 * 20)166  3.43754    1.95158   1.761   0.0782 .
## ns(time, df = 18 * 20)167  0.99402    2.07191   0.480   0.6314  
## ns(time, df = 18 * 20)168  2.72197    1.99754   1.363   0.1730  
## ns(time, df = 18 * 20)169  2.44178    2.03687   1.199   0.2306  
## ns(time, df = 18 * 20)170  0.40013    2.19753   0.182   0.8555  
## ns(time, df = 18 * 20)171  3.36634    1.99889   1.684   0.0922 .
## ns(time, df = 18 * 20)172  1.35172    2.04579   0.661   0.5088  
## ns(time, df = 18 * 20)173  2.77996    2.00470   1.387   0.1655  
## ns(time, df = 18 * 20)174  1.32742    2.03722   0.652   0.5147  
## ns(time, df = 18 * 20)175  3.25988    1.95007   1.672   0.0946 .
## ns(time, df = 18 * 20)176  1.74390    2.01566   0.865   0.3869  
## ns(time, df = 18 * 20)177  1.92124    2.01379   0.954   0.3401  
## ns(time, df = 18 * 20)178  2.90605    1.95412   1.487   0.1370  
## ns(time, df = 18 * 20)179  2.23929    2.01787   1.110   0.2671  
## ns(time, df = 18 * 20)180  1.23728    2.16361   0.572   0.5674  
## ns(time, df = 18 * 20)181  2.28041    2.18561   1.043   0.2968  
## ns(time, df = 18 * 20)182 -0.30443    2.24833  -0.135   0.8923  
## ns(time, df = 18 * 20)183  4.63994    1.93748   2.395   0.0166 *
## ns(time, df = 18 * 20)184  0.68529    2.02541   0.338   0.7351  
## ns(time, df = 18 * 20)185  3.56188    1.94463   1.832   0.0670 .
## ns(time, df = 18 * 20)186  1.47980    2.03530   0.727   0.4672  
## ns(time, df = 18 * 20)187  1.85747    2.01950   0.920   0.3577  
## ns(time, df = 18 * 20)188  3.09650    1.93916   1.597   0.1103  
## ns(time, df = 18 * 20)189  2.10745    1.99363   1.057   0.2905  
## ns(time, df = 18 * 20)190  1.66575    2.05367   0.811   0.4173  
## ns(time, df = 18 * 20)191  2.60173    2.01608   1.290   0.1969  
## ns(time, df = 18 * 20)192  1.40477    2.04959   0.685   0.4931  
## ns(time, df = 18 * 20)193  2.56302    1.92149   1.334   0.1822  
## ns(time, df = 18 * 20)194  3.61731    1.86523   1.939   0.0525 .
## ns(time, df = 18 * 20)195  1.98106    1.92388   1.030   0.3031  
## ns(time, df = 18 * 20)196  2.74072    1.92460   1.424   0.1544  
## ns(time, df = 18 * 20)197  2.40453    1.94392   1.237   0.2161  
## ns(time, df = 18 * 20)198  1.96683    1.94438   1.012   0.3118  
## ns(time, df = 18 * 20)199  3.51717    1.88709   1.864   0.0623 .
## ns(time, df = 18 * 20)200  2.25778    1.96176   1.151   0.2498  
## ns(time, df = 18 * 20)201  1.88659    2.13924   0.882   0.3778  
## ns(time, df = 18 * 20)202  0.20365    2.37546   0.086   0.9317  
## ns(time, df = 18 * 20)203  2.76591    2.15561   1.283   0.1994  
## ns(time, df = 18 * 20)204  1.06937    2.24831   0.476   0.6343  
## ns(time, df = 18 * 20)205  1.60760    2.25355   0.713   0.4756  
## ns(time, df = 18 * 20)206  1.57205    2.23444   0.704   0.4817  
## ns(time, df = 18 * 20)207  2.10715    2.29361   0.919   0.3583  
## ns(time, df = 18 * 20)208  0.89703    2.86382   0.313   0.7541  
## ns(time, df = 18 * 20)209 -3.95149    4.44073  -0.890   0.3736  
## ns(time, df = 18 * 20)210  3.59876    2.42892   1.482   0.1384  
## ns(time, df = 18 * 20)211  0.93602    2.34973   0.398   0.6904  
## ns(time, df = 18 * 20)212  0.57723    2.20810   0.261   0.7938  
## ns(time, df = 18 * 20)213  5.08968    2.05288   2.479   0.0132 *
## ns(time, df = 18 * 20)214 -1.65175    2.76673  -0.597   0.5505  
## ns(time, df = 18 * 20)215 -0.38898    2.84441  -0.137   0.8912  
## ns(time, df = 18 * 20)216  2.71559    2.09419   1.297   0.1947  
## ns(time, df = 18 * 20)217  2.67159    1.96893   1.357   0.1748  
## ns(time, df = 18 * 20)218  2.61525    2.01192   1.300   0.1936  
## ns(time, df = 18 * 20)219  0.90805    2.23519   0.406   0.6846  
## ns(time, df = 18 * 20)220  1.34681    2.20675   0.610   0.5417  
## ns(time, df = 18 * 20)221  2.44837    2.06172   1.188   0.2350  
## ns(time, df = 18 * 20)222  1.82267    2.04962   0.889   0.3739  
## ns(time, df = 18 * 20)223  2.23316    2.00011   1.117   0.2642  
## ns(time, df = 18 * 20)224  2.77911    1.98418   1.401   0.1613  
## ns(time, df = 18 * 20)225  1.01544    2.05797   0.493   0.6217  
## ns(time, df = 18 * 20)226  3.52330    1.94245   1.814   0.0697 .
## ns(time, df = 18 * 20)227  1.75947    2.02563   0.869   0.3851  
## ns(time, df = 18 * 20)228  1.48496    2.08470   0.712   0.4763  
## ns(time, df = 18 * 20)229  2.90075    2.01605   1.439   0.1502  
## ns(time, df = 18 * 20)230  0.90412    2.07738   0.435   0.6634  
## ns(time, df = 18 * 20)231  3.73572    1.96860   1.898   0.0577 .
## ns(time, df = 18 * 20)232  1.17584    2.14873   0.547   0.5842  
## ns(time, df = 18 * 20)233  0.93975    2.35410   0.399   0.6897  
## ns(time, df = 18 * 20)234  1.39134    2.19612   0.634   0.5264  
## ns(time, df = 18 * 20)235  3.13688    2.09043   1.501   0.1335  
## ns(time, df = 18 * 20)236 -0.23235    2.31928  -0.100   0.9202  
## ns(time, df = 18 * 20)237  3.84922    2.15079   1.790   0.0735 .
## ns(time, df = 18 * 20)238 -1.50551    2.59684  -0.580   0.5621  
## ns(time, df = 18 * 20)239  3.35016    2.08789   1.605   0.1086  
## ns(time, df = 18 * 20)240  1.45227    2.05337   0.707   0.4794  
## ns(time, df = 18 * 20)241  3.31836    2.03684   1.629   0.1033  
## ns(time, df = 18 * 20)242  0.39177    2.38288   0.164   0.8694  
## ns(time, df = 18 * 20)243  0.24521    2.43943   0.101   0.9199  
## ns(time, df = 18 * 20)244  4.06967    2.25352   1.806   0.0709 .
## ns(time, df = 18 * 20)245 -2.75940    3.14249  -0.878   0.3799  
## ns(time, df = 18 * 20)246  2.85509    2.24363   1.273   0.2032  
## ns(time, df = 18 * 20)247  1.31282    2.07763   0.632   0.5275  
## ns(time, df = 18 * 20)248  3.87578    1.98749   1.950   0.0512 .
## ns(time, df = 18 * 20)249  0.25236    2.28170   0.111   0.9119  
## ns(time, df = 18 * 20)250  0.96394    2.20656   0.437   0.6622  
## ns(time, df = 18 * 20)251  3.63459    1.99232   1.824   0.0681 .
## ns(time, df = 18 * 20)252  1.01661    2.09883   0.484   0.6281  
## ns(time, df = 18 * 20)253  2.53299    2.07302   1.222   0.2218  
## ns(time, df = 18 * 20)254  1.29686    2.13049   0.609   0.5427  
## ns(time, df = 18 * 20)255  2.97908    2.15561   1.382   0.1670  
## ns(time, df = 18 * 20)256 -0.91835    2.65583  -0.346   0.7295  
## ns(time, df = 18 * 20)257  2.63484    2.35813   1.117   0.2638  
## ns(time, df = 18 * 20)258 -0.49774    2.40970  -0.207   0.8364  
## ns(time, df = 18 * 20)259  3.91585    2.03374   1.925   0.0542 .
## ns(time, df = 18 * 20)260  0.96717    2.13064   0.454   0.6499  
## ns(time, df = 18 * 20)261  1.85906    2.08321   0.892   0.3722  
## ns(time, df = 18 * 20)262  2.89328    2.02006   1.432   0.1521  
## ns(time, df = 18 * 20)263  0.97012    2.14270   0.453   0.6507  
## ns(time, df = 18 * 20)264  2.45394    2.06494   1.188   0.2347  
## ns(time, df = 18 * 20)265  1.66636    2.05859   0.809   0.4182  
## ns(time, df = 18 * 20)266  2.97581    2.04574   1.455   0.1458  
## ns(time, df = 18 * 20)267  0.61431    2.29007   0.268   0.7885  
## ns(time, df = 18 * 20)268  2.59798    2.50233   1.038   0.2992  
## ns(time, df = 18 * 20)269 -4.02394    3.66814  -1.097   0.2726  
## ns(time, df = 18 * 20)270  4.89534    2.26670   2.160   0.0308 *
## ns(time, df = 18 * 20)271 -0.29495    2.40048  -0.123   0.9022  
## ns(time, df = 18 * 20)272  1.97785    2.24568   0.881   0.3785  
## ns(time, df = 18 * 20)273  1.46278    2.13082   0.686   0.4924  
## ns(time, df = 18 * 20)274  2.75292    2.01632   1.365   0.1722  
## ns(time, df = 18 * 20)275  1.56782    2.02897   0.773   0.4397  
## ns(time, df = 18 * 20)276  3.11065    1.98199   1.569   0.1165  
## ns(time, df = 18 * 20)277  1.05834    2.08631   0.507   0.6120  
## ns(time, df = 18 * 20)278  2.89468    2.01761   1.435   0.1514  
## ns(time, df = 18 * 20)279  2.58804    2.19061   1.181   0.2374  
## ns(time, df = 18 * 20)280 -2.10693    3.41758  -0.616   0.5376  
## ns(time, df = 18 * 20)281  1.00812    2.64943   0.381   0.7036  
## ns(time, df = 18 * 20)282  1.71247    2.17137   0.789   0.4303  
## ns(time, df = 18 * 20)283  2.68528    1.97955   1.357   0.1749  
## ns(time, df = 18 * 20)284  2.75587    1.96187   1.405   0.1601  
## ns(time, df = 18 * 20)285  1.36094    2.03464   0.669   0.5036  
## ns(time, df = 18 * 20)286  2.94824    1.95481   1.508   0.1315  
## ns(time, df = 18 * 20)287  1.94331    1.96017   0.991   0.3215  
## ns(time, df = 18 * 20)288  2.97578    1.91969   1.550   0.1211  
## ns(time, df = 18 * 20)289  2.36246    1.95378   1.209   0.2266  
## ns(time, df = 18 * 20)290  1.83085    1.99111   0.920   0.3578  
## ns(time, df = 18 * 20)291  3.11891    1.96327   1.589   0.1121  
## ns(time, df = 18 * 20)292  1.04960    2.07274   0.506   0.6126  
## ns(time, df = 18 * 20)293  2.70987    1.96500   1.379   0.1679  
## ns(time, df = 18 * 20)294  3.41113    1.99501   1.710   0.0873 .
## ns(time, df = 18 * 20)295 -1.71009    2.41420  -0.708   0.4787  
## ns(time, df = 18 * 20)296  4.92093    1.94897   2.525   0.0116 *
## ns(time, df = 18 * 20)297  0.61789    2.01602   0.306   0.7592  
## ns(time, df = 18 * 20)298  3.74386    1.92323   1.947   0.0516 .
## ns(time, df = 18 * 20)299  1.26547    1.98877   0.636   0.5246  
## ns(time, df = 18 * 20)300  3.33421    1.92897   1.728   0.0839 .
## ns(time, df = 18 * 20)301  1.87041    1.99413   0.938   0.3483  
## ns(time, df = 18 * 20)302  2.15228    2.04136   1.054   0.2917  
## ns(time, df = 18 * 20)303  1.69563    2.06207   0.822   0.4109  
## ns(time, df = 18 * 20)304  2.73537    2.03724   1.343   0.1794  
## ns(time, df = 18 * 20)305  1.40909    2.20328   0.640   0.5225  
## ns(time, df = 18 * 20)306  0.35655    2.29786   0.155   0.8767  
## ns(time, df = 18 * 20)307  3.57509    2.06395   1.732   0.0832 .
## ns(time, df = 18 * 20)308  0.44572    2.23578   0.199   0.8420  
## ns(time, df = 18 * 20)309  2.13071    2.12185   1.004   0.3153  
## ns(time, df = 18 * 20)310  2.12589    2.06888   1.028   0.3042  
## ns(time, df = 18 * 20)311  1.54730    2.04906   0.755   0.4502  
## ns(time, df = 18 * 20)312  3.08204    1.94963   1.581   0.1139  
## ns(time, df = 18 * 20)313  2.01983    1.98047   1.020   0.3078  
## ns(time, df = 18 * 20)314  2.62328    2.02026   1.298   0.1941  
## ns(time, df = 18 * 20)315  0.70556    2.14793   0.328   0.7425  
## ns(time, df = 18 * 20)316  2.94478    1.97623   1.490   0.1362  
## ns(time, df = 18 * 20)317  2.35564    1.96252   1.200   0.2300  
## ns(time, df = 18 * 20)318  2.06962    1.96713   1.052   0.2928  
## ns(time, df = 18 * 20)319  3.90636    2.00860   1.945   0.0518 .
## ns(time, df = 18 * 20)320 -2.53499    2.66923  -0.950   0.3423  
## ns(time, df = 18 * 20)321  5.55607    2.23243   2.489   0.0128 *
## ns(time, df = 18 * 20)322 -3.94273    3.17285  -1.243   0.2140  
## ns(time, df = 18 * 20)323  3.86196    2.09339   1.845   0.0651 .
## ns(time, df = 18 * 20)324  1.78359    2.00447   0.890   0.3736  
## ns(time, df = 18 * 20)325  2.63342    1.95255   1.349   0.1774  
## ns(time, df = 18 * 20)326  2.72988    1.95631   1.395   0.1629  
## ns(time, df = 18 * 20)327  1.52540    2.04878   0.745   0.4565  
## ns(time, df = 18 * 20)328  2.43540    2.02520   1.203   0.2292  
## ns(time, df = 18 * 20)329  2.37965    2.10041   1.133   0.2572  
## ns(time, df = 18 * 20)330 -0.23750    2.37630  -0.100   0.9204  
## ns(time, df = 18 * 20)331  3.16346    2.06198   1.534   0.1250  
## ns(time, df = 18 * 20)332  1.26761    2.06016   0.615   0.5384  
## ns(time, df = 18 * 20)333  3.29148    1.99393   1.651   0.0988 .
## ns(time, df = 18 * 20)334  0.74479    2.12522   0.350   0.7260  
## ns(time, df = 18 * 20)335  3.60449    2.11905   1.701   0.0889 .
## ns(time, df = 18 * 20)336 -1.60231    2.69014  -0.596   0.5514  
## ns(time, df = 18 * 20)337  3.41476    2.26879   1.505   0.1323  
## ns(time, df = 18 * 20)338 -0.16796    2.50944  -0.067   0.9466  
## ns(time, df = 18 * 20)339  1.36680    2.20849   0.619   0.5360  
## ns(time, df = 18 * 20)340  3.40925    2.01848   1.689   0.0912 .
## ns(time, df = 18 * 20)341  1.28368    2.17331   0.591   0.5548  
## ns(time, df = 18 * 20)342  2.43893    2.57662   0.947   0.3439  
## ns(time, df = 18 * 20)343 -6.17193    4.77688  -1.292   0.1963  
## ns(time, df = 18 * 20)344  5.17037    2.31253   2.236   0.0254 *
## ns(time, df = 18 * 20)345  0.30502    2.25598   0.135   0.8924  
## ns(time, df = 18 * 20)346  2.27346    2.13015   1.067   0.2858  
## ns(time, df = 18 * 20)347  2.14967    2.12716   1.011   0.3122  
## ns(time, df = 18 * 20)348  0.80249    2.26072   0.355   0.7226  
## ns(time, df = 18 * 20)349  2.00384    2.09036   0.959   0.3378  
## ns(time, df = 18 * 20)350  2.39373    1.96993   1.215   0.2243  
## ns(time, df = 18 * 20)351  3.32506    1.95554   1.700   0.0891 .
## ns(time, df = 18 * 20)352  0.48980    2.16696   0.226   0.8212  
## ns(time, df = 18 * 20)353  2.87694    2.10294   1.368   0.1713  
## ns(time, df = 18 * 20)354  0.10488    2.18215   0.048   0.9617  
## ns(time, df = 18 * 20)355  3.99966    1.93452   2.068   0.0387 *
## ns(time, df = 18 * 20)356  1.68296    1.98317   0.849   0.3961  
## ns(time, df = 18 * 20)357  2.38781    1.99653   1.196   0.2317  
## ns(time, df = 18 * 20)358  1.23602    1.48855   0.830   0.4063  
## ns(time, df = 18 * 20)359  4.26216    4.05073   1.052   0.2927  
## ns(time, df = 18 * 20)360 -0.60997    1.26328  -0.483   0.6292  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(21065.1) family taken to be 1)
## 
##     Null deviance: 1149.73  on 938  degrees of freedom
## Residual deviance:  720.76  on 578  degrees of freedom
## AIC: 3226.7
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  21065 
##           Std. Err.:  71660 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2502.663
##      model      aic       theta
## 1   ns1 py 2937.858    58.23421
## 2   ns5 py 3002.534 13015.44671
## 3   ns7 py 3031.901 16102.46868
## 4   ns9 py 3046.814 19631.96389
## 5  ns10 py 3058.863 20157.87656
## 6  ns14 py 3133.347 20479.98090
## 7  ns15 py 3145.710 21819.86914
## 8  ns16 py 3163.313 19516.88827
## 9  ns18 py 3194.938 23118.62024
## 10 ns20 py 3226.663 21065.09862
## 
## Call:
## glm.nb(formula = smptbBM ~ ns(time, df = 18 * 15), data = week, 
##     init.theta = 21819.86914, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5398  -0.8189  -0.1214   0.5090   2.2049  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)  
## (Intercept)               -1.09154    1.26513  -0.863   0.3883  
## ns(time, df = 18 * 15)1   -2.10234    1.91810  -1.096   0.2731  
## ns(time, df = 18 * 15)2    4.62206    2.17796   2.122   0.0338 *
## ns(time, df = 18 * 15)3   -5.31501    3.58915  -1.481   0.1386  
## ns(time, df = 18 * 15)4    0.06596    2.29180   0.029   0.9770  
## ns(time, df = 18 * 15)5    2.49150    1.68355   1.480   0.1389  
## ns(time, df = 18 * 15)6    0.80090    1.74701   0.458   0.6466  
## ns(time, df = 18 * 15)7    0.86386    1.75354   0.493   0.6223  
## ns(time, df = 18 * 15)8    1.22863    1.66663   0.737   0.4610  
## ns(time, df = 18 * 15)9    1.79068    1.57462   1.137   0.2554  
## ns(time, df = 18 * 15)10   1.93344    1.58610   1.219   0.2228  
## ns(time, df = 18 * 15)11   0.26995    1.68146   0.161   0.8725  
## ns(time, df = 18 * 15)12   2.57728    1.54883   1.664   0.0961 .
## ns(time, df = 18 * 15)13   0.93239    1.58224   0.589   0.5557  
## ns(time, df = 18 * 15)14   2.33497    1.54738   1.509   0.1313  
## ns(time, df = 18 * 15)15   0.59284    1.59968   0.371   0.7109  
## ns(time, df = 18 * 15)16   2.82578    1.50727   1.875   0.0608 .
## ns(time, df = 18 * 15)17   1.45666    1.60809   0.906   0.3650  
## ns(time, df = 18 * 15)18  -0.54551    1.77742  -0.307   0.7589  
## ns(time, df = 18 * 15)19   3.86620    1.57688   2.452   0.0142 *
## ns(time, df = 18 * 15)20  -1.21687    1.86609  -0.652   0.5143  
## ns(time, df = 18 * 15)21   2.79801    1.73072   1.617   0.1059  
## ns(time, df = 18 * 15)22  -0.34816    2.07274  -0.168   0.8666  
## ns(time, df = 18 * 15)23  -0.77515    2.31267  -0.335   0.7375  
## ns(time, df = 18 * 15)24   1.21125    1.76675   0.686   0.4930  
## ns(time, df = 18 * 15)25   2.11826    1.57787   1.342   0.1794  
## ns(time, df = 18 * 15)26   1.55474    1.58862   0.979   0.3277  
## ns(time, df = 18 * 15)27   1.09506    1.63143   0.671   0.5021  
## ns(time, df = 18 * 15)28   1.52927    1.56859   0.975   0.3296  
## ns(time, df = 18 * 15)29   2.33340    1.52253   1.533   0.1254  
## ns(time, df = 18 * 15)30   1.18283    1.59886   0.740   0.4594  
## ns(time, df = 18 * 15)31   1.08285    1.60387   0.675   0.4996  
## ns(time, df = 18 * 15)32   2.42948    1.52455   1.594   0.1110  
## ns(time, df = 18 * 15)33   1.27724    1.57686   0.810   0.4179  
## ns(time, df = 18 * 15)34   1.70561    1.62260   1.051   0.2932  
## ns(time, df = 18 * 15)35   0.32597    1.68095   0.194   0.8462  
## ns(time, df = 18 * 15)36   2.94135    1.56376   1.881   0.0600 .
## ns(time, df = 18 * 15)37   0.08199    1.71726   0.048   0.9619  
## ns(time, df = 18 * 15)38   1.82533    1.65027   1.106   0.2687  
## ns(time, df = 18 * 15)39   1.09213    1.66300   0.657   0.5114  
## ns(time, df = 18 * 15)40   1.31972    1.64305   0.803   0.4219  
## ns(time, df = 18 * 15)41   1.56489    1.60334   0.976   0.3291  
## ns(time, df = 18 * 15)42   1.65670    1.60393   1.033   0.3016  
## ns(time, df = 18 * 15)43   1.29399    1.67786   0.771   0.4406  
## ns(time, df = 18 * 15)44   0.13684    1.70766   0.080   0.9361  
## ns(time, df = 18 * 15)45   3.10055    1.52180   2.037   0.0416 *
## ns(time, df = 18 * 15)46   0.77430    1.59248   0.486   0.6268  
## ns(time, df = 18 * 15)47   1.76333    1.55448   1.134   0.2566  
## ns(time, df = 18 * 15)48   2.00150    1.52155   1.315   0.1884  
## ns(time, df = 18 * 15)49   1.88274    1.56665   1.202   0.2295  
## ns(time, df = 18 * 15)50   0.49875    1.69787   0.294   0.7689  
## ns(time, df = 18 * 15)51   1.76442    1.62422   1.086   0.2773  
## ns(time, df = 18 * 15)52   1.17611    1.60206   0.734   0.4629  
## ns(time, df = 18 * 15)53   2.14741    1.55298   1.383   0.1667  
## ns(time, df = 18 * 15)54   1.08525    1.59537   0.680   0.4963  
## ns(time, df = 18 * 15)55   1.85227    1.56274   1.185   0.2359  
## ns(time, df = 18 * 15)56   1.50716    1.55821   0.967   0.3334  
## ns(time, df = 18 * 15)57   2.59962    1.60692   1.618   0.1057  
## ns(time, df = 18 * 15)58  -1.28490    2.07751  -0.618   0.5363  
## ns(time, df = 18 * 15)59   1.54463    1.84830   0.836   0.4033  
## ns(time, df = 18 * 15)60   1.05716    1.86742   0.566   0.5713  
## ns(time, df = 18 * 15)61  -0.63270    2.00036  -0.316   0.7518  
## ns(time, df = 18 * 15)62   2.15365    1.63040   1.321   0.1865  
## ns(time, df = 18 * 15)63   1.57508    1.56594   1.006   0.3145  
## ns(time, df = 18 * 15)64   1.69895    1.54498   1.100   0.2715  
## ns(time, df = 18 * 15)65   1.95382    1.53933   1.269   0.2043  
## ns(time, df = 18 * 15)66   1.17784    1.57692   0.747   0.4551  
## ns(time, df = 18 * 15)67   2.05650    1.54297   1.333   0.1826  
## ns(time, df = 18 * 15)68   1.22129    1.55368   0.786   0.4318  
## ns(time, df = 18 * 15)69   2.85629    1.54613   1.847   0.0647 .
## ns(time, df = 18 * 15)70  -0.12643    1.83958  -0.069   0.9452  
## ns(time, df = 18 * 15)71   0.38638    1.90807   0.202   0.8395  
## ns(time, df = 18 * 15)72   1.48341    1.72055   0.862   0.3886  
## ns(time, df = 18 * 15)73   1.02162    1.65162   0.619   0.5362  
## ns(time, df = 18 * 15)74   2.22853    1.57850   1.412   0.1580  
## ns(time, df = 18 * 15)75   0.56274    1.63047   0.345   0.7300  
## ns(time, df = 18 * 15)76   2.45360    1.52379   1.610   0.1074  
## ns(time, df = 18 * 15)77   1.49842    1.54405   0.970   0.3318  
## ns(time, df = 18 * 15)78   1.51440    1.54865   0.978   0.3281  
## ns(time, df = 18 * 15)79   2.18819    1.52493   1.435   0.1513  
## ns(time, df = 18 * 15)80   1.14485    1.57805   0.725   0.4682  
## ns(time, df = 18 * 15)81   1.68663    1.53592   1.098   0.2721  
## ns(time, df = 18 * 15)82   2.27915    1.49328   1.526   0.1269  
## ns(time, df = 18 * 15)83   1.88891    1.54316   1.224   0.2209  
## ns(time, df = 18 * 15)84   0.39608    1.64754   0.240   0.8100  
## ns(time, df = 18 * 15)85   2.71731    1.53929   1.765   0.0775 .
## ns(time, df = 18 * 15)86   0.45455    1.59044   0.286   0.7750  
## ns(time, df = 18 * 15)87   3.04095    1.49110   2.039   0.0414 *
## ns(time, df = 18 * 15)88   0.97599    1.56538   0.623   0.5330  
## ns(time, df = 18 * 15)89   2.20497    1.60383   1.375   0.1692  
## ns(time, df = 18 * 15)90   0.56385    1.86032   0.303   0.7618  
## ns(time, df = 18 * 15)91  -1.39849    2.03781  -0.686   0.4925  
## ns(time, df = 18 * 15)92   3.72405    1.58532   2.349   0.0188 *
## ns(time, df = 18 * 15)93   0.11009    1.68480   0.065   0.9479  
## ns(time, df = 18 * 15)94   1.85501    1.63754   1.133   0.2573  
## ns(time, df = 18 * 15)95   0.69467    1.60696   0.432   0.6655  
## ns(time, df = 18 * 15)96   2.98449    1.48801   2.006   0.0449 *
## ns(time, df = 18 * 15)97   0.96273    1.53637   0.627   0.5309  
## ns(time, df = 18 * 15)98   2.61024    1.50583   1.733   0.0830 .
## ns(time, df = 18 * 15)99   0.88271    1.58339   0.557   0.5772  
## ns(time, df = 18 * 15)100  2.09998    1.56183   1.345   0.1788  
## ns(time, df = 18 * 15)101  0.95686    1.59889   0.598   0.5495  
## ns(time, df = 18 * 15)102  2.18664    1.54492   1.415   0.1570  
## ns(time, df = 18 * 15)103  1.27781    1.57865   0.809   0.4183  
## ns(time, df = 18 * 15)104  1.55186    1.55933   0.995   0.3196  
## ns(time, df = 18 * 15)105  1.98347    1.51380   1.310   0.1901  
## ns(time, df = 18 * 15)106  2.24417    1.53595   1.461   0.1440  
## ns(time, df = 18 * 15)107  0.28463    1.69227   0.168   0.8664  
## ns(time, df = 18 * 15)108  1.87389    1.59220   1.177   0.2392  
## ns(time, df = 18 * 15)109  1.37998    1.53952   0.896   0.3701  
## ns(time, df = 18 * 15)110  2.46343    1.46821   1.678   0.0934 .
## ns(time, df = 18 * 15)111  1.98704    1.47193   1.350   0.1770  
## ns(time, df = 18 * 15)112  2.37728    1.51988   1.564   0.1178  
## ns(time, df = 18 * 15)113  0.01313    1.72218   0.008   0.9939  
## ns(time, df = 18 * 15)114  1.88840    1.59681   1.183   0.2370  
## ns(time, df = 18 * 15)115  2.00398    1.58112   1.267   0.2050  
## ns(time, df = 18 * 15)116  0.69099    1.72110   0.401   0.6881  
## ns(time, df = 18 * 15)117  0.76572    1.69459   0.452   0.6514  
## ns(time, df = 18 * 15)118  2.86350    1.62269   1.765   0.0776 .
## ns(time, df = 18 * 15)119 -1.27487    1.92719  -0.662   0.5083  
## ns(time, df = 18 * 15)120  2.91845    1.64783   1.771   0.0765 .
## ns(time, df = 18 * 15)121 -0.31559    1.71438  -0.184   0.8539  
## ns(time, df = 18 * 15)122  3.24115    1.53977   2.105   0.0353 *
## ns(time, df = 18 * 15)123  0.04992    1.63006   0.031   0.9756  
## ns(time, df = 18 * 15)124  3.03717    1.52173   1.996   0.0459 *
## ns(time, df = 18 * 15)125  0.42059    1.60596   0.262   0.7934  
## ns(time, df = 18 * 15)126  2.74719    1.55210   1.770   0.0767 .
## ns(time, df = 18 * 15)127  0.14674    1.68074   0.087   0.9304  
## ns(time, df = 18 * 15)128  2.18985    1.57196   1.393   0.1636  
## ns(time, df = 18 * 15)129  1.47102    1.58135   0.930   0.3523  
## ns(time, df = 18 * 15)130  1.14645    1.58219   0.725   0.4687  
## ns(time, df = 18 * 15)131  2.56096    1.52189   1.683   0.0924 .
## ns(time, df = 18 * 15)132  0.68430    1.59239   0.430   0.6674  
## ns(time, df = 18 * 15)133  2.47424    1.52552   1.622   0.1048  
## ns(time, df = 18 * 15)134  1.38147    1.58467   0.872   0.3833  
## ns(time, df = 18 * 15)135  1.38534    1.69045   0.820   0.4125  
## ns(time, df = 18 * 15)136 -0.28147    1.75646  -0.160   0.8727  
## ns(time, df = 18 * 15)137  3.25223    1.51095   2.152   0.0314 *
## ns(time, df = 18 * 15)138  0.94832    1.54697   0.613   0.5399  
## ns(time, df = 18 * 15)139  2.43769    1.52839   1.595   0.1107  
## ns(time, df = 18 * 15)140  0.57083    1.58728   0.360   0.7191  
## ns(time, df = 18 * 15)141  3.03395    1.50598   2.015   0.0439 *
## ns(time, df = 18 * 15)142  0.46268    1.61299   0.287   0.7742  
## ns(time, df = 18 * 15)143  2.23224    1.56566   1.426   0.1539  
## ns(time, df = 18 * 15)144  0.58474    1.56639   0.373   0.7089  
## ns(time, df = 18 * 15)145  3.36101    1.44268   2.330   0.0198 *
## ns(time, df = 18 * 15)146  1.36467    1.48216   0.921   0.3572  
## ns(time, df = 18 * 15)147  2.38162    1.48469   1.604   0.1087  
## ns(time, df = 18 * 15)148  1.13125    1.51654   0.746   0.4557  
## ns(time, df = 18 * 15)149  2.92135    1.46575   1.993   0.0463 *
## ns(time, df = 18 * 15)150  1.63323    1.56544   1.043   0.2968  
## ns(time, df = 18 * 15)151  0.03945    1.81540   0.022   0.9827  
## ns(time, df = 18 * 15)152  1.61050    1.72898   0.931   0.3516  
## ns(time, df = 18 * 15)153  1.03035    1.78093   0.579   0.5629  
## ns(time, df = 18 * 15)154  0.21899    1.84878   0.118   0.9057  
## ns(time, df = 18 * 15)155  2.90008    1.86105   1.558   0.1192  
## ns(time, df = 18 * 15)156 -3.84551    2.96347  -1.298   0.1944  
## ns(time, df = 18 * 15)157  2.54981    1.93766   1.316   0.1882  
## ns(time, df = 18 * 15)158 -0.39396    1.85833  -0.212   0.8321  
## ns(time, df = 18 * 15)159  2.59848    1.59457   1.630   0.1032  
## ns(time, df = 18 * 15)160  1.98273    1.68454   1.177   0.2392  
## ns(time, df = 18 * 15)161 -2.62010    2.30672  -1.136   0.2560  
## ns(time, df = 18 * 15)162  3.18642    1.60002   1.991   0.0464 *
## ns(time, df = 18 * 15)163  1.73402    1.57838   1.099   0.2719  
## ns(time, df = 18 * 15)164  0.55352    1.72830   0.320   0.7488  
## ns(time, df = 18 * 15)165  1.35691    1.67582   0.810   0.4181  
## ns(time, df = 18 * 15)166  1.30891    1.61046   0.813   0.4164  
## ns(time, df = 18 * 15)167  2.07373    1.55426   1.334   0.1821  
## ns(time, df = 18 * 15)168  1.09389    1.57660   0.694   0.4878  
## ns(time, df = 18 * 15)169  2.25997    1.52504   1.482   0.1384  
## ns(time, df = 18 * 15)170  1.46931    1.56345   0.940   0.3473  
## ns(time, df = 18 * 15)171  1.49445    1.60433   0.932   0.3516  
## ns(time, df = 18 * 15)172  0.99940    1.60208   0.624   0.5328  
## ns(time, df = 18 * 15)173  2.83463    1.54918   1.830   0.0673 .
## ns(time, df = 18 * 15)174  0.09657    1.75815   0.055   0.9562  
## ns(time, df = 18 * 15)175  1.07059    1.74720   0.613   0.5400  
## ns(time, df = 18 * 15)176  1.52871    1.67506   0.913   0.3614  
## ns(time, df = 18 * 15)177  1.24903    1.71856   0.727   0.4674  
## ns(time, df = 18 * 15)178  0.46726    1.80349   0.259   0.7956  
## ns(time, df = 18 * 15)179  1.22692    1.66575   0.737   0.4614  
## ns(time, df = 18 * 15)180  2.28687    1.58384   1.444   0.1488  
## ns(time, df = 18 * 15)181  0.90171    1.71327   0.526   0.5987  
## ns(time, df = 18 * 15)182  0.43737    1.83055   0.239   0.8112  
## ns(time, df = 18 * 15)183  1.78258    1.79056   0.996   0.3195  
## ns(time, df = 18 * 15)184 -0.79232    1.96539  -0.403   0.6868  
## ns(time, df = 18 * 15)185  2.24813    1.60793   1.398   0.1621  
## ns(time, df = 18 * 15)186  2.29335    1.59350   1.439   0.1501  
## ns(time, df = 18 * 15)187 -0.92192    1.83258  -0.503   0.6149  
## ns(time, df = 18 * 15)188  3.28238    1.56892   2.092   0.0364 *
## ns(time, df = 18 * 15)189  0.35799    1.66748   0.215   0.8300  
## ns(time, df = 18 * 15)190  1.86208    1.64813   1.130   0.2586  
## ns(time, df = 18 * 15)191  1.12002    1.74067   0.643   0.5199  
## ns(time, df = 18 * 15)192  0.47955    1.95225   0.246   0.8060  
## ns(time, df = 18 * 15)193 -0.48153    1.92609  -0.250   0.8026  
## ns(time, df = 18 * 15)194  3.08344    1.61146   1.913   0.0557 .
## ns(time, df = 18 * 15)195 -0.03336    1.69993  -0.020   0.9843  
## ns(time, df = 18 * 15)196  2.61621    1.58366   1.652   0.0985 .
## ns(time, df = 18 * 15)197  0.54519    1.67107   0.326   0.7442  
## ns(time, df = 18 * 15)198  1.70233    1.62088   1.050   0.2936  
## ns(time, df = 18 * 15)199  1.57113    1.62220   0.969   0.3328  
## ns(time, df = 18 * 15)200  1.68523    1.75699   0.959   0.3375  
## ns(time, df = 18 * 15)201 -1.62601    2.26741  -0.717   0.4733  
## ns(time, df = 18 * 15)202  1.97666    1.78935   1.105   0.2693  
## ns(time, df = 18 * 15)203  1.01946    1.75768   0.580   0.5619  
## ns(time, df = 18 * 15)204  0.48739    1.76519   0.276   0.7825  
## ns(time, df = 18 * 15)205  1.96264    1.60329   1.224   0.2209  
## ns(time, df = 18 * 15)206  1.43321    1.57832   0.908   0.3638  
## ns(time, df = 18 * 15)207  1.89429    1.56880   1.207   0.2272  
## ns(time, df = 18 * 15)208  1.15342    1.61270   0.715   0.4745  
## ns(time, df = 18 * 15)209  2.74938    1.71039   1.607   0.1080  
## ns(time, df = 18 * 15)210 -2.97450    2.67134  -1.113   0.2655  
## ns(time, df = 18 * 15)211  1.19387    1.81703   0.657   0.5112  
## ns(time, df = 18 * 15)212  2.36196    1.55939   1.515   0.1299  
## ns(time, df = 18 * 15)213  1.45198    1.55435   0.934   0.3502  
## ns(time, df = 18 * 15)214  1.73049    1.53980   1.124   0.2611  
## ns(time, df = 18 * 15)215  1.72086    1.51170   1.138   0.2550  
## ns(time, df = 18 * 15)216  2.39314    1.49075   1.605   0.1084  
## ns(time, df = 18 * 15)217  1.13495    1.54389   0.735   0.4623  
## ns(time, df = 18 * 15)218  2.44871    1.52622   1.604   0.1086  
## ns(time, df = 18 * 15)219  0.42103    1.59271   0.264   0.7915  
## ns(time, df = 18 * 15)220  3.44173    1.51478   2.272   0.0231 *
## ns(time, df = 18 * 15)221 -0.79409    1.70634  -0.465   0.6417  
## ns(time, df = 18 * 15)222  3.29328    1.49683   2.200   0.0278 *
## ns(time, df = 18 * 15)223  1.13894    1.52881   0.745   0.4563  
## ns(time, df = 18 * 15)224  2.04258    1.50904   1.354   0.1759  
## ns(time, df = 18 * 15)225  2.01765    1.51416   1.333   0.1827  
## ns(time, df = 18 * 15)226  1.43945    1.58220   0.910   0.3629  
## ns(time, df = 18 * 15)227  1.08044    1.61914   0.667   0.5046  
## ns(time, df = 18 * 15)228  2.47329    1.61662   1.530   0.1260  
## ns(time, df = 18 * 15)229 -0.95930    1.87244  -0.512   0.6084  
## ns(time, df = 18 * 15)230  3.03623    1.62990   1.863   0.0625 .
## ns(time, df = 18 * 15)231 -0.20019    1.76243  -0.114   0.9096  
## ns(time, df = 18 * 15)232  2.05442    1.62376   1.265   0.2058  
## ns(time, df = 18 * 15)233  1.01812    1.59674   0.638   0.5237  
## ns(time, df = 18 * 15)234  2.36172    1.52140   1.552   0.1206  
## ns(time, df = 18 * 15)235  1.61358    1.56764   1.029   0.3033  
## ns(time, df = 18 * 15)236  0.71373    1.63800   0.436   0.6630  
## ns(time, df = 18 * 15)237  2.19842    1.52961   1.437   0.1506  
## ns(time, df = 18 * 15)238  1.82258    1.51994   1.199   0.2305  
## ns(time, df = 18 * 15)239  1.96497    1.56445   1.256   0.2091  
## ns(time, df = 18 * 15)240  0.79867    1.73191   0.461   0.6447  
## ns(time, df = 18 * 15)241  0.33760    1.80611   0.187   0.8517  
## ns(time, df = 18 * 15)242  1.74847    1.61701   1.081   0.2796  
## ns(time, df = 18 * 15)243  1.62059    1.53927   1.053   0.2924  
## ns(time, df = 18 * 15)244  2.50060    1.51203   1.654   0.0982 .
## ns(time, df = 18 * 15)245  0.63674    1.60705   0.396   0.6919  
## ns(time, df = 18 * 15)246  2.64535    1.58481   1.669   0.0951 .
## ns(time, df = 18 * 15)247 -0.31797    1.79715  -0.177   0.8596  
## ns(time, df = 18 * 15)248  1.82904    1.63332   1.120   0.2628  
## ns(time, df = 18 * 15)249  1.65054    1.58544   1.041   0.2978  
## ns(time, df = 18 * 15)250  1.54524    1.60853   0.961   0.3367  
## ns(time, df = 18 * 15)251  1.47288    1.69275   0.870   0.3842  
## ns(time, df = 18 * 15)252  0.13050    1.89128   0.069   0.9450  
## ns(time, df = 18 * 15)253  1.13429    1.83136   0.619   0.5357  
## ns(time, df = 18 * 15)254  0.41102    1.74723   0.235   0.8140  
## ns(time, df = 18 * 15)255  2.92189    1.61513   1.809   0.0704 .
## ns(time, df = 18 * 15)256  0.34036    1.91255   0.178   0.8588  
## ns(time, df = 18 * 15)257 -2.21664    2.36531  -0.937   0.3487  
## ns(time, df = 18 * 15)258  3.55680    1.68858   2.106   0.0352 *
## ns(time, df = 18 * 15)259 -0.35537    1.77150  -0.201   0.8410  
## ns(time, df = 18 * 15)260  2.57515    1.65780   1.553   0.1203  
## ns(time, df = 18 * 15)261 -0.44824    1.79554  -0.250   0.8029  
## ns(time, df = 18 * 15)262  2.41928    1.55611   1.555   0.1200  
## ns(time, df = 18 * 15)263  2.01726    1.54246   1.308   0.1909  
## ns(time, df = 18 * 15)264  1.02382    1.66884   0.613   0.5396  
## ns(time, df = 18 * 15)265  0.39838    1.68447   0.237   0.8130  
## ns(time, df = 18 * 15)266  2.85906    1.51243   1.890   0.0587 .
## ns(time, df = 18 * 15)267  1.24045    1.54765   0.802   0.4228  
## ns(time, df = 18 * 15)268  1.27426    1.18394   1.076   0.2818  
## ns(time, df = 18 * 15)269  3.03017    3.12832   0.969   0.3327  
## ns(time, df = 18 * 15)270 -0.67333    1.12614  -0.598   0.5499  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(21819.87) family taken to be 1)
## 
##     Null deviance: 1149.74  on 938  degrees of freedom
## Residual deviance:  819.81  on 668  degrees of freedom
## AIC: 3145.7
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  21820 
##           Std. Err.:  89240 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2601.71
## 
## Call:
## glm.nb(formula = smptbBM ~ poly(time, degree = 3), data = week, 
##     init.theta = 29.86636665, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.8037  -0.5479  -0.3625   0.4480   3.4560  
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              0.40427    0.02737  14.770   <2e-16 ***
## poly(time, degree = 3)1  0.15663    0.86018   0.182   0.8555    
## poly(time, degree = 3)2 -1.88486    0.85379  -2.208   0.0273 *  
## poly(time, degree = 3)3  1.87812    0.85241   2.203   0.0276 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(29.8664) family taken to be 1)
## 
##     Null deviance: 1102.6  on 938  degrees of freedom
## Residual deviance: 1093.0  on 935  degrees of freedom
## AIC: 2930.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  29.9 
##           Std. Err.:  29.4 
## 
##  2 x log-likelihood:  -2920.45

For both ptbBM & smptbBM, the AIC increases with increasing df value. While this may indicate model with 0 long-term trend has the smallest AIC value, subsequent final model for this version (see results for SA1) show flat relationship for all variables & across all lags. This could suggest there is a need to adjust for long-term trend & seasonality. Despite the AIC results, it was decided to follow what has been used in previous TB studies & also recommended for pollution and mortality studies: natural cubic spline with 7df per year

Codes to create Figure 1 in main paper

####make time series plots for each climate var & also for ptb   
library(ggplot2)
library(dplyr)
library(reshape2)

library(RColorBrewer)
mypal<-brewer.pal(11,"Paired")
names(week)
##  [1] "epiYr"     "epiWk"     "avgWindSp" "sun"       "RF"        "rainyD"   
##  [7] "minRH"     "meanRH"    "maxRH"     "minT"      "aveT"      "maxT"     
## [13] "AH"        "eptb"      "ptb"       "allTB"     "eptbInW"   "ptbInW"   
## [19] "allTBInW"  "ptbBM"     "smptbBM"   "date"      "time"
figPtb <- ggplot(week, aes(x=date, y=ptbBM)) + geom_line() + xlab("") +
    ylab("Weekly PTB cases") + 
    scale_x_date(limit=c(as.Date("2001-01-01"),as.Date("2018-12-31"))) +
    theme(plot.margin = unit(c(0.2,0.3,0.3,0.3), "cm"),
          axis.title.y = element_text(size=7),
          axis.text=element_text(size=8))


figTemp<- week %>% select(minT:maxT,date)
head(figTemp)
## # A tibble: 6 x 4
##    minT  aveT  maxT date      
##   <dbl> <dbl> <dbl> <date>    
## 1  23.2  26.6  30.1 2001-01-08
## 2  23.5  26.3  30.4 2001-01-15
## 3  23.2  26.7  31.3 2001-01-22
## 4  23.3  27.3  31.6 2001-01-29
## 5  23.6  26.7  30.6 2001-02-05
## 6  23.8  27.1  31.1 2001-02-12
str(figTemp)
## tibble [939 x 4] (S3: tbl_df/tbl/data.frame)
##  $ minT: num [1:939] 23.2 23.5 23.2 23.3 23.6 ...
##  $ aveT: num [1:939] 26.6 26.3 26.7 27.3 26.7 ...
##  $ maxT: num [1:939] 30.1 30.4 31.3 31.6 30.6 ...
##  $ date: Date[1:939], format: "2001-01-08" "2001-01-15" ...
figTemp<- melt(figTemp,id.vars = "date")
fig1 <- ggplot(figTemp,aes(x=date,y=value,colour=variable,group=variable)) + 
    geom_line() + xlab("") + ylab("Temperature (°C)") +
    scale_colour_manual(values = mypal[1:3],labels = c("Min Temp", "Average Temp", "Max Temp")) + 
    theme(legend.title = element_blank(), legend.position="bottom",
          legend.margin = margin(0, 0, 0, 0),
          legend.box.margin = margin(-15,-15,-15,-15),
          plot.margin = unit(c(0.1,0.3,0.5,0.3), "cm"),
          legend.text = element_text(size = 6),
          axis.title.y = element_text(size=7),
          axis.text=element_text(size=8)) 


figHum<- week %>% select(minRH:maxRH,date)
head(figHum)
## # A tibble: 6 x 4
##   minRH meanRH maxRH date      
##   <dbl>  <dbl> <dbl> <date>    
## 1  68.3   84.6  96.7 2001-01-08
## 2  71     88.4  97.6 2001-01-15
## 3  63.9   85.4  97   2001-01-22
## 4  66     85.6  97.1 2001-01-29
## 5  68.6   86.9  96.9 2001-02-05
## 6  67.6   86    96.7 2001-02-12
str(figHum)
## tibble [939 x 4] (S3: tbl_df/tbl/data.frame)
##  $ minRH : num [1:939] 68.3 71 63.9 66 68.6 ...
##  $ meanRH: num [1:939] 84.6 88.4 85.4 85.6 86.9 ...
##  $ maxRH : num [1:939] 96.7 97.6 97 97.1 96.9 ...
##  $ date  : Date[1:939], format: "2001-01-08" "2001-01-15" ...
figHum<- melt(figHum,id.vars = "date")
fig2 <- ggplot(figHum,aes(x=date,y=value,colour=variable,group=variable)) + 
    geom_line() + xlab("") + ylab("Humidity (%)") +
    scale_colour_manual(values = mypal[4:6],labels = c("Min RH", "Mean RH", "Max RH")) + 
    theme(legend.title = element_blank(), legend.position="bottom",
          legend.margin = margin(0, 0, 0, 0),
          legend.box.margin = margin(-15,-15,-15,-15),
          plot.margin = unit(c(0.1,0.3,0.5,0.3), "cm"),
          legend.text = element_text(size = 6),
          axis.title.y = element_text(size=7),
          axis.text=element_text(size=8)) 

figRF<- week %>% select(RF,date)
head(figRF)
## # A tibble: 6 x 2
##      RF date      
##   <dbl> <date>    
## 1  92.2 2001-01-08
## 2 218   2001-01-15
## 3  44.2 2001-01-22
## 4 224.  2001-01-29
## 5 170.  2001-02-05
## 6  33.0 2001-02-12
str(figRF)
## tibble [939 x 2] (S3: tbl_df/tbl/data.frame)
##  $ RF  : num [1:939] 92.2 218 44.1 224.3 170.2 ...
##  $ date: Date[1:939], format: "2001-01-08" "2001-01-15" ...
figRF<- melt(figRF,id.vars = "date")
fig3<- ggplot(figRF,aes(x=date,y=value,colour=variable,group=variable)) + 
    geom_line() + xlab("") + ylab("Total Rainfall (mm)") +
    scale_colour_manual(values = mypal[7]) + 
    theme(legend.position = "none",
          plot.margin = unit(c(0.2,0.3,0.3,0.3), "cm"),
          axis.title.y = element_text(size=7),
          axis.text=element_text(size=8))

figWind<- week %>% select(avgWindSp,date)
head(figWind)
## # A tibble: 6 x 2
##   avgWindSp date      
##       <dbl> <date>    
## 1      4.37 2001-01-08
## 2      4.38 2001-01-15
## 3      3.93 2001-01-22
## 4      4.63 2001-01-29
## 5      4.96 2001-02-05
## 6      4.77 2001-02-12
str(figWind)
## tibble [939 x 2] (S3: tbl_df/tbl/data.frame)
##  $ avgWindSp: num [1:939] 4.37 4.38 3.93 4.63 4.96 ...
##  $ date     : Date[1:939], format: "2001-01-08" "2001-01-15" ...
figWind<- melt(figWind,id.vars = "date")
fig4<- ggplot(figWind,aes(x=date,y=value,colour=variable,group=variable)) + 
    geom_line() + xlab("") + ylab("Average Wind speed (knots)") + 
    scale_colour_manual(values = mypal[8]) + 
    theme(legend.position = "none",
          plot.margin = unit(c(0.3,0.3,0.5,0.3), "cm"),
          axis.title.y = element_text(size=7),
          axis.text=element_text(size=8))

figOth<- week %>% select(sun,AH,date)
head(figOth)
## # A tibble: 6 x 3
##     sun    AH date      
##   <dbl> <dbl> <date>    
## 1  41    30.0 2001-01-08
## 2  35.4  30.8 2001-01-15
## 3  47.0  30.4 2001-01-22
## 4  64.4  31.6 2001-01-29
## 5  38.2  31.0 2001-02-05
## 6  45.8  31.5 2001-02-12
str(figOth)
## tibble [939 x 3] (S3: tbl_df/tbl/data.frame)
##  $ sun : num [1:939] 41 35.4 47 64.4 38.2 ...
##  $ AH  : num [1:939] 30 30.8 30.4 31.6 31 ...
##  $ date: Date[1:939], format: "2001-01-08" "2001-01-15" ...
figOth<- melt(figOth,id.vars = "date")
fig5<- ggplot(figOth,aes(x=date,y=value,colour=variable,group=variable)) + 
    geom_line() + xlab("") + ylab("Sunshine (hours)/ VP (kPa)") + 
    scale_colour_manual(values = mypal[9:10],labels = c("Total sunshine","Vapour Pressure")) + 
    theme(legend.title = element_blank(), legend.position="bottom",
          legend.margin = margin(0, 0, 0, 0),
          legend.box.margin = margin(-15,-15,-15,-15),
          plot.margin = unit(c(0.3,0.3,0.5,0.3), "cm"),
          legend.text = element_text(size = 6),
          axis.title.y = element_text(size=7),
          axis.text=element_text(size=8))


library(gridExtra)
## 
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
## 
##     combine
tiff("figFull_Apr10.tiff", units="in", width=7, height=4, res=400)
figFull<- grid.arrange(figPtb, fig3, fig2, fig1, fig4,fig5, nrow=3,ncol=2)
dev.off()
## png 
##   2

Creating crossbasis terms for climate variates

##for argvar, if no function is mentioned, the default is ns (perhaps due to df=3 mentioned)
##for arglag, not specifying the df for ns function means not giving it knots

cb1.avgWindSp <- crossbasis(week$avgWindSp,lag=52,argvar=list(df=3), arglag=list(fun="ns"))
summary(cb1.avgWindSp)
## CROSSBASIS FUNCTIONS
## observations: 939 
## range: 2.964286 to 10.17262 
## lag period: 0 52 
## total df:  6 
## 
## BASIS FOR VAR:
## fun: ns 
## knots: 4.207341 4.755952 
## intercept: FALSE 
## Boundary.knots: 2.964286 10.17262 
## 
## BASIS FOR LAG:
## fun: ns 
## knots:  
## intercept: TRUE 
## Boundary.knots: 0 52
cb2.sun <- crossbasis(week$sun,lag=52,argvar=list(df=3), arglag=list(fun="ns") )
summary(cb2.sun)
## CROSSBASIS FUNCTIONS
## observations: 939 
## range: 11.15 to 76 
## lag period: 0 52 
## total df:  6 
## 
## BASIS FOR VAR:
## fun: ns 
## knots: 45.78333 55.71667 
## intercept: FALSE 
## Boundary.knots: 11.15 76 
## 
## BASIS FOR LAG:
## fun: ns 
## knots:  
## intercept: TRUE 
## Boundary.knots: 0 52
cb3.RF <- crossbasis(week$RF,lag=52,argvar=list(df=3), arglag=list(fun="ns") )
summary(cb3.RF)
## CROSSBASIS FUNCTIONS
## observations: 939 
## range: 0 to 414.5 
## lag period: 0 52 
## total df:  6 
## 
## BASIS FOR VAR:
## fun: ns 
## knots: 25.91667 72.25 
## intercept: FALSE 
## Boundary.knots: 0 414.5 
## 
## BASIS FOR LAG:
## fun: ns 
## knots:  
## intercept: TRUE 
## Boundary.knots: 0 52
##Number of Rainy days was included in the initial analysis, but later excluded due to the nature of variable (count, not continuous)
##that's why cb4 was removed in this coding script.

cb5.minRH <- crossbasis(week$minRH,lag=52,argvar=list(df=3), arglag=list(fun="ns") )
summary(cb5.minRH)
## CROSSBASIS FUNCTIONS
## observations: 939 
## range: 45 to 80.57143 
## lag period: 0 52 
## total df:  6 
## 
## BASIS FOR VAR:
## fun: ns 
## knots: 60.80952 64.71429 
## intercept: FALSE 
## Boundary.knots: 45 80.57143 
## 
## BASIS FOR LAG:
## fun: ns 
## knots:  
## intercept: TRUE 
## Boundary.knots: 0 52
cb6.meanRH <- crossbasis(week$meanRH,lag=52,argvar=list(df=3), arglag=list(fun="ns") )
summary(cb6.meanRH)
## CROSSBASIS FUNCTIONS
## observations: 939 
## range: 70 to 92.14286 
## lag period: 0 52 
## total df:  6 
## 
## BASIS FOR VAR:
## fun: ns 
## knots: 81.28571 84.14286 
## intercept: FALSE 
## Boundary.knots: 70 92.14286 
## 
## BASIS FOR LAG:
## fun: ns 
## knots:  
## intercept: TRUE 
## Boundary.knots: 0 52
cb7.maxRH <- crossbasis(week$maxRH,lag=52,argvar=list(df=3), arglag=list(fun="ns") )
summary(cb7.maxRH)
## CROSSBASIS FUNCTIONS
## observations: 939 
## range: 87.71429 to 100 
## lag period: 0 52 
## total df:  6 
## 
## BASIS FOR VAR:
## fun: ns 
## knots: 95.85714 97.57143 
## intercept: FALSE 
## Boundary.knots: 87.71429 100 
## 
## BASIS FOR LAG:
## fun: ns 
## knots:  
## intercept: TRUE 
## Boundary.knots: 0 52
cb8.AH <- crossbasis(week$AH,lag=52,argvar=list(df=3), arglag=list(fun="ns") )
summary(cb8.AH)
## CROSSBASIS FUNCTIONS
## observations: 939 
## range: 26.39459 to 35.1129 
## lag period: 0 52 
## total df:  6 
## 
## BASIS FOR VAR:
## fun: ns 
## knots: 30.72354 31.72263 
## intercept: FALSE 
## Boundary.knots: 26.39459 35.1129 
## 
## BASIS FOR LAG:
## fun: ns 
## knots:  
## intercept: TRUE 
## Boundary.knots: 0 52
cb9.minT <- crossbasis(week$minT,lag=52,argvar=list(df=3), arglag=list(fun="ns") )
summary(cb9.minT)
## CROSSBASIS FUNCTIONS
## observations: 939 
## range: 21.84286 to 26.32857 
## lag period: 0 52 
## total df:  6 
## 
## BASIS FOR VAR:
## fun: ns 
## knots: 23.65714 24.24286 
## intercept: FALSE 
## Boundary.knots: 21.84286 26.32857 
## 
## BASIS FOR LAG:
## fun: ns 
## knots:  
## intercept: TRUE 
## Boundary.knots: 0 52
cb10.aveT <- crossbasis(week$aveT,lag=52,argvar=list(df=3), arglag=list(fun="ns") )
summary(cb10.aveT)
## CROSSBASIS FUNCTIONS
## observations: 939 
## range: 24.51429 to 30.01429 
## lag period: 0 52 
## total df:  6 
## 
## BASIS FOR VAR:
## fun: ns 
## knots: 27.32857 27.92857 
## intercept: FALSE 
## Boundary.knots: 24.51429 30.01429 
## 
## BASIS FOR LAG:
## fun: ns 
## knots:  
## intercept: TRUE 
## Boundary.knots: 0 52
cb11.maxT <- crossbasis(week$maxT,lag=52,argvar=list(df=3), arglag=list(fun="ns") )
summary(cb11.maxT)
## CROSSBASIS FUNCTIONS
## observations: 939 
## range: 27.12857 to 35.45714 
## lag period: 0 52 
## total df:  6 
## 
## BASIS FOR VAR:
## fun: ns 
## knots: 31.78571 32.51429 
## intercept: FALSE 
## Boundary.knots: 27.12857 35.45714 
## 
## BASIS FOR LAG:
## fun: ns 
## knots:  
## intercept: TRUE 
## Boundary.knots: 0 52

Analysis fot ptbBM with ns7 for long-term trend

##ptbBM = Weekly PTB case counts from Brunei-Muara district

sp_ptbBM <-ns(week$time,df=18*7)
attributes(sp_ptbBM)
## $dim
## [1] 939 126
## 
## $dimnames
## $dimnames[[1]]
## NULL
## 
## $dimnames[[2]]
##   [1] "1"   "2"   "3"   "4"   "5"   "6"   "7"   "8"   "9"   "10"  "11"  "12" 
##  [13] "13"  "14"  "15"  "16"  "17"  "18"  "19"  "20"  "21"  "22"  "23"  "24" 
##  [25] "25"  "26"  "27"  "28"  "29"  "30"  "31"  "32"  "33"  "34"  "35"  "36" 
##  [37] "37"  "38"  "39"  "40"  "41"  "42"  "43"  "44"  "45"  "46"  "47"  "48" 
##  [49] "49"  "50"  "51"  "52"  "53"  "54"  "55"  "56"  "57"  "58"  "59"  "60" 
##  [61] "61"  "62"  "63"  "64"  "65"  "66"  "67"  "68"  "69"  "70"  "71"  "72" 
##  [73] "73"  "74"  "75"  "76"  "77"  "78"  "79"  "80"  "81"  "82"  "83"  "84" 
##  [85] "85"  "86"  "87"  "88"  "89"  "90"  "91"  "92"  "93"  "94"  "95"  "96" 
##  [97] "97"  "98"  "99"  "100" "101" "102" "103" "104" "105" "106" "107" "108"
## [109] "109" "110" "111" "112" "113" "114" "115" "116" "117" "118" "119" "120"
## [121] "121" "122" "123" "124" "125" "126"
## 
## 
## $degree
## [1] 3
## 
## $knots
##  0.7936508%  1.5873016%  2.3809524%  3.1746032%  3.9682540%  4.7619048% 
##    8.444444   15.888889   23.333333   30.777778   38.222222   45.666667 
##  5.5555556%  6.3492063%  7.1428571%  7.9365079%  8.7301587%  9.5238095% 
##   53.111111   60.555556   68.000000   75.444444   82.888889   90.333333 
## 10.3174603% 11.1111111% 11.9047619% 12.6984127% 13.4920635% 14.2857143% 
##   97.777778  105.222222  112.666667  120.111111  127.555556  135.000000 
## 15.0793651% 15.8730159% 16.6666667% 17.4603175% 18.2539683% 19.0476190% 
##  142.444444  149.888889  157.333333  164.777778  172.222222  179.666667 
## 19.8412698% 20.6349206% 21.4285714% 22.2222222% 23.0158730% 23.8095238% 
##  187.111111  194.555556  202.000000  209.444444  216.888889  224.333333 
## 24.6031746% 25.3968254% 26.1904762% 26.9841270% 27.7777778% 28.5714286% 
##  231.777778  239.222222  246.666667  254.111111  261.555556  269.000000 
## 29.3650794% 30.1587302% 30.9523810% 31.7460317% 32.5396825% 33.3333333% 
##  276.444444  283.888889  291.333333  298.777778  306.222222  313.666667 
## 34.1269841% 34.9206349% 35.7142857% 36.5079365% 37.3015873% 38.0952381% 
##  321.111111  328.555556  336.000000  343.444444  350.888889  358.333333 
## 38.8888889% 39.6825397% 40.4761905% 41.2698413% 42.0634921% 42.8571429% 
##  365.777778  373.222222  380.666667  388.111111  395.555556  403.000000 
## 43.6507937% 44.4444444% 45.2380952% 46.0317460% 46.8253968% 47.6190476% 
##  410.444444  417.888889  425.333333  432.777778  440.222222  447.666667 
## 48.4126984% 49.2063492% 50.0000000% 50.7936508% 51.5873016% 52.3809524% 
##  455.111111  462.555556  470.000000  477.444444  484.888889  492.333333 
## 53.1746032% 53.9682540% 54.7619048% 55.5555556% 56.3492063% 57.1428571% 
##  499.777778  507.222222  514.666667  522.111111  529.555556  537.000000 
## 57.9365079% 58.7301587% 59.5238095% 60.3174603% 61.1111111% 61.9047619% 
##  544.444444  551.888889  559.333333  566.777778  574.222222  581.666667 
## 62.6984127% 63.4920635% 64.2857143% 65.0793651% 65.8730159% 66.6666667% 
##  589.111111  596.555556  604.000000  611.444444  618.888889  626.333333 
## 67.4603175% 68.2539683% 69.0476190% 69.8412698% 70.6349206% 71.4285714% 
##  633.777778  641.222222  648.666667  656.111111  663.555556  671.000000 
## 72.2222222% 73.0158730% 73.8095238% 74.6031746% 75.3968254% 76.1904762% 
##  678.444444  685.888889  693.333333  700.777778  708.222222  715.666667 
## 76.9841270% 77.7777778% 78.5714286% 79.3650794% 80.1587302% 80.9523810% 
##  723.111111  730.555556  738.000000  745.444444  752.888889  760.333333 
## 81.7460317% 82.5396825% 83.3333333% 84.1269841% 84.9206349% 85.7142857% 
##  767.777778  775.222222  782.666667  790.111111  797.555556  805.000000 
## 86.5079365% 87.3015873% 88.0952381% 88.8888889% 89.6825397% 90.4761905% 
##  812.444444  819.888889  827.333333  834.777778  842.222222  849.666667 
## 91.2698413% 92.0634921% 92.8571429% 93.6507937% 94.4444444% 95.2380952% 
##  857.111111  864.555556  872.000000  879.444444  886.888889  894.333333 
## 96.0317460% 96.8253968% 97.6190476% 98.4126984% 99.2063492% 
##  901.777778  909.222222  916.666667  924.111111  931.555556 
## 
## $Boundary.knots
## [1]   1 939
## 
## $intercept
## [1] FALSE
## 
## $class
## [1] "ns"     "basis"  "matrix"
options(na.action="na.exclude")
m1a <- glm.nb(ptbBM ~ cb1.avgWindSp + sp_ptbBM,data=week); summary(m1a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb1.avgWindSp + sp_ptbBM, data = week, 
##     init.theta = 22883.16985, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4315  -0.7819  -0.1192   0.5577   2.6021  
## 
## Coefficients: (5 not defined because of singularities)
##                      Estimate Std. Error z value Pr(>|z|)   
## (Intercept)        -1.352e+01  6.567e+00  -2.059  0.03946 * 
## cb1.avgWindSpv1.l1  2.040e-01  3.072e-01   0.664  0.50672   
## cb1.avgWindSpv1.l2  2.983e-01  2.204e-01   1.354  0.17586   
## cb1.avgWindSpv2.l1  1.739e+00  6.882e-01   2.526  0.01153 * 
## cb1.avgWindSpv2.l2  2.022e-01  4.649e-01   0.435  0.66358   
## cb1.avgWindSpv3.l1  1.454e+00  7.644e-01   1.902  0.05717 . 
## cb1.avgWindSpv3.l2 -1.978e-01  4.615e-01  -0.428  0.66832   
## sp_ptbBM1                  NA         NA      NA       NA   
## sp_ptbBM2                  NA         NA      NA       NA   
## sp_ptbBM3                  NA         NA      NA       NA   
## sp_ptbBM4          -1.993e+06  2.163e+06  -0.921  0.35687   
## sp_ptbBM5           2.125e+01  1.220e+01   1.741  0.08172 . 
## sp_ptbBM6          -4.737e+00  2.266e+00  -2.090  0.03660 * 
## sp_ptbBM7          -1.335e+00  1.843e+00  -0.725  0.46870   
## sp_ptbBM8          -4.039e+00  1.954e+00  -2.067  0.03873 * 
## sp_ptbBM9          -2.134e+00  1.724e+00  -1.238  0.21578   
## sp_ptbBM10         -5.283e+00  1.688e+00  -3.131  0.00174 **
## sp_ptbBM11         -2.065e+00  1.550e+00  -1.332  0.18288   
## sp_ptbBM12         -2.974e+00  1.425e+00  -2.087  0.03689 * 
## sp_ptbBM13         -1.487e+00  1.601e+00  -0.929  0.35313   
## sp_ptbBM14         -2.700e+00  1.397e+00  -1.933  0.05328 . 
## sp_ptbBM15         -1.506e-01  9.556e-01  -0.158  0.87480   
## sp_ptbBM16         -1.695e+00  9.470e-01  -1.790  0.07347 . 
## sp_ptbBM17         -1.015e+00  8.812e-01  -1.152  0.24935   
## sp_ptbBM18         -9.394e-01  9.895e-01  -0.949  0.34246   
## sp_ptbBM19         -8.421e-01  9.378e-01  -0.898  0.36920   
## sp_ptbBM20         -1.356e+00  1.016e+00  -1.335  0.18182   
## sp_ptbBM21          1.104e-02  1.276e+00   0.009  0.99310   
## sp_ptbBM22         -8.949e-02  9.857e-01  -0.091  0.92766   
## sp_ptbBM23         -1.739e+00  9.963e-01  -1.746  0.08087 . 
## sp_ptbBM24         -9.344e-01  1.043e+00  -0.896  0.37049   
## sp_ptbBM25         -8.940e-01  8.851e-01  -1.010  0.31250   
## sp_ptbBM26         -2.970e-01  9.231e-01  -0.322  0.74766   
## sp_ptbBM27         -2.462e+00  1.177e+00  -2.092  0.03640 * 
## sp_ptbBM28         -3.098e-01  1.162e+00  -0.267  0.78974   
## sp_ptbBM29         -1.148e-01  1.272e+00  -0.090  0.92808   
## sp_ptbBM30         -1.298e+00  9.385e-01  -1.383  0.16675   
## sp_ptbBM31         -8.907e-02  9.479e-01  -0.094  0.92514   
## sp_ptbBM32         -1.565e+00  9.564e-01  -1.637  0.10171   
## sp_ptbBM33         -1.732e+00  1.056e+00  -1.640  0.10109   
## sp_ptbBM34         -7.037e-01  8.818e-01  -0.798  0.42482   
## sp_ptbBM35         -7.154e-01  8.670e-01  -0.825  0.40927   
## sp_ptbBM36          1.668e+00  8.668e-01   1.924  0.05438 . 
## sp_ptbBM37         -1.353e+00  9.719e-01  -1.392  0.16387   
## sp_ptbBM38         -5.412e-02  1.022e+00  -0.053  0.95779   
## sp_ptbBM39         -1.809e+00  1.243e+00  -1.456  0.14549   
## sp_ptbBM40         -3.711e-01  1.099e+00  -0.338  0.73570   
## sp_ptbBM41         -2.258e+00  1.419e+00  -1.592  0.11142   
## sp_ptbBM42         -2.682e+00  1.513e+00  -1.773  0.07621 . 
## sp_ptbBM43         -2.095e+00  1.626e+00  -1.288  0.19775   
## sp_ptbBM44         -2.178e+00  1.627e+00  -1.339  0.18071   
## sp_ptbBM45         -1.583e+00  1.604e+00  -0.987  0.32364   
## sp_ptbBM46         -2.581e+00  1.637e+00  -1.576  0.11502   
## sp_ptbBM47         -2.156e+00  1.788e+00  -1.206  0.22789   
## sp_ptbBM48         -2.618e+00  1.926e+00  -1.359  0.17407   
## sp_ptbBM49         -1.993e+00  1.838e+00  -1.084  0.27825   
## sp_ptbBM50         -3.265e+00  1.704e+00  -1.916  0.05531 . 
## sp_ptbBM51         -1.229e+00  1.472e+00  -0.835  0.40375   
## sp_ptbBM52         -2.941e+00  1.300e+00  -2.261  0.02375 * 
## sp_ptbBM53         -1.523e+00  1.226e+00  -1.242  0.21432   
## sp_ptbBM54         -1.990e+00  1.246e+00  -1.598  0.11014   
## sp_ptbBM55         -1.843e+00  1.104e+00  -1.669  0.09502 . 
## sp_ptbBM56         -9.141e-01  1.155e+00  -0.792  0.42860   
## sp_ptbBM57         -9.811e-01  1.054e+00  -0.931  0.35187   
## sp_ptbBM58         -8.931e-01  1.017e+00  -0.879  0.37963   
## sp_ptbBM59         -2.125e+00  1.038e+00  -2.047  0.04063 * 
## sp_ptbBM60         -1.884e+00  1.189e+00  -1.585  0.11302   
## sp_ptbBM61         -8.797e-01  1.002e+00  -0.878  0.37993   
## sp_ptbBM62         -1.514e+00  1.255e+00  -1.206  0.22778   
## sp_ptbBM63         -1.540e+00  1.419e+00  -1.085  0.27783   
## sp_ptbBM64         -9.056e-01  1.666e+00  -0.544  0.58676   
## sp_ptbBM65         -1.478e+00  1.668e+00  -0.886  0.37557   
## sp_ptbBM66         -2.644e+00  2.004e+00  -1.319  0.18722   
## sp_ptbBM67         -1.614e+00  1.973e+00  -0.818  0.41340   
## sp_ptbBM68         -2.543e+00  2.169e+00  -1.173  0.24090   
## sp_ptbBM69         -2.303e+00  2.114e+00  -1.089  0.27612   
## sp_ptbBM70         -3.033e+00  1.963e+00  -1.545  0.12232   
## sp_ptbBM71         -2.777e+00  1.982e+00  -1.401  0.16122   
## sp_ptbBM72         -2.920e+00  1.918e+00  -1.522  0.12802   
## sp_ptbBM73         -3.166e+00  1.818e+00  -1.742  0.08152 . 
## sp_ptbBM74         -1.671e+00  1.744e+00  -0.958  0.33788   
## sp_ptbBM75         -2.500e+00  1.702e+00  -1.469  0.14179   
## sp_ptbBM76         -1.921e+00  1.725e+00  -1.114  0.26537   
## sp_ptbBM77         -2.413e+00  1.790e+00  -1.348  0.17777   
## sp_ptbBM78         -1.475e+00  1.768e+00  -0.834  0.40424   
## sp_ptbBM79         -1.778e+00  1.691e+00  -1.052  0.29296   
## sp_ptbBM80         -2.617e+00  1.791e+00  -1.461  0.14390   
## sp_ptbBM81         -1.927e+00  1.786e+00  -1.079  0.28072   
## sp_ptbBM82         -2.413e+00  1.817e+00  -1.328  0.18417   
## sp_ptbBM83         -2.445e+00  1.773e+00  -1.379  0.16799   
## sp_ptbBM84         -2.152e+00  1.994e+00  -1.079  0.28045   
## sp_ptbBM85         -3.614e+00  2.016e+00  -1.793  0.07297 . 
## sp_ptbBM86         -1.785e+00  1.862e+00  -0.958  0.33783   
## sp_ptbBM87         -2.841e+00  1.839e+00  -1.544  0.12248   
## sp_ptbBM88         -2.556e+00  1.797e+00  -1.423  0.15486   
## sp_ptbBM89         -3.488e+00  1.902e+00  -1.833  0.06674 . 
## sp_ptbBM90         -2.353e+00  1.865e+00  -1.262  0.20694   
## sp_ptbBM91         -2.679e+00  1.809e+00  -1.481  0.13871   
## sp_ptbBM92         -1.612e+00  1.923e+00  -0.838  0.40204   
## sp_ptbBM93         -2.376e+00  1.861e+00  -1.277  0.20175   
## sp_ptbBM94         -3.240e+00  1.795e+00  -1.805  0.07108 . 
## sp_ptbBM95         -2.588e+00  1.804e+00  -1.434  0.15151   
## sp_ptbBM96         -2.101e+00  1.729e+00  -1.215  0.22430   
## sp_ptbBM97         -2.412e+00  1.773e+00  -1.361  0.17360   
## sp_ptbBM98         -3.342e+00  1.928e+00  -1.733  0.08306 . 
## sp_ptbBM99         -1.795e+00  1.894e+00  -0.948  0.34330   
## sp_ptbBM100        -2.501e+00  1.985e+00  -1.260  0.20753   
## sp_ptbBM101        -1.794e+00  1.837e+00  -0.977  0.32862   
## sp_ptbBM102        -1.714e+00  1.541e+00  -1.112  0.26602   
## sp_ptbBM103        -1.673e+00  1.303e+00  -1.284  0.19902   
## sp_ptbBM104        -1.233e+00  1.202e+00  -1.026  0.30487   
## sp_ptbBM105        -1.375e+00  1.193e+00  -1.153  0.24907   
## sp_ptbBM106        -2.607e+00  1.588e+00  -1.642  0.10056   
## sp_ptbBM107        -1.408e+00  1.263e+00  -1.115  0.26472   
## sp_ptbBM108        -9.474e-01  1.201e+00  -0.789  0.43009   
## sp_ptbBM109        -1.924e+00  1.248e+00  -1.542  0.12306   
## sp_ptbBM110        -1.562e+00  1.318e+00  -1.184  0.23622   
## sp_ptbBM111        -2.310e+00  1.432e+00  -1.613  0.10680   
## sp_ptbBM112        -1.653e+00  1.090e+00  -1.516  0.12953   
## sp_ptbBM113         4.095e-01  8.014e-01   0.511  0.60936   
## sp_ptbBM114         3.037e-01  7.086e-01   0.429  0.66823   
## sp_ptbBM115        -1.655e+00  7.805e-01  -2.121  0.03396 * 
## sp_ptbBM116         1.566e+00  6.448e-01   2.429  0.01513 * 
## sp_ptbBM117        -1.165e+00  7.587e-01  -1.535  0.12483   
## sp_ptbBM118         1.927e+00  7.181e-01   2.683  0.00730 **
## sp_ptbBM119        -1.481e+00  8.511e-01  -1.740  0.08182 . 
## sp_ptbBM120         1.594e+00  8.888e-01   1.793  0.07298 . 
## sp_ptbBM121        -4.082e-01  6.985e-01  -0.584  0.55899   
## sp_ptbBM122         7.269e-01  6.779e-01   1.072  0.28363   
## sp_ptbBM123         7.357e-02  5.971e-01   0.123  0.90194   
## sp_ptbBM124         8.271e-01  7.618e-01   1.086  0.27759   
## sp_ptbBM125                NA         NA      NA       NA   
## sp_ptbBM126                NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(22883.17) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  937.56  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3228.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  22883 
##           Std. Err.:  146249 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2970.42
m2a <- glm.nb(ptbBM ~ cb2.sun + sp_ptbBM,data=week); summary(m2a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb2.sun + sp_ptbBM, data = week, init.theta = 22834.64112, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3950  -0.7776  -0.1304   0.5625   2.5851  
## 
## Coefficients: (5 not defined because of singularities)
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  -8.546e+00  9.030e+00  -0.946  0.34393   
## cb2.sunv1.l1  2.457e-01  1.946e-01   1.263  0.20665   
## cb2.sunv1.l2 -3.919e-02  1.398e-01  -0.280  0.77914   
## cb2.sunv2.l1  8.866e-01  7.914e-01   1.120  0.26258   
## cb2.sunv2.l2  4.458e-01  5.431e-01   0.821  0.41176   
## cb2.sunv3.l1  6.421e-01  3.004e-01   2.138  0.03252 * 
## cb2.sunv3.l2  3.638e-01  2.067e-01   1.760  0.07835 . 
## sp_ptbBM1            NA         NA      NA       NA   
## sp_ptbBM2            NA         NA      NA       NA   
## sp_ptbBM3            NA         NA      NA       NA   
## sp_ptbBM4    -1.457e+06  2.237e+06  -0.651  0.51483   
## sp_ptbBM5     1.637e+01  1.203e+01   1.360  0.17381   
## sp_ptbBM6    -2.509e+00  1.994e+00  -1.258  0.20829   
## sp_ptbBM7     1.398e+00  1.056e+00   1.324  0.18551   
## sp_ptbBM8    -1.246e+00  9.158e-01  -1.361  0.17351   
## sp_ptbBM9     5.623e-01  8.071e-01   0.697  0.48594   
## sp_ptbBM10   -3.464e+00  1.064e+00  -3.255  0.00113 **
## sp_ptbBM11    5.633e-01  7.594e-01   0.742  0.45826   
## sp_ptbBM12   -1.134e+00  8.704e-01  -1.303  0.19265   
## sp_ptbBM13   -7.862e-02  8.713e-01  -0.090  0.92810   
## sp_ptbBM14   -1.852e+00  9.216e-01  -2.009  0.04453 * 
## sp_ptbBM15   -7.575e-01  8.831e-01  -0.858  0.39106   
## sp_ptbBM16   -1.463e+00  8.951e-01  -1.634  0.10220   
## sp_ptbBM17   -1.044e+00  8.743e-01  -1.195  0.23227   
## sp_ptbBM18   -1.006e+00  8.871e-01  -1.134  0.25667   
## sp_ptbBM19   -1.196e+00  8.992e-01  -1.330  0.18353   
## sp_ptbBM20   -6.762e-01  8.443e-01  -0.801  0.42323   
## sp_ptbBM21   -2.532e-01  9.144e-01  -0.277  0.78190   
## sp_ptbBM22    3.135e-01  8.292e-01   0.378  0.70540   
## sp_ptbBM23   -8.043e-01  9.396e-01  -0.856  0.39203   
## sp_ptbBM24    3.883e-02  8.417e-01   0.046  0.96320   
## sp_ptbBM25   -3.668e-01  8.824e-01  -0.416  0.67763   
## sp_ptbBM26   -3.520e-01  9.480e-01  -0.371  0.71040   
## sp_ptbBM27   -1.912e+00  1.114e+00  -1.716  0.08615 . 
## sp_ptbBM28   -1.796e+00  1.003e+00  -1.791  0.07333 . 
## sp_ptbBM29   -7.802e-01  9.680e-01  -0.806  0.42024   
## sp_ptbBM30   -1.072e+00  9.040e-01  -1.186  0.23548   
## sp_ptbBM31   -2.243e-01  9.020e-01  -0.249  0.80357   
## sp_ptbBM32   -1.667e+00  9.940e-01  -1.677  0.09348 . 
## sp_ptbBM33   -1.202e+00  9.786e-01  -1.228  0.21937   
## sp_ptbBM34   -5.696e-02  9.585e-01  -0.059  0.95261   
## sp_ptbBM35   -1.568e-01  9.818e-01  -0.160  0.87315   
## sp_ptbBM36    1.475e+00  9.497e-01   1.553  0.12035   
## sp_ptbBM37   -9.219e-02  9.471e-01  -0.097  0.92246   
## sp_ptbBM38    1.435e+00  9.198e-01   1.560  0.11881   
## sp_ptbBM39    6.036e-02  9.284e-01   0.065  0.94816   
## sp_ptbBM40    1.603e+00  1.009e+00   1.589  0.11202   
## sp_ptbBM41    1.325e-01  9.037e-01   0.147  0.88343   
## sp_ptbBM42   -1.545e-01  1.040e+00  -0.149  0.88184   
## sp_ptbBM43    5.178e-02  8.486e-01   0.061  0.95134   
## sp_ptbBM44   -1.632e-01  7.695e-01  -0.212  0.83200   
## sp_ptbBM45    2.200e-01  7.278e-01   0.302  0.76247   
## sp_ptbBM46   -1.177e+00  7.989e-01  -1.474  0.14049   
## sp_ptbBM47   -6.994e-01  8.749e-01  -0.799  0.42405   
## sp_ptbBM48   -3.204e-01  7.665e-01  -0.418  0.67595   
## sp_ptbBM49   -6.950e-01  1.009e+00  -0.689  0.49110   
## sp_ptbBM50   -6.352e-01  8.211e-01  -0.774  0.43913   
## sp_ptbBM51    7.741e-01  8.400e-01   0.922  0.35676   
## sp_ptbBM52   -6.493e-01  7.781e-01  -0.834  0.40403   
## sp_ptbBM53    5.614e-01  7.589e-01   0.740  0.45951   
## sp_ptbBM54   -4.564e-01  7.692e-01  -0.593  0.55301   
## sp_ptbBM55   -6.105e-01  8.041e-01  -0.759  0.44775   
## sp_ptbBM56    1.619e-01  9.410e-01   0.172  0.86342   
## sp_ptbBM57   -8.778e-02  9.089e-01  -0.097  0.92306   
## sp_ptbBM58   -2.205e-01  8.368e-01  -0.264  0.79213   
## sp_ptbBM59   -5.513e-01  8.648e-01  -0.637  0.52381   
## sp_ptbBM60   -4.463e-01  8.151e-01  -0.548  0.58400   
## sp_ptbBM61    6.038e-02  8.739e-01   0.069  0.94492   
## sp_ptbBM62   -7.509e-01  8.883e-01  -0.845  0.39796   
## sp_ptbBM63   -1.652e+00  1.004e+00  -1.646  0.09983 . 
## sp_ptbBM64   -9.097e-01  9.166e-01  -0.993  0.32093   
## sp_ptbBM65   -3.562e-01  8.306e-01  -0.429  0.66807   
## sp_ptbBM66   -1.210e+00  7.892e-01  -1.533  0.12535   
## sp_ptbBM67   -6.703e-02  7.437e-01  -0.090  0.92819   
## sp_ptbBM68   -7.037e-01  7.752e-01  -0.908  0.36399   
## sp_ptbBM69   -4.101e-01  8.359e-01  -0.491  0.62374   
## sp_ptbBM70   -1.026e+00  1.072e+00  -0.957  0.33873   
## sp_ptbBM71    3.612e-01  1.025e+00   0.352  0.72451   
## sp_ptbBM72    1.082e-02  1.025e+00   0.011  0.99158   
## sp_ptbBM73   -1.701e-01  9.775e-01  -0.174  0.86183   
## sp_ptbBM74    1.184e+00  9.730e-01   1.217  0.22352   
## sp_ptbBM75    2.544e-01  9.061e-01   0.281  0.77887   
## sp_ptbBM76    8.757e-01  9.301e-01   0.942  0.34643   
## sp_ptbBM77    4.288e-01  9.377e-01   0.457  0.64747   
## sp_ptbBM78    6.772e-01  8.961e-01   0.756  0.44982   
## sp_ptbBM79    4.560e-01  8.409e-01   0.542  0.58758   
## sp_ptbBM80   -4.086e-01  9.208e-01  -0.444  0.65724   
## sp_ptbBM81   -4.644e-01  9.277e-01  -0.501  0.61665   
## sp_ptbBM82   -4.128e-01  8.162e-01  -0.506  0.61299   
## sp_ptbBM83   -9.705e-01  8.609e-01  -1.127  0.25959   
## sp_ptbBM84   -6.024e-01  8.662e-01  -0.695  0.48682   
## sp_ptbBM85   -2.166e+00  9.572e-01  -2.263  0.02362 * 
## sp_ptbBM86   -2.240e-01  9.238e-01  -0.242  0.80844   
## sp_ptbBM87   -2.014e-01  8.669e-01  -0.232  0.81630   
## sp_ptbBM88    1.377e-01  9.314e-01   0.148  0.88244   
## sp_ptbBM89   -9.040e-01  1.044e+00  -0.866  0.38653   
## sp_ptbBM90    6.946e-01  1.012e+00   0.686  0.49252   
## sp_ptbBM91   -1.368e-02  1.071e+00  -0.013  0.98981   
## sp_ptbBM92    9.233e-01  8.623e-01   1.071  0.28427   
## sp_ptbBM93    3.977e-01  8.857e-01   0.449  0.65338   
## sp_ptbBM94   -3.136e-01  9.116e-01  -0.344  0.73084   
## sp_ptbBM95    4.179e-01  8.186e-01   0.511  0.60964   
## sp_ptbBM96    1.044e+00  8.015e-01   1.303  0.19270   
## sp_ptbBM97    6.812e-01  8.018e-01   0.850  0.39559   
## sp_ptbBM98   -1.207e-01  1.121e+00  -0.108  0.91427   
## sp_ptbBM99    8.321e-01  8.213e-01   1.013  0.31099   
## sp_ptbBM100   1.848e-01  8.628e-01   0.214  0.83037   
## sp_ptbBM101   4.602e-01  7.562e-01   0.609  0.54281   
## sp_ptbBM102   1.340e-01  7.808e-01   0.172  0.86371   
## sp_ptbBM103  -1.872e-01  8.044e-01  -0.233  0.81596   
## sp_ptbBM104  -2.805e-01  7.641e-01  -0.367  0.71354   
## sp_ptbBM105  -1.058e+00  1.041e+00  -1.017  0.30933   
## sp_ptbBM106  -1.323e+00  8.701e-01  -1.521  0.12834   
## sp_ptbBM107  -1.375e+00  9.437e-01  -1.457  0.14502   
## sp_ptbBM108  -1.208e+00  9.779e-01  -1.235  0.21689   
## sp_ptbBM109  -1.722e+00  9.437e-01  -1.825  0.06797 . 
## sp_ptbBM110  -8.229e-01  1.071e+00  -0.769  0.44215   
## sp_ptbBM111  -1.224e+00  9.663e-01  -1.267  0.20512   
## sp_ptbBM112  -1.357e-01  8.136e-01  -0.167  0.86754   
## sp_ptbBM113   7.432e-01  8.201e-01   0.906  0.36481   
## sp_ptbBM114   9.927e-01  7.565e-01   1.312  0.18944   
## sp_ptbBM115  -5.699e-01  8.797e-01  -0.648  0.51705   
## sp_ptbBM116   2.203e+00  7.393e-01   2.980  0.00288 **
## sp_ptbBM117  -1.338e+00  8.911e-01  -1.502  0.13317   
## sp_ptbBM118   2.195e+00  8.312e-01   2.640  0.00829 **
## sp_ptbBM119  -1.257e+00  1.040e+00  -1.208  0.22707   
## sp_ptbBM120   1.083e+00  8.267e-01   1.310  0.19008   
## sp_ptbBM121  -2.234e-01  7.989e-01  -0.280  0.77979   
## sp_ptbBM122   9.936e-01  7.035e-01   1.412  0.15787   
## sp_ptbBM123   1.153e+00  6.239e-01   1.849  0.06450 . 
## sp_ptbBM124   9.738e-01  7.797e-01   1.249  0.21168   
## sp_ptbBM125          NA         NA      NA       NA   
## sp_ptbBM126          NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(22834.64) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  936.71  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3227.6
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  22835 
##           Std. Err.:  145868 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2969.576
m3a <- glm.nb(ptbBM ~ cb3.RF + sp_ptbBM,data=week); summary(m3a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb3.RF + sp_ptbBM, data = week, init.theta = 21990.89142, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4107  -0.7737  -0.1194   0.5399   2.5834  
## 
## Coefficients: (5 not defined because of singularities)
##               Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  3.752e+00  2.639e+00   1.422  0.15504   
## cb3.RFv1.l1  1.915e-01  2.570e-01   0.745  0.45630   
## cb3.RFv1.l2  1.224e-01  1.783e-01   0.687  0.49217   
## cb3.RFv2.l1 -5.456e-01  3.757e-01  -1.452  0.14643   
## cb3.RFv2.l2  5.501e-03  2.728e-01   0.020  0.98391   
## cb3.RFv3.l1 -6.110e-01  6.007e-01  -1.017  0.30914   
## cb3.RFv3.l2 -1.987e-01  4.648e-01  -0.428  0.66895   
## sp_ptbBM1           NA         NA      NA       NA   
## sp_ptbBM2           NA         NA      NA       NA   
## sp_ptbBM3           NA         NA      NA       NA   
## sp_ptbBM4   -1.616e+06  2.229e+06  -0.725  0.46848   
## sp_ptbBM5    1.612e+01  1.190e+01   1.355  0.17544   
## sp_ptbBM6   -2.049e+00  1.982e+00  -1.033  0.30138   
## sp_ptbBM7    9.356e-01  1.093e+00   0.856  0.39192   
## sp_ptbBM8   -1.422e+00  9.968e-01  -1.426  0.15373   
## sp_ptbBM9    9.562e-01  8.875e-01   1.077  0.28129   
## sp_ptbBM10  -2.895e+00  1.142e+00  -2.534  0.01126 * 
## sp_ptbBM11   7.994e-01  7.989e-01   1.001  0.31702   
## sp_ptbBM12  -3.897e-01  8.838e-01  -0.441  0.65921   
## sp_ptbBM13   1.382e+00  9.198e-01   1.502  0.13311   
## sp_ptbBM14  -1.047e+00  9.248e-01  -1.132  0.25760   
## sp_ptbBM15   5.983e-01  8.226e-01   0.727  0.46703   
## sp_ptbBM16  -6.894e-01  9.636e-01  -0.715  0.47435   
## sp_ptbBM17   3.788e-01  9.024e-01   0.420  0.67463   
## sp_ptbBM18  -7.112e-02  8.988e-01  -0.079  0.93693   
## sp_ptbBM19   1.107e-01  8.694e-01   0.127  0.89864   
## sp_ptbBM20   4.349e-01  1.059e+00   0.411  0.68119   
## sp_ptbBM21   7.659e-01  8.498e-01   0.901  0.36745   
## sp_ptbBM22   8.331e-01  8.473e-01   0.983  0.32551   
## sp_ptbBM23  -3.778e-01  8.960e-01  -0.422  0.67327   
## sp_ptbBM24   4.352e-01  9.275e-01   0.469  0.63892   
## sp_ptbBM25   2.050e-01  9.075e-01   0.226  0.82126   
## sp_ptbBM26   8.037e-01  9.607e-01   0.837  0.40282   
## sp_ptbBM27  -8.948e-01  1.155e+00  -0.775  0.43859   
## sp_ptbBM28  -6.954e-01  1.052e+00  -0.661  0.50849   
## sp_ptbBM29   5.247e-01  9.381e-01   0.559  0.57597   
## sp_ptbBM30  -3.687e-01  9.401e-01  -0.392  0.69495   
## sp_ptbBM31   8.586e-01  7.953e-01   1.080  0.28034   
## sp_ptbBM32  -6.513e-01  8.960e-01  -0.727  0.46733   
## sp_ptbBM33  -4.491e-01  9.428e-01  -0.476  0.63383   
## sp_ptbBM34   4.711e-01  9.043e-01   0.521  0.60243   
## sp_ptbBM35   9.325e-02  8.363e-01   0.112  0.91122   
## sp_ptbBM36   1.127e+00  7.265e-01   1.551  0.12084   
## sp_ptbBM37   1.013e-02  8.767e-01   0.012  0.99078   
## sp_ptbBM38   5.836e-01  7.909e-01   0.738  0.46063   
## sp_ptbBM39  -2.152e-01  8.350e-01  -0.258  0.79666   
## sp_ptbBM40   5.584e-01  7.986e-01   0.699  0.48443   
## sp_ptbBM41   1.921e-01  8.673e-01   0.221  0.82475   
## sp_ptbBM42  -3.785e-01  9.546e-01  -0.396  0.69175   
## sp_ptbBM43   1.249e-01  8.631e-01   0.145  0.88491   
## sp_ptbBM44   4.531e-01  8.361e-01   0.542  0.58785   
## sp_ptbBM45   9.719e-01  8.323e-01   1.168  0.24293   
## sp_ptbBM46  -9.464e-02  8.405e-01  -0.113  0.91034   
## sp_ptbBM47   6.331e-01  7.461e-01   0.848  0.39618   
## sp_ptbBM48   3.450e-01  7.933e-01   0.435  0.66361   
## sp_ptbBM49   1.191e+00  8.410e-01   1.417  0.15654   
## sp_ptbBM50  -8.129e-02  8.628e-01  -0.094  0.92494   
## sp_ptbBM51   1.840e+00  7.873e-01   2.337  0.01944 * 
## sp_ptbBM52   1.842e-01  8.503e-01   0.217  0.82851   
## sp_ptbBM53   8.987e-01  8.019e-01   1.121  0.26238   
## sp_ptbBM54   5.042e-01  8.455e-01   0.596  0.55100   
## sp_ptbBM55   1.710e-01  8.666e-01   0.197  0.84358   
## sp_ptbBM56   9.194e-01  1.221e+00   0.753  0.45149   
## sp_ptbBM57   6.278e-01  9.497e-01   0.661  0.50862   
## sp_ptbBM58   2.778e-01  9.446e-01   0.294  0.76870   
## sp_ptbBM59  -4.618e-01  9.132e-01  -0.506  0.61305   
## sp_ptbBM60  -3.055e-02  9.455e-01  -0.032  0.97423   
## sp_ptbBM61   4.372e-01  8.599e-01   0.508  0.61113   
## sp_ptbBM62   5.010e-01  1.094e+00   0.458  0.64714   
## sp_ptbBM63  -3.810e-01  1.238e+00  -0.308  0.75825   
## sp_ptbBM64   6.193e-01  1.072e+00   0.578  0.56360   
## sp_ptbBM65   7.559e-01  9.347e-01   0.809  0.41867   
## sp_ptbBM66   4.820e-01  8.706e-01   0.554  0.57986   
## sp_ptbBM67   1.596e+00  9.200e-01   1.735  0.08275 . 
## sp_ptbBM68   8.460e-01  7.797e-01   1.085  0.27793   
## sp_ptbBM69   1.581e+00  9.879e-01   1.600  0.10963   
## sp_ptbBM70  -1.884e-01  1.003e+00  -0.188  0.85098   
## sp_ptbBM71   2.578e-01  1.043e+00   0.247  0.80478   
## sp_ptbBM72   7.082e-02  9.393e-01   0.075  0.93990   
## sp_ptbBM73  -2.614e-01  8.686e-01  -0.301  0.76346   
## sp_ptbBM74   8.836e-01  7.025e-01   1.258  0.20847   
## sp_ptbBM75   2.695e-01  8.276e-01   0.326  0.74468   
## sp_ptbBM76   7.926e-01  8.110e-01   0.977  0.32842   
## sp_ptbBM77   5.305e-01  8.175e-01   0.649  0.51634   
## sp_ptbBM78   1.336e+00  8.922e-01   1.497  0.13442   
## sp_ptbBM79   1.125e+00  9.032e-01   1.245  0.21303   
## sp_ptbBM80   4.905e-02  8.660e-01   0.057  0.95483   
## sp_ptbBM81   7.175e-01  8.868e-01   0.809  0.41847   
## sp_ptbBM82   1.242e-01  7.908e-01   0.157  0.87525   
## sp_ptbBM83   1.891e-01  8.299e-01   0.228  0.81975   
## sp_ptbBM84   6.184e-01  8.121e-01   0.761  0.44637   
## sp_ptbBM85  -9.928e-01  8.856e-01  -1.121  0.26225   
## sp_ptbBM86   1.285e+00  7.504e-01   1.712  0.08688 . 
## sp_ptbBM87   6.764e-03  7.564e-01   0.009  0.99287   
## sp_ptbBM88   4.594e-01  7.689e-01   0.598  0.55017   
## sp_ptbBM89  -6.497e-01  8.417e-01  -0.772  0.44016   
## sp_ptbBM90   9.597e-01  8.432e-01   1.138  0.25505   
## sp_ptbBM91   9.982e-02  9.589e-01   0.104  0.91709   
## sp_ptbBM92   5.419e-01  7.827e-01   0.692  0.48871   
## sp_ptbBM93   5.026e-01  8.900e-01   0.565  0.57223   
## sp_ptbBM94  -1.043e-01  9.093e-01  -0.115  0.90869   
## sp_ptbBM95   5.599e-01  8.358e-01   0.670  0.50292   
## sp_ptbBM96   8.995e-01  7.030e-01   1.280  0.20072   
## sp_ptbBM97   8.022e-01  8.733e-01   0.919  0.35831   
## sp_ptbBM98   1.085e-01  1.018e+00   0.107  0.91510   
## sp_ptbBM99   7.395e-01  9.092e-01   0.813  0.41603   
## sp_ptbBM100  2.023e-02  8.478e-01   0.024  0.98096   
## sp_ptbBM101  5.643e-01  7.434e-01   0.759  0.44784   
## sp_ptbBM102  1.577e-01  7.853e-01   0.201  0.84083   
## sp_ptbBM103  7.282e-02  8.047e-01   0.091  0.92789   
## sp_ptbBM104  4.079e-01  8.039e-01   0.507  0.61186   
## sp_ptbBM105  1.008e-01  1.036e+00   0.097  0.92251   
## sp_ptbBM106 -5.871e-01  9.315e-01  -0.630  0.52852   
## sp_ptbBM107 -2.793e-01  8.419e-01  -0.332  0.74007   
## sp_ptbBM108  2.943e-01  8.334e-01   0.353  0.72401   
## sp_ptbBM109 -2.923e-01  9.176e-01  -0.319  0.75006   
## sp_ptbBM110  6.300e-01  7.449e-01   0.846  0.39771   
## sp_ptbBM111 -1.888e-03  1.036e+00  -0.002  0.99855   
## sp_ptbBM112 -2.997e-01  9.151e-01  -0.327  0.74329   
## sp_ptbBM113  8.883e-01  7.691e-01   1.155  0.24809   
## sp_ptbBM114  8.528e-01  7.960e-01   1.071  0.28401   
## sp_ptbBM115 -7.721e-01  8.698e-01  -0.888  0.37471   
## sp_ptbBM116  2.046e+00  7.249e-01   2.822  0.00477 **
## sp_ptbBM117 -1.100e+00  8.341e-01  -1.319  0.18720   
## sp_ptbBM118  2.252e+00  8.080e-01   2.787  0.00533 **
## sp_ptbBM119 -1.177e+00  1.044e+00  -1.127  0.25985   
## sp_ptbBM120  1.256e+00  7.892e-01   1.591  0.11158   
## sp_ptbBM121 -4.664e-01  7.812e-01  -0.597  0.55045   
## sp_ptbBM122  8.489e-01  7.344e-01   1.156  0.24774   
## sp_ptbBM123  3.753e-02  6.415e-01   0.059  0.95335   
## sp_ptbBM124  6.630e-01  7.574e-01   0.875  0.38135   
## sp_ptbBM125         NA         NA      NA       NA   
## sp_ptbBM126         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(21990.89) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  943.43  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3234.3
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  21991 
##           Std. Err.:  143476 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2976.296
m5a <- glm.nb(ptbBM ~ cb5.minRH + sp_ptbBM,data=week); summary(m5a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb5.minRH + sp_ptbBM, data = week, init.theta = 22284.16938, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4192  -0.7548  -0.1076   0.5433   2.6199  
## 
## Coefficients: (5 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     1.720e+01  1.055e+01   1.630  0.10321   
## cb5.minRHv1.l1 -1.483e-01  2.389e-01  -0.621  0.53474   
## cb5.minRHv1.l2  6.178e-02  1.595e-01   0.387  0.69851   
## cb5.minRHv2.l1 -1.606e+00  9.187e-01  -1.748  0.08039 . 
## cb5.minRHv2.l2 -6.450e-01  6.677e-01  -0.966  0.33402   
## cb5.minRHv3.l1 -9.477e-01  5.807e-01  -1.632  0.10264   
## cb5.minRHv3.l2 -5.744e-01  4.347e-01  -1.321  0.18641   
## sp_ptbBM1              NA         NA      NA       NA   
## sp_ptbBM2              NA         NA      NA       NA   
## sp_ptbBM3              NA         NA      NA       NA   
## sp_ptbBM4      -1.475e+06  2.237e+06  -0.659  0.50973   
## sp_ptbBM5       1.534e+01  1.190e+01   1.289  0.19734   
## sp_ptbBM6      -2.922e+00  2.005e+00  -1.457  0.14499   
## sp_ptbBM7       8.026e-01  1.073e+00   0.748  0.45428   
## sp_ptbBM8      -1.369e+00  9.932e-01  -1.378  0.16810   
## sp_ptbBM9       7.567e-01  9.445e-01   0.801  0.42304   
## sp_ptbBM10     -3.122e+00  1.049e+00  -2.975  0.00293 **
## sp_ptbBM11     -2.315e-01  9.566e-01  -0.242  0.80878   
## sp_ptbBM12     -1.127e+00  8.206e-01  -1.373  0.16980   
## sp_ptbBM13     -3.965e-02  9.349e-01  -0.042  0.96617   
## sp_ptbBM14     -1.387e+00  1.083e+00  -1.280  0.20041   
## sp_ptbBM15     -1.608e-01  1.137e+00  -0.142  0.88747   
## sp_ptbBM16     -1.310e+00  1.286e+00  -1.019  0.30813   
## sp_ptbBM17     -6.231e-01  1.068e+00  -0.584  0.55954   
## sp_ptbBM18     -5.816e-01  1.079e+00  -0.539  0.58989   
## sp_ptbBM19     -4.891e-01  9.940e-01  -0.492  0.62266   
## sp_ptbBM20     -3.470e-01  1.101e+00  -0.315  0.75256   
## sp_ptbBM21      7.269e-02  1.019e+00   0.071  0.94314   
## sp_ptbBM22      3.655e-01  9.295e-01   0.393  0.69415   
## sp_ptbBM23     -1.017e+00  9.589e-01  -1.060  0.28905   
## sp_ptbBM24     -1.587e-01  8.420e-01  -0.188  0.85051   
## sp_ptbBM25     -5.421e-01  7.700e-01  -0.704  0.48142   
## sp_ptbBM26     -3.071e-01  8.328e-01  -0.369  0.71228   
## sp_ptbBM27     -1.350e+00  9.270e-01  -1.457  0.14525   
## sp_ptbBM28     -1.587e+00  1.024e+00  -1.550  0.12115   
## sp_ptbBM29      3.401e-01  8.739e-01   0.389  0.69714   
## sp_ptbBM30     -1.175e+00  1.003e+00  -1.171  0.24143   
## sp_ptbBM31     -1.910e-02  1.060e+00  -0.018  0.98563   
## sp_ptbBM32     -2.070e+00  1.369e+00  -1.512  0.13046   
## sp_ptbBM33     -1.612e+00  1.269e+00  -1.271  0.20389   
## sp_ptbBM34     -1.109e+00  1.354e+00  -0.819  0.41259   
## sp_ptbBM35     -1.404e+00  1.536e+00  -0.914  0.36078   
## sp_ptbBM36     -1.918e-01  1.551e+00  -0.124  0.90155   
## sp_ptbBM37     -1.270e+00  1.351e+00  -0.941  0.34695   
## sp_ptbBM38      7.275e-02  1.131e+00   0.064  0.94870   
## sp_ptbBM39     -1.053e+00  1.149e+00  -0.916  0.35942   
## sp_ptbBM40     -3.307e-02  9.692e-01  -0.034  0.97278   
## sp_ptbBM41     -7.771e-01  1.055e+00  -0.737  0.46120   
## sp_ptbBM42     -1.345e+00  1.092e+00  -1.232  0.21796   
## sp_ptbBM43     -7.441e-01  9.343e-01  -0.796  0.42580   
## sp_ptbBM44     -5.176e-01  9.457e-01  -0.547  0.58420   
## sp_ptbBM45     -2.657e-01  8.920e-01  -0.298  0.76579   
## sp_ptbBM46     -1.256e+00  9.571e-01  -1.312  0.18953   
## sp_ptbBM47     -5.985e-01  9.798e-01  -0.611  0.54134   
## sp_ptbBM48     -7.957e-01  7.947e-01  -1.001  0.31674   
## sp_ptbBM49     -1.857e-01  1.169e+00  -0.159  0.87385   
## sp_ptbBM50     -1.433e+00  9.687e-01  -1.479  0.13906   
## sp_ptbBM51      2.306e-01  1.067e+00   0.216  0.82893   
## sp_ptbBM52     -1.031e+00  9.856e-01  -1.046  0.29577   
## sp_ptbBM53      1.796e-01  9.212e-01   0.195  0.84545   
## sp_ptbBM54     -4.590e-01  8.971e-01  -0.512  0.60889   
## sp_ptbBM55     -4.741e-01  9.946e-01  -0.477  0.63362   
## sp_ptbBM56     -2.438e-01  1.079e+00  -0.226  0.82129   
## sp_ptbBM57     -1.713e-01  1.049e+00  -0.163  0.87033   
## sp_ptbBM58     -3.096e-01  8.906e-01  -0.348  0.72810   
## sp_ptbBM59     -1.505e+00  1.076e+00  -1.399  0.16192   
## sp_ptbBM60     -8.917e-01  1.070e+00  -0.833  0.40482   
## sp_ptbBM61     -7.324e-01  1.055e+00  -0.694  0.48751   
## sp_ptbBM62     -6.589e-01  1.071e+00  -0.615  0.53844   
## sp_ptbBM63     -1.827e+00  1.311e+00  -1.394  0.16329   
## sp_ptbBM64     -9.561e-01  1.415e+00  -0.676  0.49934   
## sp_ptbBM65     -9.820e-01  1.136e+00  -0.865  0.38723   
## sp_ptbBM66     -7.167e-01  8.801e-01  -0.814  0.41549   
## sp_ptbBM67      2.977e-01  7.096e-01   0.420  0.67481   
## sp_ptbBM68     -2.656e-01  6.724e-01  -0.395  0.69282   
## sp_ptbBM69      4.190e-01  7.596e-01   0.552  0.58120   
## sp_ptbBM70     -1.028e+00  1.016e+00  -1.012  0.31151   
## sp_ptbBM71     -5.361e-01  9.877e-01  -0.543  0.58730   
## sp_ptbBM72     -4.652e-01  9.202e-01  -0.506  0.61316   
## sp_ptbBM73     -9.096e-01  8.782e-01  -1.036  0.30034   
## sp_ptbBM74      7.332e-01  7.852e-01   0.934  0.35042   
## sp_ptbBM75     -5.019e-01  8.481e-01  -0.592  0.55401   
## sp_ptbBM76      4.294e-01  7.019e-01   0.612  0.54069   
## sp_ptbBM77     -3.389e-01  9.105e-01  -0.372  0.70973   
## sp_ptbBM78      7.166e-01  1.030e+00   0.696  0.48666   
## sp_ptbBM79      4.498e-01  8.976e-01   0.501  0.61630   
## sp_ptbBM80     -8.378e-01  9.603e-01  -0.872  0.38298   
## sp_ptbBM81     -2.868e-01  8.403e-01  -0.341  0.73284   
## sp_ptbBM82     -5.488e-01  7.643e-01  -0.718  0.47268   
## sp_ptbBM83     -9.749e-01  8.511e-01  -1.145  0.25202   
## sp_ptbBM84     -3.080e-01  9.544e-01  -0.323  0.74687   
## sp_ptbBM85     -1.693e+00  1.099e+00  -1.540  0.12348   
## sp_ptbBM86      2.341e-01  1.025e+00   0.228  0.81943   
## sp_ptbBM87     -2.274e-01  7.985e-01  -0.285  0.77577   
## sp_ptbBM88     -3.292e-01  8.538e-01  -0.386  0.69985   
## sp_ptbBM89     -1.217e+00  8.333e-01  -1.460  0.14433   
## sp_ptbBM90      1.142e-01  8.765e-01   0.130  0.89638   
## sp_ptbBM91     -6.856e-01  1.646e+00  -0.417  0.67694   
## sp_ptbBM92      8.631e-01  1.192e+00   0.724  0.46915   
## sp_ptbBM93      7.456e-01  1.262e+00   0.591  0.55453   
## sp_ptbBM94      3.079e-01  1.090e+00   0.283  0.77747   
## sp_ptbBM95      1.341e+00  1.100e+00   1.220  0.22259   
## sp_ptbBM96      1.883e+00  1.126e+00   1.673  0.09441 . 
## sp_ptbBM97      2.131e+00  1.397e+00   1.525  0.12726   
## sp_ptbBM98     -6.762e-01  1.337e+00  -0.506  0.61289   
## sp_ptbBM99      9.335e-01  1.155e+00   0.808  0.41905   
## sp_ptbBM100     5.583e-01  1.065e+00   0.524  0.60026   
## sp_ptbBM101     9.865e-01  9.961e-01   0.990  0.32201   
## sp_ptbBM102     1.137e+00  9.564e-01   1.189  0.23459   
## sp_ptbBM103     8.712e-01  9.361e-01   0.931  0.35198   
## sp_ptbBM104     1.060e+00  8.751e-01   1.212  0.22563   
## sp_ptbBM105    -2.148e-01  9.297e-01  -0.231  0.81725   
## sp_ptbBM106     2.272e-01  1.001e+00   0.227  0.82039   
## sp_ptbBM107    -1.506e-01  7.850e-01  -0.192  0.84787   
## sp_ptbBM108     4.777e-01  8.535e-01   0.560  0.57564   
## sp_ptbBM109    -1.516e-01  6.680e-01  -0.227  0.82049   
## sp_ptbBM110     1.052e+00  6.793e-01   1.549  0.12132   
## sp_ptbBM111     5.152e-01  6.970e-01   0.739  0.45980   
## sp_ptbBM112    -2.536e-01  7.185e-01  -0.353  0.72410   
## sp_ptbBM113     4.126e-01  9.235e-01   0.447  0.65507   
## sp_ptbBM114     6.130e-01  8.730e-01   0.702  0.48261   
## sp_ptbBM115    -9.407e-01  8.881e-01  -1.059  0.28950   
## sp_ptbBM116     1.891e+00  7.500e-01   2.521  0.01171 * 
## sp_ptbBM117    -1.613e+00  9.618e-01  -1.677  0.09353 . 
## sp_ptbBM118     1.808e+00  7.696e-01   2.349  0.01882 * 
## sp_ptbBM119    -1.658e+00  1.074e+00  -1.544  0.12248   
## sp_ptbBM120     6.088e-01  9.977e-01   0.610  0.54174   
## sp_ptbBM121    -5.461e-01  9.366e-01  -0.583  0.55982   
## sp_ptbBM122     7.548e-01  8.127e-01   0.929  0.35305   
## sp_ptbBM123     4.695e-02  6.455e-01   0.073  0.94201   
## sp_ptbBM124     8.533e-01  7.540e-01   1.132  0.25778   
## sp_ptbBM125            NA         NA      NA       NA   
## sp_ptbBM126            NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(22284.17) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  941.58  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3232.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  22284 
##           Std. Err.:  144435 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2974.443
m6a <- glm.nb(ptbBM ~ cb6.meanRH + sp_ptbBM,data=week); summary(m6a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb6.meanRH + sp_ptbBM, data = week, 
##     init.theta = 21891.10351, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4463  -0.7881  -0.1323   0.5381   2.6916  
## 
## Coefficients: (5 not defined because of singularities)
##                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)      1.102e+01  1.250e+01   0.881   0.3782  
## cb6.meanRHv1.l1 -2.221e-01  2.861e-01  -0.776   0.4375  
## cb6.meanRHv1.l2 -8.627e-02  1.801e-01  -0.479   0.6320  
## cb6.meanRHv2.l1 -8.449e-01  1.022e+00  -0.826   0.4086  
## cb6.meanRHv2.l2  2.009e-01  6.840e-01   0.294   0.7690  
## cb6.meanRHv3.l1 -3.194e-01  4.414e-01  -0.724   0.4693  
## cb6.meanRHv3.l2  2.764e-01  3.224e-01   0.857   0.3912  
## sp_ptbBM1               NA         NA      NA       NA  
## sp_ptbBM2               NA         NA      NA       NA  
## sp_ptbBM3               NA         NA      NA       NA  
## sp_ptbBM4       -1.338e+06  2.226e+06  -0.601   0.5478  
## sp_ptbBM5        1.468e+01  1.182e+01   1.242   0.2143  
## sp_ptbBM6       -2.040e+00  2.025e+00  -1.008   0.3136  
## sp_ptbBM7        1.444e+00  1.067e+00   1.353   0.1761  
## sp_ptbBM8       -1.016e+00  9.766e-01  -1.041   0.2980  
## sp_ptbBM9        8.134e-01  9.457e-01   0.860   0.3897  
## sp_ptbBM10      -2.611e+00  1.096e+00  -2.383   0.0172 *
## sp_ptbBM11       6.370e-01  8.965e-01   0.711   0.4774  
## sp_ptbBM12      -6.359e-01  8.247e-01  -0.771   0.4407  
## sp_ptbBM13       9.946e-01  1.071e+00   0.928   0.3532  
## sp_ptbBM14      -8.158e-01  1.113e+00  -0.733   0.4637  
## sp_ptbBM15       4.559e-01  1.058e+00   0.431   0.6665  
## sp_ptbBM16      -9.322e-01  1.239e+00  -0.752   0.4519  
## sp_ptbBM17       7.200e-03  1.060e+00   0.007   0.9946  
## sp_ptbBM18      -6.874e-02  1.084e+00  -0.063   0.9494  
## sp_ptbBM19       3.086e-02  1.051e+00   0.029   0.9766  
## sp_ptbBM20      -2.315e-02  1.165e+00  -0.020   0.9841  
## sp_ptbBM21       5.344e-01  9.587e-01   0.557   0.5772  
## sp_ptbBM22       3.629e-01  1.082e+00   0.336   0.7372  
## sp_ptbBM23      -1.443e+00  1.489e+00  -0.969   0.3325  
## sp_ptbBM24      -9.378e-01  1.932e+00  -0.485   0.6275  
## sp_ptbBM25      -1.867e+00  2.333e+00  -0.800   0.4237  
## sp_ptbBM26      -1.606e+00  2.528e+00  -0.635   0.5252  
## sp_ptbBM27      -3.267e+00  2.802e+00  -1.166   0.2435  
## sp_ptbBM28      -2.738e+00  2.824e+00  -0.970   0.3323  
## sp_ptbBM29      -1.317e+00  2.812e+00  -0.469   0.6394  
## sp_ptbBM30      -2.278e+00  2.747e+00  -0.829   0.4070  
## sp_ptbBM31      -1.257e+00  2.779e+00  -0.452   0.6510  
## sp_ptbBM32      -2.636e+00  2.801e+00  -0.941   0.3467  
## sp_ptbBM33      -2.544e+00  2.780e+00  -0.915   0.3601  
## sp_ptbBM34      -1.812e+00  2.650e+00  -0.684   0.4940  
## sp_ptbBM35      -2.420e+00  2.971e+00  -0.815   0.4154  
## sp_ptbBM36      -1.017e+00  2.752e+00  -0.370   0.7117  
## sp_ptbBM37      -2.062e+00  2.286e+00  -0.902   0.3671  
## sp_ptbBM38      -4.145e-01  2.052e+00  -0.202   0.8399  
## sp_ptbBM39      -1.486e+00  1.814e+00  -0.819   0.4127  
## sp_ptbBM40      -3.092e-02  1.488e+00  -0.021   0.9834  
## sp_ptbBM41      -8.306e-01  1.483e+00  -0.560   0.5753  
## sp_ptbBM42      -1.078e+00  1.242e+00  -0.868   0.3854  
## sp_ptbBM43      -2.583e-01  1.233e+00  -0.209   0.8341  
## sp_ptbBM44      -3.630e-01  1.311e+00  -0.277   0.7819  
## sp_ptbBM45       1.426e-01  1.393e+00   0.102   0.9185  
## sp_ptbBM46      -9.680e-01  1.420e+00  -0.682   0.4955  
## sp_ptbBM47      -3.028e-01  1.561e+00  -0.194   0.8461  
## sp_ptbBM48      -8.081e-01  1.365e+00  -0.592   0.5538  
## sp_ptbBM49      -1.169e-01  1.638e+00  -0.071   0.9431  
## sp_ptbBM50      -1.050e+00  1.279e+00  -0.821   0.4116  
## sp_ptbBM51       6.503e-01  1.295e+00   0.502   0.6157  
## sp_ptbBM52      -6.944e-01  1.138e+00  -0.610   0.5416  
## sp_ptbBM53       3.516e-01  1.100e+00   0.320   0.7492  
## sp_ptbBM54       7.228e-02  9.999e-01   0.072   0.9424  
## sp_ptbBM55      -6.655e-01  9.889e-01  -0.673   0.5010  
## sp_ptbBM56       6.644e-01  1.008e+00   0.659   0.5099  
## sp_ptbBM57       2.757e-01  1.076e+00   0.256   0.7978  
## sp_ptbBM58       1.617e-01  9.816e-01   0.165   0.8692  
## sp_ptbBM59      -1.053e+00  1.205e+00  -0.874   0.3823  
## sp_ptbBM60      -7.594e-01  1.270e+00  -0.598   0.5500  
## sp_ptbBM61      -3.452e-01  1.231e+00  -0.280   0.7792  
## sp_ptbBM62      -1.326e+00  1.256e+00  -1.055   0.2912  
## sp_ptbBM63      -9.390e-01  1.474e+00  -0.637   0.5242  
## sp_ptbBM64      -4.911e-01  1.704e+00  -0.288   0.7732  
## sp_ptbBM65      -3.319e-01  1.318e+00  -0.252   0.8011  
## sp_ptbBM66      -3.435e-01  1.116e+00  -0.308   0.7583  
## sp_ptbBM67       7.328e-01  9.347e-01   0.784   0.4331  
## sp_ptbBM68       2.219e-01  8.770e-01   0.253   0.8002  
## sp_ptbBM69       5.506e-01  9.250e-01   0.595   0.5517  
## sp_ptbBM70       5.472e-02  1.089e+00   0.050   0.9599  
## sp_ptbBM71       5.893e-03  1.054e+00   0.006   0.9955  
## sp_ptbBM72       5.865e-03  9.392e-01   0.006   0.9950  
## sp_ptbBM73      -4.587e-01  8.628e-01  -0.532   0.5950  
## sp_ptbBM74       9.351e-01  7.895e-01   1.184   0.2363  
## sp_ptbBM75      -1.558e-01  8.422e-01  -0.185   0.8533  
## sp_ptbBM76       2.431e-01  7.036e-01   0.345   0.7297  
## sp_ptbBM77       2.448e-01  8.831e-01   0.277   0.7816  
## sp_ptbBM78       8.418e-01  1.037e+00   0.812   0.4169  
## sp_ptbBM79       5.630e-01  9.166e-01   0.614   0.5391  
## sp_ptbBM80      -5.060e-01  1.004e+00  -0.504   0.6142  
## sp_ptbBM81       3.361e-01  9.307e-01   0.361   0.7180  
## sp_ptbBM82      -1.240e-01  8.208e-01  -0.151   0.8800  
## sp_ptbBM83      -3.755e-01  9.096e-01  -0.413   0.6797  
## sp_ptbBM84       2.179e-01  9.565e-01   0.228   0.8198  
## sp_ptbBM85      -1.418e+00  1.186e+00  -1.195   0.2321  
## sp_ptbBM86       6.215e-01  1.084e+00   0.573   0.5664  
## sp_ptbBM87      -6.570e-03  9.322e-01  -0.007   0.9944  
## sp_ptbBM88       2.837e-01  9.546e-01   0.297   0.7663  
## sp_ptbBM89      -7.076e-01  1.024e+00  -0.691   0.4897  
## sp_ptbBM90       9.878e-01  9.908e-01   0.997   0.3188  
## sp_ptbBM91       7.572e-01  1.279e+00   0.592   0.5539  
## sp_ptbBM92       1.234e+00  9.508e-01   1.298   0.1944  
## sp_ptbBM93       5.666e-01  9.435e-01   0.600   0.5482  
## sp_ptbBM94      -3.433e-01  8.379e-01  -0.410   0.6820  
## sp_ptbBM95       1.993e-01  7.658e-01   0.260   0.7947  
## sp_ptbBM96       4.363e-01  8.482e-01   0.514   0.6069  
## sp_ptbBM97       2.283e-01  8.673e-01   0.263   0.7924  
## sp_ptbBM98       6.450e-01  1.231e+00   0.524   0.6002  
## sp_ptbBM99       1.007e+00  9.029e-01   1.115   0.2649  
## sp_ptbBM100      8.108e-01  8.785e-01   0.923   0.3561  
## sp_ptbBM101      8.948e-01  7.492e-01   1.194   0.2323  
## sp_ptbBM102      5.052e-01  7.204e-01   0.701   0.4831  
## sp_ptbBM103      2.115e-02  7.645e-01   0.028   0.9779  
## sp_ptbBM104      4.739e-01  7.934e-01   0.597   0.5503  
## sp_ptbBM105      8.670e-01  9.342e-01   0.928   0.3534  
## sp_ptbBM106      9.899e-02  7.580e-01   0.131   0.8961  
## sp_ptbBM107      1.816e-02  7.635e-01   0.024   0.9810  
## sp_ptbBM108      6.970e-01  7.478e-01   0.932   0.3513  
## sp_ptbBM109      1.358e-01  7.072e-01   0.192   0.8477  
## sp_ptbBM110      6.934e-01  6.424e-01   1.079   0.2804  
## sp_ptbBM111      3.719e-01  8.912e-01   0.417   0.6765  
## sp_ptbBM112     -7.663e-02  8.683e-01  -0.088   0.9297  
## sp_ptbBM113      9.460e-01  9.131e-01   1.036   0.3002  
## sp_ptbBM114      4.845e-01  8.476e-01   0.572   0.5676  
## sp_ptbBM115     -9.617e-01  8.891e-01  -1.082   0.2794  
## sp_ptbBM116      2.011e+00  8.082e-01   2.489   0.0128 *
## sp_ptbBM117     -1.222e+00  9.633e-01  -1.268   0.2047  
## sp_ptbBM118      2.292e+00  9.014e-01   2.543   0.0110 *
## sp_ptbBM119     -9.940e-01  1.149e+00  -0.865   0.3869  
## sp_ptbBM120      1.631e+00  9.790e-01   1.666   0.0957 .
## sp_ptbBM121     -6.391e-02  8.646e-01  -0.074   0.9411  
## sp_ptbBM122      1.231e+00  7.862e-01   1.566   0.1173  
## sp_ptbBM123      4.252e-01  6.606e-01   0.644   0.5198  
## sp_ptbBM124      7.020e-01  7.556e-01   0.929   0.3529  
## sp_ptbBM125             NA         NA      NA       NA  
## sp_ptbBM126             NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(21891.1) family taken to be 1)
## 
##     Null deviance: 1101.3  on 886  degrees of freedom
## Residual deviance:  944.4  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3235.3
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  21891 
##           Std. Err.:  143955 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2977.261
m7a <- glm.nb(ptbBM ~ cb7.maxRH + sp_ptbBM,data=week); summary(m7a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb7.maxRH + sp_ptbBM, data = week, init.theta = 22024.84537, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4674  -0.7951  -0.1165   0.5319   2.5639  
## 
## Coefficients: (5 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)     4.320e+00  1.250e+01   0.346   0.7296  
## cb7.maxRHv1.l1 -2.357e-01  2.992e-01  -0.788   0.4309  
## cb7.maxRHv1.l2  1.871e-02  2.040e-01   0.092   0.9269  
## cb7.maxRHv2.l1 -1.392e-01  9.877e-01  -0.141   0.8879  
## cb7.maxRHv2.l2  1.710e-01  6.943e-01   0.246   0.8055  
## cb7.maxRHv3.l1  5.055e-02  2.824e-01   0.179   0.8579  
## cb7.maxRHv3.l2  2.605e-01  1.898e-01   1.373   0.1699  
## sp_ptbBM1              NA         NA      NA       NA  
## sp_ptbBM2              NA         NA      NA       NA  
## sp_ptbBM3              NA         NA      NA       NA  
## sp_ptbBM4      -1.327e+06  2.224e+06  -0.597   0.5507  
## sp_ptbBM5       1.508e+01  1.204e+01   1.252   0.2105  
## sp_ptbBM6      -7.682e-01  2.155e+00  -0.356   0.7215  
## sp_ptbBM7       1.981e+00  1.341e+00   1.477   0.1397  
## sp_ptbBM8      -2.493e-01  1.126e+00  -0.221   0.8248  
## sp_ptbBM9       1.716e+00  9.949e-01   1.725   0.0845 .
## sp_ptbBM10     -2.259e+00  1.074e+00  -2.104   0.0353 *
## sp_ptbBM11      1.075e+00  7.960e-01   1.350   0.1769  
## sp_ptbBM12     -7.990e-01  7.542e-01  -1.059   0.2894  
## sp_ptbBM13      2.029e+00  9.767e-01   2.077   0.0378 *
## sp_ptbBM14     -6.962e-01  8.290e-01  -0.840   0.4010  
## sp_ptbBM15      3.463e-01  7.202e-01   0.481   0.6307  
## sp_ptbBM16     -2.908e-01  8.167e-01  -0.356   0.7218  
## sp_ptbBM17      1.421e-02  7.504e-01   0.019   0.9849  
## sp_ptbBM18     -6.563e-01  7.679e-01  -0.855   0.3927  
## sp_ptbBM19     -5.617e-01  7.982e-01  -0.704   0.4816  
## sp_ptbBM20      8.802e-01  1.152e+00   0.764   0.4448  
## sp_ptbBM21      5.774e-01  7.416e-01   0.779   0.4363  
## sp_ptbBM22      7.318e-01  7.586e-01   0.965   0.3347  
## sp_ptbBM23     -9.483e-01  8.774e-01  -1.081   0.2798  
## sp_ptbBM24      1.009e-01  7.708e-01   0.131   0.8959  
## sp_ptbBM25     -7.471e-01  9.520e-01  -0.785   0.4326  
## sp_ptbBM26     -4.297e-01  1.137e+00  -0.378   0.7054  
## sp_ptbBM27     -6.022e-01  1.412e+00  -0.426   0.6698  
## sp_ptbBM28     -1.531e+00  1.269e+00  -1.206   0.2276  
## sp_ptbBM29     -1.156e+00  2.176e+00  -0.531   0.5953  
## sp_ptbBM30     -2.758e+00  2.514e+00  -1.097   0.2726  
## sp_ptbBM31     -2.924e+00  3.632e+00  -0.805   0.4209  
## sp_ptbBM32     -4.804e+00  4.751e+00  -1.011   0.3120  
## sp_ptbBM33     -4.585e+00  5.816e+00  -0.788   0.4305  
## sp_ptbBM34     -2.688e+00  6.322e+00  -0.425   0.6707  
## sp_ptbBM35     -3.371e+00  7.573e+00  -0.445   0.6562  
## sp_ptbBM36     -1.766e+00  6.507e+00  -0.271   0.7861  
## sp_ptbBM37     -2.352e+00  5.965e+00  -0.394   0.6934  
## sp_ptbBM38     -8.224e-01  5.320e+00  -0.155   0.8772  
## sp_ptbBM39     -1.712e+00  4.334e+00  -0.395   0.6929  
## sp_ptbBM40     -2.702e-01  3.376e+00  -0.080   0.9362  
## sp_ptbBM41     -6.058e-01  2.966e+00  -0.204   0.8382  
## sp_ptbBM42     -7.989e-01  2.043e+00  -0.391   0.6958  
## sp_ptbBM43     -2.441e-01  2.115e+00  -0.115   0.9081  
## sp_ptbBM44     -5.178e-01  2.355e+00  -0.220   0.8260  
## sp_ptbBM45     -1.501e-01  2.521e+00  -0.060   0.9525  
## sp_ptbBM46     -1.364e+00  2.601e+00  -0.525   0.5998  
## sp_ptbBM47     -9.843e-01  2.964e+00  -0.332   0.7398  
## sp_ptbBM48     -1.076e+00  2.718e+00  -0.396   0.6922  
## sp_ptbBM49     -8.903e-02  2.663e+00  -0.033   0.9733  
## sp_ptbBM50     -7.152e-01  2.164e+00  -0.330   0.7411  
## sp_ptbBM51      1.252e+00  2.032e+00   0.616   0.5379  
## sp_ptbBM52     -1.818e-01  1.798e+00  -0.101   0.9195  
## sp_ptbBM53      8.707e-01  1.597e+00   0.545   0.5857  
## sp_ptbBM54      7.511e-01  1.351e+00   0.556   0.5784  
## sp_ptbBM55      6.389e-01  1.332e+00   0.480   0.6314  
## sp_ptbBM56      1.363e+00  1.207e+00   1.130   0.2586  
## sp_ptbBM57      1.409e+00  1.291e+00   1.092   0.2750  
## sp_ptbBM58      9.388e-01  1.266e+00   0.742   0.4583  
## sp_ptbBM59     -1.234e-01  1.421e+00  -0.087   0.9308  
## sp_ptbBM60     -1.015e-01  1.655e+00  -0.061   0.9511  
## sp_ptbBM61      1.898e-02  1.654e+00   0.011   0.9908  
## sp_ptbBM62     -5.046e-01  1.654e+00  -0.305   0.7603  
## sp_ptbBM63     -2.652e-01  1.818e+00  -0.146   0.8840  
## sp_ptbBM64      3.021e-01  2.112e+00   0.143   0.8863  
## sp_ptbBM65      5.414e-01  1.777e+00   0.305   0.7606  
## sp_ptbBM66      3.918e-01  1.636e+00   0.239   0.8108  
## sp_ptbBM67      1.562e+00  1.373e+00   1.137   0.2555  
## sp_ptbBM68      1.137e+00  1.301e+00   0.874   0.3823  
## sp_ptbBM69      1.820e+00  1.179e+00   1.544   0.1226  
## sp_ptbBM70      9.955e-01  1.197e+00   0.832   0.4057  
## sp_ptbBM71      1.083e+00  1.184e+00   0.915   0.3604  
## sp_ptbBM72      8.982e-01  1.125e+00   0.798   0.4248  
## sp_ptbBM73      1.032e-01  1.061e+00   0.097   0.9226  
## sp_ptbBM74      1.274e+00  1.097e+00   1.162   0.2454  
## sp_ptbBM75      1.905e-01  1.073e+00   0.178   0.8590  
## sp_ptbBM76      9.707e-01  1.078e+00   0.900   0.3681  
## sp_ptbBM77      9.680e-01  1.038e+00   0.932   0.3512  
## sp_ptbBM78      2.014e+00  1.093e+00   1.842   0.0655 .
## sp_ptbBM79      1.453e+00  1.027e+00   1.415   0.1571  
## sp_ptbBM80      2.966e-01  1.074e+00   0.276   0.7824  
## sp_ptbBM81      5.881e-01  1.143e+00   0.515   0.6068  
## sp_ptbBM82      1.508e-01  1.063e+00   0.142   0.8872  
## sp_ptbBM83      2.072e-01  9.644e-01   0.215   0.8299  
## sp_ptbBM84      9.735e-01  1.105e+00   0.881   0.3783  
## sp_ptbBM85     -3.314e-01  1.381e+00  -0.240   0.8103  
## sp_ptbBM86      1.747e+00  1.205e+00   1.449   0.1472  
## sp_ptbBM87      8.265e-01  1.194e+00   0.692   0.4887  
## sp_ptbBM88      9.260e-01  1.163e+00   0.796   0.4258  
## sp_ptbBM89     -1.709e-01  1.286e+00  -0.133   0.8943  
## sp_ptbBM90      1.874e+00  1.150e+00   1.629   0.1032  
## sp_ptbBM91      8.637e-01  1.056e+00   0.818   0.4136  
## sp_ptbBM92      1.335e+00  9.308e-01   1.435   0.1514  
## sp_ptbBM93      5.436e-01  9.141e-01   0.595   0.5520  
## sp_ptbBM94     -4.983e-01  8.925e-01  -0.558   0.5767  
## sp_ptbBM95      1.174e-02  8.592e-01   0.014   0.9891  
## sp_ptbBM96      4.115e-02  8.178e-01   0.050   0.9599  
## sp_ptbBM97      5.823e-01  8.043e-01   0.724   0.4690  
## sp_ptbBM98      6.373e-01  1.097e+00   0.581   0.5613  
## sp_ptbBM99      1.239e+00  8.238e-01   1.504   0.1327  
## sp_ptbBM100     7.551e-01  7.732e-01   0.977   0.3288  
## sp_ptbBM101     7.251e-01  6.832e-01   1.061   0.2886  
## sp_ptbBM102     5.139e-01  7.154e-01   0.718   0.4725  
## sp_ptbBM103    -2.059e-02  7.229e-01  -0.028   0.9773  
## sp_ptbBM104     8.600e-01  7.525e-01   1.143   0.2531  
## sp_ptbBM105     1.206e+00  9.129e-01   1.321   0.1865  
## sp_ptbBM106    -3.331e-01  1.033e+00  -0.322   0.7472  
## sp_ptbBM107    -4.476e-02  1.076e+00  -0.042   0.9668  
## sp_ptbBM108     2.568e-01  8.848e-01   0.290   0.7716  
## sp_ptbBM109    -4.236e-01  1.037e+00  -0.408   0.6830  
## sp_ptbBM110     7.575e-03  9.991e-01   0.008   0.9940  
## sp_ptbBM111     1.119e+00  1.319e+00   0.848   0.3964  
## sp_ptbBM112     8.114e-02  1.129e+00   0.072   0.9427  
## sp_ptbBM113     1.392e+00  8.542e-01   1.630   0.1031  
## sp_ptbBM114     5.754e-01  8.336e-01   0.690   0.4900  
## sp_ptbBM115    -8.360e-01  8.228e-01  -1.016   0.3096  
## sp_ptbBM116     1.941e+00  7.784e-01   2.494   0.0126 *
## sp_ptbBM117    -1.767e+00  9.749e-01  -1.812   0.0699 .
## sp_ptbBM118     2.093e+00  1.071e+00   1.955   0.0506 .
## sp_ptbBM119    -1.811e+00  1.186e+00  -1.527   0.1268  
## sp_ptbBM120     9.408e-01  9.017e-01   1.043   0.2968  
## sp_ptbBM121    -5.242e-01  8.081e-01  -0.649   0.5166  
## sp_ptbBM122     3.643e-01  8.314e-01   0.438   0.6613  
## sp_ptbBM123    -6.105e-01  7.559e-01  -0.808   0.4193  
## sp_ptbBM124     2.255e-01  8.244e-01   0.274   0.7844  
## sp_ptbBM125            NA         NA      NA       NA  
## sp_ptbBM126            NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(22024.85) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  942.52  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3233.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  22025 
##           Std. Err.:  143520 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2975.382
m8a <- glm.nb(ptbBM ~ cb8.AH + sp_ptbBM,data=week); summary(m8a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb8.AH + sp_ptbBM, data = week, init.theta = 22297.04219, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5092  -0.7695  -0.1027   0.5323   2.7731  
## 
## Coefficients: (5 not defined because of singularities)
##               Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -6.850e+00  1.168e+01  -0.586  0.55760   
## cb8.AHv1.l1  3.183e-01  2.924e-01   1.089  0.27632   
## cb8.AHv1.l2 -5.072e-02  2.057e-01  -0.247  0.80523   
## cb8.AHv2.l1  5.157e-01  9.564e-01   0.539  0.58972   
## cb8.AHv2.l2 -2.815e-01  6.913e-01  -0.407  0.68386   
## cb8.AHv3.l1  4.144e-01  5.457e-01   0.759  0.44768   
## cb8.AHv3.l2  5.219e-01  3.866e-01   1.350  0.17700   
## sp_ptbBM1           NA         NA      NA       NA   
## sp_ptbBM2           NA         NA      NA       NA   
## sp_ptbBM3           NA         NA      NA       NA   
## sp_ptbBM4   -1.306e+06  2.243e+06  -0.582  0.56055   
## sp_ptbBM5    1.655e+01  1.213e+01   1.364  0.17247   
## sp_ptbBM6   -1.267e+00  2.340e+00  -0.542  0.58809   
## sp_ptbBM7    2.352e+00  1.902e+00   1.236  0.21636   
## sp_ptbBM8    1.551e-01  1.629e+00   0.095  0.92416   
## sp_ptbBM9    3.541e+00  1.650e+00   2.146  0.03189 * 
## sp_ptbBM10  -8.370e-01  1.638e+00  -0.511  0.60931   
## sp_ptbBM11   2.753e+00  1.587e+00   1.735  0.08272 . 
## sp_ptbBM12   9.150e-01  1.595e+00   0.574  0.56611   
## sp_ptbBM13   2.436e+00  1.364e+00   1.786  0.07409 . 
## sp_ptbBM14  -2.857e-03  1.450e+00  -0.002  0.99843   
## sp_ptbBM15   1.165e+00  1.453e+00   0.802  0.42268   
## sp_ptbBM16   1.899e+00  1.569e+00   1.210  0.22623   
## sp_ptbBM17   1.873e+00  1.539e+00   1.218  0.22338   
## sp_ptbBM18   1.337e+00  1.504e+00   0.889  0.37410   
## sp_ptbBM19   8.508e-01  1.509e+00   0.564  0.57280   
## sp_ptbBM20   1.187e+00  1.586e+00   0.748  0.45424   
## sp_ptbBM21   1.900e+00  1.790e+00   1.061  0.28854   
## sp_ptbBM22   1.898e+00  1.970e+00   0.963  0.33537   
## sp_ptbBM23   2.787e+00  2.564e+00   1.087  0.27693   
## sp_ptbBM24   4.314e+00  2.881e+00   1.497  0.13427   
## sp_ptbBM25   4.828e+00  3.491e+00   1.383  0.16663   
## sp_ptbBM26   5.182e+00  3.718e+00   1.394  0.16338   
## sp_ptbBM27   3.752e+00  3.942e+00   0.952  0.34116   
## sp_ptbBM28   4.047e+00  3.975e+00   1.018  0.30857   
## sp_ptbBM29   4.948e+00  3.766e+00   1.314  0.18887   
## sp_ptbBM30   3.410e+00  3.787e+00   0.900  0.36797   
## sp_ptbBM31   4.990e+00  3.719e+00   1.342  0.17962   
## sp_ptbBM32   3.696e+00  3.533e+00   1.046  0.29556   
## sp_ptbBM33   4.483e+00  3.678e+00   1.219  0.22289   
## sp_ptbBM34   5.297e+00  3.873e+00   1.368  0.17146   
## sp_ptbBM35   5.533e+00  4.096e+00   1.351  0.17681   
## sp_ptbBM36   6.179e+00  3.905e+00   1.582  0.11355   
## sp_ptbBM37   3.947e+00  3.685e+00   1.071  0.28414   
## sp_ptbBM38   4.739e+00  3.363e+00   1.409  0.15877   
## sp_ptbBM39   3.180e+00  3.231e+00   0.984  0.32503   
## sp_ptbBM40   3.903e+00  3.018e+00   1.293  0.19587   
## sp_ptbBM41   2.885e+00  2.627e+00   1.098  0.27207   
## sp_ptbBM42   2.173e+00  2.508e+00   0.866  0.38624   
## sp_ptbBM43   2.969e+00  2.548e+00   1.165  0.24396   
## sp_ptbBM44   2.841e+00  2.437e+00   1.166  0.24372   
## sp_ptbBM45   3.840e+00  2.610e+00   1.471  0.14125   
## sp_ptbBM46   2.858e+00  2.684e+00   1.065  0.28679   
## sp_ptbBM47   3.839e+00  2.816e+00   1.363  0.17287   
## sp_ptbBM48   3.643e+00  2.890e+00   1.260  0.20755   
## sp_ptbBM49   4.419e+00  2.883e+00   1.533  0.12525   
## sp_ptbBM50   2.799e+00  2.769e+00   1.011  0.31220   
## sp_ptbBM51   4.790e+00  2.902e+00   1.650  0.09888 . 
## sp_ptbBM52   3.029e+00  2.844e+00   1.065  0.28699   
## sp_ptbBM53   3.807e+00  2.770e+00   1.374  0.16929   
## sp_ptbBM54   3.016e+00  2.565e+00   1.175  0.23980   
## sp_ptbBM55   2.501e+00  2.403e+00   1.041  0.29810   
## sp_ptbBM56   3.058e+00  2.330e+00   1.312  0.18942   
## sp_ptbBM57   2.722e+00  2.158e+00   1.261  0.20716   
## sp_ptbBM58   2.758e+00  2.027e+00   1.361  0.17364   
## sp_ptbBM59   1.688e+00  2.051e+00   0.823  0.41072   
## sp_ptbBM60   1.846e+00  1.977e+00   0.934  0.35032   
## sp_ptbBM61   2.113e+00  1.944e+00   1.087  0.27712   
## sp_ptbBM62   1.696e+00  1.994e+00   0.850  0.39511   
## sp_ptbBM63   1.572e+00  1.931e+00   0.814  0.41549   
## sp_ptbBM64   2.430e+00  1.770e+00   1.372  0.16991   
## sp_ptbBM65   3.176e+00  1.542e+00   2.060  0.03945 * 
## sp_ptbBM66   1.672e+00  1.246e+00   1.341  0.17976   
## sp_ptbBM67   2.029e+00  1.033e+00   1.965  0.04939 * 
## sp_ptbBM68   9.479e-01  1.037e+00   0.914  0.36080   
## sp_ptbBM69   9.102e-01  1.128e+00   0.807  0.41958   
## sp_ptbBM70  -4.613e-01  1.425e+00  -0.324  0.74616   
## sp_ptbBM71  -4.909e-01  1.685e+00  -0.291  0.77078   
## sp_ptbBM72   1.770e+00  1.926e+00   0.919  0.35812   
## sp_ptbBM73   1.487e+00  1.885e+00   0.789  0.42997   
## sp_ptbBM74   2.886e+00  1.949e+00   1.481  0.13867   
## sp_ptbBM75   1.981e+00  1.902e+00   1.042  0.29759   
## sp_ptbBM76   2.228e+00  1.719e+00   1.296  0.19499   
## sp_ptbBM77   1.631e+00  1.612e+00   1.012  0.31150   
## sp_ptbBM78   1.670e+00  1.497e+00   1.115  0.26468   
## sp_ptbBM79   1.846e+00  1.517e+00   1.217  0.22357   
## sp_ptbBM80   1.421e+00  1.623e+00   0.876  0.38121   
## sp_ptbBM81   1.427e+00  1.609e+00   0.887  0.37515   
## sp_ptbBM82   1.132e+00  1.662e+00   0.681  0.49569   
## sp_ptbBM83   1.274e+00  1.604e+00   0.794  0.42708   
## sp_ptbBM84   1.740e+00  1.612e+00   1.079  0.28046   
## sp_ptbBM85   2.759e-01  1.459e+00   0.189  0.84995   
## sp_ptbBM86   2.834e+00  1.327e+00   2.136  0.03270 * 
## sp_ptbBM87   1.193e+00  1.215e+00   0.982  0.32624   
## sp_ptbBM88   7.450e-01  1.193e+00   0.624  0.53241   
## sp_ptbBM89  -7.846e-01  1.351e+00  -0.581  0.56142   
## sp_ptbBM90   9.863e-01  1.098e+00   0.898  0.36894   
## sp_ptbBM91   4.725e-02  1.351e+00   0.035  0.97211   
## sp_ptbBM92   1.109e+00  1.344e+00   0.825  0.40923   
## sp_ptbBM93   2.323e+00  1.368e+00   1.698  0.08944 . 
## sp_ptbBM94   1.041e+00  1.226e+00   0.849  0.39604   
## sp_ptbBM95   1.159e+00  1.099e+00   1.054  0.29179   
## sp_ptbBM96   6.652e-01  9.514e-01   0.699  0.48441   
## sp_ptbBM97   1.016e+00  1.008e+00   1.007  0.31379   
## sp_ptbBM98  -5.431e-01  9.675e-01  -0.561  0.57454   
## sp_ptbBM99  -2.960e-01  9.926e-01  -0.298  0.76556   
## sp_ptbBM100  8.452e-01  1.028e+00   0.822  0.41121   
## sp_ptbBM101  1.650e+00  8.908e-01   1.852  0.06396 . 
## sp_ptbBM102  8.980e-01  7.777e-01   1.155  0.24823   
## sp_ptbBM103  1.189e-01  7.449e-01   0.160  0.87315   
## sp_ptbBM104  1.246e+00  7.899e-01   1.578  0.11463   
## sp_ptbBM105  7.432e-01  8.418e-01   0.883  0.37731   
## sp_ptbBM106 -7.517e-01  1.117e+00  -0.673  0.50088   
## sp_ptbBM107  6.143e-01  2.314e+00   0.265  0.79066   
## sp_ptbBM108 -1.414e-01  1.697e+00  -0.083  0.93357   
## sp_ptbBM109 -1.755e+00  1.922e+00  -0.913  0.36101   
## sp_ptbBM110 -2.185e+00  2.046e+00  -1.068  0.28552   
## sp_ptbBM111 -2.549e+00  1.879e+00  -1.356  0.17500   
## sp_ptbBM112 -2.549e+00  1.507e+00  -1.692  0.09068 . 
## sp_ptbBM113 -1.995e+00  1.795e+00  -1.111  0.26653   
## sp_ptbBM114  1.383e+00  9.734e-01   1.421  0.15531   
## sp_ptbBM115 -7.118e-01  8.234e-01  -0.864  0.38732   
## sp_ptbBM116  2.296e+00  8.302e-01   2.766  0.00567 **
## sp_ptbBM117 -1.880e+00  7.918e-01  -2.375  0.01757 * 
## sp_ptbBM118  2.008e+00  7.564e-01   2.655  0.00794 **
## sp_ptbBM119 -2.215e+00  8.661e-01  -2.557  0.01056 * 
## sp_ptbBM120 -2.270e-01  8.858e-01  -0.256  0.79778   
## sp_ptbBM121  1.533e-01  8.212e-01   0.187  0.85189   
## sp_ptbBM122  9.081e-01  6.757e-01   1.344  0.17897   
## sp_ptbBM123  3.315e-01  5.787e-01   0.573  0.56678   
## sp_ptbBM124  3.568e-01  7.566e-01   0.472  0.63722   
## sp_ptbBM125         NA         NA      NA       NA   
## sp_ptbBM126         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(22297.04) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  939.93  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3230.8
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  22297 
##           Std. Err.:  142938 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2972.79
m9a <- glm.nb(ptbBM ~ cb9.minT + sp_ptbBM,data=week); summary(m9a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb9.minT + sp_ptbBM, data = week, init.theta = 22708.48563, 
##     link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.44984  -0.78014  -0.08793   0.55896   2.66282  
## 
## Coefficients: (5 not defined because of singularities)
##                 Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   -3.322e+00  1.044e+01  -0.318  0.75034   
## cb9.minTv1.l1  1.134e-01  2.555e-01   0.444  0.65721   
## cb9.minTv1.l2 -1.702e-01  1.800e-01  -0.945  0.34455   
## cb9.minTv2.l1  8.252e-01  8.811e-01   0.937  0.34897   
## cb9.minTv2.l2 -5.810e-01  6.655e-01  -0.873  0.38262   
## cb9.minTv3.l1  9.618e-01  4.965e-01   1.937  0.05275 . 
## cb9.minTv3.l2  3.776e-01  3.596e-01   1.050  0.29368   
## sp_ptbBM1             NA         NA      NA       NA   
## sp_ptbBM2             NA         NA      NA       NA   
## sp_ptbBM3             NA         NA      NA       NA   
## sp_ptbBM4     -1.435e+06  2.224e+06  -0.645  0.51866   
## sp_ptbBM5      1.492e+01  1.183e+01   1.262  0.20704   
## sp_ptbBM6     -2.680e+00  1.973e+00  -1.358  0.17446   
## sp_ptbBM7      6.651e-01  1.121e+00   0.594  0.55284   
## sp_ptbBM8     -1.772e+00  1.063e+00  -1.667  0.09549 . 
## sp_ptbBM9      6.644e-01  9.941e-01   0.668  0.50392   
## sp_ptbBM10    -3.213e+00  1.268e+00  -2.534  0.01128 * 
## sp_ptbBM11     6.634e-01  8.838e-01   0.751  0.45286   
## sp_ptbBM12    -1.021e+00  9.257e-01  -1.103  0.27023   
## sp_ptbBM13     1.666e-01  8.768e-01   0.190  0.84928   
## sp_ptbBM14    -1.553e+00  9.743e-01  -1.594  0.11101   
## sp_ptbBM15    -1.366e-01  9.026e-01  -0.151  0.87967   
## sp_ptbBM16    -1.149e+00  1.099e+00  -1.045  0.29607   
## sp_ptbBM17    -5.154e-01  9.746e-01  -0.529  0.59689   
## sp_ptbBM18    -1.138e+00  1.057e+00  -1.078  0.28124   
## sp_ptbBM19    -1.443e+00  1.099e+00  -1.313  0.18919   
## sp_ptbBM20    -1.782e+00  1.066e+00  -1.671  0.09474 . 
## sp_ptbBM21    -6.449e-01  9.245e-01  -0.698  0.48547   
## sp_ptbBM22    -1.005e+00  9.002e-01  -1.117  0.26416   
## sp_ptbBM23    -1.045e+00  9.345e-01  -1.118  0.26355   
## sp_ptbBM24    -1.940e-01  8.407e-01  -0.231  0.81748   
## sp_ptbBM25    -5.120e-01  7.572e-01  -0.676  0.49889   
## sp_ptbBM26    -2.764e-01  8.161e-01  -0.339  0.73490   
## sp_ptbBM27    -2.206e+00  1.058e+00  -2.085  0.03709 * 
## sp_ptbBM28    -4.163e-01  9.248e-01  -0.450  0.65262   
## sp_ptbBM29     4.159e-01  7.380e-01   0.564  0.57304   
## sp_ptbBM30    -1.018e-01  8.372e-01  -0.122  0.90317   
## sp_ptbBM31     9.503e-01  8.883e-01   1.070  0.28470   
## sp_ptbBM32    -3.709e-01  9.229e-01  -0.402  0.68779   
## sp_ptbBM33    -1.055e-01  1.014e+00  -0.104  0.91716   
## sp_ptbBM34     8.521e-01  1.394e+00   0.611  0.54107   
## sp_ptbBM35     8.474e-01  1.417e+00   0.598  0.54986   
## sp_ptbBM36     2.490e+00  1.624e+00   1.533  0.12517   
## sp_ptbBM37     1.004e+00  1.983e+00   0.506  0.61261   
## sp_ptbBM38     1.911e+00  1.878e+00   1.018  0.30883   
## sp_ptbBM39     2.122e-01  1.784e+00   0.119  0.90532   
## sp_ptbBM40     9.172e-01  1.787e+00   0.513  0.60775   
## sp_ptbBM41    -1.716e-01  1.355e+00  -0.127  0.89922   
## sp_ptbBM42    -3.244e-01  1.209e+00  -0.268  0.78840   
## sp_ptbBM43     7.194e-02  1.121e+00   0.064  0.94885   
## sp_ptbBM44    -4.041e-02  7.925e-01  -0.051  0.95934   
## sp_ptbBM45     7.014e-01  7.960e-01   0.881  0.37825   
## sp_ptbBM46    -1.302e-01  8.519e-01  -0.153  0.87858   
## sp_ptbBM47     6.420e-01  7.985e-01   0.804  0.42141   
## sp_ptbBM48    -6.717e-02  9.677e-01  -0.069  0.94466   
## sp_ptbBM49     1.500e+00  8.535e-01   1.758  0.07877 . 
## sp_ptbBM50     1.413e-01  1.007e+00   0.140  0.88837   
## sp_ptbBM51     1.944e+00  9.530e-01   2.040  0.04133 * 
## sp_ptbBM52     4.737e-01  1.195e+00   0.396  0.69180   
## sp_ptbBM53     1.486e+00  1.167e+00   1.273  0.20291   
## sp_ptbBM54     6.195e-01  1.194e+00   0.519  0.60397   
## sp_ptbBM55    -3.935e-01  1.113e+00  -0.354  0.72353   
## sp_ptbBM56     8.898e-01  1.152e+00   0.773  0.43967   
## sp_ptbBM57     5.793e-01  9.635e-01   0.601  0.54766   
## sp_ptbBM58     5.807e-01  9.589e-01   0.606  0.54479   
## sp_ptbBM59    -5.273e-01  8.295e-01  -0.636  0.52500   
## sp_ptbBM60    -1.004e-02  7.749e-01  -0.013  0.98967   
## sp_ptbBM61    -1.825e-02  7.456e-01  -0.024  0.98047   
## sp_ptbBM62    -9.422e-01  8.362e-01  -1.127  0.25982   
## sp_ptbBM63    -7.932e-01  8.777e-01  -0.904  0.36617   
## sp_ptbBM64    -1.101e+00  1.238e+00  -0.889  0.37386   
## sp_ptbBM65    -5.541e-01  1.316e+00  -0.421  0.67375   
## sp_ptbBM66    -1.589e+00  1.256e+00  -1.265  0.20574   
## sp_ptbBM67    -1.098e+00  1.177e+00  -0.932  0.35117   
## sp_ptbBM68    -2.007e+00  1.230e+00  -1.632  0.10276   
## sp_ptbBM69    -2.327e+00  1.253e+00  -1.858  0.06317 . 
## sp_ptbBM70    -3.010e+00  1.256e+00  -2.396  0.01657 * 
## sp_ptbBM71    -1.360e+00  9.716e-01  -1.400  0.16147   
## sp_ptbBM72    -3.090e-01  8.510e-01  -0.363  0.71653   
## sp_ptbBM73    -4.264e-01  8.201e-01  -0.520  0.60308   
## sp_ptbBM74     8.071e-01  7.428e-01   1.087  0.27723   
## sp_ptbBM75     9.959e-02  8.366e-01   0.119  0.90524   
## sp_ptbBM76     9.570e-02  7.864e-01   0.122  0.90314   
## sp_ptbBM77    -1.083e-01  8.202e-01  -0.132  0.89498   
## sp_ptbBM78     3.518e-01  8.962e-01   0.393  0.69464   
## sp_ptbBM79     1.076e-01  9.084e-01   0.118  0.90573   
## sp_ptbBM80    -3.359e-01  8.887e-01  -0.378  0.70549   
## sp_ptbBM81    -2.242e-01  8.860e-01  -0.253  0.80021   
## sp_ptbBM82    -4.763e-01  9.014e-01  -0.528  0.59725   
## sp_ptbBM83    -9.418e-01  9.605e-01  -0.980  0.32687   
## sp_ptbBM84    -2.210e-01  1.078e+00  -0.205  0.83758   
## sp_ptbBM85    -2.798e+00  1.328e+00  -2.108  0.03504 * 
## sp_ptbBM86     1.034e-03  1.326e+00   0.001  0.99938   
## sp_ptbBM87    -1.030e+00  1.328e+00  -0.776  0.43794   
## sp_ptbBM88    -1.461e+00  1.297e+00  -1.126  0.26005   
## sp_ptbBM89    -2.816e+00  1.325e+00  -2.125  0.03355 * 
## sp_ptbBM90    -2.019e+00  1.399e+00  -1.443  0.14907   
## sp_ptbBM91    -1.832e+00  1.071e+00  -1.711  0.08711 . 
## sp_ptbBM92    -3.685e-01  1.001e+00  -0.368  0.71286   
## sp_ptbBM93    -6.993e-01  1.146e+00  -0.610  0.54170   
## sp_ptbBM94    -8.515e-01  1.197e+00  -0.712  0.47672   
## sp_ptbBM95    -1.155e+00  1.185e+00  -0.975  0.32974   
## sp_ptbBM96    -8.478e-01  1.157e+00  -0.733  0.46358   
## sp_ptbBM97    -2.077e+00  1.328e+00  -1.564  0.11781   
## sp_ptbBM98    -2.802e+00  1.392e+00  -2.013  0.04408 * 
## sp_ptbBM99    -2.033e+00  1.378e+00  -1.476  0.13995   
## sp_ptbBM100   -7.991e-01  1.388e+00  -0.576  0.56484   
## sp_ptbBM101   -8.634e-01  1.511e+00  -0.571  0.56778   
## sp_ptbBM102   -1.342e+00  1.392e+00  -0.964  0.33526   
## sp_ptbBM103   -2.453e+00  1.568e+00  -1.565  0.11769   
## sp_ptbBM104   -2.161e+00  1.513e+00  -1.428  0.15327   
## sp_ptbBM105   -3.735e+00  2.333e+00  -1.601  0.10939   
## sp_ptbBM106   -5.452e+00  3.255e+00  -1.675  0.09400 . 
## sp_ptbBM107   -5.587e+00  3.962e+00  -1.410  0.15853   
## sp_ptbBM108   -5.357e+00  3.465e+00  -1.546  0.12212   
## sp_ptbBM109   -7.613e+00  3.713e+00  -2.050  0.04035 * 
## sp_ptbBM110   -8.008e+00  3.537e+00  -2.264  0.02355 * 
## sp_ptbBM111   -1.019e+01  3.956e+00  -2.575  0.01001 * 
## sp_ptbBM112   -8.838e+00  3.343e+00  -2.644  0.00819 **
## sp_ptbBM113   -5.066e+00  2.196e+00  -2.307  0.02104 * 
## sp_ptbBM114   -1.927e+00  1.466e+00  -1.314  0.18881   
## sp_ptbBM115   -3.225e+00  1.376e+00  -2.345  0.01903 * 
## sp_ptbBM116    4.348e-01  1.312e+00   0.332  0.74022   
## sp_ptbBM117   -2.960e+00  1.098e+00  -2.696  0.00703 **
## sp_ptbBM118    7.208e-01  8.860e-01   0.814  0.41591   
## sp_ptbBM119   -2.337e+00  9.264e-01  -2.522  0.01166 * 
## sp_ptbBM120    1.540e-02  8.160e-01   0.019  0.98494   
## sp_ptbBM121   -6.600e-01  7.197e-01  -0.917  0.35913   
## sp_ptbBM122    7.531e-01  6.602e-01   1.141  0.25401   
## sp_ptbBM123    5.647e-01  7.057e-01   0.800  0.42361   
## sp_ptbBM124    9.450e-01  7.674e-01   1.231  0.21817   
## sp_ptbBM125           NA         NA      NA       NA   
## sp_ptbBM126           NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(22708.49) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  936.01  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3226.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  22708 
##           Std. Err.:  141707 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2968.878
m10a <- glm.nb(ptbBM ~ cb10.aveT + sp_ptbBM,data=week); summary(m10a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb10.aveT + sp_ptbBM, data = week, init.theta = 22332.14338, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5132  -0.7805  -0.1094   0.5463   2.6589  
## 
## Coefficients: (5 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    -2.025e+01  1.493e+01  -1.356  0.17503   
## cb10.aveTv1.l1  4.051e-01  3.235e-01   1.252  0.21054   
## cb10.aveTv1.l2 -2.523e-01  2.396e-01  -1.053  0.29227   
## cb10.aveTv2.l1  1.849e+00  1.184e+00   1.562  0.11838   
## cb10.aveTv2.l2 -7.238e-01  9.349e-01  -0.774  0.43877   
## cb10.aveTv3.l1  9.154e-01  4.986e-01   1.836  0.06639 . 
## cb10.aveTv3.l2  1.515e-01  3.715e-01   0.408  0.68335   
## sp_ptbBM1              NA         NA      NA       NA   
## sp_ptbBM2              NA         NA      NA       NA   
## sp_ptbBM3              NA         NA      NA       NA   
## sp_ptbBM4      -1.403e+06  2.229e+06  -0.629  0.52908   
## sp_ptbBM5       1.666e+01  1.193e+01   1.397  0.16244   
## sp_ptbBM6      -1.362e+00  2.024e+00  -0.673  0.50105   
## sp_ptbBM7       2.175e+00  1.373e+00   1.584  0.11319   
## sp_ptbBM8      -5.075e-01  1.075e+00  -0.472  0.63692   
## sp_ptbBM9       1.555e+00  9.697e-01   1.603  0.10884   
## sp_ptbBM10     -1.981e+00  1.067e+00  -1.857  0.06330 . 
## sp_ptbBM11      1.885e+00  1.048e+00   1.799  0.07197 . 
## sp_ptbBM12      1.831e-01  9.507e-01   0.193  0.84731   
## sp_ptbBM13      1.543e+00  9.109e-01   1.694  0.09030 . 
## sp_ptbBM14     -4.699e-01  1.076e+00  -0.437  0.66228   
## sp_ptbBM15      8.201e-01  1.046e+00   0.784  0.43312   
## sp_ptbBM16     -3.206e-01  9.095e-01  -0.353  0.72442   
## sp_ptbBM17      9.263e-01  9.644e-01   0.960  0.33682   
## sp_ptbBM18      5.282e-01  9.296e-01   0.568  0.56993   
## sp_ptbBM19      6.391e-01  9.700e-01   0.659  0.50999   
## sp_ptbBM20      4.744e-01  1.032e+00   0.460  0.64581   
## sp_ptbBM21      9.069e-01  1.134e+00   0.800  0.42374   
## sp_ptbBM22      8.142e-01  1.038e+00   0.785  0.43268   
## sp_ptbBM23      1.426e-01  1.060e+00   0.135  0.89298   
## sp_ptbBM24      1.109e+00  1.100e+00   1.008  0.31326   
## sp_ptbBM25      1.010e+00  1.235e+00   0.818  0.41345   
## sp_ptbBM26      1.338e+00  1.196e+00   1.118  0.26342   
## sp_ptbBM27     -3.375e-01  1.320e+00  -0.256  0.79825   
## sp_ptbBM28      2.923e-01  1.384e+00   0.211  0.83279   
## sp_ptbBM29      1.613e+00  1.135e+00   1.422  0.15517   
## sp_ptbBM30      8.321e-01  1.037e+00   0.803  0.42223   
## sp_ptbBM31      1.760e+00  1.032e+00   1.706  0.08800 . 
## sp_ptbBM32      2.952e-01  1.022e+00   0.289  0.77276   
## sp_ptbBM33      1.185e-01  1.116e+00   0.106  0.91545   
## sp_ptbBM34      1.421e+00  1.154e+00   1.231  0.21822   
## sp_ptbBM35      7.580e-01  1.289e+00   0.588  0.55657   
## sp_ptbBM36      1.779e+00  1.152e+00   1.544  0.12247   
## sp_ptbBM37      8.721e-01  1.348e+00   0.647  0.51773   
## sp_ptbBM38      2.075e+00  1.134e+00   1.829  0.06739 . 
## sp_ptbBM39      8.258e-01  1.247e+00   0.662  0.50795   
## sp_ptbBM40      1.998e+00  1.308e+00   1.528  0.12653   
## sp_ptbBM41      8.656e-01  1.154e+00   0.750  0.45333   
## sp_ptbBM42      7.088e-01  1.395e+00   0.508  0.61136   
## sp_ptbBM43      1.213e+00  1.155e+00   1.051  0.29335   
## sp_ptbBM44      9.452e-01  1.010e+00   0.936  0.34937   
## sp_ptbBM45      1.632e+00  1.036e+00   1.576  0.11514   
## sp_ptbBM46      6.796e-01  1.117e+00   0.609  0.54285   
## sp_ptbBM47      1.581e+00  1.119e+00   1.413  0.15756   
## sp_ptbBM48      1.070e+00  1.239e+00   0.864  0.38748   
## sp_ptbBM49      2.382e+00  1.287e+00   1.851  0.06418 . 
## sp_ptbBM50      1.465e+00  1.496e+00   0.979  0.32766   
## sp_ptbBM51      3.023e+00  1.298e+00   2.328  0.01989 * 
## sp_ptbBM52      1.193e+00  1.388e+00   0.860  0.38993   
## sp_ptbBM53      2.064e+00  1.373e+00   1.503  0.13285   
## sp_ptbBM54      1.320e+00  1.383e+00   0.955  0.33952   
## sp_ptbBM55      5.783e-01  1.362e+00   0.425  0.67106   
## sp_ptbBM56      2.113e+00  1.469e+00   1.439  0.15020   
## sp_ptbBM57      1.655e+00  1.412e+00   1.173  0.24094   
## sp_ptbBM58      1.701e+00  1.047e+00   1.626  0.10404   
## sp_ptbBM59      5.446e-01  9.788e-01   0.556  0.57798   
## sp_ptbBM60      5.680e-01  8.822e-01   0.644  0.51968   
## sp_ptbBM61      4.136e-01  7.678e-01   0.539  0.59008   
## sp_ptbBM62     -6.182e-01  8.819e-01  -0.701  0.48331   
## sp_ptbBM63     -6.669e-01  9.167e-01  -0.728  0.46691   
## sp_ptbBM64     -7.836e-01  1.055e+00  -0.743  0.45774   
## sp_ptbBM65      2.075e-01  7.861e-01   0.264  0.79182   
## sp_ptbBM66     -1.993e-02  7.496e-01  -0.027  0.97878   
## sp_ptbBM67      1.185e+00  7.481e-01   1.583  0.11333   
## sp_ptbBM68      4.322e-01  7.588e-01   0.570  0.56894   
## sp_ptbBM69      6.696e-01  9.520e-01   0.703  0.48183   
## sp_ptbBM70      2.976e-01  1.239e+00   0.240  0.81026   
## sp_ptbBM71      6.485e-01  1.401e+00   0.463  0.64335   
## sp_ptbBM72      1.444e+00  1.323e+00   1.091  0.27523   
## sp_ptbBM73      8.786e-01  1.140e+00   0.771  0.44088   
## sp_ptbBM74      2.174e+00  1.064e+00   2.044  0.04095 * 
## sp_ptbBM75      9.807e-01  1.115e+00   0.880  0.37906   
## sp_ptbBM76      1.158e+00  1.091e+00   1.061  0.28878   
## sp_ptbBM77      8.070e-01  9.914e-01   0.814  0.41564   
## sp_ptbBM78      1.320e+00  1.242e+00   1.063  0.28787   
## sp_ptbBM79      1.051e+00  9.384e-01   1.120  0.26276   
## sp_ptbBM80      7.441e-01  9.252e-01   0.804  0.42126   
## sp_ptbBM81      1.185e+00  8.639e-01   1.372  0.17011   
## sp_ptbBM82      8.388e-01  8.962e-01   0.936  0.34931   
## sp_ptbBM83      2.697e-01  9.115e-01   0.296  0.76734   
## sp_ptbBM84      8.179e-01  9.837e-01   0.831  0.40570   
## sp_ptbBM85     -1.157e+00  1.061e+00  -1.090  0.27553   
## sp_ptbBM86      1.294e+00  9.933e-01   1.302  0.19284   
## sp_ptbBM87      8.031e-01  9.865e-01   0.814  0.41560   
## sp_ptbBM88      9.591e-01  1.097e+00   0.874  0.38207   
## sp_ptbBM89      1.723e-01  1.103e+00   0.156  0.87589   
## sp_ptbBM90      7.300e-01  1.181e+00   0.618  0.53656   
## sp_ptbBM91      2.328e+00  1.674e+00   1.391  0.16429   
## sp_ptbBM92      2.260e+00  1.325e+00   1.706  0.08802 . 
## sp_ptbBM93      1.802e+00  1.100e+00   1.638  0.10133   
## sp_ptbBM94      1.148e+00  1.129e+00   1.017  0.30930   
## sp_ptbBM95      1.472e+00  1.083e+00   1.359  0.17427   
## sp_ptbBM96      1.726e+00  9.691e-01   1.781  0.07493 . 
## sp_ptbBM97      8.238e-01  1.338e+00   0.616  0.53810   
## sp_ptbBM98      7.412e-01  1.183e+00   0.626  0.53113   
## sp_ptbBM99      8.849e-01  1.096e+00   0.807  0.41960   
## sp_ptbBM100     1.525e+00  1.079e+00   1.413  0.15767   
## sp_ptbBM101     1.629e+00  8.201e-01   1.986  0.04705 * 
## sp_ptbBM102     1.523e+00  7.921e-01   1.922  0.05459 . 
## sp_ptbBM103     7.846e-01  7.591e-01   1.034  0.30134   
## sp_ptbBM104     5.740e-01  6.873e-01   0.835  0.40361   
## sp_ptbBM105     3.525e-01  8.344e-01   0.422  0.67272   
## sp_ptbBM106    -5.470e-01  8.674e-01  -0.631  0.52827   
## sp_ptbBM107    -1.138e+00  1.347e+00  -0.844  0.39850   
## sp_ptbBM108     1.147e-01  9.416e-01   0.122  0.90308   
## sp_ptbBM109    -1.019e+00  1.207e+00  -0.844  0.39842   
## sp_ptbBM110    -6.913e-01  1.076e+00  -0.643  0.52039   
## sp_ptbBM111    -1.777e+00  1.225e+00  -1.450  0.14708   
## sp_ptbBM112    -1.976e+00  1.226e+00  -1.611  0.10711   
## sp_ptbBM113    -1.567e+00  1.526e+00  -1.027  0.30443   
## sp_ptbBM114     1.017e+00  9.838e-01   1.034  0.30111   
## sp_ptbBM115    -9.186e-01  8.940e-01  -1.027  0.30420   
## sp_ptbBM116     2.852e+00  1.073e+00   2.658  0.00787 **
## sp_ptbBM117    -7.323e-01  1.037e+00  -0.706  0.48002   
## sp_ptbBM118     2.758e+00  9.405e-01   2.933  0.00336 **
## sp_ptbBM119    -6.914e-01  1.156e+00  -0.598  0.54969   
## sp_ptbBM120     1.891e+00  1.056e+00   1.791  0.07337 . 
## sp_ptbBM121     3.492e-01  8.983e-01   0.389  0.69751   
## sp_ptbBM122     1.551e+00  7.666e-01   2.023  0.04308 * 
## sp_ptbBM123     1.076e+00  6.994e-01   1.539  0.12391   
## sp_ptbBM124     7.855e-01  7.443e-01   1.055  0.29129   
## sp_ptbBM125            NA         NA      NA       NA   
## sp_ptbBM126            NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(22332.14) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  939.56  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3230.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  22332 
##           Std. Err.:  143777 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2972.426
m11a <- glm.nb(ptbBM ~ cb11.maxT + sp_ptbBM,data=week); summary(m11a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb11.maxT + sp_ptbBM, data = week, init.theta = 22990.3603, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5724  -0.7694  -0.1141   0.5305   2.6610  
## 
## Coefficients: (5 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    -3.927e+01  1.661e+01  -2.364  0.01810 * 
## cb11.maxTv1.l1  6.780e-01  3.675e-01   1.845  0.06506 . 
## cb11.maxTv1.l2  1.270e-01  2.676e-01   0.475  0.63511   
## cb11.maxTv2.l1  3.430e+00  1.298e+00   2.643  0.00823 **
## cb11.maxTv2.l2 -2.211e-01  9.834e-01  -0.225  0.82211   
## cb11.maxTv3.l1  1.411e+00  5.124e-01   2.753  0.00591 **
## cb11.maxTv3.l2  1.290e-01  3.722e-01   0.347  0.72885   
## sp_ptbBM1              NA         NA      NA       NA   
## sp_ptbBM2              NA         NA      NA       NA   
## sp_ptbBM3              NA         NA      NA       NA   
## sp_ptbBM4      -1.141e+06  2.254e+06  -0.506  0.61273   
## sp_ptbBM5       1.444e+01  1.195e+01   1.209  0.22684   
## sp_ptbBM6      -2.050e+00  2.011e+00  -1.020  0.30782   
## sp_ptbBM7       7.078e-01  1.458e+00   0.485  0.62732   
## sp_ptbBM8      -1.487e+00  1.165e+00  -1.277  0.20166   
## sp_ptbBM9       1.337e+00  9.464e-01   1.412  0.15781   
## sp_ptbBM10     -2.386e+00  9.973e-01  -2.393  0.01673 * 
## sp_ptbBM11      1.927e+00  8.770e-01   2.197  0.02802 * 
## sp_ptbBM12      2.034e-01  7.342e-01   0.277  0.78179   
## sp_ptbBM13      1.050e+00  7.158e-01   1.467  0.14235   
## sp_ptbBM14     -1.842e+00  1.159e+00  -1.589  0.11199   
## sp_ptbBM15     -2.794e-01  1.131e+00  -0.247  0.80486   
## sp_ptbBM16     -1.455e+00  1.052e+00  -1.383  0.16675   
## sp_ptbBM17     -4.375e-01  9.817e-01  -0.446  0.65584   
## sp_ptbBM18     -1.111e-01  9.820e-01  -0.113  0.90990   
## sp_ptbBM19     -3.372e-01  9.850e-01  -0.342  0.73212   
## sp_ptbBM20     -8.118e-01  1.008e+00  -0.805  0.42071   
## sp_ptbBM21     -4.604e-01  1.211e+00  -0.380  0.70390   
## sp_ptbBM22     -3.476e-01  1.184e+00  -0.294  0.76902   
## sp_ptbBM23     -1.076e+00  1.077e+00  -0.998  0.31817   
## sp_ptbBM24     -2.464e-02  9.187e-01  -0.027  0.97860   
## sp_ptbBM25      3.023e-01  9.871e-01   0.306  0.75940   
## sp_ptbBM26      4.731e-01  9.490e-01   0.499  0.61808   
## sp_ptbBM27     -8.863e-01  1.080e+00  -0.821  0.41169   
## sp_ptbBM28     -1.327e+00  1.218e+00  -1.089  0.27617   
## sp_ptbBM29      2.521e-01  1.007e+00   0.250  0.80239   
## sp_ptbBM30     -4.568e-01  8.495e-01  -0.538  0.59077   
## sp_ptbBM31      1.325e+00  8.922e-01   1.485  0.13747   
## sp_ptbBM32     -3.532e-01  8.605e-01  -0.411  0.68144   
## sp_ptbBM33     -2.518e-01  9.112e-01  -0.276  0.78225   
## sp_ptbBM34      1.250e-02  8.510e-01   0.015  0.98828   
## sp_ptbBM35     -1.632e+00  1.273e+00  -1.282  0.19990   
## sp_ptbBM36     -3.990e-02  1.010e+00  -0.040  0.96848   
## sp_ptbBM37     -8.901e-01  1.078e+00  -0.826  0.40884   
## sp_ptbBM38      7.230e-01  8.157e-01   0.886  0.37548   
## sp_ptbBM39     -2.468e-01  9.104e-01  -0.271  0.78632   
## sp_ptbBM40      7.597e-01  8.899e-01   0.854  0.39327   
## sp_ptbBM41     -1.197e-01  9.101e-01  -0.131  0.89538   
## sp_ptbBM42     -1.091e+00  1.261e+00  -0.865  0.38683   
## sp_ptbBM43     -9.571e-02  1.022e+00  -0.094  0.92537   
## sp_ptbBM44      1.462e-01  9.080e-01   0.161  0.87205   
## sp_ptbBM45      7.944e-01  8.657e-01   0.918  0.35881   
## sp_ptbBM46     -8.224e-02  8.277e-01  -0.099  0.92086   
## sp_ptbBM47      5.978e-02  9.273e-01   0.064  0.94859   
## sp_ptbBM48     -1.873e-02  8.600e-01  -0.022  0.98263   
## sp_ptbBM49      1.351e-01  1.170e+00   0.115  0.90811   
## sp_ptbBM50     -6.852e-01  1.167e+00  -0.587  0.55694   
## sp_ptbBM51      1.453e+00  8.693e-01   1.671  0.09463 . 
## sp_ptbBM52      1.239e-01  9.056e-01   0.137  0.89119   
## sp_ptbBM53      1.695e+00  9.268e-01   1.829  0.06747 . 
## sp_ptbBM54      8.481e-01  9.193e-01   0.923  0.35622   
## sp_ptbBM55      2.127e-01  1.045e+00   0.204  0.83865   
## sp_ptbBM56      3.324e-01  1.178e+00   0.282  0.77780   
## sp_ptbBM57     -2.307e-01  1.211e+00  -0.191  0.84885   
## sp_ptbBM58      3.165e-02  8.707e-01   0.036  0.97101   
## sp_ptbBM59     -1.638e+00  1.096e+00  -1.494  0.13505   
## sp_ptbBM60     -1.278e+00  1.198e+00  -1.067  0.28608   
## sp_ptbBM61     -1.002e+00  1.065e+00  -0.941  0.34695   
## sp_ptbBM62     -1.873e+00  1.101e+00  -1.701  0.08889 . 
## sp_ptbBM63     -3.045e+00  1.324e+00  -2.299  0.02151 * 
## sp_ptbBM64     -2.307e+00  1.489e+00  -1.549  0.12129   
## sp_ptbBM65     -1.394e+00  1.114e+00  -1.251  0.21076   
## sp_ptbBM66     -9.563e-01  9.182e-01  -1.042  0.29764   
## sp_ptbBM67      6.262e-01  8.422e-01   0.744  0.45715   
## sp_ptbBM68      7.719e-01  8.538e-01   0.904  0.36596   
## sp_ptbBM69      2.421e-01  9.843e-01   0.246  0.80573   
## sp_ptbBM70     -7.056e-01  1.361e+00  -0.518  0.60428   
## sp_ptbBM71     -8.851e-01  1.296e+00  -0.683  0.49476   
## sp_ptbBM72      2.684e-01  1.186e+00   0.226  0.82092   
## sp_ptbBM73     -7.091e-02  9.866e-01  -0.072  0.94270   
## sp_ptbBM74      1.759e+00  8.527e-01   2.062  0.03916 * 
## sp_ptbBM75      9.081e-01  8.504e-01   1.068  0.28555   
## sp_ptbBM76      1.353e+00  8.726e-01   1.551  0.12099   
## sp_ptbBM77     -2.778e-01  9.236e-01  -0.301  0.76358   
## sp_ptbBM78      9.471e-04  1.187e+00   0.001  0.99936   
## sp_ptbBM79      4.206e-02  9.729e-01   0.043  0.96552   
## sp_ptbBM80     -7.511e-01  9.118e-01  -0.824  0.41010   
## sp_ptbBM81      2.261e-01  8.441e-01   0.268  0.78882   
## sp_ptbBM82     -1.292e-01  8.069e-01  -0.160  0.87282   
## sp_ptbBM83     -6.957e-01  8.615e-01  -0.807  0.41941   
## sp_ptbBM84     -5.812e-01  1.107e+00  -0.525  0.59955   
## sp_ptbBM85     -2.320e+00  1.170e+00  -1.982  0.04742 * 
## sp_ptbBM86      4.992e-01  8.925e-01   0.559  0.57598   
## sp_ptbBM87      1.305e-02  8.642e-01   0.015  0.98795   
## sp_ptbBM88      4.482e-01  1.008e+00   0.445  0.65655   
## sp_ptbBM89     -1.461e-01  9.804e-01  -0.149  0.88150   
## sp_ptbBM90     -1.434e-01  1.078e+00  -0.133  0.89413   
## sp_ptbBM91      2.105e+00  2.001e+00   1.052  0.29294   
## sp_ptbBM92      1.730e+00  1.542e+00   1.122  0.26181   
## sp_ptbBM93      2.005e+00  1.408e+00   1.424  0.15436   
## sp_ptbBM94      1.641e+00  1.249e+00   1.313  0.18904   
## sp_ptbBM95      2.674e+00  1.313e+00   2.036  0.04177 * 
## sp_ptbBM96      2.673e+00  1.206e+00   2.216  0.02670 * 
## sp_ptbBM97      2.817e+00  1.726e+00   1.632  0.10262   
## sp_ptbBM98      5.097e-01  1.507e+00   0.338  0.73519   
## sp_ptbBM99      1.199e+00  1.340e+00   0.894  0.37116   
## sp_ptbBM100     1.588e+00  1.094e+00   1.452  0.14640   
## sp_ptbBM101     2.171e+00  1.003e+00   2.166  0.03032 * 
## sp_ptbBM102     2.457e+00  9.854e-01   2.493  0.01265 * 
## sp_ptbBM103     1.804e+00  8.997e-01   2.005  0.04494 * 
## sp_ptbBM104     1.930e+00  9.840e-01   1.961  0.04986 * 
## sp_ptbBM105     2.359e-01  9.815e-01   0.240  0.81008   
## sp_ptbBM106    -5.736e-01  1.164e+00  -0.493  0.62221   
## sp_ptbBM107    -4.748e-01  8.228e-01  -0.577  0.56392   
## sp_ptbBM108    -2.046e-03  9.031e-01  -0.002  0.99819   
## sp_ptbBM109    -9.262e-01  8.734e-01  -1.060  0.28894   
## sp_ptbBM110     1.591e-01  7.184e-01   0.221  0.82477   
## sp_ptbBM111    -9.470e-01  8.020e-01  -1.181  0.23765   
## sp_ptbBM112    -1.599e+00  9.273e-01  -1.724  0.08469 . 
## sp_ptbBM113    -1.345e+00  1.208e+00  -1.113  0.26569   
## sp_ptbBM114     1.504e-01  9.088e-01   0.166  0.86851   
## sp_ptbBM115    -1.682e+00  9.551e-01  -1.761  0.07831 . 
## sp_ptbBM116     2.015e+00  9.586e-01   2.102  0.03556 * 
## sp_ptbBM117    -1.401e+00  1.074e+00  -1.305  0.19202   
## sp_ptbBM118     2.130e+00  9.095e-01   2.342  0.01918 * 
## sp_ptbBM119    -1.381e+00  1.189e+00  -1.162  0.24527   
## sp_ptbBM120     9.602e-01  1.184e+00   0.811  0.41749   
## sp_ptbBM121    -1.235e-01  9.603e-01  -0.129  0.89769   
## sp_ptbBM122     9.804e-01  8.353e-01   1.174  0.24056   
## sp_ptbBM123     4.186e-01  7.143e-01   0.586  0.55782   
## sp_ptbBM124     6.543e-01  7.456e-01   0.878  0.38015   
## sp_ptbBM125            NA         NA      NA       NA   
## sp_ptbBM126            NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(22990.36) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  935.29  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3226.1
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  22990 
##           Std. Err.:  147953 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2968.147
##to check model diag for univariate models

options(na.action="na.exclude")
library(dplyr) ##make sure lags are dplyr lags

##for m1a avgWindSp ######
scatter.smooth(predict(m1a, type='response'), rstandard(m1a, type='deviance'), col='gray')

m1a.resid<-residuals(m1a, type="deviance")
m1a.pred<-predict(m1a, type="response")
length(m1a.resid); length(m1a.pred)
## [1] 939
## [1] 939
pacf(m1a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-12 $ 25

library(dplyr)
#ensure that the lags are dplyr lags
m1a.ac<-update(m1a,.~.+lag(m1a.resid,1)+lag(m1a.resid,2)+lag(m1a.resid,3)+lag(m1a.resid,4)+
                   lag(m1a.resid,5)+lag(m1a.resid,6)+lag(m1a.resid,7)+lag(m1a.resid,8)+ 
                   lag(m1a.resid,9)+lag(m1a.resid,10)+lag(m1a.resid,11)+lag(m1a.resid,12)+
                   lag(m1a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
m1a.resid_ac<-residuals(m1a.ac, type="deviance")
m1a.pred_ac<-predict(m1a.ac, type="response")

pacf(m1a.resid_ac,na.action = na.omit) 

length(m1a.pred_ac)
## [1] 939
length(m1a.resid_ac)
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m1a.pred,lwd=1, col="blue")

plot(week$time,m1a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m1a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m1a.pred_ac,lwd=1, col="blue")

plot(week$time,m1a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m1a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose reponse and slices 
pred.m1a <- crosspred(cb1.avgWindSp, m1a.ac, cen = 4.5, by=0.1,cumul=TRUE)



##for m2a sun ######
summary(m2a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb2.sun + sp_ptbBM, data = week, init.theta = 22834.64112, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3950  -0.7776  -0.1304   0.5625   2.5851  
## 
## Coefficients: (5 not defined because of singularities)
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  -8.546e+00  9.030e+00  -0.946  0.34393   
## cb2.sunv1.l1  2.457e-01  1.946e-01   1.263  0.20665   
## cb2.sunv1.l2 -3.919e-02  1.398e-01  -0.280  0.77914   
## cb2.sunv2.l1  8.866e-01  7.914e-01   1.120  0.26258   
## cb2.sunv2.l2  4.458e-01  5.431e-01   0.821  0.41176   
## cb2.sunv3.l1  6.421e-01  3.004e-01   2.138  0.03252 * 
## cb2.sunv3.l2  3.638e-01  2.067e-01   1.760  0.07835 . 
## sp_ptbBM1            NA         NA      NA       NA   
## sp_ptbBM2            NA         NA      NA       NA   
## sp_ptbBM3            NA         NA      NA       NA   
## sp_ptbBM4    -1.457e+06  2.237e+06  -0.651  0.51483   
## sp_ptbBM5     1.637e+01  1.203e+01   1.360  0.17381   
## sp_ptbBM6    -2.509e+00  1.994e+00  -1.258  0.20829   
## sp_ptbBM7     1.398e+00  1.056e+00   1.324  0.18551   
## sp_ptbBM8    -1.246e+00  9.158e-01  -1.361  0.17351   
## sp_ptbBM9     5.623e-01  8.071e-01   0.697  0.48594   
## sp_ptbBM10   -3.464e+00  1.064e+00  -3.255  0.00113 **
## sp_ptbBM11    5.633e-01  7.594e-01   0.742  0.45826   
## sp_ptbBM12   -1.134e+00  8.704e-01  -1.303  0.19265   
## sp_ptbBM13   -7.862e-02  8.713e-01  -0.090  0.92810   
## sp_ptbBM14   -1.852e+00  9.216e-01  -2.009  0.04453 * 
## sp_ptbBM15   -7.575e-01  8.831e-01  -0.858  0.39106   
## sp_ptbBM16   -1.463e+00  8.951e-01  -1.634  0.10220   
## sp_ptbBM17   -1.044e+00  8.743e-01  -1.195  0.23227   
## sp_ptbBM18   -1.006e+00  8.871e-01  -1.134  0.25667   
## sp_ptbBM19   -1.196e+00  8.992e-01  -1.330  0.18353   
## sp_ptbBM20   -6.762e-01  8.443e-01  -0.801  0.42323   
## sp_ptbBM21   -2.532e-01  9.144e-01  -0.277  0.78190   
## sp_ptbBM22    3.135e-01  8.292e-01   0.378  0.70540   
## sp_ptbBM23   -8.043e-01  9.396e-01  -0.856  0.39203   
## sp_ptbBM24    3.883e-02  8.417e-01   0.046  0.96320   
## sp_ptbBM25   -3.668e-01  8.824e-01  -0.416  0.67763   
## sp_ptbBM26   -3.520e-01  9.480e-01  -0.371  0.71040   
## sp_ptbBM27   -1.912e+00  1.114e+00  -1.716  0.08615 . 
## sp_ptbBM28   -1.796e+00  1.003e+00  -1.791  0.07333 . 
## sp_ptbBM29   -7.802e-01  9.680e-01  -0.806  0.42024   
## sp_ptbBM30   -1.072e+00  9.040e-01  -1.186  0.23548   
## sp_ptbBM31   -2.243e-01  9.020e-01  -0.249  0.80357   
## sp_ptbBM32   -1.667e+00  9.940e-01  -1.677  0.09348 . 
## sp_ptbBM33   -1.202e+00  9.786e-01  -1.228  0.21937   
## sp_ptbBM34   -5.696e-02  9.585e-01  -0.059  0.95261   
## sp_ptbBM35   -1.568e-01  9.818e-01  -0.160  0.87315   
## sp_ptbBM36    1.475e+00  9.497e-01   1.553  0.12035   
## sp_ptbBM37   -9.219e-02  9.471e-01  -0.097  0.92246   
## sp_ptbBM38    1.435e+00  9.198e-01   1.560  0.11881   
## sp_ptbBM39    6.036e-02  9.284e-01   0.065  0.94816   
## sp_ptbBM40    1.603e+00  1.009e+00   1.589  0.11202   
## sp_ptbBM41    1.325e-01  9.037e-01   0.147  0.88343   
## sp_ptbBM42   -1.545e-01  1.040e+00  -0.149  0.88184   
## sp_ptbBM43    5.178e-02  8.486e-01   0.061  0.95134   
## sp_ptbBM44   -1.632e-01  7.695e-01  -0.212  0.83200   
## sp_ptbBM45    2.200e-01  7.278e-01   0.302  0.76247   
## sp_ptbBM46   -1.177e+00  7.989e-01  -1.474  0.14049   
## sp_ptbBM47   -6.994e-01  8.749e-01  -0.799  0.42405   
## sp_ptbBM48   -3.204e-01  7.665e-01  -0.418  0.67595   
## sp_ptbBM49   -6.950e-01  1.009e+00  -0.689  0.49110   
## sp_ptbBM50   -6.352e-01  8.211e-01  -0.774  0.43913   
## sp_ptbBM51    7.741e-01  8.400e-01   0.922  0.35676   
## sp_ptbBM52   -6.493e-01  7.781e-01  -0.834  0.40403   
## sp_ptbBM53    5.614e-01  7.589e-01   0.740  0.45951   
## sp_ptbBM54   -4.564e-01  7.692e-01  -0.593  0.55301   
## sp_ptbBM55   -6.105e-01  8.041e-01  -0.759  0.44775   
## sp_ptbBM56    1.619e-01  9.410e-01   0.172  0.86342   
## sp_ptbBM57   -8.778e-02  9.089e-01  -0.097  0.92306   
## sp_ptbBM58   -2.205e-01  8.368e-01  -0.264  0.79213   
## sp_ptbBM59   -5.513e-01  8.648e-01  -0.637  0.52381   
## sp_ptbBM60   -4.463e-01  8.151e-01  -0.548  0.58400   
## sp_ptbBM61    6.038e-02  8.739e-01   0.069  0.94492   
## sp_ptbBM62   -7.509e-01  8.883e-01  -0.845  0.39796   
## sp_ptbBM63   -1.652e+00  1.004e+00  -1.646  0.09983 . 
## sp_ptbBM64   -9.097e-01  9.166e-01  -0.993  0.32093   
## sp_ptbBM65   -3.562e-01  8.306e-01  -0.429  0.66807   
## sp_ptbBM66   -1.210e+00  7.892e-01  -1.533  0.12535   
## sp_ptbBM67   -6.703e-02  7.437e-01  -0.090  0.92819   
## sp_ptbBM68   -7.037e-01  7.752e-01  -0.908  0.36399   
## sp_ptbBM69   -4.101e-01  8.359e-01  -0.491  0.62374   
## sp_ptbBM70   -1.026e+00  1.072e+00  -0.957  0.33873   
## sp_ptbBM71    3.612e-01  1.025e+00   0.352  0.72451   
## sp_ptbBM72    1.082e-02  1.025e+00   0.011  0.99158   
## sp_ptbBM73   -1.701e-01  9.775e-01  -0.174  0.86183   
## sp_ptbBM74    1.184e+00  9.730e-01   1.217  0.22352   
## sp_ptbBM75    2.544e-01  9.061e-01   0.281  0.77887   
## sp_ptbBM76    8.757e-01  9.301e-01   0.942  0.34643   
## sp_ptbBM77    4.288e-01  9.377e-01   0.457  0.64747   
## sp_ptbBM78    6.772e-01  8.961e-01   0.756  0.44982   
## sp_ptbBM79    4.560e-01  8.409e-01   0.542  0.58758   
## sp_ptbBM80   -4.086e-01  9.208e-01  -0.444  0.65724   
## sp_ptbBM81   -4.644e-01  9.277e-01  -0.501  0.61665   
## sp_ptbBM82   -4.128e-01  8.162e-01  -0.506  0.61299   
## sp_ptbBM83   -9.705e-01  8.609e-01  -1.127  0.25959   
## sp_ptbBM84   -6.024e-01  8.662e-01  -0.695  0.48682   
## sp_ptbBM85   -2.166e+00  9.572e-01  -2.263  0.02362 * 
## sp_ptbBM86   -2.240e-01  9.238e-01  -0.242  0.80844   
## sp_ptbBM87   -2.014e-01  8.669e-01  -0.232  0.81630   
## sp_ptbBM88    1.377e-01  9.314e-01   0.148  0.88244   
## sp_ptbBM89   -9.040e-01  1.044e+00  -0.866  0.38653   
## sp_ptbBM90    6.946e-01  1.012e+00   0.686  0.49252   
## sp_ptbBM91   -1.368e-02  1.071e+00  -0.013  0.98981   
## sp_ptbBM92    9.233e-01  8.623e-01   1.071  0.28427   
## sp_ptbBM93    3.977e-01  8.857e-01   0.449  0.65338   
## sp_ptbBM94   -3.136e-01  9.116e-01  -0.344  0.73084   
## sp_ptbBM95    4.179e-01  8.186e-01   0.511  0.60964   
## sp_ptbBM96    1.044e+00  8.015e-01   1.303  0.19270   
## sp_ptbBM97    6.812e-01  8.018e-01   0.850  0.39559   
## sp_ptbBM98   -1.207e-01  1.121e+00  -0.108  0.91427   
## sp_ptbBM99    8.321e-01  8.213e-01   1.013  0.31099   
## sp_ptbBM100   1.848e-01  8.628e-01   0.214  0.83037   
## sp_ptbBM101   4.602e-01  7.562e-01   0.609  0.54281   
## sp_ptbBM102   1.340e-01  7.808e-01   0.172  0.86371   
## sp_ptbBM103  -1.872e-01  8.044e-01  -0.233  0.81596   
## sp_ptbBM104  -2.805e-01  7.641e-01  -0.367  0.71354   
## sp_ptbBM105  -1.058e+00  1.041e+00  -1.017  0.30933   
## sp_ptbBM106  -1.323e+00  8.701e-01  -1.521  0.12834   
## sp_ptbBM107  -1.375e+00  9.437e-01  -1.457  0.14502   
## sp_ptbBM108  -1.208e+00  9.779e-01  -1.235  0.21689   
## sp_ptbBM109  -1.722e+00  9.437e-01  -1.825  0.06797 . 
## sp_ptbBM110  -8.229e-01  1.071e+00  -0.769  0.44215   
## sp_ptbBM111  -1.224e+00  9.663e-01  -1.267  0.20512   
## sp_ptbBM112  -1.357e-01  8.136e-01  -0.167  0.86754   
## sp_ptbBM113   7.432e-01  8.201e-01   0.906  0.36481   
## sp_ptbBM114   9.927e-01  7.565e-01   1.312  0.18944   
## sp_ptbBM115  -5.699e-01  8.797e-01  -0.648  0.51705   
## sp_ptbBM116   2.203e+00  7.393e-01   2.980  0.00288 **
## sp_ptbBM117  -1.338e+00  8.911e-01  -1.502  0.13317   
## sp_ptbBM118   2.195e+00  8.312e-01   2.640  0.00829 **
## sp_ptbBM119  -1.257e+00  1.040e+00  -1.208  0.22707   
## sp_ptbBM120   1.083e+00  8.267e-01   1.310  0.19008   
## sp_ptbBM121  -2.234e-01  7.989e-01  -0.280  0.77979   
## sp_ptbBM122   9.936e-01  7.035e-01   1.412  0.15787   
## sp_ptbBM123   1.153e+00  6.239e-01   1.849  0.06450 . 
## sp_ptbBM124   9.738e-01  7.797e-01   1.249  0.21168   
## sp_ptbBM125          NA         NA      NA       NA   
## sp_ptbBM126          NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(22834.64) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  936.71  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3227.6
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  22835 
##           Std. Err.:  145868 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2969.576
scatter.smooth(predict(m2a, type='response'), rstandard(m2a, type='deviance'), col='gray')

m2a.resid<-residuals(m2a, type="deviance")
m2a.pred<-predict(m2a, type="response")
length(m2a.resid); length(m2a.pred)
## [1] 939
## [1] 939
pacf(m2a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-12 & 25

m2a.ac<-update(m2a,.~.+lag(m2a.resid,1)+lag(m2a.resid,2)+lag(m2a.resid,3)+lag(m2a.resid,4)+
                   lag(m2a.resid,5)+lag(m2a.resid,6)+lag(m2a.resid,7)+lag(m2a.resid,8)+
                   lag(m2a.resid,9)+lag(m2a.resid,10)+lag(m2a.resid,11)+lag(m2a.resid,12)+
                   +lag(m2a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
m2a.resid_ac<-residuals(m2a.ac, type="deviance")
m2a.pred_ac<-predict(m2a.ac, type="response")

pacf(m2a.resid_ac,na.action = na.omit) 

length(m2a.pred_ac); length(m2a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m2a.pred,lwd=1, col="blue")

plot(week$time,m2a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m2a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m2a.pred_ac,lwd=1, col="blue")

plot(week$time,m2a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m2a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose reponse and slices 
pred.m2a <- crosspred(cb2.sun, m2a.ac, cen = 50.7, by=0.1,cumul=TRUE)



##for m3a RF ######
summary(m3a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb3.RF + sp_ptbBM, data = week, init.theta = 21990.89142, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4107  -0.7737  -0.1194   0.5399   2.5834  
## 
## Coefficients: (5 not defined because of singularities)
##               Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  3.752e+00  2.639e+00   1.422  0.15504   
## cb3.RFv1.l1  1.915e-01  2.570e-01   0.745  0.45630   
## cb3.RFv1.l2  1.224e-01  1.783e-01   0.687  0.49217   
## cb3.RFv2.l1 -5.456e-01  3.757e-01  -1.452  0.14643   
## cb3.RFv2.l2  5.501e-03  2.728e-01   0.020  0.98391   
## cb3.RFv3.l1 -6.110e-01  6.007e-01  -1.017  0.30914   
## cb3.RFv3.l2 -1.987e-01  4.648e-01  -0.428  0.66895   
## sp_ptbBM1           NA         NA      NA       NA   
## sp_ptbBM2           NA         NA      NA       NA   
## sp_ptbBM3           NA         NA      NA       NA   
## sp_ptbBM4   -1.616e+06  2.229e+06  -0.725  0.46848   
## sp_ptbBM5    1.612e+01  1.190e+01   1.355  0.17544   
## sp_ptbBM6   -2.049e+00  1.982e+00  -1.033  0.30138   
## sp_ptbBM7    9.356e-01  1.093e+00   0.856  0.39192   
## sp_ptbBM8   -1.422e+00  9.968e-01  -1.426  0.15373   
## sp_ptbBM9    9.562e-01  8.875e-01   1.077  0.28129   
## sp_ptbBM10  -2.895e+00  1.142e+00  -2.534  0.01126 * 
## sp_ptbBM11   7.994e-01  7.989e-01   1.001  0.31702   
## sp_ptbBM12  -3.897e-01  8.838e-01  -0.441  0.65921   
## sp_ptbBM13   1.382e+00  9.198e-01   1.502  0.13311   
## sp_ptbBM14  -1.047e+00  9.248e-01  -1.132  0.25760   
## sp_ptbBM15   5.983e-01  8.226e-01   0.727  0.46703   
## sp_ptbBM16  -6.894e-01  9.636e-01  -0.715  0.47435   
## sp_ptbBM17   3.788e-01  9.024e-01   0.420  0.67463   
## sp_ptbBM18  -7.112e-02  8.988e-01  -0.079  0.93693   
## sp_ptbBM19   1.107e-01  8.694e-01   0.127  0.89864   
## sp_ptbBM20   4.349e-01  1.059e+00   0.411  0.68119   
## sp_ptbBM21   7.659e-01  8.498e-01   0.901  0.36745   
## sp_ptbBM22   8.331e-01  8.473e-01   0.983  0.32551   
## sp_ptbBM23  -3.778e-01  8.960e-01  -0.422  0.67327   
## sp_ptbBM24   4.352e-01  9.275e-01   0.469  0.63892   
## sp_ptbBM25   2.050e-01  9.075e-01   0.226  0.82126   
## sp_ptbBM26   8.037e-01  9.607e-01   0.837  0.40282   
## sp_ptbBM27  -8.948e-01  1.155e+00  -0.775  0.43859   
## sp_ptbBM28  -6.954e-01  1.052e+00  -0.661  0.50849   
## sp_ptbBM29   5.247e-01  9.381e-01   0.559  0.57597   
## sp_ptbBM30  -3.687e-01  9.401e-01  -0.392  0.69495   
## sp_ptbBM31   8.586e-01  7.953e-01   1.080  0.28034   
## sp_ptbBM32  -6.513e-01  8.960e-01  -0.727  0.46733   
## sp_ptbBM33  -4.491e-01  9.428e-01  -0.476  0.63383   
## sp_ptbBM34   4.711e-01  9.043e-01   0.521  0.60243   
## sp_ptbBM35   9.325e-02  8.363e-01   0.112  0.91122   
## sp_ptbBM36   1.127e+00  7.265e-01   1.551  0.12084   
## sp_ptbBM37   1.013e-02  8.767e-01   0.012  0.99078   
## sp_ptbBM38   5.836e-01  7.909e-01   0.738  0.46063   
## sp_ptbBM39  -2.152e-01  8.350e-01  -0.258  0.79666   
## sp_ptbBM40   5.584e-01  7.986e-01   0.699  0.48443   
## sp_ptbBM41   1.921e-01  8.673e-01   0.221  0.82475   
## sp_ptbBM42  -3.785e-01  9.546e-01  -0.396  0.69175   
## sp_ptbBM43   1.249e-01  8.631e-01   0.145  0.88491   
## sp_ptbBM44   4.531e-01  8.361e-01   0.542  0.58785   
## sp_ptbBM45   9.719e-01  8.323e-01   1.168  0.24293   
## sp_ptbBM46  -9.464e-02  8.405e-01  -0.113  0.91034   
## sp_ptbBM47   6.331e-01  7.461e-01   0.848  0.39618   
## sp_ptbBM48   3.450e-01  7.933e-01   0.435  0.66361   
## sp_ptbBM49   1.191e+00  8.410e-01   1.417  0.15654   
## sp_ptbBM50  -8.129e-02  8.628e-01  -0.094  0.92494   
## sp_ptbBM51   1.840e+00  7.873e-01   2.337  0.01944 * 
## sp_ptbBM52   1.842e-01  8.503e-01   0.217  0.82851   
## sp_ptbBM53   8.987e-01  8.019e-01   1.121  0.26238   
## sp_ptbBM54   5.042e-01  8.455e-01   0.596  0.55100   
## sp_ptbBM55   1.710e-01  8.666e-01   0.197  0.84358   
## sp_ptbBM56   9.194e-01  1.221e+00   0.753  0.45149   
## sp_ptbBM57   6.278e-01  9.497e-01   0.661  0.50862   
## sp_ptbBM58   2.778e-01  9.446e-01   0.294  0.76870   
## sp_ptbBM59  -4.618e-01  9.132e-01  -0.506  0.61305   
## sp_ptbBM60  -3.055e-02  9.455e-01  -0.032  0.97423   
## sp_ptbBM61   4.372e-01  8.599e-01   0.508  0.61113   
## sp_ptbBM62   5.010e-01  1.094e+00   0.458  0.64714   
## sp_ptbBM63  -3.810e-01  1.238e+00  -0.308  0.75825   
## sp_ptbBM64   6.193e-01  1.072e+00   0.578  0.56360   
## sp_ptbBM65   7.559e-01  9.347e-01   0.809  0.41867   
## sp_ptbBM66   4.820e-01  8.706e-01   0.554  0.57986   
## sp_ptbBM67   1.596e+00  9.200e-01   1.735  0.08275 . 
## sp_ptbBM68   8.460e-01  7.797e-01   1.085  0.27793   
## sp_ptbBM69   1.581e+00  9.879e-01   1.600  0.10963   
## sp_ptbBM70  -1.884e-01  1.003e+00  -0.188  0.85098   
## sp_ptbBM71   2.578e-01  1.043e+00   0.247  0.80478   
## sp_ptbBM72   7.082e-02  9.393e-01   0.075  0.93990   
## sp_ptbBM73  -2.614e-01  8.686e-01  -0.301  0.76346   
## sp_ptbBM74   8.836e-01  7.025e-01   1.258  0.20847   
## sp_ptbBM75   2.695e-01  8.276e-01   0.326  0.74468   
## sp_ptbBM76   7.926e-01  8.110e-01   0.977  0.32842   
## sp_ptbBM77   5.305e-01  8.175e-01   0.649  0.51634   
## sp_ptbBM78   1.336e+00  8.922e-01   1.497  0.13442   
## sp_ptbBM79   1.125e+00  9.032e-01   1.245  0.21303   
## sp_ptbBM80   4.905e-02  8.660e-01   0.057  0.95483   
## sp_ptbBM81   7.175e-01  8.868e-01   0.809  0.41847   
## sp_ptbBM82   1.242e-01  7.908e-01   0.157  0.87525   
## sp_ptbBM83   1.891e-01  8.299e-01   0.228  0.81975   
## sp_ptbBM84   6.184e-01  8.121e-01   0.761  0.44637   
## sp_ptbBM85  -9.928e-01  8.856e-01  -1.121  0.26225   
## sp_ptbBM86   1.285e+00  7.504e-01   1.712  0.08688 . 
## sp_ptbBM87   6.764e-03  7.564e-01   0.009  0.99287   
## sp_ptbBM88   4.594e-01  7.689e-01   0.598  0.55017   
## sp_ptbBM89  -6.497e-01  8.417e-01  -0.772  0.44016   
## sp_ptbBM90   9.597e-01  8.432e-01   1.138  0.25505   
## sp_ptbBM91   9.982e-02  9.589e-01   0.104  0.91709   
## sp_ptbBM92   5.419e-01  7.827e-01   0.692  0.48871   
## sp_ptbBM93   5.026e-01  8.900e-01   0.565  0.57223   
## sp_ptbBM94  -1.043e-01  9.093e-01  -0.115  0.90869   
## sp_ptbBM95   5.599e-01  8.358e-01   0.670  0.50292   
## sp_ptbBM96   8.995e-01  7.030e-01   1.280  0.20072   
## sp_ptbBM97   8.022e-01  8.733e-01   0.919  0.35831   
## sp_ptbBM98   1.085e-01  1.018e+00   0.107  0.91510   
## sp_ptbBM99   7.395e-01  9.092e-01   0.813  0.41603   
## sp_ptbBM100  2.023e-02  8.478e-01   0.024  0.98096   
## sp_ptbBM101  5.643e-01  7.434e-01   0.759  0.44784   
## sp_ptbBM102  1.577e-01  7.853e-01   0.201  0.84083   
## sp_ptbBM103  7.282e-02  8.047e-01   0.091  0.92789   
## sp_ptbBM104  4.079e-01  8.039e-01   0.507  0.61186   
## sp_ptbBM105  1.008e-01  1.036e+00   0.097  0.92251   
## sp_ptbBM106 -5.871e-01  9.315e-01  -0.630  0.52852   
## sp_ptbBM107 -2.793e-01  8.419e-01  -0.332  0.74007   
## sp_ptbBM108  2.943e-01  8.334e-01   0.353  0.72401   
## sp_ptbBM109 -2.923e-01  9.176e-01  -0.319  0.75006   
## sp_ptbBM110  6.300e-01  7.449e-01   0.846  0.39771   
## sp_ptbBM111 -1.888e-03  1.036e+00  -0.002  0.99855   
## sp_ptbBM112 -2.997e-01  9.151e-01  -0.327  0.74329   
## sp_ptbBM113  8.883e-01  7.691e-01   1.155  0.24809   
## sp_ptbBM114  8.528e-01  7.960e-01   1.071  0.28401   
## sp_ptbBM115 -7.721e-01  8.698e-01  -0.888  0.37471   
## sp_ptbBM116  2.046e+00  7.249e-01   2.822  0.00477 **
## sp_ptbBM117 -1.100e+00  8.341e-01  -1.319  0.18720   
## sp_ptbBM118  2.252e+00  8.080e-01   2.787  0.00533 **
## sp_ptbBM119 -1.177e+00  1.044e+00  -1.127  0.25985   
## sp_ptbBM120  1.256e+00  7.892e-01   1.591  0.11158   
## sp_ptbBM121 -4.664e-01  7.812e-01  -0.597  0.55045   
## sp_ptbBM122  8.489e-01  7.344e-01   1.156  0.24774   
## sp_ptbBM123  3.753e-02  6.415e-01   0.059  0.95335   
## sp_ptbBM124  6.630e-01  7.574e-01   0.875  0.38135   
## sp_ptbBM125         NA         NA      NA       NA   
## sp_ptbBM126         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(21990.89) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  943.43  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3234.3
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  21991 
##           Std. Err.:  143476 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2976.296
scatter.smooth(predict(m3a, type='response'), rstandard(m3a, type='deviance'), col='gray')

m3a.resid<-residuals(m3a, type="deviance")
m3a.pred<-predict(m3a, type="response")
length(m3a.resid); length(m3a.pred)
## [1] 939
## [1] 939
pacf(m3a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-12 & 25

m3a.ac<-update(m3a,.~.+lag(m3a.resid,1)+lag(m3a.resid,2)+lag(m3a.resid,3)+lag(m3a.resid,4)+
                   lag(m3a.resid,5)+lag(m3a.resid,6)+ lag(m3a.resid,7)+lag(m3a.resid,8)+
                   lag(m3a.resid,9)+lag(m3a.resid,10)+lag(m3a.resid,11)+lag(m3a.resid,12)+
                   lag(m3a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
m3a.resid_ac<-residuals(m3a.ac, type="deviance")
m3a.pred_ac<-predict(m3a.ac, type="response")

pacf(m3a.resid_ac,na.action = na.omit) 

length(m3a.pred_ac); length(m3a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m3a.pred,lwd=1, col="blue")

plot(week$time,m3a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m3a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m3a.pred_ac,lwd=1, col="blue")

plot(week$time,m3a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m3a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose reponse and slices now
pred.m3a <- crosspred(cb3.RF, m3a.ac, cen = 44.9, by=0.1,cumul=TRUE)




##for m5a minRH  ######
summary(m5a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb5.minRH + sp_ptbBM, data = week, init.theta = 22284.16938, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4192  -0.7548  -0.1076   0.5433   2.6199  
## 
## Coefficients: (5 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     1.720e+01  1.055e+01   1.630  0.10321   
## cb5.minRHv1.l1 -1.483e-01  2.389e-01  -0.621  0.53474   
## cb5.minRHv1.l2  6.178e-02  1.595e-01   0.387  0.69851   
## cb5.minRHv2.l1 -1.606e+00  9.187e-01  -1.748  0.08039 . 
## cb5.minRHv2.l2 -6.450e-01  6.677e-01  -0.966  0.33402   
## cb5.minRHv3.l1 -9.477e-01  5.807e-01  -1.632  0.10264   
## cb5.minRHv3.l2 -5.744e-01  4.347e-01  -1.321  0.18641   
## sp_ptbBM1              NA         NA      NA       NA   
## sp_ptbBM2              NA         NA      NA       NA   
## sp_ptbBM3              NA         NA      NA       NA   
## sp_ptbBM4      -1.475e+06  2.237e+06  -0.659  0.50973   
## sp_ptbBM5       1.534e+01  1.190e+01   1.289  0.19734   
## sp_ptbBM6      -2.922e+00  2.005e+00  -1.457  0.14499   
## sp_ptbBM7       8.026e-01  1.073e+00   0.748  0.45428   
## sp_ptbBM8      -1.369e+00  9.932e-01  -1.378  0.16810   
## sp_ptbBM9       7.567e-01  9.445e-01   0.801  0.42304   
## sp_ptbBM10     -3.122e+00  1.049e+00  -2.975  0.00293 **
## sp_ptbBM11     -2.315e-01  9.566e-01  -0.242  0.80878   
## sp_ptbBM12     -1.127e+00  8.206e-01  -1.373  0.16980   
## sp_ptbBM13     -3.965e-02  9.349e-01  -0.042  0.96617   
## sp_ptbBM14     -1.387e+00  1.083e+00  -1.280  0.20041   
## sp_ptbBM15     -1.608e-01  1.137e+00  -0.142  0.88747   
## sp_ptbBM16     -1.310e+00  1.286e+00  -1.019  0.30813   
## sp_ptbBM17     -6.231e-01  1.068e+00  -0.584  0.55954   
## sp_ptbBM18     -5.816e-01  1.079e+00  -0.539  0.58989   
## sp_ptbBM19     -4.891e-01  9.940e-01  -0.492  0.62266   
## sp_ptbBM20     -3.470e-01  1.101e+00  -0.315  0.75256   
## sp_ptbBM21      7.269e-02  1.019e+00   0.071  0.94314   
## sp_ptbBM22      3.655e-01  9.295e-01   0.393  0.69415   
## sp_ptbBM23     -1.017e+00  9.589e-01  -1.060  0.28905   
## sp_ptbBM24     -1.587e-01  8.420e-01  -0.188  0.85051   
## sp_ptbBM25     -5.421e-01  7.700e-01  -0.704  0.48142   
## sp_ptbBM26     -3.071e-01  8.328e-01  -0.369  0.71228   
## sp_ptbBM27     -1.350e+00  9.270e-01  -1.457  0.14525   
## sp_ptbBM28     -1.587e+00  1.024e+00  -1.550  0.12115   
## sp_ptbBM29      3.401e-01  8.739e-01   0.389  0.69714   
## sp_ptbBM30     -1.175e+00  1.003e+00  -1.171  0.24143   
## sp_ptbBM31     -1.910e-02  1.060e+00  -0.018  0.98563   
## sp_ptbBM32     -2.070e+00  1.369e+00  -1.512  0.13046   
## sp_ptbBM33     -1.612e+00  1.269e+00  -1.271  0.20389   
## sp_ptbBM34     -1.109e+00  1.354e+00  -0.819  0.41259   
## sp_ptbBM35     -1.404e+00  1.536e+00  -0.914  0.36078   
## sp_ptbBM36     -1.918e-01  1.551e+00  -0.124  0.90155   
## sp_ptbBM37     -1.270e+00  1.351e+00  -0.941  0.34695   
## sp_ptbBM38      7.275e-02  1.131e+00   0.064  0.94870   
## sp_ptbBM39     -1.053e+00  1.149e+00  -0.916  0.35942   
## sp_ptbBM40     -3.307e-02  9.692e-01  -0.034  0.97278   
## sp_ptbBM41     -7.771e-01  1.055e+00  -0.737  0.46120   
## sp_ptbBM42     -1.345e+00  1.092e+00  -1.232  0.21796   
## sp_ptbBM43     -7.441e-01  9.343e-01  -0.796  0.42580   
## sp_ptbBM44     -5.176e-01  9.457e-01  -0.547  0.58420   
## sp_ptbBM45     -2.657e-01  8.920e-01  -0.298  0.76579   
## sp_ptbBM46     -1.256e+00  9.571e-01  -1.312  0.18953   
## sp_ptbBM47     -5.985e-01  9.798e-01  -0.611  0.54134   
## sp_ptbBM48     -7.957e-01  7.947e-01  -1.001  0.31674   
## sp_ptbBM49     -1.857e-01  1.169e+00  -0.159  0.87385   
## sp_ptbBM50     -1.433e+00  9.687e-01  -1.479  0.13906   
## sp_ptbBM51      2.306e-01  1.067e+00   0.216  0.82893   
## sp_ptbBM52     -1.031e+00  9.856e-01  -1.046  0.29577   
## sp_ptbBM53      1.796e-01  9.212e-01   0.195  0.84545   
## sp_ptbBM54     -4.590e-01  8.971e-01  -0.512  0.60889   
## sp_ptbBM55     -4.741e-01  9.946e-01  -0.477  0.63362   
## sp_ptbBM56     -2.438e-01  1.079e+00  -0.226  0.82129   
## sp_ptbBM57     -1.713e-01  1.049e+00  -0.163  0.87033   
## sp_ptbBM58     -3.096e-01  8.906e-01  -0.348  0.72810   
## sp_ptbBM59     -1.505e+00  1.076e+00  -1.399  0.16192   
## sp_ptbBM60     -8.917e-01  1.070e+00  -0.833  0.40482   
## sp_ptbBM61     -7.324e-01  1.055e+00  -0.694  0.48751   
## sp_ptbBM62     -6.589e-01  1.071e+00  -0.615  0.53844   
## sp_ptbBM63     -1.827e+00  1.311e+00  -1.394  0.16329   
## sp_ptbBM64     -9.561e-01  1.415e+00  -0.676  0.49934   
## sp_ptbBM65     -9.820e-01  1.136e+00  -0.865  0.38723   
## sp_ptbBM66     -7.167e-01  8.801e-01  -0.814  0.41549   
## sp_ptbBM67      2.977e-01  7.096e-01   0.420  0.67481   
## sp_ptbBM68     -2.656e-01  6.724e-01  -0.395  0.69282   
## sp_ptbBM69      4.190e-01  7.596e-01   0.552  0.58120   
## sp_ptbBM70     -1.028e+00  1.016e+00  -1.012  0.31151   
## sp_ptbBM71     -5.361e-01  9.877e-01  -0.543  0.58730   
## sp_ptbBM72     -4.652e-01  9.202e-01  -0.506  0.61316   
## sp_ptbBM73     -9.096e-01  8.782e-01  -1.036  0.30034   
## sp_ptbBM74      7.332e-01  7.852e-01   0.934  0.35042   
## sp_ptbBM75     -5.019e-01  8.481e-01  -0.592  0.55401   
## sp_ptbBM76      4.294e-01  7.019e-01   0.612  0.54069   
## sp_ptbBM77     -3.389e-01  9.105e-01  -0.372  0.70973   
## sp_ptbBM78      7.166e-01  1.030e+00   0.696  0.48666   
## sp_ptbBM79      4.498e-01  8.976e-01   0.501  0.61630   
## sp_ptbBM80     -8.378e-01  9.603e-01  -0.872  0.38298   
## sp_ptbBM81     -2.868e-01  8.403e-01  -0.341  0.73284   
## sp_ptbBM82     -5.488e-01  7.643e-01  -0.718  0.47268   
## sp_ptbBM83     -9.749e-01  8.511e-01  -1.145  0.25202   
## sp_ptbBM84     -3.080e-01  9.544e-01  -0.323  0.74687   
## sp_ptbBM85     -1.693e+00  1.099e+00  -1.540  0.12348   
## sp_ptbBM86      2.341e-01  1.025e+00   0.228  0.81943   
## sp_ptbBM87     -2.274e-01  7.985e-01  -0.285  0.77577   
## sp_ptbBM88     -3.292e-01  8.538e-01  -0.386  0.69985   
## sp_ptbBM89     -1.217e+00  8.333e-01  -1.460  0.14433   
## sp_ptbBM90      1.142e-01  8.765e-01   0.130  0.89638   
## sp_ptbBM91     -6.856e-01  1.646e+00  -0.417  0.67694   
## sp_ptbBM92      8.631e-01  1.192e+00   0.724  0.46915   
## sp_ptbBM93      7.456e-01  1.262e+00   0.591  0.55453   
## sp_ptbBM94      3.079e-01  1.090e+00   0.283  0.77747   
## sp_ptbBM95      1.341e+00  1.100e+00   1.220  0.22259   
## sp_ptbBM96      1.883e+00  1.126e+00   1.673  0.09441 . 
## sp_ptbBM97      2.131e+00  1.397e+00   1.525  0.12726   
## sp_ptbBM98     -6.762e-01  1.337e+00  -0.506  0.61289   
## sp_ptbBM99      9.335e-01  1.155e+00   0.808  0.41905   
## sp_ptbBM100     5.583e-01  1.065e+00   0.524  0.60026   
## sp_ptbBM101     9.865e-01  9.961e-01   0.990  0.32201   
## sp_ptbBM102     1.137e+00  9.564e-01   1.189  0.23459   
## sp_ptbBM103     8.712e-01  9.361e-01   0.931  0.35198   
## sp_ptbBM104     1.060e+00  8.751e-01   1.212  0.22563   
## sp_ptbBM105    -2.148e-01  9.297e-01  -0.231  0.81725   
## sp_ptbBM106     2.272e-01  1.001e+00   0.227  0.82039   
## sp_ptbBM107    -1.506e-01  7.850e-01  -0.192  0.84787   
## sp_ptbBM108     4.777e-01  8.535e-01   0.560  0.57564   
## sp_ptbBM109    -1.516e-01  6.680e-01  -0.227  0.82049   
## sp_ptbBM110     1.052e+00  6.793e-01   1.549  0.12132   
## sp_ptbBM111     5.152e-01  6.970e-01   0.739  0.45980   
## sp_ptbBM112    -2.536e-01  7.185e-01  -0.353  0.72410   
## sp_ptbBM113     4.126e-01  9.235e-01   0.447  0.65507   
## sp_ptbBM114     6.130e-01  8.730e-01   0.702  0.48261   
## sp_ptbBM115    -9.407e-01  8.881e-01  -1.059  0.28950   
## sp_ptbBM116     1.891e+00  7.500e-01   2.521  0.01171 * 
## sp_ptbBM117    -1.613e+00  9.618e-01  -1.677  0.09353 . 
## sp_ptbBM118     1.808e+00  7.696e-01   2.349  0.01882 * 
## sp_ptbBM119    -1.658e+00  1.074e+00  -1.544  0.12248   
## sp_ptbBM120     6.088e-01  9.977e-01   0.610  0.54174   
## sp_ptbBM121    -5.461e-01  9.366e-01  -0.583  0.55982   
## sp_ptbBM122     7.548e-01  8.127e-01   0.929  0.35305   
## sp_ptbBM123     4.695e-02  6.455e-01   0.073  0.94201   
## sp_ptbBM124     8.533e-01  7.540e-01   1.132  0.25778   
## sp_ptbBM125            NA         NA      NA       NA   
## sp_ptbBM126            NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(22284.17) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  941.58  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3232.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  22284 
##           Std. Err.:  144435 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2974.443
scatter.smooth(predict(m5a, type='response'), rstandard(m5a, type='deviance'), col='gray')

m5a.resid<-residuals(m5a, type="deviance")
m5a.pred<-predict(m5a, type="response")
length(m5a.resid); length(m5a.pred)
## [1] 939
## [1] 939
pacf(m5a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-12 & 25

#ensure that the lags are dplyr lags
m5a.ac<-update(m5a,.~.+lag(m5a.resid,1)+lag(m5a.resid,2)+lag(m5a.resid,3)+lag(m5a.resid,4)+
                   lag(m5a.resid,5)+lag(m5a.resid,6)+lag(m5a.resid,7)+lag(m5a.resid,8)+ 
                   lag(m5a.resid,9)+lag(m5a.resid,10)+lag(m5a.resid,11)+lag(m5a.resid,12)+
                   lag(m5a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(m5a.ac)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb5.minRH + sp_ptbBM + lag(m5a.resid, 
##     1) + lag(m5a.resid, 2) + lag(m5a.resid, 3) + lag(m5a.resid, 
##     4) + lag(m5a.resid, 5) + lag(m5a.resid, 6) + lag(m5a.resid, 
##     7) + lag(m5a.resid, 8) + lag(m5a.resid, 9) + lag(m5a.resid, 
##     10) + lag(m5a.resid, 11) + lag(m5a.resid, 12) + lag(m5a.resid, 
##     25), data = week, init.theta = 47356.28936, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.48248  -0.66160  -0.03787   0.44756   2.15902  
## 
## Coefficients: (9 not defined because of singularities)
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         8.81195   11.13123   0.792 0.428570    
## cb5.minRHv1.l1      0.13802    0.24739   0.558 0.576905    
## cb5.minRHv1.l2      0.01879    0.16567   0.113 0.909682    
## cb5.minRHv2.l1     -1.10557    0.98274  -1.125 0.260591    
## cb5.minRHv2.l2     -1.34375    0.69733  -1.927 0.053980 .  
## cb5.minRHv3.l1     -0.91384    0.63426  -1.441 0.149643    
## cb5.minRHv3.l2     -0.62593    0.46374  -1.350 0.177096    
## sp_ptbBM1                NA         NA      NA       NA    
## sp_ptbBM2                NA         NA      NA       NA    
## sp_ptbBM3                NA         NA      NA       NA    
## sp_ptbBM4                NA         NA      NA       NA    
## sp_ptbBM5                NA         NA      NA       NA    
## sp_ptbBM6                NA         NA      NA       NA    
## sp_ptbBM7                NA         NA      NA       NA    
## sp_ptbBM8          -3.70388   43.87493  -0.084 0.932723    
## sp_ptbBM9           1.69916    3.97987   0.427 0.669423    
## sp_ptbBM10         -2.50660    1.66503  -1.505 0.132211    
## sp_ptbBM11         -0.75285    1.04115  -0.723 0.469620    
## sp_ptbBM12         -0.52478    0.91855  -0.571 0.567791    
## sp_ptbBM13          1.21617    0.97014   1.254 0.209984    
## sp_ptbBM14         -1.95224    1.10973  -1.759 0.078542 .  
## sp_ptbBM15          2.50187    1.17950   2.121 0.033911 *  
## sp_ptbBM16         -1.63335    1.31414  -1.243 0.213904    
## sp_ptbBM17          1.14340    1.10301   1.037 0.299911    
## sp_ptbBM18         -0.87188    1.12205  -0.777 0.437133    
## sp_ptbBM19          1.78708    1.00760   1.774 0.076131 .  
## sp_ptbBM20         -1.19640    1.13986  -1.050 0.293900    
## sp_ptbBM21          1.48456    1.07823   1.377 0.168558    
## sp_ptbBM22          0.75313    0.93743   0.803 0.421743    
## sp_ptbBM23         -0.92808    0.95427  -0.973 0.330770    
## sp_ptbBM24          0.38605    0.84193   0.459 0.646576    
## sp_ptbBM25         -1.58941    0.79623  -1.996 0.045915 *  
## sp_ptbBM26          0.24890    0.84859   0.293 0.769290    
## sp_ptbBM27         -2.48665    0.86366  -2.879 0.003987 ** 
## sp_ptbBM28         -1.41449    1.04600  -1.352 0.176284    
## sp_ptbBM29         -0.20796    0.90107  -0.231 0.817476    
## sp_ptbBM30          0.79690    1.04586   0.762 0.446086    
## sp_ptbBM31          0.11274    1.11160   0.101 0.919219    
## sp_ptbBM32          0.68058    1.42458   0.478 0.632833    
## sp_ptbBM33         -1.92778    1.30432  -1.478 0.139410    
## sp_ptbBM34          1.76311    1.40908   1.251 0.210843    
## sp_ptbBM35         -1.10882    1.59088  -0.697 0.485810    
## sp_ptbBM36          2.02531    1.60464   1.262 0.206892    
## sp_ptbBM37         -0.66552    1.41589  -0.470 0.638326    
## sp_ptbBM38          0.66419    1.18721   0.559 0.575850    
## sp_ptbBM39          0.94306    1.16825   0.807 0.419526    
## sp_ptbBM40         -0.24222    1.01812  -0.238 0.811955    
## sp_ptbBM41          0.72653    1.05966   0.686 0.492948    
## sp_ptbBM42         -3.32323    1.16398  -2.855 0.004303 ** 
## sp_ptbBM43          1.43184    1.01950   1.404 0.160184    
## sp_ptbBM44         -2.56774    0.95925  -2.677 0.007432 ** 
## sp_ptbBM45          0.99620    0.90691   1.098 0.272009    
## sp_ptbBM46         -1.15885    0.97923  -1.183 0.236637    
## sp_ptbBM47          0.39199    0.98436   0.398 0.690471    
## sp_ptbBM48         -1.29220    0.82009  -1.576 0.115099    
## sp_ptbBM49          1.15666    1.20393   0.961 0.336687    
## sp_ptbBM50         -0.88039    0.99709  -0.883 0.377260    
## sp_ptbBM51          0.72178    1.10279   0.655 0.512786    
## sp_ptbBM52          0.06480    1.02375   0.063 0.949527    
## sp_ptbBM53          0.96396    0.93048   1.036 0.300211    
## sp_ptbBM54          0.89297    0.91229   0.979 0.327668    
## sp_ptbBM55         -0.41815    1.03883  -0.403 0.687301    
## sp_ptbBM56          0.84611    1.10080   0.769 0.442110    
## sp_ptbBM57          1.14448    1.07894   1.061 0.288806    
## sp_ptbBM58          0.30959    0.89687   0.345 0.729955    
## sp_ptbBM59         -0.27840    1.09853  -0.253 0.799937    
## sp_ptbBM60          0.47612    1.08822   0.438 0.661732    
## sp_ptbBM61         -0.97452    1.09668  -0.889 0.374212    
## sp_ptbBM62          1.51380    1.10503   1.370 0.170714    
## sp_ptbBM63         -2.71015    1.36827  -1.981 0.047623 *  
## sp_ptbBM64          2.78422    1.50410   1.851 0.064157 .  
## sp_ptbBM65         -2.43667    1.15192  -2.115 0.034403 *  
## sp_ptbBM66          2.11121    0.92987   2.270 0.023182 *  
## sp_ptbBM67         -0.47324    0.71561  -0.661 0.508410    
## sp_ptbBM68          0.36378    0.67251   0.541 0.588558    
## sp_ptbBM69          0.36529    0.75050   0.487 0.626451    
## sp_ptbBM70          0.24289    1.01209   0.240 0.810341    
## sp_ptbBM71         -0.92128    1.04944  -0.878 0.380010    
## sp_ptbBM72          0.74425    0.92968   0.801 0.423400    
## sp_ptbBM73         -3.05036    0.97546  -3.127 0.001765 ** 
## sp_ptbBM74          2.31705    0.82908   2.795 0.005194 ** 
## sp_ptbBM75         -3.87424    0.89265  -4.340 1.42e-05 ***
## sp_ptbBM76          2.87181    0.78826   3.643 0.000269 ***
## sp_ptbBM77         -2.44284    0.93850  -2.603 0.009243 ** 
## sp_ptbBM78          3.08385    1.07028   2.881 0.003960 ** 
## sp_ptbBM79          0.74242    0.92039   0.807 0.419879    
## sp_ptbBM80          1.37296    0.96546   1.422 0.155004    
## sp_ptbBM81         -1.77308    0.89962  -1.971 0.048733 *  
## sp_ptbBM82          1.82743    0.80554   2.269 0.023294 *  
## sp_ptbBM83         -3.19962    0.88792  -3.604 0.000314 ***
## sp_ptbBM84          1.65409    1.01820   1.625 0.104263    
## sp_ptbBM85         -2.08471    1.13367  -1.839 0.065929 .  
## sp_ptbBM86          0.77550    1.04977   0.739 0.460071    
## sp_ptbBM87          0.47275    0.79640   0.594 0.552780    
## sp_ptbBM88         -1.01608    0.86739  -1.171 0.241428    
## sp_ptbBM89         -1.62543    0.87504  -1.858 0.063231 .  
## sp_ptbBM90         -1.83303    0.89153  -2.056 0.039778 *  
## sp_ptbBM91          0.37320    1.68810   0.221 0.825031    
## sp_ptbBM92          1.40224    1.22709   1.143 0.253149    
## sp_ptbBM93          2.01777    1.30001   1.552 0.120632    
## sp_ptbBM94          0.44403    1.15702   0.384 0.701148    
## sp_ptbBM95          0.66362    1.12769   0.588 0.556210    
## sp_ptbBM96          1.43942    1.26878   1.134 0.256589    
## sp_ptbBM97          1.95762    1.45576   1.345 0.178710    
## sp_ptbBM98         -4.03787    1.38960  -2.906 0.003663 ** 
## sp_ptbBM99          2.03400    1.23878   1.642 0.100602    
## sp_ptbBM100         0.12563    1.08460   0.116 0.907785    
## sp_ptbBM101         1.64965    1.05012   1.571 0.116201    
## sp_ptbBM102         0.99114    0.95540   1.037 0.299545    
## sp_ptbBM103        -0.69498    0.96389  -0.721 0.470901    
## sp_ptbBM104         1.50499    0.91682   1.642 0.100685    
## sp_ptbBM105        -1.11182    0.97108  -1.145 0.252240    
## sp_ptbBM106         1.48426    1.12707   1.317 0.187866    
## sp_ptbBM107        -2.03072    0.78671  -2.581 0.009844 ** 
## sp_ptbBM108         0.81067    0.90330   0.897 0.369477    
## sp_ptbBM109         0.43339    0.67915   0.638 0.523389    
## sp_ptbBM110         0.83479    0.68928   1.211 0.225852    
## sp_ptbBM111         1.58816    0.72923   2.178 0.029417 *  
## sp_ptbBM112        -1.02239    0.70243  -1.455 0.145531    
## sp_ptbBM113         0.55766    0.93208   0.598 0.549642    
## sp_ptbBM114         0.06613    0.88950   0.074 0.940735    
## sp_ptbBM115        -0.49457    0.89722  -0.551 0.581483    
## sp_ptbBM116         1.23424    0.77960   1.583 0.113380    
## sp_ptbBM117        -0.81096    1.00730  -0.805 0.420769    
## sp_ptbBM118         0.65055    0.78169   0.832 0.405274    
## sp_ptbBM119        -0.58887    1.14102  -0.516 0.605792    
## sp_ptbBM120        -1.16750    1.03968  -1.123 0.261463    
## sp_ptbBM121        -1.01226    0.97107  -1.042 0.297214    
## sp_ptbBM122         0.80515    0.82432   0.977 0.328695    
## sp_ptbBM123        -0.54613    0.64971  -0.841 0.400585    
## sp_ptbBM124         1.83948    0.77843   2.363 0.018124 *  
## sp_ptbBM125              NA         NA      NA       NA    
## sp_ptbBM126              NA         NA      NA       NA    
## lag(m5a.resid, 1)  -0.43721    0.03058 -14.299  < 2e-16 ***
## lag(m5a.resid, 2)  -0.48490    0.03548 -13.666  < 2e-16 ***
## lag(m5a.resid, 3)  -0.56471    0.03714 -15.204  < 2e-16 ***
## lag(m5a.resid, 4)  -0.57563    0.04022 -14.312  < 2e-16 ***
## lag(m5a.resid, 5)  -0.58235    0.04054 -14.365  < 2e-16 ***
## lag(m5a.resid, 6)  -0.53987    0.04142 -13.034  < 2e-16 ***
## lag(m5a.resid, 7)  -0.51042    0.03913 -13.045  < 2e-16 ***
## lag(m5a.resid, 8)  -0.45784    0.03764 -12.165  < 2e-16 ***
## lag(m5a.resid, 9)  -0.36715    0.03517 -10.440  < 2e-16 ***
## lag(m5a.resid, 10) -0.31511    0.03190  -9.877  < 2e-16 ***
## lag(m5a.resid, 11) -0.21099    0.03103  -6.799 1.06e-11 ***
## lag(m5a.resid, 12) -0.17378    0.02885  -6.023 1.71e-09 ***
## lag(m5a.resid, 25) -0.04625    0.02447  -1.890 0.058744 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(47356.29) family taken to be 1)
## 
##     Null deviance: 1055.03  on 861  degrees of freedom
## Residual deviance:  548.18  on 725  degrees of freedom
##   (77 observations deleted due to missingness)
## AIC: 2806.1
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  47356 
##           Std. Err.:  185936 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2530.107
m5a.resid_ac<-residuals(m5a.ac, type="deviance")
m5a.pred_ac<-predict(m5a.ac, type="response")

pacf(m5a.resid_ac,na.action = na.omit) 

length(m5a.pred_ac); length(m5a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m5a.pred,lwd=1, col="blue")

plot(week$time,m5a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m5a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m5a.pred_ac,lwd=1, col="blue")

plot(week$time,m5a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m5a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose reponse and slices
pred.m5a <- crosspred(cb5.minRH, m5a.ac, cen = 63, by=0.1,cumul=TRUE)



##for m6a meanRH ######
summary(m6a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb6.meanRH + sp_ptbBM, data = week, 
##     init.theta = 21891.10351, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4463  -0.7881  -0.1323   0.5381   2.6916  
## 
## Coefficients: (5 not defined because of singularities)
##                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)      1.102e+01  1.250e+01   0.881   0.3782  
## cb6.meanRHv1.l1 -2.221e-01  2.861e-01  -0.776   0.4375  
## cb6.meanRHv1.l2 -8.627e-02  1.801e-01  -0.479   0.6320  
## cb6.meanRHv2.l1 -8.449e-01  1.022e+00  -0.826   0.4086  
## cb6.meanRHv2.l2  2.009e-01  6.840e-01   0.294   0.7690  
## cb6.meanRHv3.l1 -3.194e-01  4.414e-01  -0.724   0.4693  
## cb6.meanRHv3.l2  2.764e-01  3.224e-01   0.857   0.3912  
## sp_ptbBM1               NA         NA      NA       NA  
## sp_ptbBM2               NA         NA      NA       NA  
## sp_ptbBM3               NA         NA      NA       NA  
## sp_ptbBM4       -1.338e+06  2.226e+06  -0.601   0.5478  
## sp_ptbBM5        1.468e+01  1.182e+01   1.242   0.2143  
## sp_ptbBM6       -2.040e+00  2.025e+00  -1.008   0.3136  
## sp_ptbBM7        1.444e+00  1.067e+00   1.353   0.1761  
## sp_ptbBM8       -1.016e+00  9.766e-01  -1.041   0.2980  
## sp_ptbBM9        8.134e-01  9.457e-01   0.860   0.3897  
## sp_ptbBM10      -2.611e+00  1.096e+00  -2.383   0.0172 *
## sp_ptbBM11       6.370e-01  8.965e-01   0.711   0.4774  
## sp_ptbBM12      -6.359e-01  8.247e-01  -0.771   0.4407  
## sp_ptbBM13       9.946e-01  1.071e+00   0.928   0.3532  
## sp_ptbBM14      -8.158e-01  1.113e+00  -0.733   0.4637  
## sp_ptbBM15       4.559e-01  1.058e+00   0.431   0.6665  
## sp_ptbBM16      -9.322e-01  1.239e+00  -0.752   0.4519  
## sp_ptbBM17       7.200e-03  1.060e+00   0.007   0.9946  
## sp_ptbBM18      -6.874e-02  1.084e+00  -0.063   0.9494  
## sp_ptbBM19       3.086e-02  1.051e+00   0.029   0.9766  
## sp_ptbBM20      -2.315e-02  1.165e+00  -0.020   0.9841  
## sp_ptbBM21       5.344e-01  9.587e-01   0.557   0.5772  
## sp_ptbBM22       3.629e-01  1.082e+00   0.336   0.7372  
## sp_ptbBM23      -1.443e+00  1.489e+00  -0.969   0.3325  
## sp_ptbBM24      -9.378e-01  1.932e+00  -0.485   0.6275  
## sp_ptbBM25      -1.867e+00  2.333e+00  -0.800   0.4237  
## sp_ptbBM26      -1.606e+00  2.528e+00  -0.635   0.5252  
## sp_ptbBM27      -3.267e+00  2.802e+00  -1.166   0.2435  
## sp_ptbBM28      -2.738e+00  2.824e+00  -0.970   0.3323  
## sp_ptbBM29      -1.317e+00  2.812e+00  -0.469   0.6394  
## sp_ptbBM30      -2.278e+00  2.747e+00  -0.829   0.4070  
## sp_ptbBM31      -1.257e+00  2.779e+00  -0.452   0.6510  
## sp_ptbBM32      -2.636e+00  2.801e+00  -0.941   0.3467  
## sp_ptbBM33      -2.544e+00  2.780e+00  -0.915   0.3601  
## sp_ptbBM34      -1.812e+00  2.650e+00  -0.684   0.4940  
## sp_ptbBM35      -2.420e+00  2.971e+00  -0.815   0.4154  
## sp_ptbBM36      -1.017e+00  2.752e+00  -0.370   0.7117  
## sp_ptbBM37      -2.062e+00  2.286e+00  -0.902   0.3671  
## sp_ptbBM38      -4.145e-01  2.052e+00  -0.202   0.8399  
## sp_ptbBM39      -1.486e+00  1.814e+00  -0.819   0.4127  
## sp_ptbBM40      -3.092e-02  1.488e+00  -0.021   0.9834  
## sp_ptbBM41      -8.306e-01  1.483e+00  -0.560   0.5753  
## sp_ptbBM42      -1.078e+00  1.242e+00  -0.868   0.3854  
## sp_ptbBM43      -2.583e-01  1.233e+00  -0.209   0.8341  
## sp_ptbBM44      -3.630e-01  1.311e+00  -0.277   0.7819  
## sp_ptbBM45       1.426e-01  1.393e+00   0.102   0.9185  
## sp_ptbBM46      -9.680e-01  1.420e+00  -0.682   0.4955  
## sp_ptbBM47      -3.028e-01  1.561e+00  -0.194   0.8461  
## sp_ptbBM48      -8.081e-01  1.365e+00  -0.592   0.5538  
## sp_ptbBM49      -1.169e-01  1.638e+00  -0.071   0.9431  
## sp_ptbBM50      -1.050e+00  1.279e+00  -0.821   0.4116  
## sp_ptbBM51       6.503e-01  1.295e+00   0.502   0.6157  
## sp_ptbBM52      -6.944e-01  1.138e+00  -0.610   0.5416  
## sp_ptbBM53       3.516e-01  1.100e+00   0.320   0.7492  
## sp_ptbBM54       7.228e-02  9.999e-01   0.072   0.9424  
## sp_ptbBM55      -6.655e-01  9.889e-01  -0.673   0.5010  
## sp_ptbBM56       6.644e-01  1.008e+00   0.659   0.5099  
## sp_ptbBM57       2.757e-01  1.076e+00   0.256   0.7978  
## sp_ptbBM58       1.617e-01  9.816e-01   0.165   0.8692  
## sp_ptbBM59      -1.053e+00  1.205e+00  -0.874   0.3823  
## sp_ptbBM60      -7.594e-01  1.270e+00  -0.598   0.5500  
## sp_ptbBM61      -3.452e-01  1.231e+00  -0.280   0.7792  
## sp_ptbBM62      -1.326e+00  1.256e+00  -1.055   0.2912  
## sp_ptbBM63      -9.390e-01  1.474e+00  -0.637   0.5242  
## sp_ptbBM64      -4.911e-01  1.704e+00  -0.288   0.7732  
## sp_ptbBM65      -3.319e-01  1.318e+00  -0.252   0.8011  
## sp_ptbBM66      -3.435e-01  1.116e+00  -0.308   0.7583  
## sp_ptbBM67       7.328e-01  9.347e-01   0.784   0.4331  
## sp_ptbBM68       2.219e-01  8.770e-01   0.253   0.8002  
## sp_ptbBM69       5.506e-01  9.250e-01   0.595   0.5517  
## sp_ptbBM70       5.472e-02  1.089e+00   0.050   0.9599  
## sp_ptbBM71       5.893e-03  1.054e+00   0.006   0.9955  
## sp_ptbBM72       5.865e-03  9.392e-01   0.006   0.9950  
## sp_ptbBM73      -4.587e-01  8.628e-01  -0.532   0.5950  
## sp_ptbBM74       9.351e-01  7.895e-01   1.184   0.2363  
## sp_ptbBM75      -1.558e-01  8.422e-01  -0.185   0.8533  
## sp_ptbBM76       2.431e-01  7.036e-01   0.345   0.7297  
## sp_ptbBM77       2.448e-01  8.831e-01   0.277   0.7816  
## sp_ptbBM78       8.418e-01  1.037e+00   0.812   0.4169  
## sp_ptbBM79       5.630e-01  9.166e-01   0.614   0.5391  
## sp_ptbBM80      -5.060e-01  1.004e+00  -0.504   0.6142  
## sp_ptbBM81       3.361e-01  9.307e-01   0.361   0.7180  
## sp_ptbBM82      -1.240e-01  8.208e-01  -0.151   0.8800  
## sp_ptbBM83      -3.755e-01  9.096e-01  -0.413   0.6797  
## sp_ptbBM84       2.179e-01  9.565e-01   0.228   0.8198  
## sp_ptbBM85      -1.418e+00  1.186e+00  -1.195   0.2321  
## sp_ptbBM86       6.215e-01  1.084e+00   0.573   0.5664  
## sp_ptbBM87      -6.570e-03  9.322e-01  -0.007   0.9944  
## sp_ptbBM88       2.837e-01  9.546e-01   0.297   0.7663  
## sp_ptbBM89      -7.076e-01  1.024e+00  -0.691   0.4897  
## sp_ptbBM90       9.878e-01  9.908e-01   0.997   0.3188  
## sp_ptbBM91       7.572e-01  1.279e+00   0.592   0.5539  
## sp_ptbBM92       1.234e+00  9.508e-01   1.298   0.1944  
## sp_ptbBM93       5.666e-01  9.435e-01   0.600   0.5482  
## sp_ptbBM94      -3.433e-01  8.379e-01  -0.410   0.6820  
## sp_ptbBM95       1.993e-01  7.658e-01   0.260   0.7947  
## sp_ptbBM96       4.363e-01  8.482e-01   0.514   0.6069  
## sp_ptbBM97       2.283e-01  8.673e-01   0.263   0.7924  
## sp_ptbBM98       6.450e-01  1.231e+00   0.524   0.6002  
## sp_ptbBM99       1.007e+00  9.029e-01   1.115   0.2649  
## sp_ptbBM100      8.108e-01  8.785e-01   0.923   0.3561  
## sp_ptbBM101      8.948e-01  7.492e-01   1.194   0.2323  
## sp_ptbBM102      5.052e-01  7.204e-01   0.701   0.4831  
## sp_ptbBM103      2.115e-02  7.645e-01   0.028   0.9779  
## sp_ptbBM104      4.739e-01  7.934e-01   0.597   0.5503  
## sp_ptbBM105      8.670e-01  9.342e-01   0.928   0.3534  
## sp_ptbBM106      9.899e-02  7.580e-01   0.131   0.8961  
## sp_ptbBM107      1.816e-02  7.635e-01   0.024   0.9810  
## sp_ptbBM108      6.970e-01  7.478e-01   0.932   0.3513  
## sp_ptbBM109      1.358e-01  7.072e-01   0.192   0.8477  
## sp_ptbBM110      6.934e-01  6.424e-01   1.079   0.2804  
## sp_ptbBM111      3.719e-01  8.912e-01   0.417   0.6765  
## sp_ptbBM112     -7.663e-02  8.683e-01  -0.088   0.9297  
## sp_ptbBM113      9.460e-01  9.131e-01   1.036   0.3002  
## sp_ptbBM114      4.845e-01  8.476e-01   0.572   0.5676  
## sp_ptbBM115     -9.617e-01  8.891e-01  -1.082   0.2794  
## sp_ptbBM116      2.011e+00  8.082e-01   2.489   0.0128 *
## sp_ptbBM117     -1.222e+00  9.633e-01  -1.268   0.2047  
## sp_ptbBM118      2.292e+00  9.014e-01   2.543   0.0110 *
## sp_ptbBM119     -9.940e-01  1.149e+00  -0.865   0.3869  
## sp_ptbBM120      1.631e+00  9.790e-01   1.666   0.0957 .
## sp_ptbBM121     -6.391e-02  8.646e-01  -0.074   0.9411  
## sp_ptbBM122      1.231e+00  7.862e-01   1.566   0.1173  
## sp_ptbBM123      4.252e-01  6.606e-01   0.644   0.5198  
## sp_ptbBM124      7.020e-01  7.556e-01   0.929   0.3529  
## sp_ptbBM125             NA         NA      NA       NA  
## sp_ptbBM126             NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(21891.1) family taken to be 1)
## 
##     Null deviance: 1101.3  on 886  degrees of freedom
## Residual deviance:  944.4  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3235.3
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  21891 
##           Std. Err.:  143955 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2977.261
scatter.smooth(predict(m6a, type='response'), rstandard(m6a, type='deviance'), col='gray')

m6a.resid<-residuals(m6a, type="deviance")
m6a.pred<-predict(m6a, type="response")
length(m6a.resid); length(m6a.pred)
## [1] 939
## [1] 939
pacf(m6a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-12 & 25

m6a.ac<-update(m6a,.~.+lag(m6a.resid,1)+lag(m6a.resid,2)+lag(m6a.resid,3)+lag(m6a.resid,4)+
                   lag(m6a.resid,5)+lag(m6a.resid,6)+lag(m6a.resid,7)+lag(m6a.resid,8)+ 
                   lag(m6a.resid,9)+lag(m6a.resid,10)+lag(m6a.resid,11)+lag(m6a.resid,12)+
                   lag(m6a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(m6a.ac)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb6.meanRH + sp_ptbBM + lag(m6a.resid, 
##     1) + lag(m6a.resid, 2) + lag(m6a.resid, 3) + lag(m6a.resid, 
##     4) + lag(m6a.resid, 5) + lag(m6a.resid, 6) + lag(m6a.resid, 
##     7) + lag(m6a.resid, 8) + lag(m6a.resid, 9) + lag(m6a.resid, 
##     10) + lag(m6a.resid, 11) + lag(m6a.resid, 12) + lag(m6a.resid, 
##     25), data = week, init.theta = 47537.46848, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.53961  -0.65177  -0.05496   0.45908   2.00834  
## 
## Coefficients: (9 not defined because of singularities)
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         6.259959  12.858939   0.487 0.626388    
## cb6.meanRHv1.l1    -0.049546   0.293391  -0.169 0.865895    
## cb6.meanRHv1.l2    -0.163845   0.185378  -0.884 0.376781    
## cb6.meanRHv2.l1    -0.534028   1.060063  -0.504 0.614423    
## cb6.meanRHv2.l2    -0.339399   0.705129  -0.481 0.630283    
## cb6.meanRHv3.l1    -0.131428   0.474319  -0.277 0.781712    
## cb6.meanRHv3.l2     0.191265   0.339309   0.564 0.572964    
## sp_ptbBM1                 NA         NA      NA       NA    
## sp_ptbBM2                 NA         NA      NA       NA    
## sp_ptbBM3                 NA         NA      NA       NA    
## sp_ptbBM4                 NA         NA      NA       NA    
## sp_ptbBM5                 NA         NA      NA       NA    
## sp_ptbBM6                 NA         NA      NA       NA    
## sp_ptbBM7                 NA         NA      NA       NA    
## sp_ptbBM8          -8.719498  43.680747  -0.200 0.841779    
## sp_ptbBM9           2.736756   3.969018   0.690 0.490490    
## sp_ptbBM10         -2.702944   1.691058  -1.598 0.109960    
## sp_ptbBM11          0.417817   0.983384   0.425 0.670926    
## sp_ptbBM12         -0.274909   0.919004  -0.299 0.764835    
## sp_ptbBM13          2.264259   1.140339   1.986 0.047078 *  
## sp_ptbBM14         -1.696510   1.143697  -1.483 0.137980    
## sp_ptbBM15          2.950605   1.110133   2.658 0.007863 ** 
## sp_ptbBM16         -1.426058   1.259851  -1.132 0.257666    
## sp_ptbBM17          1.717204   1.108133   1.550 0.121228    
## sp_ptbBM18         -0.714577   1.133282  -0.631 0.528343    
## sp_ptbBM19          2.199909   1.083284   2.031 0.042278 *  
## sp_ptbBM20         -0.870327   1.227382  -0.709 0.478267    
## sp_ptbBM21          1.402662   1.026662   1.366 0.171865    
## sp_ptbBM22          1.251897   1.114657   1.123 0.261385    
## sp_ptbBM23         -0.694347   1.506111  -0.461 0.644784    
## sp_ptbBM24          0.980153   1.976915   0.496 0.620036    
## sp_ptbBM25         -1.220497   2.392920  -0.510 0.610020    
## sp_ptbBM26          1.258220   2.595230   0.485 0.627804    
## sp_ptbBM27         -2.465957   2.862078  -0.862 0.388910    
## sp_ptbBM28         -1.038101   2.911287  -0.357 0.721408    
## sp_ptbBM29         -0.681292   2.900747  -0.235 0.814311    
## sp_ptbBM30          0.671938   2.825456   0.238 0.812024    
## sp_ptbBM31         -0.277608   2.872916  -0.097 0.923021    
## sp_ptbBM32          0.851619   2.876955   0.296 0.767219    
## sp_ptbBM33         -1.461998   2.862856  -0.511 0.609576    
## sp_ptbBM34          1.459238   2.734810   0.534 0.593633    
## sp_ptbBM35         -1.400906   3.062967  -0.457 0.647406    
## sp_ptbBM36          1.331308   2.835128   0.470 0.638658    
## sp_ptbBM37         -0.642517   2.369698  -0.271 0.786284    
## sp_ptbBM38          0.490209   2.133848   0.230 0.818301    
## sp_ptbBM39          0.769338   1.890248   0.407 0.684005    
## sp_ptbBM40          0.191568   1.565483   0.122 0.902606    
## sp_ptbBM41          1.093178   1.527414   0.716 0.474174    
## sp_ptbBM42         -3.164515   1.333522  -2.373 0.017642 *  
## sp_ptbBM43          2.293121   1.339590   1.712 0.086932 .  
## sp_ptbBM44         -1.859541   1.358494  -1.369 0.171054    
## sp_ptbBM45          1.766758   1.444788   1.223 0.221387    
## sp_ptbBM46         -0.525719   1.479013  -0.355 0.722251    
## sp_ptbBM47          0.910152   1.607135   0.566 0.571177    
## sp_ptbBM48         -0.577219   1.437127  -0.402 0.687943    
## sp_ptbBM49          1.106561   1.708850   0.648 0.517278    
## sp_ptbBM50         -0.322368   1.331464  -0.242 0.808691    
## sp_ptbBM51          1.196979   1.357786   0.882 0.378011    
## sp_ptbBM52          0.310033   1.188604   0.261 0.794217    
## sp_ptbBM53          1.105819   1.142576   0.968 0.333129    
## sp_ptbBM54          1.049076   1.032220   1.016 0.309472    
## sp_ptbBM55         -0.771523   1.044364  -0.739 0.460060    
## sp_ptbBM56          1.161370   1.030422   1.127 0.259708    
## sp_ptbBM57          1.130586   1.113356   1.015 0.309879    
## sp_ptbBM58          0.763618   0.988859   0.772 0.439983    
## sp_ptbBM59         -0.535905   1.243809  -0.431 0.666572    
## sp_ptbBM60          0.670399   1.290509   0.519 0.603423    
## sp_ptbBM61         -1.357080   1.280619  -1.060 0.289278    
## sp_ptbBM62          1.078599   1.292438   0.835 0.403974    
## sp_ptbBM63         -2.751696   1.534205  -1.794 0.072883 .  
## sp_ptbBM64          2.719543   1.802569   1.509 0.131374    
## sp_ptbBM65         -1.860032   1.356660  -1.371 0.170363    
## sp_ptbBM66          2.491527   1.185370   2.102 0.035562 *  
## sp_ptbBM67          0.065629   0.962998   0.068 0.945666    
## sp_ptbBM68          1.054542   0.903343   1.167 0.243058    
## sp_ptbBM69          0.753418   0.936402   0.805 0.421057    
## sp_ptbBM70          1.230370   1.112819   1.106 0.268885    
## sp_ptbBM71         -0.877874   1.118521  -0.785 0.432540    
## sp_ptbBM72          1.214417   0.958765   1.267 0.205282    
## sp_ptbBM73         -2.813490   0.962236  -2.924 0.003457 ** 
## sp_ptbBM74          2.600396   0.863045   3.013 0.002586 ** 
## sp_ptbBM75         -3.717945   0.892145  -4.167 3.08e-05 ***
## sp_ptbBM76          3.028559   0.803588   3.769 0.000164 ***
## sp_ptbBM77         -2.300638   0.912369  -2.522 0.011682 *  
## sp_ptbBM78          3.205829   1.088382   2.945 0.003224 ** 
## sp_ptbBM79          0.637943   0.949560   0.672 0.501692    
## sp_ptbBM80          1.427282   1.005117   1.420 0.155603    
## sp_ptbBM81         -1.350437   0.993788  -1.359 0.174185    
## sp_ptbBM82          2.226169   0.857884   2.595 0.009460 ** 
## sp_ptbBM83         -2.577309   0.947577  -2.720 0.006530 ** 
## sp_ptbBM84          1.633997   1.024812   1.594 0.110838    
## sp_ptbBM85         -1.619084   1.233535  -1.313 0.189332    
## sp_ptbBM86          0.872207   1.120507   0.778 0.436331    
## sp_ptbBM87          1.082814   0.947744   1.143 0.253239    
## sp_ptbBM88         -0.245460   0.981596  -0.250 0.802539    
## sp_ptbBM89         -0.516207   1.089040  -0.474 0.635499    
## sp_ptbBM90         -0.942340   1.006649  -0.936 0.349214    
## sp_ptbBM91          1.414864   1.322586   1.070 0.284723    
## sp_ptbBM92          0.928765   0.964445   0.963 0.335545    
## sp_ptbBM93          1.415268   0.957116   1.479 0.139226    
## sp_ptbBM94         -0.510205   0.864030  -0.590 0.554859    
## sp_ptbBM95         -0.339527   0.757425  -0.448 0.653963    
## sp_ptbBM96          0.133141   0.935587   0.142 0.886837    
## sp_ptbBM97          0.002285   0.908642   0.003 0.997994    
## sp_ptbBM98         -2.551941   1.272411  -2.006 0.044899 *  
## sp_ptbBM99          1.465490   0.953354   1.537 0.124246    
## sp_ptbBM100         0.346986   0.888058   0.391 0.696001    
## sp_ptbBM101         1.365915   0.771550   1.770 0.076669 .  
## sp_ptbBM102         0.747587   0.699959   1.068 0.285501    
## sp_ptbBM103        -1.308694   0.768850  -1.702 0.088728 .  
## sp_ptbBM104         1.022228   0.814812   1.255 0.209640    
## sp_ptbBM105         0.273718   0.943474   0.290 0.771727    
## sp_ptbBM106         0.818459   0.863270   0.948 0.343083    
## sp_ptbBM107        -1.693387   0.761197  -2.225 0.026106 *  
## sp_ptbBM108         0.790110   0.796317   0.992 0.321097    
## sp_ptbBM109         0.950280   0.726582   1.308 0.190915    
## sp_ptbBM110         0.561721   0.637945   0.881 0.378579    
## sp_ptbBM111         1.628255   0.953005   1.709 0.087535 .  
## sp_ptbBM112        -0.623681   0.868421  -0.718 0.472648    
## sp_ptbBM113         0.859370   0.933053   0.921 0.357034    
## sp_ptbBM114        -0.233945   0.862037  -0.271 0.786093    
## sp_ptbBM115        -0.823152   0.896912  -0.918 0.358743    
## sp_ptbBM116         1.446590   0.840523   1.721 0.085240 .  
## sp_ptbBM117        -0.376331   1.005701  -0.374 0.708257    
## sp_ptbBM118         1.367373   0.909575   1.503 0.132759    
## sp_ptbBM119        -0.615640   1.228170  -0.501 0.616184    
## sp_ptbBM120         0.174008   1.000336   0.174 0.861905    
## sp_ptbBM121        -1.042413   0.897785  -1.161 0.245604    
## sp_ptbBM122         1.244699   0.783849   1.588 0.112302    
## sp_ptbBM123        -0.528922   0.668850  -0.791 0.429065    
## sp_ptbBM124         1.514577   0.761699   1.988 0.046765 *  
## sp_ptbBM125               NA         NA      NA       NA    
## sp_ptbBM126               NA         NA      NA       NA    
## lag(m6a.resid, 1)  -0.434767   0.030523 -14.244  < 2e-16 ***
## lag(m6a.resid, 2)  -0.479153   0.035369 -13.547  < 2e-16 ***
## lag(m6a.resid, 3)  -0.562685   0.037032 -15.194  < 2e-16 ***
## lag(m6a.resid, 4)  -0.569543   0.040094 -14.205  < 2e-16 ***
## lag(m6a.resid, 5)  -0.575420   0.040317 -14.272  < 2e-16 ***
## lag(m6a.resid, 6)  -0.529231   0.040885 -12.944  < 2e-16 ***
## lag(m6a.resid, 7)  -0.504068   0.038744 -13.010  < 2e-16 ***
## lag(m6a.resid, 8)  -0.451528   0.037277 -12.113  < 2e-16 ***
## lag(m6a.resid, 9)  -0.359530   0.034804 -10.330  < 2e-16 ***
## lag(m6a.resid, 10) -0.308238   0.031656  -9.737  < 2e-16 ***
## lag(m6a.resid, 11) -0.206678   0.030860  -6.697 2.12e-11 ***
## lag(m6a.resid, 12) -0.170457   0.028716  -5.936 2.92e-09 ***
## lag(m6a.resid, 25) -0.042222   0.024470  -1.725 0.084448 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(47537.47) family taken to be 1)
## 
##     Null deviance: 1055.0  on 861  degrees of freedom
## Residual deviance:  552.8  on 725  degrees of freedom
##   (77 observations deleted due to missingness)
## AIC: 2810.7
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  47537 
##           Std. Err.:  188073 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2534.727
m6a.resid_ac<-residuals(m6a.ac, type="deviance")
m6a.pred_ac<-predict(m6a.ac, type="response")

pacf(m6a.resid_ac,na.action = na.omit) 

length(m6a.pred_ac); length(m6a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m6a.pred,lwd=1, col="blue")

plot(week$time,m6a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m6a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m6a.pred_ac,lwd=1, col="blue")

plot(week$time,m6a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m6a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose response and slices
pred.m6a <- crosspred(cb6.meanRH, m6a.ac, cen = 82.7, by=0.1,cumul=TRUE)



##for m7a maxRH ######
summary(m7a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb7.maxRH + sp_ptbBM, data = week, init.theta = 22024.84537, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4674  -0.7951  -0.1165   0.5319   2.5639  
## 
## Coefficients: (5 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)     4.320e+00  1.250e+01   0.346   0.7296  
## cb7.maxRHv1.l1 -2.357e-01  2.992e-01  -0.788   0.4309  
## cb7.maxRHv1.l2  1.871e-02  2.040e-01   0.092   0.9269  
## cb7.maxRHv2.l1 -1.392e-01  9.877e-01  -0.141   0.8879  
## cb7.maxRHv2.l2  1.710e-01  6.943e-01   0.246   0.8055  
## cb7.maxRHv3.l1  5.055e-02  2.824e-01   0.179   0.8579  
## cb7.maxRHv3.l2  2.605e-01  1.898e-01   1.373   0.1699  
## sp_ptbBM1              NA         NA      NA       NA  
## sp_ptbBM2              NA         NA      NA       NA  
## sp_ptbBM3              NA         NA      NA       NA  
## sp_ptbBM4      -1.327e+06  2.224e+06  -0.597   0.5507  
## sp_ptbBM5       1.508e+01  1.204e+01   1.252   0.2105  
## sp_ptbBM6      -7.682e-01  2.155e+00  -0.356   0.7215  
## sp_ptbBM7       1.981e+00  1.341e+00   1.477   0.1397  
## sp_ptbBM8      -2.493e-01  1.126e+00  -0.221   0.8248  
## sp_ptbBM9       1.716e+00  9.949e-01   1.725   0.0845 .
## sp_ptbBM10     -2.259e+00  1.074e+00  -2.104   0.0353 *
## sp_ptbBM11      1.075e+00  7.960e-01   1.350   0.1769  
## sp_ptbBM12     -7.990e-01  7.542e-01  -1.059   0.2894  
## sp_ptbBM13      2.029e+00  9.767e-01   2.077   0.0378 *
## sp_ptbBM14     -6.962e-01  8.290e-01  -0.840   0.4010  
## sp_ptbBM15      3.463e-01  7.202e-01   0.481   0.6307  
## sp_ptbBM16     -2.908e-01  8.167e-01  -0.356   0.7218  
## sp_ptbBM17      1.421e-02  7.504e-01   0.019   0.9849  
## sp_ptbBM18     -6.563e-01  7.679e-01  -0.855   0.3927  
## sp_ptbBM19     -5.617e-01  7.982e-01  -0.704   0.4816  
## sp_ptbBM20      8.802e-01  1.152e+00   0.764   0.4448  
## sp_ptbBM21      5.774e-01  7.416e-01   0.779   0.4363  
## sp_ptbBM22      7.318e-01  7.586e-01   0.965   0.3347  
## sp_ptbBM23     -9.483e-01  8.774e-01  -1.081   0.2798  
## sp_ptbBM24      1.009e-01  7.708e-01   0.131   0.8959  
## sp_ptbBM25     -7.471e-01  9.520e-01  -0.785   0.4326  
## sp_ptbBM26     -4.297e-01  1.137e+00  -0.378   0.7054  
## sp_ptbBM27     -6.022e-01  1.412e+00  -0.426   0.6698  
## sp_ptbBM28     -1.531e+00  1.269e+00  -1.206   0.2276  
## sp_ptbBM29     -1.156e+00  2.176e+00  -0.531   0.5953  
## sp_ptbBM30     -2.758e+00  2.514e+00  -1.097   0.2726  
## sp_ptbBM31     -2.924e+00  3.632e+00  -0.805   0.4209  
## sp_ptbBM32     -4.804e+00  4.751e+00  -1.011   0.3120  
## sp_ptbBM33     -4.585e+00  5.816e+00  -0.788   0.4305  
## sp_ptbBM34     -2.688e+00  6.322e+00  -0.425   0.6707  
## sp_ptbBM35     -3.371e+00  7.573e+00  -0.445   0.6562  
## sp_ptbBM36     -1.766e+00  6.507e+00  -0.271   0.7861  
## sp_ptbBM37     -2.352e+00  5.965e+00  -0.394   0.6934  
## sp_ptbBM38     -8.224e-01  5.320e+00  -0.155   0.8772  
## sp_ptbBM39     -1.712e+00  4.334e+00  -0.395   0.6929  
## sp_ptbBM40     -2.702e-01  3.376e+00  -0.080   0.9362  
## sp_ptbBM41     -6.058e-01  2.966e+00  -0.204   0.8382  
## sp_ptbBM42     -7.989e-01  2.043e+00  -0.391   0.6958  
## sp_ptbBM43     -2.441e-01  2.115e+00  -0.115   0.9081  
## sp_ptbBM44     -5.178e-01  2.355e+00  -0.220   0.8260  
## sp_ptbBM45     -1.501e-01  2.521e+00  -0.060   0.9525  
## sp_ptbBM46     -1.364e+00  2.601e+00  -0.525   0.5998  
## sp_ptbBM47     -9.843e-01  2.964e+00  -0.332   0.7398  
## sp_ptbBM48     -1.076e+00  2.718e+00  -0.396   0.6922  
## sp_ptbBM49     -8.903e-02  2.663e+00  -0.033   0.9733  
## sp_ptbBM50     -7.152e-01  2.164e+00  -0.330   0.7411  
## sp_ptbBM51      1.252e+00  2.032e+00   0.616   0.5379  
## sp_ptbBM52     -1.818e-01  1.798e+00  -0.101   0.9195  
## sp_ptbBM53      8.707e-01  1.597e+00   0.545   0.5857  
## sp_ptbBM54      7.511e-01  1.351e+00   0.556   0.5784  
## sp_ptbBM55      6.389e-01  1.332e+00   0.480   0.6314  
## sp_ptbBM56      1.363e+00  1.207e+00   1.130   0.2586  
## sp_ptbBM57      1.409e+00  1.291e+00   1.092   0.2750  
## sp_ptbBM58      9.388e-01  1.266e+00   0.742   0.4583  
## sp_ptbBM59     -1.234e-01  1.421e+00  -0.087   0.9308  
## sp_ptbBM60     -1.015e-01  1.655e+00  -0.061   0.9511  
## sp_ptbBM61      1.898e-02  1.654e+00   0.011   0.9908  
## sp_ptbBM62     -5.046e-01  1.654e+00  -0.305   0.7603  
## sp_ptbBM63     -2.652e-01  1.818e+00  -0.146   0.8840  
## sp_ptbBM64      3.021e-01  2.112e+00   0.143   0.8863  
## sp_ptbBM65      5.414e-01  1.777e+00   0.305   0.7606  
## sp_ptbBM66      3.918e-01  1.636e+00   0.239   0.8108  
## sp_ptbBM67      1.562e+00  1.373e+00   1.137   0.2555  
## sp_ptbBM68      1.137e+00  1.301e+00   0.874   0.3823  
## sp_ptbBM69      1.820e+00  1.179e+00   1.544   0.1226  
## sp_ptbBM70      9.955e-01  1.197e+00   0.832   0.4057  
## sp_ptbBM71      1.083e+00  1.184e+00   0.915   0.3604  
## sp_ptbBM72      8.982e-01  1.125e+00   0.798   0.4248  
## sp_ptbBM73      1.032e-01  1.061e+00   0.097   0.9226  
## sp_ptbBM74      1.274e+00  1.097e+00   1.162   0.2454  
## sp_ptbBM75      1.905e-01  1.073e+00   0.178   0.8590  
## sp_ptbBM76      9.707e-01  1.078e+00   0.900   0.3681  
## sp_ptbBM77      9.680e-01  1.038e+00   0.932   0.3512  
## sp_ptbBM78      2.014e+00  1.093e+00   1.842   0.0655 .
## sp_ptbBM79      1.453e+00  1.027e+00   1.415   0.1571  
## sp_ptbBM80      2.966e-01  1.074e+00   0.276   0.7824  
## sp_ptbBM81      5.881e-01  1.143e+00   0.515   0.6068  
## sp_ptbBM82      1.508e-01  1.063e+00   0.142   0.8872  
## sp_ptbBM83      2.072e-01  9.644e-01   0.215   0.8299  
## sp_ptbBM84      9.735e-01  1.105e+00   0.881   0.3783  
## sp_ptbBM85     -3.314e-01  1.381e+00  -0.240   0.8103  
## sp_ptbBM86      1.747e+00  1.205e+00   1.449   0.1472  
## sp_ptbBM87      8.265e-01  1.194e+00   0.692   0.4887  
## sp_ptbBM88      9.260e-01  1.163e+00   0.796   0.4258  
## sp_ptbBM89     -1.709e-01  1.286e+00  -0.133   0.8943  
## sp_ptbBM90      1.874e+00  1.150e+00   1.629   0.1032  
## sp_ptbBM91      8.637e-01  1.056e+00   0.818   0.4136  
## sp_ptbBM92      1.335e+00  9.308e-01   1.435   0.1514  
## sp_ptbBM93      5.436e-01  9.141e-01   0.595   0.5520  
## sp_ptbBM94     -4.983e-01  8.925e-01  -0.558   0.5767  
## sp_ptbBM95      1.174e-02  8.592e-01   0.014   0.9891  
## sp_ptbBM96      4.115e-02  8.178e-01   0.050   0.9599  
## sp_ptbBM97      5.823e-01  8.043e-01   0.724   0.4690  
## sp_ptbBM98      6.373e-01  1.097e+00   0.581   0.5613  
## sp_ptbBM99      1.239e+00  8.238e-01   1.504   0.1327  
## sp_ptbBM100     7.551e-01  7.732e-01   0.977   0.3288  
## sp_ptbBM101     7.251e-01  6.832e-01   1.061   0.2886  
## sp_ptbBM102     5.139e-01  7.154e-01   0.718   0.4725  
## sp_ptbBM103    -2.059e-02  7.229e-01  -0.028   0.9773  
## sp_ptbBM104     8.600e-01  7.525e-01   1.143   0.2531  
## sp_ptbBM105     1.206e+00  9.129e-01   1.321   0.1865  
## sp_ptbBM106    -3.331e-01  1.033e+00  -0.322   0.7472  
## sp_ptbBM107    -4.476e-02  1.076e+00  -0.042   0.9668  
## sp_ptbBM108     2.568e-01  8.848e-01   0.290   0.7716  
## sp_ptbBM109    -4.236e-01  1.037e+00  -0.408   0.6830  
## sp_ptbBM110     7.575e-03  9.991e-01   0.008   0.9940  
## sp_ptbBM111     1.119e+00  1.319e+00   0.848   0.3964  
## sp_ptbBM112     8.114e-02  1.129e+00   0.072   0.9427  
## sp_ptbBM113     1.392e+00  8.542e-01   1.630   0.1031  
## sp_ptbBM114     5.754e-01  8.336e-01   0.690   0.4900  
## sp_ptbBM115    -8.360e-01  8.228e-01  -1.016   0.3096  
## sp_ptbBM116     1.941e+00  7.784e-01   2.494   0.0126 *
## sp_ptbBM117    -1.767e+00  9.749e-01  -1.812   0.0699 .
## sp_ptbBM118     2.093e+00  1.071e+00   1.955   0.0506 .
## sp_ptbBM119    -1.811e+00  1.186e+00  -1.527   0.1268  
## sp_ptbBM120     9.408e-01  9.017e-01   1.043   0.2968  
## sp_ptbBM121    -5.242e-01  8.081e-01  -0.649   0.5166  
## sp_ptbBM122     3.643e-01  8.314e-01   0.438   0.6613  
## sp_ptbBM123    -6.105e-01  7.559e-01  -0.808   0.4193  
## sp_ptbBM124     2.255e-01  8.244e-01   0.274   0.7844  
## sp_ptbBM125            NA         NA      NA       NA  
## sp_ptbBM126            NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(22024.85) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  942.52  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3233.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  22025 
##           Std. Err.:  143520 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2975.382
scatter.smooth(predict(m7a, type='response'), rstandard(m7a, type='deviance'), col='gray')

m7a.resid<-residuals(m7a, type="deviance")
m7a.pred<-predict(m7a, type="response")
length(m7a.resid); length(m7a.pred)
## [1] 939
## [1] 939
pacf(m7a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-12 & 25

m7a.ac<-update(m7a,.~.+lag(m7a.resid,1)+lag(m7a.resid,2)+lag(m7a.resid,3)+lag(m7a.resid,4)+
                   lag(m7a.resid,5)+lag(m7a.resid,6)+lag(m7a.resid,7)+lag(m7a.resid,8)+ 
                   lag(m7a.resid,9)+lag(m7a.resid,10)+lag(m7a.resid,11)+lag(m7a.resid,12)+
                   lag(m7a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(m7a.ac)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb7.maxRH + sp_ptbBM + lag(m7a.resid, 
##     1) + lag(m7a.resid, 2) + lag(m7a.resid, 3) + lag(m7a.resid, 
##     4) + lag(m7a.resid, 5) + lag(m7a.resid, 6) + lag(m7a.resid, 
##     7) + lag(m7a.resid, 8) + lag(m7a.resid, 9) + lag(m7a.resid, 
##     10) + lag(m7a.resid, 11) + lag(m7a.resid, 12) + lag(m7a.resid, 
##     25), data = week, init.theta = 47259.8113, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.49476  -0.65518  -0.04479   0.45393   2.14079  
## 
## Coefficients: (9 not defined because of singularities)
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        -12.51529   13.09002  -0.956 0.339025    
## cb7.maxRHv1.l1       0.18798    0.31361   0.599 0.548895    
## cb7.maxRHv1.l2      -0.13590    0.21280  -0.639 0.523046    
## cb7.maxRHv2.l1       1.03226    1.03263   1.000 0.317484    
## cb7.maxRHv2.l2      -0.05396    0.72763  -0.074 0.940888    
## cb7.maxRHv3.l1       0.44725    0.29750   1.503 0.132741    
## cb7.maxRHv3.l2       0.39213    0.20318   1.930 0.053609 .  
## sp_ptbBM1                 NA         NA      NA       NA    
## sp_ptbBM2                 NA         NA      NA       NA    
## sp_ptbBM3                 NA         NA      NA       NA    
## sp_ptbBM4                 NA         NA      NA       NA    
## sp_ptbBM5                 NA         NA      NA       NA    
## sp_ptbBM6                 NA         NA      NA       NA    
## sp_ptbBM7                 NA         NA      NA       NA    
## sp_ptbBM8           -3.71088   43.71198  -0.085 0.932346    
## sp_ptbBM9            3.86801    4.02450   0.961 0.336493    
## sp_ptbBM10          -1.54305    1.64019  -0.941 0.346820    
## sp_ptbBM11           0.46886    0.90373   0.519 0.603894    
## sp_ptbBM12          -0.71585    0.82231  -0.871 0.384007    
## sp_ptbBM13           3.28715    1.00333   3.276 0.001052 ** 
## sp_ptbBM14          -1.24724    0.83329  -1.497 0.134454    
## sp_ptbBM15           2.35196    0.72115   3.261 0.001109 ** 
## sp_ptbBM16          -0.78034    0.77587  -1.006 0.314534    
## sp_ptbBM17           1.46890    0.75157   1.954 0.050649 .  
## sp_ptbBM18          -1.96051    0.78930  -2.484 0.012997 *  
## sp_ptbBM19           0.97436    0.79595   1.224 0.220898    
## sp_ptbBM20           0.23343    1.27496   0.183 0.854731    
## sp_ptbBM21           1.57371    0.80643   1.951 0.051003 .  
## sp_ptbBM22           0.65951    0.76357   0.864 0.387740    
## sp_ptbBM23          -1.49153    0.88527  -1.685 0.092021 .  
## sp_ptbBM24          -0.11866    0.75260  -0.158 0.874720    
## sp_ptbBM25          -2.82470    1.02239  -2.763 0.005730 ** 
## sp_ptbBM26           0.26475    1.11678   0.237 0.812604    
## sp_ptbBM27          -1.67089    1.44906  -1.153 0.248874    
## sp_ptbBM28          -0.40261    1.29223  -0.312 0.755370    
## sp_ptbBM29           0.27994    2.26529   0.124 0.901651    
## sp_ptbBM30           1.77656    2.58224   0.688 0.491456    
## sp_ptbBM31           0.54529    3.79124   0.144 0.885635    
## sp_ptbBM32           2.20056    4.93900   0.446 0.655924    
## sp_ptbBM33           2.75838    6.05301   0.456 0.648603    
## sp_ptbBM34           7.91200    6.62867   1.194 0.232634    
## sp_ptbBM35           7.25192    7.93814   0.914 0.360951    
## sp_ptbBM36           8.26837    6.82638   1.211 0.225804    
## sp_ptbBM37           5.52729    6.29202   0.878 0.379694    
## sp_ptbBM38           5.02804    5.60778   0.897 0.369923    
## sp_ptbBM39           4.11371    4.58742   0.897 0.369858    
## sp_ptbBM40           2.67244    3.58192   0.746 0.455612    
## sp_ptbBM41           3.30851    3.10880   1.064 0.287221    
## sp_ptbBM42          -1.38840    2.14226  -0.648 0.516919    
## sp_ptbBM43           4.26225    2.24941   1.895 0.058115 .  
## sp_ptbBM44           0.22814    2.46073   0.093 0.926131    
## sp_ptbBM45           3.88156    2.63152   1.475 0.140206    
## sp_ptbBM46           1.65001    2.74286   0.602 0.547463    
## sp_ptbBM47           3.61579    3.09048   1.170 0.242011    
## sp_ptbBM48           1.91283    2.85504   0.670 0.502868    
## sp_ptbBM49           3.41748    2.80852   1.217 0.223670    
## sp_ptbBM50           1.96011    2.27699   0.861 0.389330    
## sp_ptbBM51           3.32737    2.14713   1.550 0.121217    
## sp_ptbBM52           2.27451    1.89870   1.198 0.230945    
## sp_ptbBM53           2.46306    1.67657   1.469 0.141804    
## sp_ptbBM54           2.57050    1.40392   1.831 0.067109 .  
## sp_ptbBM55           1.20982    1.39943   0.865 0.387307    
## sp_ptbBM56           2.47281    1.25982   1.963 0.049666 *  
## sp_ptbBM57           2.99964    1.34913   2.223 0.026189 *  
## sp_ptbBM58           2.22298    1.31602   1.689 0.091187 .  
## sp_ptbBM59           1.35822    1.49304   0.910 0.362981    
## sp_ptbBM60           2.74739    1.72560   1.592 0.111354    
## sp_ptbBM61           0.40873    1.74575   0.234 0.814887    
## sp_ptbBM62           3.22968    1.74630   1.849 0.064394 .  
## sp_ptbBM63          -0.59539    1.93059  -0.308 0.757782    
## sp_ptbBM64           5.15189    2.25196   2.288 0.022153 *  
## sp_ptbBM65           0.36814    1.86322   0.198 0.843373    
## sp_ptbBM66           4.22590    1.74628   2.420 0.015523 *  
## sp_ptbBM67           1.79312    1.42407   1.259 0.207974    
## sp_ptbBM68           3.00451    1.36558   2.200 0.027794 *  
## sp_ptbBM69           2.68173    1.20658   2.223 0.026244 *  
## sp_ptbBM70           2.82197    1.24621   2.264 0.023547 *  
## sp_ptbBM71           0.88074    1.25576   0.701 0.483078    
## sp_ptbBM72           2.45920    1.17055   2.101 0.035651 *  
## sp_ptbBM73          -1.58764    1.14619  -1.385 0.166007    
## sp_ptbBM74           3.41735    1.16746   2.927 0.003421 ** 
## sp_ptbBM75          -2.71286    1.10875  -2.447 0.014414 *  
## sp_ptbBM76           4.12938    1.18734   3.478 0.000505 ***
## sp_ptbBM77          -0.55647    1.07058  -0.520 0.603212    
## sp_ptbBM78           4.72599    1.15654   4.086 4.38e-05 ***
## sp_ptbBM79           2.21371    1.07572   2.058 0.039602 *  
## sp_ptbBM80           2.69580    1.10003   2.451 0.014259 *  
## sp_ptbBM81          -0.47297    1.20351  -0.393 0.694324    
## sp_ptbBM82           3.01496    1.13056   2.667 0.007658 ** 
## sp_ptbBM83          -1.58165    0.99272  -1.593 0.111105    
## sp_ptbBM84           3.25961    1.18859   2.742 0.006099 ** 
## sp_ptbBM85           0.23565    1.44245   0.163 0.870229    
## sp_ptbBM86           2.89005    1.25761   2.298 0.021559 *  
## sp_ptbBM87           2.33842    1.22635   1.907 0.056546 .  
## sp_ptbBM88           1.39558    1.20113   1.162 0.245283    
## sp_ptbBM89           0.37234    1.34889   0.276 0.782524    
## sp_ptbBM90           1.39092    1.18999   1.169 0.242466    
## sp_ptbBM91           2.44301    1.10573   2.209 0.027146 *  
## sp_ptbBM92           2.22564    0.94941   2.344 0.019067 *  
## sp_ptbBM93           2.02691    0.93908   2.158 0.030896 *  
## sp_ptbBM94           0.02560    0.90325   0.028 0.977392    
## sp_ptbBM95          -0.05951    0.87028  -0.068 0.945479    
## sp_ptbBM96          -0.10781    0.89402  -0.121 0.904018    
## sp_ptbBM97           0.92390    0.85951   1.075 0.282413    
## sp_ptbBM98          -1.38584    1.16978  -1.185 0.236134    
## sp_ptbBM99           2.53330    0.89492   2.831 0.004644 ** 
## sp_ptbBM100          0.97823    0.78319   1.249 0.211654    
## sp_ptbBM101          1.81512    0.70033   2.592 0.009547 ** 
## sp_ptbBM102          1.03697    0.68855   1.506 0.132063    
## sp_ptbBM103         -1.12714    0.71463  -1.577 0.114739    
## sp_ptbBM104          1.93460    0.76009   2.545 0.010920 *  
## sp_ptbBM105          1.73360    0.95297   1.819 0.068887 .  
## sp_ptbBM106          1.55867    1.10940   1.405 0.160029    
## sp_ptbBM107         -0.68735    1.09862  -0.626 0.531546    
## sp_ptbBM108          1.30267    0.94581   1.377 0.168419    
## sp_ptbBM109          1.41042    1.08943   1.295 0.195445    
## sp_ptbBM110          0.29388    1.02662   0.286 0.774678    
## sp_ptbBM111          3.94065    1.42852   2.759 0.005806 ** 
## sp_ptbBM112          0.47680    1.14229   0.417 0.676381    
## sp_ptbBM113          2.08882    0.88678   2.356 0.018497 *  
## sp_ptbBM114          0.21469    0.84599   0.254 0.799674    
## sp_ptbBM115         -0.70766    0.81625  -0.867 0.385962    
## sp_ptbBM116          1.62682    0.80181   2.029 0.042466 *  
## sp_ptbBM117         -1.36660    1.00696  -1.357 0.174732    
## sp_ptbBM118          1.57916    1.10661   1.427 0.153572    
## sp_ptbBM119         -1.33146    1.26278  -1.054 0.291705    
## sp_ptbBM120         -0.59105    0.92279  -0.640 0.521848    
## sp_ptbBM121         -1.71528    0.84172  -2.038 0.041569 *  
## sp_ptbBM122          0.09223    0.82378   0.112 0.910853    
## sp_ptbBM123         -2.13871    0.77874  -2.746 0.006025 ** 
## sp_ptbBM124          0.73939    0.84045   0.880 0.378990    
## sp_ptbBM125               NA         NA      NA       NA    
## sp_ptbBM126               NA         NA      NA       NA    
## lag(m7a.resid, 1)   -0.43613    0.03063 -14.237  < 2e-16 ***
## lag(m7a.resid, 2)   -0.48282    0.03572 -13.517  < 2e-16 ***
## lag(m7a.resid, 3)   -0.56703    0.03724 -15.225  < 2e-16 ***
## lag(m7a.resid, 4)   -0.57478    0.04015 -14.317  < 2e-16 ***
## lag(m7a.resid, 5)   -0.58603    0.04073 -14.389  < 2e-16 ***
## lag(m7a.resid, 6)   -0.53738    0.04144 -12.967  < 2e-16 ***
## lag(m7a.resid, 7)   -0.50932    0.03945 -12.911  < 2e-16 ***
## lag(m7a.resid, 8)   -0.45605    0.03792 -12.026  < 2e-16 ***
## lag(m7a.resid, 9)   -0.36331    0.03527 -10.300  < 2e-16 ***
## lag(m7a.resid, 10)  -0.30853    0.03184  -9.691  < 2e-16 ***
## lag(m7a.resid, 11)  -0.20650    0.03102  -6.657 2.79e-11 ***
## lag(m7a.resid, 12)  -0.17206    0.02883  -5.968 2.40e-09 ***
## lag(m7a.resid, 25)  -0.04419    0.02436  -1.814 0.069686 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(47259.81) family taken to be 1)
## 
##     Null deviance: 1055.03  on 861  degrees of freedom
## Residual deviance:  549.98  on 725  degrees of freedom
##   (77 observations deleted due to missingness)
## AIC: 2807.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  47260 
##           Std. Err.:  186013 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2531.902
m7a.resid_ac<-residuals(m7a.ac, type="deviance")
m7a.pred_ac<-predict(m7a.ac, type="response")

pacf(m7a.resid_ac,na.action = na.omit) 

length(m7a.pred_ac); length(m7a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m7a.pred,lwd=1, col="blue")

plot(week$time,m7a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m7a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m7a.pred_ac,lwd=1, col="blue")

plot(week$time,m7a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m7a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose reponse and slices
pred.m7a <- crosspred(cb7.maxRH, m7a.ac, cen = 97, by=0.1,cumul=TRUE)



##for m8a AH ######
summary(m8a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb8.AH + sp_ptbBM, data = week, init.theta = 22297.04219, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5092  -0.7695  -0.1027   0.5323   2.7731  
## 
## Coefficients: (5 not defined because of singularities)
##               Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -6.850e+00  1.168e+01  -0.586  0.55760   
## cb8.AHv1.l1  3.183e-01  2.924e-01   1.089  0.27632   
## cb8.AHv1.l2 -5.072e-02  2.057e-01  -0.247  0.80523   
## cb8.AHv2.l1  5.157e-01  9.564e-01   0.539  0.58972   
## cb8.AHv2.l2 -2.815e-01  6.913e-01  -0.407  0.68386   
## cb8.AHv3.l1  4.144e-01  5.457e-01   0.759  0.44768   
## cb8.AHv3.l2  5.219e-01  3.866e-01   1.350  0.17700   
## sp_ptbBM1           NA         NA      NA       NA   
## sp_ptbBM2           NA         NA      NA       NA   
## sp_ptbBM3           NA         NA      NA       NA   
## sp_ptbBM4   -1.306e+06  2.243e+06  -0.582  0.56055   
## sp_ptbBM5    1.655e+01  1.213e+01   1.364  0.17247   
## sp_ptbBM6   -1.267e+00  2.340e+00  -0.542  0.58809   
## sp_ptbBM7    2.352e+00  1.902e+00   1.236  0.21636   
## sp_ptbBM8    1.551e-01  1.629e+00   0.095  0.92416   
## sp_ptbBM9    3.541e+00  1.650e+00   2.146  0.03189 * 
## sp_ptbBM10  -8.370e-01  1.638e+00  -0.511  0.60931   
## sp_ptbBM11   2.753e+00  1.587e+00   1.735  0.08272 . 
## sp_ptbBM12   9.150e-01  1.595e+00   0.574  0.56611   
## sp_ptbBM13   2.436e+00  1.364e+00   1.786  0.07409 . 
## sp_ptbBM14  -2.857e-03  1.450e+00  -0.002  0.99843   
## sp_ptbBM15   1.165e+00  1.453e+00   0.802  0.42268   
## sp_ptbBM16   1.899e+00  1.569e+00   1.210  0.22623   
## sp_ptbBM17   1.873e+00  1.539e+00   1.218  0.22338   
## sp_ptbBM18   1.337e+00  1.504e+00   0.889  0.37410   
## sp_ptbBM19   8.508e-01  1.509e+00   0.564  0.57280   
## sp_ptbBM20   1.187e+00  1.586e+00   0.748  0.45424   
## sp_ptbBM21   1.900e+00  1.790e+00   1.061  0.28854   
## sp_ptbBM22   1.898e+00  1.970e+00   0.963  0.33537   
## sp_ptbBM23   2.787e+00  2.564e+00   1.087  0.27693   
## sp_ptbBM24   4.314e+00  2.881e+00   1.497  0.13427   
## sp_ptbBM25   4.828e+00  3.491e+00   1.383  0.16663   
## sp_ptbBM26   5.182e+00  3.718e+00   1.394  0.16338   
## sp_ptbBM27   3.752e+00  3.942e+00   0.952  0.34116   
## sp_ptbBM28   4.047e+00  3.975e+00   1.018  0.30857   
## sp_ptbBM29   4.948e+00  3.766e+00   1.314  0.18887   
## sp_ptbBM30   3.410e+00  3.787e+00   0.900  0.36797   
## sp_ptbBM31   4.990e+00  3.719e+00   1.342  0.17962   
## sp_ptbBM32   3.696e+00  3.533e+00   1.046  0.29556   
## sp_ptbBM33   4.483e+00  3.678e+00   1.219  0.22289   
## sp_ptbBM34   5.297e+00  3.873e+00   1.368  0.17146   
## sp_ptbBM35   5.533e+00  4.096e+00   1.351  0.17681   
## sp_ptbBM36   6.179e+00  3.905e+00   1.582  0.11355   
## sp_ptbBM37   3.947e+00  3.685e+00   1.071  0.28414   
## sp_ptbBM38   4.739e+00  3.363e+00   1.409  0.15877   
## sp_ptbBM39   3.180e+00  3.231e+00   0.984  0.32503   
## sp_ptbBM40   3.903e+00  3.018e+00   1.293  0.19587   
## sp_ptbBM41   2.885e+00  2.627e+00   1.098  0.27207   
## sp_ptbBM42   2.173e+00  2.508e+00   0.866  0.38624   
## sp_ptbBM43   2.969e+00  2.548e+00   1.165  0.24396   
## sp_ptbBM44   2.841e+00  2.437e+00   1.166  0.24372   
## sp_ptbBM45   3.840e+00  2.610e+00   1.471  0.14125   
## sp_ptbBM46   2.858e+00  2.684e+00   1.065  0.28679   
## sp_ptbBM47   3.839e+00  2.816e+00   1.363  0.17287   
## sp_ptbBM48   3.643e+00  2.890e+00   1.260  0.20755   
## sp_ptbBM49   4.419e+00  2.883e+00   1.533  0.12525   
## sp_ptbBM50   2.799e+00  2.769e+00   1.011  0.31220   
## sp_ptbBM51   4.790e+00  2.902e+00   1.650  0.09888 . 
## sp_ptbBM52   3.029e+00  2.844e+00   1.065  0.28699   
## sp_ptbBM53   3.807e+00  2.770e+00   1.374  0.16929   
## sp_ptbBM54   3.016e+00  2.565e+00   1.175  0.23980   
## sp_ptbBM55   2.501e+00  2.403e+00   1.041  0.29810   
## sp_ptbBM56   3.058e+00  2.330e+00   1.312  0.18942   
## sp_ptbBM57   2.722e+00  2.158e+00   1.261  0.20716   
## sp_ptbBM58   2.758e+00  2.027e+00   1.361  0.17364   
## sp_ptbBM59   1.688e+00  2.051e+00   0.823  0.41072   
## sp_ptbBM60   1.846e+00  1.977e+00   0.934  0.35032   
## sp_ptbBM61   2.113e+00  1.944e+00   1.087  0.27712   
## sp_ptbBM62   1.696e+00  1.994e+00   0.850  0.39511   
## sp_ptbBM63   1.572e+00  1.931e+00   0.814  0.41549   
## sp_ptbBM64   2.430e+00  1.770e+00   1.372  0.16991   
## sp_ptbBM65   3.176e+00  1.542e+00   2.060  0.03945 * 
## sp_ptbBM66   1.672e+00  1.246e+00   1.341  0.17976   
## sp_ptbBM67   2.029e+00  1.033e+00   1.965  0.04939 * 
## sp_ptbBM68   9.479e-01  1.037e+00   0.914  0.36080   
## sp_ptbBM69   9.102e-01  1.128e+00   0.807  0.41958   
## sp_ptbBM70  -4.613e-01  1.425e+00  -0.324  0.74616   
## sp_ptbBM71  -4.909e-01  1.685e+00  -0.291  0.77078   
## sp_ptbBM72   1.770e+00  1.926e+00   0.919  0.35812   
## sp_ptbBM73   1.487e+00  1.885e+00   0.789  0.42997   
## sp_ptbBM74   2.886e+00  1.949e+00   1.481  0.13867   
## sp_ptbBM75   1.981e+00  1.902e+00   1.042  0.29759   
## sp_ptbBM76   2.228e+00  1.719e+00   1.296  0.19499   
## sp_ptbBM77   1.631e+00  1.612e+00   1.012  0.31150   
## sp_ptbBM78   1.670e+00  1.497e+00   1.115  0.26468   
## sp_ptbBM79   1.846e+00  1.517e+00   1.217  0.22357   
## sp_ptbBM80   1.421e+00  1.623e+00   0.876  0.38121   
## sp_ptbBM81   1.427e+00  1.609e+00   0.887  0.37515   
## sp_ptbBM82   1.132e+00  1.662e+00   0.681  0.49569   
## sp_ptbBM83   1.274e+00  1.604e+00   0.794  0.42708   
## sp_ptbBM84   1.740e+00  1.612e+00   1.079  0.28046   
## sp_ptbBM85   2.759e-01  1.459e+00   0.189  0.84995   
## sp_ptbBM86   2.834e+00  1.327e+00   2.136  0.03270 * 
## sp_ptbBM87   1.193e+00  1.215e+00   0.982  0.32624   
## sp_ptbBM88   7.450e-01  1.193e+00   0.624  0.53241   
## sp_ptbBM89  -7.846e-01  1.351e+00  -0.581  0.56142   
## sp_ptbBM90   9.863e-01  1.098e+00   0.898  0.36894   
## sp_ptbBM91   4.725e-02  1.351e+00   0.035  0.97211   
## sp_ptbBM92   1.109e+00  1.344e+00   0.825  0.40923   
## sp_ptbBM93   2.323e+00  1.368e+00   1.698  0.08944 . 
## sp_ptbBM94   1.041e+00  1.226e+00   0.849  0.39604   
## sp_ptbBM95   1.159e+00  1.099e+00   1.054  0.29179   
## sp_ptbBM96   6.652e-01  9.514e-01   0.699  0.48441   
## sp_ptbBM97   1.016e+00  1.008e+00   1.007  0.31379   
## sp_ptbBM98  -5.431e-01  9.675e-01  -0.561  0.57454   
## sp_ptbBM99  -2.960e-01  9.926e-01  -0.298  0.76556   
## sp_ptbBM100  8.452e-01  1.028e+00   0.822  0.41121   
## sp_ptbBM101  1.650e+00  8.908e-01   1.852  0.06396 . 
## sp_ptbBM102  8.980e-01  7.777e-01   1.155  0.24823   
## sp_ptbBM103  1.189e-01  7.449e-01   0.160  0.87315   
## sp_ptbBM104  1.246e+00  7.899e-01   1.578  0.11463   
## sp_ptbBM105  7.432e-01  8.418e-01   0.883  0.37731   
## sp_ptbBM106 -7.517e-01  1.117e+00  -0.673  0.50088   
## sp_ptbBM107  6.143e-01  2.314e+00   0.265  0.79066   
## sp_ptbBM108 -1.414e-01  1.697e+00  -0.083  0.93357   
## sp_ptbBM109 -1.755e+00  1.922e+00  -0.913  0.36101   
## sp_ptbBM110 -2.185e+00  2.046e+00  -1.068  0.28552   
## sp_ptbBM111 -2.549e+00  1.879e+00  -1.356  0.17500   
## sp_ptbBM112 -2.549e+00  1.507e+00  -1.692  0.09068 . 
## sp_ptbBM113 -1.995e+00  1.795e+00  -1.111  0.26653   
## sp_ptbBM114  1.383e+00  9.734e-01   1.421  0.15531   
## sp_ptbBM115 -7.118e-01  8.234e-01  -0.864  0.38732   
## sp_ptbBM116  2.296e+00  8.302e-01   2.766  0.00567 **
## sp_ptbBM117 -1.880e+00  7.918e-01  -2.375  0.01757 * 
## sp_ptbBM118  2.008e+00  7.564e-01   2.655  0.00794 **
## sp_ptbBM119 -2.215e+00  8.661e-01  -2.557  0.01056 * 
## sp_ptbBM120 -2.270e-01  8.858e-01  -0.256  0.79778   
## sp_ptbBM121  1.533e-01  8.212e-01   0.187  0.85189   
## sp_ptbBM122  9.081e-01  6.757e-01   1.344  0.17897   
## sp_ptbBM123  3.315e-01  5.787e-01   0.573  0.56678   
## sp_ptbBM124  3.568e-01  7.566e-01   0.472  0.63722   
## sp_ptbBM125         NA         NA      NA       NA   
## sp_ptbBM126         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(22297.04) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  939.93  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3230.8
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  22297 
##           Std. Err.:  142938 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2972.79
scatter.smooth(predict(m8a, type='response'), rstandard(m8a, type='deviance'), col='gray')

m8a.resid<-residuals(m8a, type="deviance")
m8a.pred<-predict(m8a, type="response")
length(m8a.resid); length(m8a.pred)
## [1] 939
## [1] 939
pacf(m8a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-12 & 25

m8a.ac<-update(m8a,.~.+lag(m8a.resid,1)+lag(m8a.resid,2)+lag(m8a.resid,3)+lag(m8a.resid,4)+
                   lag(m8a.resid,5)+lag(m8a.resid,6)+lag(m8a.resid,7)+lag(m8a.resid,8)+
                   lag(m8a.resid,9)+lag(m8a.resid,10)+lag(m8a.resid,11)+lag(m8a.resid,12)+
                   lag(m8a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(m8a.ac)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb8.AH + sp_ptbBM + lag(m8a.resid, 1) + 
##     lag(m8a.resid, 2) + lag(m8a.resid, 3) + lag(m8a.resid, 4) + 
##     lag(m8a.resid, 5) + lag(m8a.resid, 6) + lag(m8a.resid, 7) + 
##     lag(m8a.resid, 8) + lag(m8a.resid, 9) + lag(m8a.resid, 10) + 
##     lag(m8a.resid, 11) + lag(m8a.resid, 12) + lag(m8a.resid, 
##     25), data = week, init.theta = 47802.64921, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.50652  -0.66361  -0.02604   0.46941   2.10555  
## 
## Coefficients: (9 not defined because of singularities)
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        -17.15574   12.35106  -1.389 0.164830    
## cb8.AHv1.l1          0.35712    0.30908   1.155 0.247908    
## cb8.AHv1.l2         -0.41483    0.21555  -1.925 0.054288 .  
## cb8.AHv2.l1          1.47872    1.01216   1.461 0.144029    
## cb8.AHv2.l2         -0.19375    0.73327  -0.264 0.791609    
## cb8.AHv3.l1          0.84988    0.56301   1.510 0.131162    
## cb8.AHv3.l2          0.65115    0.41081   1.585 0.112962    
## sp_ptbBM1                 NA         NA      NA       NA    
## sp_ptbBM2                 NA         NA      NA       NA    
## sp_ptbBM3                 NA         NA      NA       NA    
## sp_ptbBM4                 NA         NA      NA       NA    
## sp_ptbBM5                 NA         NA      NA       NA    
## sp_ptbBM6                 NA         NA      NA       NA    
## sp_ptbBM7                 NA         NA      NA       NA    
## sp_ptbBM8           -3.45844   44.05097  -0.079 0.937422    
## sp_ptbBM9            4.66555    4.19575   1.112 0.266151    
## sp_ptbBM10          -1.44788    2.12662  -0.681 0.495975    
## sp_ptbBM11           2.75904    1.67330   1.649 0.099176 .  
## sp_ptbBM12           1.26738    1.66400   0.762 0.446270    
## sp_ptbBM13           2.78192    1.40823   1.975 0.048215 *  
## sp_ptbBM14          -0.66649    1.45923  -0.457 0.647857    
## sp_ptbBM15           3.12709    1.48725   2.103 0.035500 *  
## sp_ptbBM16           0.55172    1.59685   0.346 0.729716    
## sp_ptbBM17           2.33508    1.58019   1.478 0.139483    
## sp_ptbBM18           0.15600    1.56063   0.100 0.920379    
## sp_ptbBM19           2.94281    1.54389   1.906 0.056637 .  
## sp_ptbBM20          -1.41874    1.64561  -0.862 0.388615    
## sp_ptbBM21           3.14067    1.86900   1.680 0.092880 .  
## sp_ptbBM22           2.61164    2.02389   1.290 0.196911    
## sp_ptbBM23           2.98754    2.66250   1.122 0.261829    
## sp_ptbBM24           5.78354    3.02657   1.911 0.056015 .  
## sp_ptbBM25           5.32643    3.71203   1.435 0.151313    
## sp_ptbBM26           8.63012    3.91531   2.204 0.027510 *  
## sp_ptbBM27           3.13449    4.13203   0.759 0.448102    
## sp_ptbBM28           5.66202    4.17731   1.355 0.175283    
## sp_ptbBM29           4.90408    3.93339   1.247 0.212477    
## sp_ptbBM30           5.07205    3.95898   1.281 0.200140    
## sp_ptbBM31           4.58259    3.87591   1.182 0.237076    
## sp_ptbBM32           5.05478    3.69988   1.366 0.171875    
## sp_ptbBM33           3.78064    3.86289   0.979 0.327724    
## sp_ptbBM34           7.41980    4.07936   1.819 0.068932 .  
## sp_ptbBM35           5.48322    4.30156   1.275 0.202414    
## sp_ptbBM36           7.24660    4.10115   1.767 0.077234 .  
## sp_ptbBM37           3.83268    3.85963   0.993 0.320701    
## sp_ptbBM38           3.62712    3.51192   1.033 0.301695    
## sp_ptbBM39           3.50649    3.37130   1.040 0.298292    
## sp_ptbBM40           2.43780    3.13812   0.777 0.437257    
## sp_ptbBM41           2.89942    2.73294   1.061 0.288729    
## sp_ptbBM42          -0.54313    2.60248  -0.209 0.834685    
## sp_ptbBM43           4.44894    2.68148   1.659 0.097089 .  
## sp_ptbBM44          -0.09049    2.52186  -0.036 0.971378    
## sp_ptbBM45           3.68936    2.71397   1.359 0.174022    
## sp_ptbBM46           2.05407    2.79705   0.734 0.462725    
## sp_ptbBM47           4.28859    2.92911   1.464 0.143158    
## sp_ptbBM48           2.77140    3.01906   0.918 0.358636    
## sp_ptbBM49           4.04033    3.01810   1.339 0.180668    
## sp_ptbBM50           2.85105    2.87666   0.991 0.321639    
## sp_ptbBM51           3.27815    3.04745   1.076 0.282060    
## sp_ptbBM52           2.69967    2.96360   0.911 0.362325    
## sp_ptbBM53           2.78521    2.89270   0.963 0.335628    
## sp_ptbBM54           3.15198    2.65740   1.186 0.235577    
## sp_ptbBM55           0.81494    2.51033   0.325 0.745459    
## sp_ptbBM56           2.51495    2.41156   1.043 0.297009    
## sp_ptbBM57           2.23354    2.23389   1.000 0.317384    
## sp_ptbBM58           1.68285    2.09688   0.803 0.422235    
## sp_ptbBM59           0.76842    2.11479   0.363 0.716338    
## sp_ptbBM60           2.60500    2.03737   1.279 0.201034    
## sp_ptbBM61           0.66531    2.01592   0.330 0.741378    
## sp_ptbBM62           3.31508    2.07226   1.600 0.109655    
## sp_ptbBM63          -1.45718    2.01827  -0.722 0.470298    
## sp_ptbBM64           4.50646    1.83143   2.461 0.013870 *  
## sp_ptbBM65          -0.18103    1.63025  -0.111 0.911582    
## sp_ptbBM66           3.12772    1.29738   2.411 0.015917 *  
## sp_ptbBM67           0.82570    1.05011   0.786 0.431696    
## sp_ptbBM68           1.53547    1.04122   1.475 0.140298    
## sp_ptbBM69           1.20634    1.12961   1.068 0.285556    
## sp_ptbBM70           0.98463    1.44102   0.683 0.494427    
## sp_ptbBM71          -1.06223    1.75147  -0.606 0.544195    
## sp_ptbBM72           2.73497    1.97570   1.384 0.166265    
## sp_ptbBM73          -1.36391    1.97706  -0.690 0.490280    
## sp_ptbBM74           3.99969    2.01689   1.983 0.047356 *  
## sp_ptbBM75          -1.97443    1.95018  -1.012 0.311332    
## sp_ptbBM76           4.26082    1.82890   2.330 0.019821 *  
## sp_ptbBM77          -1.14546    1.64282  -0.697 0.485645    
## sp_ptbBM78           3.88528    1.52598   2.546 0.010894 *  
## sp_ptbBM79           1.39151    1.54847   0.899 0.368848    
## sp_ptbBM80           2.79879    1.64237   1.704 0.088358 .  
## sp_ptbBM81          -0.19933    1.65598  -0.120 0.904189    
## sp_ptbBM82           4.06586    1.70153   2.390 0.016869 *  
## sp_ptbBM83          -1.23424    1.63007  -0.757 0.448950    
## sp_ptbBM84           3.39476    1.67962   2.021 0.043264 *  
## sp_ptbBM85          -0.40054    1.49368  -0.268 0.788578    
## sp_ptbBM86           2.45603    1.35856   1.808 0.070634 .  
## sp_ptbBM87           1.79143    1.22217   1.466 0.142709    
## sp_ptbBM88           1.13556    1.20674   0.941 0.346696    
## sp_ptbBM89           0.42180    1.38337   0.305 0.760435    
## sp_ptbBM90          -0.74652    1.09270  -0.683 0.494486    
## sp_ptbBM91           1.61066    1.37213   1.174 0.240458    
## sp_ptbBM92           1.60802    1.35408   1.188 0.235014    
## sp_ptbBM93           2.79823    1.41486   1.978 0.047958 *  
## sp_ptbBM94           0.82614    1.26884   0.651 0.514985    
## sp_ptbBM95           0.48544    1.10401   0.440 0.660152    
## sp_ptbBM96           1.25915    1.01168   1.245 0.213275    
## sp_ptbBM97           0.32722    1.03096   0.317 0.750944    
## sp_ptbBM98          -3.59065    1.00931  -3.558 0.000374 ***
## sp_ptbBM99           1.06502    1.05568   1.009 0.313048    
## sp_ptbBM100          0.63578    1.04693   0.607 0.543664    
## sp_ptbBM101          2.74341    0.92105   2.979 0.002896 ** 
## sp_ptbBM102          1.31140    0.74940   1.750 0.080127 .  
## sp_ptbBM103         -0.54208    0.74839  -0.724 0.468864    
## sp_ptbBM104          1.57814    0.79603   1.983 0.047421 *  
## sp_ptbBM105          0.03393    0.83187   0.041 0.967463    
## sp_ptbBM106          0.11400    1.23926   0.092 0.926708    
## sp_ptbBM107         -1.68632    2.34382  -0.719 0.471847    
## sp_ptbBM108         -0.13190    1.73541  -0.076 0.939416    
## sp_ptbBM109         -1.39225    1.99230  -0.699 0.484666    
## sp_ptbBM110         -3.35984    2.16833  -1.550 0.121260    
## sp_ptbBM111         -2.68947    1.93947  -1.387 0.165532    
## sp_ptbBM112         -4.26337    1.60017  -2.664 0.007714 ** 
## sp_ptbBM113         -3.92581    1.89436  -2.072 0.038232 *  
## sp_ptbBM114          1.30914    0.97650   1.341 0.180035    
## sp_ptbBM115         -0.83724    0.81722  -1.024 0.305600    
## sp_ptbBM116          2.54213    0.83794   3.034 0.002415 ** 
## sp_ptbBM117         -0.80240    0.81386  -0.986 0.324171    
## sp_ptbBM118          1.66113    0.75748   2.193 0.028309 *  
## sp_ptbBM119         -1.23068    0.92333  -1.333 0.182574    
## sp_ptbBM120         -0.72028    0.91728  -0.785 0.432314    
## sp_ptbBM121         -0.45026    0.85096  -0.529 0.596722    
## sp_ptbBM122          1.64656    0.66655   2.470 0.013501 *  
## sp_ptbBM123         -0.14508    0.57564  -0.252 0.801019    
## sp_ptbBM124          1.43400    0.78430   1.828 0.067493 .  
## sp_ptbBM125               NA         NA      NA       NA    
## sp_ptbBM126               NA         NA      NA       NA    
## lag(m8a.resid, 1)   -0.44115    0.03061 -14.410  < 2e-16 ***
## lag(m8a.resid, 2)   -0.49075    0.03589 -13.675  < 2e-16 ***
## lag(m8a.resid, 3)   -0.57415    0.03760 -15.269  < 2e-16 ***
## lag(m8a.resid, 4)   -0.58671    0.04080 -14.380  < 2e-16 ***
## lag(m8a.resid, 5)   -0.58830    0.04110 -14.313  < 2e-16 ***
## lag(m8a.resid, 6)   -0.54004    0.04168 -12.957  < 2e-16 ***
## lag(m8a.resid, 7)   -0.51438    0.03954 -13.008  < 2e-16 ***
## lag(m8a.resid, 8)   -0.46039    0.03798 -12.123  < 2e-16 ***
## lag(m8a.resid, 9)   -0.36457    0.03541 -10.296  < 2e-16 ***
## lag(m8a.resid, 10)  -0.31370    0.03229  -9.714  < 2e-16 ***
## lag(m8a.resid, 11)  -0.21136    0.03129  -6.755 1.43e-11 ***
## lag(m8a.resid, 12)  -0.17335    0.02911  -5.956 2.59e-09 ***
## lag(m8a.resid, 25)  -0.04805    0.02443  -1.967 0.049142 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(47802.65) family taken to be 1)
## 
##     Null deviance: 1055.03  on 861  degrees of freedom
## Residual deviance:  545.03  on 725  degrees of freedom
##   (77 observations deleted due to missingness)
## AIC: 2802.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  47803 
##           Std. Err.:  188182 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2526.95
m8a.resid_ac<-residuals(m8a.ac, type="deviance")
m8a.pred_ac<-predict(m8a.ac, type="response")

pacf(m8a.resid_ac,na.action = na.omit) 

length(m8a.pred_ac); length(m8a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m8a.pred,lwd=1, col="blue")

plot(week$time,m8a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m8a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m8a.pred_ac,lwd=1, col="blue")

plot(week$time,m8a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m8a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose reponse and slices
pred.m8a <- crosspred(cb8.AH, m8a.ac, cen = 31.2, by=0.1,cumul=TRUE)



##for m9a minT ######
summary(m9a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb9.minT + sp_ptbBM, data = week, init.theta = 22708.48563, 
##     link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.44984  -0.78014  -0.08793   0.55896   2.66282  
## 
## Coefficients: (5 not defined because of singularities)
##                 Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   -3.322e+00  1.044e+01  -0.318  0.75034   
## cb9.minTv1.l1  1.134e-01  2.555e-01   0.444  0.65721   
## cb9.minTv1.l2 -1.702e-01  1.800e-01  -0.945  0.34455   
## cb9.minTv2.l1  8.252e-01  8.811e-01   0.937  0.34897   
## cb9.minTv2.l2 -5.810e-01  6.655e-01  -0.873  0.38262   
## cb9.minTv3.l1  9.618e-01  4.965e-01   1.937  0.05275 . 
## cb9.minTv3.l2  3.776e-01  3.596e-01   1.050  0.29368   
## sp_ptbBM1             NA         NA      NA       NA   
## sp_ptbBM2             NA         NA      NA       NA   
## sp_ptbBM3             NA         NA      NA       NA   
## sp_ptbBM4     -1.435e+06  2.224e+06  -0.645  0.51866   
## sp_ptbBM5      1.492e+01  1.183e+01   1.262  0.20704   
## sp_ptbBM6     -2.680e+00  1.973e+00  -1.358  0.17446   
## sp_ptbBM7      6.651e-01  1.121e+00   0.594  0.55284   
## sp_ptbBM8     -1.772e+00  1.063e+00  -1.667  0.09549 . 
## sp_ptbBM9      6.644e-01  9.941e-01   0.668  0.50392   
## sp_ptbBM10    -3.213e+00  1.268e+00  -2.534  0.01128 * 
## sp_ptbBM11     6.634e-01  8.838e-01   0.751  0.45286   
## sp_ptbBM12    -1.021e+00  9.257e-01  -1.103  0.27023   
## sp_ptbBM13     1.666e-01  8.768e-01   0.190  0.84928   
## sp_ptbBM14    -1.553e+00  9.743e-01  -1.594  0.11101   
## sp_ptbBM15    -1.366e-01  9.026e-01  -0.151  0.87967   
## sp_ptbBM16    -1.149e+00  1.099e+00  -1.045  0.29607   
## sp_ptbBM17    -5.154e-01  9.746e-01  -0.529  0.59689   
## sp_ptbBM18    -1.138e+00  1.057e+00  -1.078  0.28124   
## sp_ptbBM19    -1.443e+00  1.099e+00  -1.313  0.18919   
## sp_ptbBM20    -1.782e+00  1.066e+00  -1.671  0.09474 . 
## sp_ptbBM21    -6.449e-01  9.245e-01  -0.698  0.48547   
## sp_ptbBM22    -1.005e+00  9.002e-01  -1.117  0.26416   
## sp_ptbBM23    -1.045e+00  9.345e-01  -1.118  0.26355   
## sp_ptbBM24    -1.940e-01  8.407e-01  -0.231  0.81748   
## sp_ptbBM25    -5.120e-01  7.572e-01  -0.676  0.49889   
## sp_ptbBM26    -2.764e-01  8.161e-01  -0.339  0.73490   
## sp_ptbBM27    -2.206e+00  1.058e+00  -2.085  0.03709 * 
## sp_ptbBM28    -4.163e-01  9.248e-01  -0.450  0.65262   
## sp_ptbBM29     4.159e-01  7.380e-01   0.564  0.57304   
## sp_ptbBM30    -1.018e-01  8.372e-01  -0.122  0.90317   
## sp_ptbBM31     9.503e-01  8.883e-01   1.070  0.28470   
## sp_ptbBM32    -3.709e-01  9.229e-01  -0.402  0.68779   
## sp_ptbBM33    -1.055e-01  1.014e+00  -0.104  0.91716   
## sp_ptbBM34     8.521e-01  1.394e+00   0.611  0.54107   
## sp_ptbBM35     8.474e-01  1.417e+00   0.598  0.54986   
## sp_ptbBM36     2.490e+00  1.624e+00   1.533  0.12517   
## sp_ptbBM37     1.004e+00  1.983e+00   0.506  0.61261   
## sp_ptbBM38     1.911e+00  1.878e+00   1.018  0.30883   
## sp_ptbBM39     2.122e-01  1.784e+00   0.119  0.90532   
## sp_ptbBM40     9.172e-01  1.787e+00   0.513  0.60775   
## sp_ptbBM41    -1.716e-01  1.355e+00  -0.127  0.89922   
## sp_ptbBM42    -3.244e-01  1.209e+00  -0.268  0.78840   
## sp_ptbBM43     7.194e-02  1.121e+00   0.064  0.94885   
## sp_ptbBM44    -4.041e-02  7.925e-01  -0.051  0.95934   
## sp_ptbBM45     7.014e-01  7.960e-01   0.881  0.37825   
## sp_ptbBM46    -1.302e-01  8.519e-01  -0.153  0.87858   
## sp_ptbBM47     6.420e-01  7.985e-01   0.804  0.42141   
## sp_ptbBM48    -6.717e-02  9.677e-01  -0.069  0.94466   
## sp_ptbBM49     1.500e+00  8.535e-01   1.758  0.07877 . 
## sp_ptbBM50     1.413e-01  1.007e+00   0.140  0.88837   
## sp_ptbBM51     1.944e+00  9.530e-01   2.040  0.04133 * 
## sp_ptbBM52     4.737e-01  1.195e+00   0.396  0.69180   
## sp_ptbBM53     1.486e+00  1.167e+00   1.273  0.20291   
## sp_ptbBM54     6.195e-01  1.194e+00   0.519  0.60397   
## sp_ptbBM55    -3.935e-01  1.113e+00  -0.354  0.72353   
## sp_ptbBM56     8.898e-01  1.152e+00   0.773  0.43967   
## sp_ptbBM57     5.793e-01  9.635e-01   0.601  0.54766   
## sp_ptbBM58     5.807e-01  9.589e-01   0.606  0.54479   
## sp_ptbBM59    -5.273e-01  8.295e-01  -0.636  0.52500   
## sp_ptbBM60    -1.004e-02  7.749e-01  -0.013  0.98967   
## sp_ptbBM61    -1.825e-02  7.456e-01  -0.024  0.98047   
## sp_ptbBM62    -9.422e-01  8.362e-01  -1.127  0.25982   
## sp_ptbBM63    -7.932e-01  8.777e-01  -0.904  0.36617   
## sp_ptbBM64    -1.101e+00  1.238e+00  -0.889  0.37386   
## sp_ptbBM65    -5.541e-01  1.316e+00  -0.421  0.67375   
## sp_ptbBM66    -1.589e+00  1.256e+00  -1.265  0.20574   
## sp_ptbBM67    -1.098e+00  1.177e+00  -0.932  0.35117   
## sp_ptbBM68    -2.007e+00  1.230e+00  -1.632  0.10276   
## sp_ptbBM69    -2.327e+00  1.253e+00  -1.858  0.06317 . 
## sp_ptbBM70    -3.010e+00  1.256e+00  -2.396  0.01657 * 
## sp_ptbBM71    -1.360e+00  9.716e-01  -1.400  0.16147   
## sp_ptbBM72    -3.090e-01  8.510e-01  -0.363  0.71653   
## sp_ptbBM73    -4.264e-01  8.201e-01  -0.520  0.60308   
## sp_ptbBM74     8.071e-01  7.428e-01   1.087  0.27723   
## sp_ptbBM75     9.959e-02  8.366e-01   0.119  0.90524   
## sp_ptbBM76     9.570e-02  7.864e-01   0.122  0.90314   
## sp_ptbBM77    -1.083e-01  8.202e-01  -0.132  0.89498   
## sp_ptbBM78     3.518e-01  8.962e-01   0.393  0.69464   
## sp_ptbBM79     1.076e-01  9.084e-01   0.118  0.90573   
## sp_ptbBM80    -3.359e-01  8.887e-01  -0.378  0.70549   
## sp_ptbBM81    -2.242e-01  8.860e-01  -0.253  0.80021   
## sp_ptbBM82    -4.763e-01  9.014e-01  -0.528  0.59725   
## sp_ptbBM83    -9.418e-01  9.605e-01  -0.980  0.32687   
## sp_ptbBM84    -2.210e-01  1.078e+00  -0.205  0.83758   
## sp_ptbBM85    -2.798e+00  1.328e+00  -2.108  0.03504 * 
## sp_ptbBM86     1.034e-03  1.326e+00   0.001  0.99938   
## sp_ptbBM87    -1.030e+00  1.328e+00  -0.776  0.43794   
## sp_ptbBM88    -1.461e+00  1.297e+00  -1.126  0.26005   
## sp_ptbBM89    -2.816e+00  1.325e+00  -2.125  0.03355 * 
## sp_ptbBM90    -2.019e+00  1.399e+00  -1.443  0.14907   
## sp_ptbBM91    -1.832e+00  1.071e+00  -1.711  0.08711 . 
## sp_ptbBM92    -3.685e-01  1.001e+00  -0.368  0.71286   
## sp_ptbBM93    -6.993e-01  1.146e+00  -0.610  0.54170   
## sp_ptbBM94    -8.515e-01  1.197e+00  -0.712  0.47672   
## sp_ptbBM95    -1.155e+00  1.185e+00  -0.975  0.32974   
## sp_ptbBM96    -8.478e-01  1.157e+00  -0.733  0.46358   
## sp_ptbBM97    -2.077e+00  1.328e+00  -1.564  0.11781   
## sp_ptbBM98    -2.802e+00  1.392e+00  -2.013  0.04408 * 
## sp_ptbBM99    -2.033e+00  1.378e+00  -1.476  0.13995   
## sp_ptbBM100   -7.991e-01  1.388e+00  -0.576  0.56484   
## sp_ptbBM101   -8.634e-01  1.511e+00  -0.571  0.56778   
## sp_ptbBM102   -1.342e+00  1.392e+00  -0.964  0.33526   
## sp_ptbBM103   -2.453e+00  1.568e+00  -1.565  0.11769   
## sp_ptbBM104   -2.161e+00  1.513e+00  -1.428  0.15327   
## sp_ptbBM105   -3.735e+00  2.333e+00  -1.601  0.10939   
## sp_ptbBM106   -5.452e+00  3.255e+00  -1.675  0.09400 . 
## sp_ptbBM107   -5.587e+00  3.962e+00  -1.410  0.15853   
## sp_ptbBM108   -5.357e+00  3.465e+00  -1.546  0.12212   
## sp_ptbBM109   -7.613e+00  3.713e+00  -2.050  0.04035 * 
## sp_ptbBM110   -8.008e+00  3.537e+00  -2.264  0.02355 * 
## sp_ptbBM111   -1.019e+01  3.956e+00  -2.575  0.01001 * 
## sp_ptbBM112   -8.838e+00  3.343e+00  -2.644  0.00819 **
## sp_ptbBM113   -5.066e+00  2.196e+00  -2.307  0.02104 * 
## sp_ptbBM114   -1.927e+00  1.466e+00  -1.314  0.18881   
## sp_ptbBM115   -3.225e+00  1.376e+00  -2.345  0.01903 * 
## sp_ptbBM116    4.348e-01  1.312e+00   0.332  0.74022   
## sp_ptbBM117   -2.960e+00  1.098e+00  -2.696  0.00703 **
## sp_ptbBM118    7.208e-01  8.860e-01   0.814  0.41591   
## sp_ptbBM119   -2.337e+00  9.264e-01  -2.522  0.01166 * 
## sp_ptbBM120    1.540e-02  8.160e-01   0.019  0.98494   
## sp_ptbBM121   -6.600e-01  7.197e-01  -0.917  0.35913   
## sp_ptbBM122    7.531e-01  6.602e-01   1.141  0.25401   
## sp_ptbBM123    5.647e-01  7.057e-01   0.800  0.42361   
## sp_ptbBM124    9.450e-01  7.674e-01   1.231  0.21817   
## sp_ptbBM125           NA         NA      NA       NA   
## sp_ptbBM126           NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(22708.49) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  936.01  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3226.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  22708 
##           Std. Err.:  141707 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2968.878
scatter.smooth(predict(m9a, type='response'), rstandard(m9a, type='deviance'), col='gray')

m9a.resid<-residuals(m9a, type="deviance")
m9a.pred<-predict(m9a, type="response")
length(m9a.resid); length(m9a.pred)
## [1] 939
## [1] 939
pacf(m9a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-12 & 25

#ensure that the lags are dplyr lags
m9a.ac<-update(m9a,.~.+lag(m9a.resid,1)+lag(m9a.resid,2)+lag(m9a.resid,3)+lag(m9a.resid,4)+
                   lag(m9a.resid,5)+lag(m9a.resid,6)+lag(m9a.resid,7)+lag(m9a.resid,8)+
                   lag(m9a.resid,9)+lag(m9a.resid,10)+lag(m9a.resid,11)+lag(m9a.resid,12)+
                   lag(m9a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(m9a.ac)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb9.minT + sp_ptbBM + lag(m9a.resid, 
##     1) + lag(m9a.resid, 2) + lag(m9a.resid, 3) + lag(m9a.resid, 
##     4) + lag(m9a.resid, 5) + lag(m9a.resid, 6) + lag(m9a.resid, 
##     7) + lag(m9a.resid, 8) + lag(m9a.resid, 9) + lag(m9a.resid, 
##     10) + lag(m9a.resid, 11) + lag(m9a.resid, 12) + lag(m9a.resid, 
##     25), data = week, init.theta = 48584.26047, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.54963  -0.64029  -0.04615   0.45954   2.13333  
## 
## Coefficients: (9 not defined because of singularities)
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        -17.92999   11.27505  -1.590 0.111782    
## cb9.minTv1.l1        0.12948    0.26962   0.480 0.631055    
## cb9.minTv1.l2       -0.10206    0.18890  -0.540 0.589012    
## cb9.minTv2.l1        1.88918    0.94196   2.006 0.044902 *  
## cb9.minTv2.l2        0.32040    0.70765   0.453 0.650713    
## cb9.minTv3.l1        1.13135    0.50905   2.222 0.026250 *  
## cb9.minTv3.l2        0.72744    0.37896   1.920 0.054909 .  
## sp_ptbBM1                 NA         NA      NA       NA    
## sp_ptbBM2                 NA         NA      NA       NA    
## sp_ptbBM3                 NA         NA      NA       NA    
## sp_ptbBM4                 NA         NA      NA       NA    
## sp_ptbBM5                 NA         NA      NA       NA    
## sp_ptbBM6                 NA         NA      NA       NA    
## sp_ptbBM7                 NA         NA      NA       NA    
## sp_ptbBM8          -11.77554   43.69902  -0.269 0.787569    
## sp_ptbBM9            2.33562    3.98798   0.586 0.558101    
## sp_ptbBM10          -3.32554    1.79050  -1.857 0.063264 .  
## sp_ptbBM11          -0.06724    0.99621  -0.067 0.946190    
## sp_ptbBM12          -0.88199    1.01510  -0.869 0.384920    
## sp_ptbBM13           0.80486    0.89665   0.898 0.369385    
## sp_ptbBM14          -2.65752    0.99122  -2.681 0.007339 ** 
## sp_ptbBM15           1.78597    0.91170   1.959 0.050120 .  
## sp_ptbBM16          -2.05426    1.09376  -1.878 0.060358 .  
## sp_ptbBM17           0.39258    0.98271   0.399 0.689535    
## sp_ptbBM18          -2.05266    1.08432  -1.893 0.058353 .  
## sp_ptbBM19           0.32505    1.11795   0.291 0.771238    
## sp_ptbBM20          -2.53126    1.10168  -2.298 0.021582 *  
## sp_ptbBM21          -0.34768    0.96473  -0.360 0.718553    
## sp_ptbBM22          -0.62475    0.92212  -0.678 0.498077    
## sp_ptbBM23          -1.73651    0.93552  -1.856 0.063424 .  
## sp_ptbBM24           0.87481    0.83970   1.042 0.297501    
## sp_ptbBM25          -2.15393    0.76900  -2.801 0.005095 ** 
## sp_ptbBM26           1.47036    0.83299   1.765 0.077538 .  
## sp_ptbBM27          -3.90057    1.04019  -3.750 0.000177 ***
## sp_ptbBM28          -0.02953    0.92918  -0.032 0.974649    
## sp_ptbBM29          -0.86284    0.74480  -1.158 0.246666    
## sp_ptbBM30           0.80400    0.86771   0.927 0.354146    
## sp_ptbBM31          -0.73244    0.92590  -0.791 0.428912    
## sp_ptbBM32           0.41544    0.97044   0.428 0.668581    
## sp_ptbBM33          -1.88689    1.04103  -1.813 0.069906 .  
## sp_ptbBM34           2.44455    1.42843   1.711 0.087016 .  
## sp_ptbBM35          -0.41659    1.45006  -0.287 0.773892    
## sp_ptbBM36           3.44275    1.68323   2.045 0.040823 *  
## sp_ptbBM37           1.34201    2.12123   0.633 0.526957    
## sp_ptbBM38           2.45477    2.01118   1.221 0.222252    
## sp_ptbBM39           1.66633    1.91050   0.872 0.383101    
## sp_ptbBM40           1.22413    1.91224   0.640 0.522073    
## sp_ptbBM41           1.32042    1.47152   0.897 0.369549    
## sp_ptbBM42          -2.59301    1.29432  -2.003 0.045137 *  
## sp_ptbBM43           1.68479    1.22624   1.374 0.169457    
## sp_ptbBM44          -2.03927    0.77449  -2.633 0.008462 ** 
## sp_ptbBM45           0.59186    0.82112   0.721 0.471031    
## sp_ptbBM46          -1.08517    0.85059  -1.276 0.202032    
## sp_ptbBM47          -0.17857    0.79354  -0.225 0.821952    
## sp_ptbBM48          -1.07144    0.98633  -1.086 0.277351    
## sp_ptbBM49           0.61061    0.86714   0.704 0.481329    
## sp_ptbBM50          -0.33008    1.00862  -0.327 0.743470    
## sp_ptbBM51           1.14973    0.99312   1.158 0.246990    
## sp_ptbBM52           0.41895    1.22447   0.342 0.732239    
## sp_ptbBM53           0.83425    1.19708   0.697 0.485860    
## sp_ptbBM54           0.65737    1.21890   0.539 0.589673    
## sp_ptbBM55          -0.70899    1.18041  -0.601 0.548088    
## sp_ptbBM56           0.39366    1.18353   0.333 0.739424    
## sp_ptbBM57           0.58938    0.98285   0.600 0.548729    
## sp_ptbBM58           0.27043    0.97406   0.278 0.781292    
## sp_ptbBM59          -1.05849    0.84666  -1.250 0.211227    
## sp_ptbBM60           0.35508    0.77583   0.458 0.647185    
## sp_ptbBM61          -1.72680    0.80615  -2.142 0.032191 *  
## sp_ptbBM62           0.93795    0.86085   1.090 0.275902    
## sp_ptbBM63          -3.49969    0.95441  -3.667 0.000246 ***
## sp_ptbBM64           2.35921    1.29931   1.816 0.069411 .  
## sp_ptbBM65          -2.21232    1.36294  -1.623 0.104547    
## sp_ptbBM66           1.66722    1.29960   1.283 0.199539    
## sp_ptbBM67          -1.56366    1.18580  -1.319 0.187287    
## sp_ptbBM68          -0.62535    1.25206  -0.499 0.617458    
## sp_ptbBM69          -1.65085    1.25479  -1.316 0.188295    
## sp_ptbBM70          -2.31515    1.26592  -1.829 0.067426 .  
## sp_ptbBM71          -1.90788    1.04884  -1.819 0.068906 .  
## sp_ptbBM72          -0.16156    0.84591  -0.191 0.848530    
## sp_ptbBM73          -3.32981    0.92101  -3.615 0.000300 ***
## sp_ptbBM74           1.64542    0.78590   2.094 0.036289 *  
## sp_ptbBM75          -4.08949    0.87803  -4.658 3.20e-06 ***
## sp_ptbBM76           2.66330    0.85774   3.105 0.001903 ** 
## sp_ptbBM77          -3.19538    0.83469  -3.828 0.000129 ***
## sp_ptbBM78           2.10358    0.92507   2.274 0.022968 *  
## sp_ptbBM79          -0.19103    0.93692  -0.204 0.838434    
## sp_ptbBM80           0.71416    0.88703   0.805 0.420753    
## sp_ptbBM81          -2.32497    0.93734  -2.480 0.013123 *  
## sp_ptbBM82           1.53281    0.93386   1.641 0.100721    
## sp_ptbBM83          -3.45508    0.99846  -3.460 0.000539 ***
## sp_ptbBM84           0.85256    1.14193   0.747 0.455308    
## sp_ptbBM85          -2.32934    1.36798  -1.703 0.088614 .  
## sp_ptbBM86           0.72009    1.34167   0.537 0.591465    
## sp_ptbBM87           0.70681    1.35479   0.522 0.601872    
## sp_ptbBM88          -1.20688    1.33761  -0.902 0.366913    
## sp_ptbBM89          -1.59501    1.37293  -1.162 0.245335    
## sp_ptbBM90          -3.15265    1.43116  -2.203 0.027604 *  
## sp_ptbBM91          -0.59525    1.09584  -0.543 0.587000    
## sp_ptbBM92           0.16381    0.99724   0.164 0.869521    
## sp_ptbBM93           0.82416    1.16478   0.708 0.479217    
## sp_ptbBM94          -0.07233    1.21258  -0.060 0.952434    
## sp_ptbBM95          -0.51077    1.20035  -0.426 0.670458    
## sp_ptbBM96           0.30389    1.22404   0.248 0.803926    
## sp_ptbBM97          -0.60019    1.40101  -0.428 0.668362    
## sp_ptbBM98          -5.26841    1.46483  -3.597 0.000322 ***
## sp_ptbBM99          -0.25961    1.44278  -0.180 0.857201    
## sp_ptbBM100         -0.10166    1.40432  -0.072 0.942292    
## sp_ptbBM101          0.87415    1.54252   0.567 0.570916    
## sp_ptbBM102          0.01507    1.41036   0.011 0.991475    
## sp_ptbBM103         -2.21250    1.60557  -1.378 0.168198    
## sp_ptbBM104         -0.70619    1.54163  -0.458 0.646896    
## sp_ptbBM105         -2.30641    2.38525  -0.967 0.333571    
## sp_ptbBM106         -2.76368    3.28265  -0.842 0.399840    
## sp_ptbBM107         -5.09035    3.96558  -1.284 0.199271    
## sp_ptbBM108         -3.21843    3.51979  -0.914 0.360516    
## sp_ptbBM109         -5.24264    3.77158  -1.390 0.164518    
## sp_ptbBM110         -7.19909    3.60788  -1.995 0.046001 *  
## sp_ptbBM111         -8.85142    4.08401  -2.167 0.030209 *  
## sp_ptbBM112         -9.60468    3.45458  -2.780 0.005431 ** 
## sp_ptbBM113         -5.17311    2.29520  -2.254 0.024204 *  
## sp_ptbBM114         -1.45785    1.48133  -0.984 0.325041    
## sp_ptbBM115         -1.92993    1.41593  -1.363 0.172879    
## sp_ptbBM116          1.04082    1.35417   0.769 0.442129    
## sp_ptbBM117         -1.16061    1.12689  -1.030 0.303049    
## sp_ptbBM118          0.77808    0.89890   0.866 0.386712    
## sp_ptbBM119         -1.87284    0.98055  -1.910 0.056136 .  
## sp_ptbBM120         -0.91022    0.83211  -1.094 0.274008    
## sp_ptbBM121         -1.70145    0.73630  -2.311 0.020844 *  
## sp_ptbBM122          0.95680    0.64191   1.491 0.136081    
## sp_ptbBM123         -0.42738    0.72151  -0.592 0.553621    
## sp_ptbBM124          1.64192    0.75771   2.167 0.030240 *  
## sp_ptbBM125               NA         NA      NA       NA    
## sp_ptbBM126               NA         NA      NA       NA    
## lag(m9a.resid, 1)   -0.44140    0.03073 -14.365  < 2e-16 ***
## lag(m9a.resid, 2)   -0.49172    0.03617 -13.596  < 2e-16 ***
## lag(m9a.resid, 3)   -0.57739    0.03820 -15.114  < 2e-16 ***
## lag(m9a.resid, 4)   -0.58592    0.04113 -14.245  < 2e-16 ***
## lag(m9a.resid, 5)   -0.58758    0.04143 -14.182  < 2e-16 ***
## lag(m9a.resid, 6)   -0.54030    0.04204 -12.852  < 2e-16 ***
## lag(m9a.resid, 7)   -0.50980    0.03975 -12.824  < 2e-16 ***
## lag(m9a.resid, 8)   -0.45365    0.03772 -12.027  < 2e-16 ***
## lag(m9a.resid, 9)   -0.36065    0.03526 -10.228  < 2e-16 ***
## lag(m9a.resid, 10)  -0.31006    0.03235  -9.585  < 2e-16 ***
## lag(m9a.resid, 11)  -0.20263    0.03127  -6.480 9.17e-11 ***
## lag(m9a.resid, 12)  -0.16662    0.02898  -5.750 8.91e-09 ***
## lag(m9a.resid, 25)  -0.04316    0.02439  -1.770 0.076745 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(48584.26) family taken to be 1)
## 
##     Null deviance: 1055.03  on 861  degrees of freedom
## Residual deviance:  546.04  on 725  degrees of freedom
##   (77 observations deleted due to missingness)
## AIC: 2804
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  48584 
##           Std. Err.:  193420 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2527.967
m9a.resid_ac<-residuals(m9a.ac, type="deviance")
m9a.pred_ac<-predict(m9a.ac, type="response")

pacf(m9a.resid_ac,na.action = na.omit) 

length(m9a.pred_ac); length(m9a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m9a.pred,lwd=1, col="blue")

plot(week$time,m9a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m9a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m9a.pred_ac,lwd=1, col="blue")

plot(week$time,m9a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m9a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose reponse and slices
pred.m9a <- crosspred(cb9.minT, m9a.ac, cen = 24.1, by=0.1,cumul=TRUE)



##for m10a aveT ######
summary(m10a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb10.aveT + sp_ptbBM, data = week, init.theta = 22332.14338, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5132  -0.7805  -0.1094   0.5463   2.6589  
## 
## Coefficients: (5 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    -2.025e+01  1.493e+01  -1.356  0.17503   
## cb10.aveTv1.l1  4.051e-01  3.235e-01   1.252  0.21054   
## cb10.aveTv1.l2 -2.523e-01  2.396e-01  -1.053  0.29227   
## cb10.aveTv2.l1  1.849e+00  1.184e+00   1.562  0.11838   
## cb10.aveTv2.l2 -7.238e-01  9.349e-01  -0.774  0.43877   
## cb10.aveTv3.l1  9.154e-01  4.986e-01   1.836  0.06639 . 
## cb10.aveTv3.l2  1.515e-01  3.715e-01   0.408  0.68335   
## sp_ptbBM1              NA         NA      NA       NA   
## sp_ptbBM2              NA         NA      NA       NA   
## sp_ptbBM3              NA         NA      NA       NA   
## sp_ptbBM4      -1.403e+06  2.229e+06  -0.629  0.52908   
## sp_ptbBM5       1.666e+01  1.193e+01   1.397  0.16244   
## sp_ptbBM6      -1.362e+00  2.024e+00  -0.673  0.50105   
## sp_ptbBM7       2.175e+00  1.373e+00   1.584  0.11319   
## sp_ptbBM8      -5.075e-01  1.075e+00  -0.472  0.63692   
## sp_ptbBM9       1.555e+00  9.697e-01   1.603  0.10884   
## sp_ptbBM10     -1.981e+00  1.067e+00  -1.857  0.06330 . 
## sp_ptbBM11      1.885e+00  1.048e+00   1.799  0.07197 . 
## sp_ptbBM12      1.831e-01  9.507e-01   0.193  0.84731   
## sp_ptbBM13      1.543e+00  9.109e-01   1.694  0.09030 . 
## sp_ptbBM14     -4.699e-01  1.076e+00  -0.437  0.66228   
## sp_ptbBM15      8.201e-01  1.046e+00   0.784  0.43312   
## sp_ptbBM16     -3.206e-01  9.095e-01  -0.353  0.72442   
## sp_ptbBM17      9.263e-01  9.644e-01   0.960  0.33682   
## sp_ptbBM18      5.282e-01  9.296e-01   0.568  0.56993   
## sp_ptbBM19      6.391e-01  9.700e-01   0.659  0.50999   
## sp_ptbBM20      4.744e-01  1.032e+00   0.460  0.64581   
## sp_ptbBM21      9.069e-01  1.134e+00   0.800  0.42374   
## sp_ptbBM22      8.142e-01  1.038e+00   0.785  0.43268   
## sp_ptbBM23      1.426e-01  1.060e+00   0.135  0.89298   
## sp_ptbBM24      1.109e+00  1.100e+00   1.008  0.31326   
## sp_ptbBM25      1.010e+00  1.235e+00   0.818  0.41345   
## sp_ptbBM26      1.338e+00  1.196e+00   1.118  0.26342   
## sp_ptbBM27     -3.375e-01  1.320e+00  -0.256  0.79825   
## sp_ptbBM28      2.923e-01  1.384e+00   0.211  0.83279   
## sp_ptbBM29      1.613e+00  1.135e+00   1.422  0.15517   
## sp_ptbBM30      8.321e-01  1.037e+00   0.803  0.42223   
## sp_ptbBM31      1.760e+00  1.032e+00   1.706  0.08800 . 
## sp_ptbBM32      2.952e-01  1.022e+00   0.289  0.77276   
## sp_ptbBM33      1.185e-01  1.116e+00   0.106  0.91545   
## sp_ptbBM34      1.421e+00  1.154e+00   1.231  0.21822   
## sp_ptbBM35      7.580e-01  1.289e+00   0.588  0.55657   
## sp_ptbBM36      1.779e+00  1.152e+00   1.544  0.12247   
## sp_ptbBM37      8.721e-01  1.348e+00   0.647  0.51773   
## sp_ptbBM38      2.075e+00  1.134e+00   1.829  0.06739 . 
## sp_ptbBM39      8.258e-01  1.247e+00   0.662  0.50795   
## sp_ptbBM40      1.998e+00  1.308e+00   1.528  0.12653   
## sp_ptbBM41      8.656e-01  1.154e+00   0.750  0.45333   
## sp_ptbBM42      7.088e-01  1.395e+00   0.508  0.61136   
## sp_ptbBM43      1.213e+00  1.155e+00   1.051  0.29335   
## sp_ptbBM44      9.452e-01  1.010e+00   0.936  0.34937   
## sp_ptbBM45      1.632e+00  1.036e+00   1.576  0.11514   
## sp_ptbBM46      6.796e-01  1.117e+00   0.609  0.54285   
## sp_ptbBM47      1.581e+00  1.119e+00   1.413  0.15756   
## sp_ptbBM48      1.070e+00  1.239e+00   0.864  0.38748   
## sp_ptbBM49      2.382e+00  1.287e+00   1.851  0.06418 . 
## sp_ptbBM50      1.465e+00  1.496e+00   0.979  0.32766   
## sp_ptbBM51      3.023e+00  1.298e+00   2.328  0.01989 * 
## sp_ptbBM52      1.193e+00  1.388e+00   0.860  0.38993   
## sp_ptbBM53      2.064e+00  1.373e+00   1.503  0.13285   
## sp_ptbBM54      1.320e+00  1.383e+00   0.955  0.33952   
## sp_ptbBM55      5.783e-01  1.362e+00   0.425  0.67106   
## sp_ptbBM56      2.113e+00  1.469e+00   1.439  0.15020   
## sp_ptbBM57      1.655e+00  1.412e+00   1.173  0.24094   
## sp_ptbBM58      1.701e+00  1.047e+00   1.626  0.10404   
## sp_ptbBM59      5.446e-01  9.788e-01   0.556  0.57798   
## sp_ptbBM60      5.680e-01  8.822e-01   0.644  0.51968   
## sp_ptbBM61      4.136e-01  7.678e-01   0.539  0.59008   
## sp_ptbBM62     -6.182e-01  8.819e-01  -0.701  0.48331   
## sp_ptbBM63     -6.669e-01  9.167e-01  -0.728  0.46691   
## sp_ptbBM64     -7.836e-01  1.055e+00  -0.743  0.45774   
## sp_ptbBM65      2.075e-01  7.861e-01   0.264  0.79182   
## sp_ptbBM66     -1.993e-02  7.496e-01  -0.027  0.97878   
## sp_ptbBM67      1.185e+00  7.481e-01   1.583  0.11333   
## sp_ptbBM68      4.322e-01  7.588e-01   0.570  0.56894   
## sp_ptbBM69      6.696e-01  9.520e-01   0.703  0.48183   
## sp_ptbBM70      2.976e-01  1.239e+00   0.240  0.81026   
## sp_ptbBM71      6.485e-01  1.401e+00   0.463  0.64335   
## sp_ptbBM72      1.444e+00  1.323e+00   1.091  0.27523   
## sp_ptbBM73      8.786e-01  1.140e+00   0.771  0.44088   
## sp_ptbBM74      2.174e+00  1.064e+00   2.044  0.04095 * 
## sp_ptbBM75      9.807e-01  1.115e+00   0.880  0.37906   
## sp_ptbBM76      1.158e+00  1.091e+00   1.061  0.28878   
## sp_ptbBM77      8.070e-01  9.914e-01   0.814  0.41564   
## sp_ptbBM78      1.320e+00  1.242e+00   1.063  0.28787   
## sp_ptbBM79      1.051e+00  9.384e-01   1.120  0.26276   
## sp_ptbBM80      7.441e-01  9.252e-01   0.804  0.42126   
## sp_ptbBM81      1.185e+00  8.639e-01   1.372  0.17011   
## sp_ptbBM82      8.388e-01  8.962e-01   0.936  0.34931   
## sp_ptbBM83      2.697e-01  9.115e-01   0.296  0.76734   
## sp_ptbBM84      8.179e-01  9.837e-01   0.831  0.40570   
## sp_ptbBM85     -1.157e+00  1.061e+00  -1.090  0.27553   
## sp_ptbBM86      1.294e+00  9.933e-01   1.302  0.19284   
## sp_ptbBM87      8.031e-01  9.865e-01   0.814  0.41560   
## sp_ptbBM88      9.591e-01  1.097e+00   0.874  0.38207   
## sp_ptbBM89      1.723e-01  1.103e+00   0.156  0.87589   
## sp_ptbBM90      7.300e-01  1.181e+00   0.618  0.53656   
## sp_ptbBM91      2.328e+00  1.674e+00   1.391  0.16429   
## sp_ptbBM92      2.260e+00  1.325e+00   1.706  0.08802 . 
## sp_ptbBM93      1.802e+00  1.100e+00   1.638  0.10133   
## sp_ptbBM94      1.148e+00  1.129e+00   1.017  0.30930   
## sp_ptbBM95      1.472e+00  1.083e+00   1.359  0.17427   
## sp_ptbBM96      1.726e+00  9.691e-01   1.781  0.07493 . 
## sp_ptbBM97      8.238e-01  1.338e+00   0.616  0.53810   
## sp_ptbBM98      7.412e-01  1.183e+00   0.626  0.53113   
## sp_ptbBM99      8.849e-01  1.096e+00   0.807  0.41960   
## sp_ptbBM100     1.525e+00  1.079e+00   1.413  0.15767   
## sp_ptbBM101     1.629e+00  8.201e-01   1.986  0.04705 * 
## sp_ptbBM102     1.523e+00  7.921e-01   1.922  0.05459 . 
## sp_ptbBM103     7.846e-01  7.591e-01   1.034  0.30134   
## sp_ptbBM104     5.740e-01  6.873e-01   0.835  0.40361   
## sp_ptbBM105     3.525e-01  8.344e-01   0.422  0.67272   
## sp_ptbBM106    -5.470e-01  8.674e-01  -0.631  0.52827   
## sp_ptbBM107    -1.138e+00  1.347e+00  -0.844  0.39850   
## sp_ptbBM108     1.147e-01  9.416e-01   0.122  0.90308   
## sp_ptbBM109    -1.019e+00  1.207e+00  -0.844  0.39842   
## sp_ptbBM110    -6.913e-01  1.076e+00  -0.643  0.52039   
## sp_ptbBM111    -1.777e+00  1.225e+00  -1.450  0.14708   
## sp_ptbBM112    -1.976e+00  1.226e+00  -1.611  0.10711   
## sp_ptbBM113    -1.567e+00  1.526e+00  -1.027  0.30443   
## sp_ptbBM114     1.017e+00  9.838e-01   1.034  0.30111   
## sp_ptbBM115    -9.186e-01  8.940e-01  -1.027  0.30420   
## sp_ptbBM116     2.852e+00  1.073e+00   2.658  0.00787 **
## sp_ptbBM117    -7.323e-01  1.037e+00  -0.706  0.48002   
## sp_ptbBM118     2.758e+00  9.405e-01   2.933  0.00336 **
## sp_ptbBM119    -6.914e-01  1.156e+00  -0.598  0.54969   
## sp_ptbBM120     1.891e+00  1.056e+00   1.791  0.07337 . 
## sp_ptbBM121     3.492e-01  8.983e-01   0.389  0.69751   
## sp_ptbBM122     1.551e+00  7.666e-01   2.023  0.04308 * 
## sp_ptbBM123     1.076e+00  6.994e-01   1.539  0.12391   
## sp_ptbBM124     7.855e-01  7.443e-01   1.055  0.29129   
## sp_ptbBM125            NA         NA      NA       NA   
## sp_ptbBM126            NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(22332.14) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  939.56  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3230.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  22332 
##           Std. Err.:  143777 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2972.426
scatter.smooth(predict(m10a, type='response'), rstandard(m10a, type='deviance'), col='gray')

m10a.resid<-residuals(m10a, type="deviance")
m10a.pred<-predict(m10a, type="response")
length(m10a.resid); length(m10a.pred)
## [1] 939
## [1] 939
pacf(m10a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-12 & 25

m10a.ac<-update(m10a,.~.+lag(m10a.resid,1)+lag(m10a.resid,2)+lag(m10a.resid,3)+lag(m10a.resid,4)+
                    lag(m10a.resid,5)+lag(m10a.resid,6)+lag(m10a.resid,7)+lag(m10a.resid,8)+
                    lag(m10a.resid,9)+lag(m10a.resid,10)+lag(m10a.resid,11)+lag(m10a.resid,12)+
                    lag(m10a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(m10a.ac)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb10.aveT + sp_ptbBM + lag(m10a.resid, 
##     1) + lag(m10a.resid, 2) + lag(m10a.resid, 3) + lag(m10a.resid, 
##     4) + lag(m10a.resid, 5) + lag(m10a.resid, 6) + lag(m10a.resid, 
##     7) + lag(m10a.resid, 8) + lag(m10a.resid, 9) + lag(m10a.resid, 
##     10) + lag(m10a.resid, 11) + lag(m10a.resid, 12) + lag(m10a.resid, 
##     25), data = week, init.theta = 47653.68221, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.56065  -0.65474  -0.03847   0.46928   2.14758  
## 
## Coefficients: (9 not defined because of singularities)
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         -25.42500   16.77721  -1.515 0.129659    
## cb10.aveTv1.l1        0.33804    0.35343   0.956 0.338851    
## cb10.aveTv1.l2       -0.22724    0.25454  -0.893 0.372002    
## cb10.aveTv2.l1        2.23750    1.32246   1.692 0.090660 .  
## cb10.aveTv2.l2        0.05770    1.01073   0.057 0.954478    
## cb10.aveTv3.l1        1.03419    0.53061   1.949 0.051288 .  
## cb10.aveTv3.l2        0.22216    0.38835   0.572 0.567284    
## sp_ptbBM1                  NA         NA      NA       NA    
## sp_ptbBM2                  NA         NA      NA       NA    
## sp_ptbBM3                  NA         NA      NA       NA    
## sp_ptbBM4                  NA         NA      NA       NA    
## sp_ptbBM5                  NA         NA      NA       NA    
## sp_ptbBM6                  NA         NA      NA       NA    
## sp_ptbBM7                  NA         NA      NA       NA    
## sp_ptbBM8            -6.00090   43.50337  -0.138 0.890287    
## sp_ptbBM9             3.00723    3.90790   0.770 0.441581    
## sp_ptbBM10           -2.67421    1.66986  -1.601 0.109277    
## sp_ptbBM11            0.77990    1.13070   0.690 0.490353    
## sp_ptbBM12            0.26012    1.02913   0.253 0.800455    
## sp_ptbBM13            2.21403    0.93164   2.376 0.017478 *  
## sp_ptbBM14           -1.13628    1.08758  -1.045 0.296124    
## sp_ptbBM15            3.31503    1.07327   3.089 0.002010 ** 
## sp_ptbBM16           -1.32789    0.88250  -1.505 0.132404    
## sp_ptbBM17            2.14451    0.97597   2.197 0.027998 *  
## sp_ptbBM18           -1.00584    0.96939  -1.038 0.299457    
## sp_ptbBM19            2.92287    0.98457   2.969 0.002991 ** 
## sp_ptbBM20           -0.82734    1.03738  -0.798 0.425144    
## sp_ptbBM21            1.86243    1.20981   1.539 0.123696    
## sp_ptbBM22            1.13629    1.04277   1.090 0.275849    
## sp_ptbBM23           -0.71595    1.07775  -0.664 0.506500    
## sp_ptbBM24            1.34895    1.11147   1.214 0.224875    
## sp_ptbBM25           -0.82251    1.27994  -0.643 0.520475    
## sp_ptbBM26            1.97810    1.21787   1.624 0.104328    
## sp_ptbBM27           -1.87183    1.31521  -1.423 0.154672    
## sp_ptbBM28            0.75393    1.41601   0.532 0.594425    
## sp_ptbBM29            0.54686    1.15035   0.475 0.634516    
## sp_ptbBM30            1.34772    1.07668   1.252 0.210665    
## sp_ptbBM31            0.23185    1.06660   0.217 0.827921    
## sp_ptbBM32            0.77332    1.06993   0.723 0.469817    
## sp_ptbBM33           -1.18524    1.13008  -1.049 0.294263    
## sp_ptbBM34            2.81060    1.18649   2.369 0.017844 *  
## sp_ptbBM35            0.50565    1.29866   0.389 0.697009    
## sp_ptbBM36            2.83389    1.17152   2.419 0.015564 *  
## sp_ptbBM37            1.13295    1.38827   0.816 0.414450    
## sp_ptbBM38            1.25952    1.18173   1.066 0.286500    
## sp_ptbBM39            0.94060    1.26704   0.742 0.457869    
## sp_ptbBM40            0.52205    1.34448   0.388 0.697801    
## sp_ptbBM41            1.42716    1.16578   1.224 0.220876    
## sp_ptbBM42           -1.69231    1.43575  -1.179 0.238518    
## sp_ptbBM43            2.34951    1.23323   1.905 0.056758 .  
## sp_ptbBM44           -0.87669    0.98998  -0.886 0.375854    
## sp_ptbBM45            1.35646    1.06176   1.278 0.201407    
## sp_ptbBM46            0.22770    1.12432   0.203 0.839509    
## sp_ptbBM47            0.98671    1.13457   0.870 0.384474    
## sp_ptbBM48            0.96488    1.26065   0.765 0.444044    
## sp_ptbBM49            2.05768    1.31749   1.562 0.118330    
## sp_ptbBM50            2.05670    1.53038   1.344 0.178975    
## sp_ptbBM51            2.21049    1.33759   1.653 0.098415 .  
## sp_ptbBM52            1.49596    1.42436   1.050 0.293596    
## sp_ptbBM53            1.48324    1.41855   1.046 0.295742    
## sp_ptbBM54            1.70321    1.40799   1.210 0.226404    
## sp_ptbBM55           -0.03437    1.41293  -0.024 0.980595    
## sp_ptbBM56            2.00108    1.50646   1.328 0.184067    
## sp_ptbBM57            1.72696    1.44189   1.198 0.231031    
## sp_ptbBM58            0.86263    1.07035   0.806 0.420282    
## sp_ptbBM59           -0.63614    1.00348  -0.634 0.526122    
## sp_ptbBM60            0.50957    0.89613   0.569 0.569605    
## sp_ptbBM61           -1.71675    0.83483  -2.056 0.039742 *  
## sp_ptbBM62            1.17538    0.90988   1.292 0.196429    
## sp_ptbBM63           -3.26206    0.96678  -3.374 0.000740 ***
## sp_ptbBM64            2.26313    1.12922   2.004 0.045055 *  
## sp_ptbBM65           -2.13069    0.79480  -2.681 0.007345 ** 
## sp_ptbBM66            2.83942    0.81043   3.504 0.000459 ***
## sp_ptbBM67            0.12328    0.73538   0.168 0.866861    
## sp_ptbBM68            1.39296    0.76874   1.812 0.069986 .  
## sp_ptbBM69            1.39305    0.94834   1.469 0.141852    
## sp_ptbBM70            1.72590    1.26091   1.369 0.171072    
## sp_ptbBM71            0.20751    1.46856   0.141 0.887632    
## sp_ptbBM72            2.18219    1.33968   1.629 0.103337    
## sp_ptbBM73           -2.01398    1.21372  -1.659 0.097048 .  
## sp_ptbBM74            3.21522    1.12650   2.854 0.004315 ** 
## sp_ptbBM75           -3.20174    1.13666  -2.817 0.004850 ** 
## sp_ptbBM76            3.84417    1.19668   3.212 0.001317 ** 
## sp_ptbBM77           -2.01139    0.99586  -2.020 0.043408 *  
## sp_ptbBM78            3.99409    1.29530   3.084 0.002046 ** 
## sp_ptbBM79            0.92960    0.95091   0.978 0.328276    
## sp_ptbBM80            1.89127    0.93730   2.018 0.043613 *  
## sp_ptbBM81           -1.19648    0.90813  -1.318 0.187665    
## sp_ptbBM82            2.67653    0.92819   2.884 0.003931 ** 
## sp_ptbBM83           -2.30395    0.91675  -2.513 0.011965 *  
## sp_ptbBM84            2.03895    1.05631   1.930 0.053575 .  
## sp_ptbBM85           -1.14082    1.07978  -1.057 0.290728    
## sp_ptbBM86            1.68704    1.00326   1.682 0.092654 .  
## sp_ptbBM87            1.64207    0.99326   1.653 0.098288 .  
## sp_ptbBM88            0.61222    1.11479   0.549 0.582884    
## sp_ptbBM89            0.45788    1.14054   0.401 0.688080    
## sp_ptbBM90           -0.79973    1.20930  -0.661 0.508410    
## sp_ptbBM91            3.41857    1.74302   1.961 0.049845 *  
## sp_ptbBM92            2.24313    1.34043   1.673 0.094240 .  
## sp_ptbBM93            2.23867    1.12940   1.982 0.047459 *  
## sp_ptbBM94            0.69875    1.16981   0.597 0.550295    
## sp_ptbBM95            1.01857    1.09826   0.927 0.353697    
## sp_ptbBM96            1.67799    1.08851   1.542 0.123182    
## sp_ptbBM97            1.41040    1.36420   1.034 0.301200    
## sp_ptbBM98           -2.37903    1.22003  -1.950 0.051178 .  
## sp_ptbBM99            2.15784    1.15923   1.861 0.062682 .  
## sp_ptbBM100           1.52170    1.08481   1.403 0.160696    
## sp_ptbBM101           1.80721    0.84379   2.142 0.032212 *  
## sp_ptbBM102           1.86561    0.77664   2.402 0.016299 *  
## sp_ptbBM103          -0.54790    0.76238  -0.719 0.472339    
## sp_ptbBM104           1.28537    0.68357   1.880 0.060055 .  
## sp_ptbBM105          -0.49173    0.87116  -0.564 0.572450    
## sp_ptbBM106           1.04693    0.96853   1.081 0.279720    
## sp_ptbBM107          -3.23561    1.36684  -2.367 0.017922 *  
## sp_ptbBM108           1.08582    0.97854   1.110 0.267159    
## sp_ptbBM109          -0.48331    1.26036  -0.383 0.701373    
## sp_ptbBM110          -0.02269    1.09385  -0.021 0.983452    
## sp_ptbBM111          -0.31430    1.27988  -0.246 0.806014    
## sp_ptbBM112          -1.80756    1.24049  -1.457 0.145080    
## sp_ptbBM113          -1.81592    1.56467  -1.161 0.245814    
## sp_ptbBM114           0.91969    1.00666   0.914 0.360926    
## sp_ptbBM115          -1.02041    0.88957  -1.147 0.251348    
## sp_ptbBM116           2.95698    1.10619   2.673 0.007515 ** 
## sp_ptbBM117           0.31351    1.06902   0.293 0.769313    
## sp_ptbBM118           2.44990    0.94636   2.589 0.009632 ** 
## sp_ptbBM119           0.14088    1.20587   0.117 0.906994    
## sp_ptbBM120           1.46995    1.07632   1.366 0.172028    
## sp_ptbBM121          -0.48899    0.92219  -0.530 0.595940    
## sp_ptbBM122           1.85367    0.76355   2.428 0.015195 *  
## sp_ptbBM123           0.11327    0.69830   0.162 0.871148    
## sp_ptbBM124           1.65555    0.76368   2.168 0.030169 *  
## sp_ptbBM125                NA         NA      NA       NA    
## sp_ptbBM126                NA         NA      NA       NA    
## lag(m10a.resid, 1)   -0.43949    0.03062 -14.351  < 2e-16 ***
## lag(m10a.resid, 2)   -0.48659    0.03576 -13.607  < 2e-16 ***
## lag(m10a.resid, 3)   -0.56879    0.03760 -15.129  < 2e-16 ***
## lag(m10a.resid, 4)   -0.57829    0.04082 -14.168  < 2e-16 ***
## lag(m10a.resid, 5)   -0.58595    0.04113 -14.245  < 2e-16 ***
## lag(m10a.resid, 6)   -0.54216    0.04173 -12.991  < 2e-16 ***
## lag(m10a.resid, 7)   -0.51437    0.03949 -13.024  < 2e-16 ***
## lag(m10a.resid, 8)   -0.45874    0.03778 -12.143  < 2e-16 ***
## lag(m10a.resid, 9)   -0.36611    0.03535 -10.356  < 2e-16 ***
## lag(m10a.resid, 10)  -0.31281    0.03214  -9.734  < 2e-16 ***
## lag(m10a.resid, 11)  -0.20733    0.03121  -6.643 3.07e-11 ***
## lag(m10a.resid, 12)  -0.16523    0.02901  -5.695 1.23e-08 ***
## lag(m10a.resid, 25)  -0.04048    0.02431  -1.665 0.095853 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(47653.68) family taken to be 1)
## 
##     Null deviance: 1055.03  on 861  degrees of freedom
## Residual deviance:  548.13  on 725  degrees of freedom
##   (77 observations deleted due to missingness)
## AIC: 2806.1
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  47654 
##           Std. Err.:  187938 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2530.054
m10a.resid_ac<-residuals(m10a.ac, type="deviance")
m10a.pred_ac<-predict(m10a.ac, type="response")

pacf(m10a.resid_ac,na.action = na.omit) 

length(m10a.pred_ac); length(m10a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m10a.pred,lwd=1, col="blue")

plot(week$time,m10a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m10a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m10a.pred_ac,lwd=1, col="blue")

plot(week$time,m10a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m10a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose reponse and slices
pred.m10a <- crosspred(cb10.aveT, m10a.ac, cen = 27.6, by=0.1,cumul=TRUE)



##for m11a maxT ######
summary(m11a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb11.maxT + sp_ptbBM, data = week, init.theta = 22990.3603, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5724  -0.7694  -0.1141   0.5305   2.6610  
## 
## Coefficients: (5 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    -3.927e+01  1.661e+01  -2.364  0.01810 * 
## cb11.maxTv1.l1  6.780e-01  3.675e-01   1.845  0.06506 . 
## cb11.maxTv1.l2  1.270e-01  2.676e-01   0.475  0.63511   
## cb11.maxTv2.l1  3.430e+00  1.298e+00   2.643  0.00823 **
## cb11.maxTv2.l2 -2.211e-01  9.834e-01  -0.225  0.82211   
## cb11.maxTv3.l1  1.411e+00  5.124e-01   2.753  0.00591 **
## cb11.maxTv3.l2  1.290e-01  3.722e-01   0.347  0.72885   
## sp_ptbBM1              NA         NA      NA       NA   
## sp_ptbBM2              NA         NA      NA       NA   
## sp_ptbBM3              NA         NA      NA       NA   
## sp_ptbBM4      -1.141e+06  2.254e+06  -0.506  0.61273   
## sp_ptbBM5       1.444e+01  1.195e+01   1.209  0.22684   
## sp_ptbBM6      -2.050e+00  2.011e+00  -1.020  0.30782   
## sp_ptbBM7       7.078e-01  1.458e+00   0.485  0.62732   
## sp_ptbBM8      -1.487e+00  1.165e+00  -1.277  0.20166   
## sp_ptbBM9       1.337e+00  9.464e-01   1.412  0.15781   
## sp_ptbBM10     -2.386e+00  9.973e-01  -2.393  0.01673 * 
## sp_ptbBM11      1.927e+00  8.770e-01   2.197  0.02802 * 
## sp_ptbBM12      2.034e-01  7.342e-01   0.277  0.78179   
## sp_ptbBM13      1.050e+00  7.158e-01   1.467  0.14235   
## sp_ptbBM14     -1.842e+00  1.159e+00  -1.589  0.11199   
## sp_ptbBM15     -2.794e-01  1.131e+00  -0.247  0.80486   
## sp_ptbBM16     -1.455e+00  1.052e+00  -1.383  0.16675   
## sp_ptbBM17     -4.375e-01  9.817e-01  -0.446  0.65584   
## sp_ptbBM18     -1.111e-01  9.820e-01  -0.113  0.90990   
## sp_ptbBM19     -3.372e-01  9.850e-01  -0.342  0.73212   
## sp_ptbBM20     -8.118e-01  1.008e+00  -0.805  0.42071   
## sp_ptbBM21     -4.604e-01  1.211e+00  -0.380  0.70390   
## sp_ptbBM22     -3.476e-01  1.184e+00  -0.294  0.76902   
## sp_ptbBM23     -1.076e+00  1.077e+00  -0.998  0.31817   
## sp_ptbBM24     -2.464e-02  9.187e-01  -0.027  0.97860   
## sp_ptbBM25      3.023e-01  9.871e-01   0.306  0.75940   
## sp_ptbBM26      4.731e-01  9.490e-01   0.499  0.61808   
## sp_ptbBM27     -8.863e-01  1.080e+00  -0.821  0.41169   
## sp_ptbBM28     -1.327e+00  1.218e+00  -1.089  0.27617   
## sp_ptbBM29      2.521e-01  1.007e+00   0.250  0.80239   
## sp_ptbBM30     -4.568e-01  8.495e-01  -0.538  0.59077   
## sp_ptbBM31      1.325e+00  8.922e-01   1.485  0.13747   
## sp_ptbBM32     -3.532e-01  8.605e-01  -0.411  0.68144   
## sp_ptbBM33     -2.518e-01  9.112e-01  -0.276  0.78225   
## sp_ptbBM34      1.250e-02  8.510e-01   0.015  0.98828   
## sp_ptbBM35     -1.632e+00  1.273e+00  -1.282  0.19990   
## sp_ptbBM36     -3.990e-02  1.010e+00  -0.040  0.96848   
## sp_ptbBM37     -8.901e-01  1.078e+00  -0.826  0.40884   
## sp_ptbBM38      7.230e-01  8.157e-01   0.886  0.37548   
## sp_ptbBM39     -2.468e-01  9.104e-01  -0.271  0.78632   
## sp_ptbBM40      7.597e-01  8.899e-01   0.854  0.39327   
## sp_ptbBM41     -1.197e-01  9.101e-01  -0.131  0.89538   
## sp_ptbBM42     -1.091e+00  1.261e+00  -0.865  0.38683   
## sp_ptbBM43     -9.571e-02  1.022e+00  -0.094  0.92537   
## sp_ptbBM44      1.462e-01  9.080e-01   0.161  0.87205   
## sp_ptbBM45      7.944e-01  8.657e-01   0.918  0.35881   
## sp_ptbBM46     -8.224e-02  8.277e-01  -0.099  0.92086   
## sp_ptbBM47      5.978e-02  9.273e-01   0.064  0.94859   
## sp_ptbBM48     -1.873e-02  8.600e-01  -0.022  0.98263   
## sp_ptbBM49      1.351e-01  1.170e+00   0.115  0.90811   
## sp_ptbBM50     -6.852e-01  1.167e+00  -0.587  0.55694   
## sp_ptbBM51      1.453e+00  8.693e-01   1.671  0.09463 . 
## sp_ptbBM52      1.239e-01  9.056e-01   0.137  0.89119   
## sp_ptbBM53      1.695e+00  9.268e-01   1.829  0.06747 . 
## sp_ptbBM54      8.481e-01  9.193e-01   0.923  0.35622   
## sp_ptbBM55      2.127e-01  1.045e+00   0.204  0.83865   
## sp_ptbBM56      3.324e-01  1.178e+00   0.282  0.77780   
## sp_ptbBM57     -2.307e-01  1.211e+00  -0.191  0.84885   
## sp_ptbBM58      3.165e-02  8.707e-01   0.036  0.97101   
## sp_ptbBM59     -1.638e+00  1.096e+00  -1.494  0.13505   
## sp_ptbBM60     -1.278e+00  1.198e+00  -1.067  0.28608   
## sp_ptbBM61     -1.002e+00  1.065e+00  -0.941  0.34695   
## sp_ptbBM62     -1.873e+00  1.101e+00  -1.701  0.08889 . 
## sp_ptbBM63     -3.045e+00  1.324e+00  -2.299  0.02151 * 
## sp_ptbBM64     -2.307e+00  1.489e+00  -1.549  0.12129   
## sp_ptbBM65     -1.394e+00  1.114e+00  -1.251  0.21076   
## sp_ptbBM66     -9.563e-01  9.182e-01  -1.042  0.29764   
## sp_ptbBM67      6.262e-01  8.422e-01   0.744  0.45715   
## sp_ptbBM68      7.719e-01  8.538e-01   0.904  0.36596   
## sp_ptbBM69      2.421e-01  9.843e-01   0.246  0.80573   
## sp_ptbBM70     -7.056e-01  1.361e+00  -0.518  0.60428   
## sp_ptbBM71     -8.851e-01  1.296e+00  -0.683  0.49476   
## sp_ptbBM72      2.684e-01  1.186e+00   0.226  0.82092   
## sp_ptbBM73     -7.091e-02  9.866e-01  -0.072  0.94270   
## sp_ptbBM74      1.759e+00  8.527e-01   2.062  0.03916 * 
## sp_ptbBM75      9.081e-01  8.504e-01   1.068  0.28555   
## sp_ptbBM76      1.353e+00  8.726e-01   1.551  0.12099   
## sp_ptbBM77     -2.778e-01  9.236e-01  -0.301  0.76358   
## sp_ptbBM78      9.471e-04  1.187e+00   0.001  0.99936   
## sp_ptbBM79      4.206e-02  9.729e-01   0.043  0.96552   
## sp_ptbBM80     -7.511e-01  9.118e-01  -0.824  0.41010   
## sp_ptbBM81      2.261e-01  8.441e-01   0.268  0.78882   
## sp_ptbBM82     -1.292e-01  8.069e-01  -0.160  0.87282   
## sp_ptbBM83     -6.957e-01  8.615e-01  -0.807  0.41941   
## sp_ptbBM84     -5.812e-01  1.107e+00  -0.525  0.59955   
## sp_ptbBM85     -2.320e+00  1.170e+00  -1.982  0.04742 * 
## sp_ptbBM86      4.992e-01  8.925e-01   0.559  0.57598   
## sp_ptbBM87      1.305e-02  8.642e-01   0.015  0.98795   
## sp_ptbBM88      4.482e-01  1.008e+00   0.445  0.65655   
## sp_ptbBM89     -1.461e-01  9.804e-01  -0.149  0.88150   
## sp_ptbBM90     -1.434e-01  1.078e+00  -0.133  0.89413   
## sp_ptbBM91      2.105e+00  2.001e+00   1.052  0.29294   
## sp_ptbBM92      1.730e+00  1.542e+00   1.122  0.26181   
## sp_ptbBM93      2.005e+00  1.408e+00   1.424  0.15436   
## sp_ptbBM94      1.641e+00  1.249e+00   1.313  0.18904   
## sp_ptbBM95      2.674e+00  1.313e+00   2.036  0.04177 * 
## sp_ptbBM96      2.673e+00  1.206e+00   2.216  0.02670 * 
## sp_ptbBM97      2.817e+00  1.726e+00   1.632  0.10262   
## sp_ptbBM98      5.097e-01  1.507e+00   0.338  0.73519   
## sp_ptbBM99      1.199e+00  1.340e+00   0.894  0.37116   
## sp_ptbBM100     1.588e+00  1.094e+00   1.452  0.14640   
## sp_ptbBM101     2.171e+00  1.003e+00   2.166  0.03032 * 
## sp_ptbBM102     2.457e+00  9.854e-01   2.493  0.01265 * 
## sp_ptbBM103     1.804e+00  8.997e-01   2.005  0.04494 * 
## sp_ptbBM104     1.930e+00  9.840e-01   1.961  0.04986 * 
## sp_ptbBM105     2.359e-01  9.815e-01   0.240  0.81008   
## sp_ptbBM106    -5.736e-01  1.164e+00  -0.493  0.62221   
## sp_ptbBM107    -4.748e-01  8.228e-01  -0.577  0.56392   
## sp_ptbBM108    -2.046e-03  9.031e-01  -0.002  0.99819   
## sp_ptbBM109    -9.262e-01  8.734e-01  -1.060  0.28894   
## sp_ptbBM110     1.591e-01  7.184e-01   0.221  0.82477   
## sp_ptbBM111    -9.470e-01  8.020e-01  -1.181  0.23765   
## sp_ptbBM112    -1.599e+00  9.273e-01  -1.724  0.08469 . 
## sp_ptbBM113    -1.345e+00  1.208e+00  -1.113  0.26569   
## sp_ptbBM114     1.504e-01  9.088e-01   0.166  0.86851   
## sp_ptbBM115    -1.682e+00  9.551e-01  -1.761  0.07831 . 
## sp_ptbBM116     2.015e+00  9.586e-01   2.102  0.03556 * 
## sp_ptbBM117    -1.401e+00  1.074e+00  -1.305  0.19202   
## sp_ptbBM118     2.130e+00  9.095e-01   2.342  0.01918 * 
## sp_ptbBM119    -1.381e+00  1.189e+00  -1.162  0.24527   
## sp_ptbBM120     9.602e-01  1.184e+00   0.811  0.41749   
## sp_ptbBM121    -1.235e-01  9.603e-01  -0.129  0.89769   
## sp_ptbBM122     9.804e-01  8.353e-01   1.174  0.24056   
## sp_ptbBM123     4.186e-01  7.143e-01   0.586  0.55782   
## sp_ptbBM124     6.543e-01  7.456e-01   0.878  0.38015   
## sp_ptbBM125            NA         NA      NA       NA   
## sp_ptbBM126            NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(22990.36) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  935.29  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3226.1
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  22990 
##           Std. Err.:  147953 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2968.147
scatter.smooth(predict(m11a, type='response'), rstandard(m11a, type='deviance'), col='gray')

m11a.resid<-residuals(m11a, type="deviance")
m11a.pred<-predict(m11a, type="response")
length(m11a.resid); length(m11a.pred)
## [1] 939
## [1] 939
pacf(m11a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-12 & 25

m11a.ac<-update(m11a,.~.+lag(m11a.resid,1)+lag(m11a.resid,2)+lag(m11a.resid,3)+lag(m11a.resid,4)+
                    lag(m11a.resid,5)+lag(m11a.resid,6)+lag(m11a.resid,7)+lag(m11a.resid,8)+ 
                    lag(m11a.resid,9)+lag(m11a.resid,10)+lag(m11a.resid,11)+lag(m11a.resid,12)+
                    lag(m11a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(m11a.ac)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb11.maxT + sp_ptbBM + lag(m11a.resid, 
##     1) + lag(m11a.resid, 2) + lag(m11a.resid, 3) + lag(m11a.resid, 
##     4) + lag(m11a.resid, 5) + lag(m11a.resid, 6) + lag(m11a.resid, 
##     7) + lag(m11a.resid, 8) + lag(m11a.resid, 9) + lag(m11a.resid, 
##     10) + lag(m11a.resid, 11) + lag(m11a.resid, 12) + lag(m11a.resid, 
##     25), data = week, init.theta = 47615.60569, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.56056  -0.63618  -0.04906   0.45134   2.24414  
## 
## Coefficients: (9 not defined because of singularities)
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         -36.64490   18.68097  -1.962 0.049807 *  
## cb11.maxTv1.l1        0.60347    0.40047   1.507 0.131835    
## cb11.maxTv1.l2        0.01914    0.28112   0.068 0.945720    
## cb11.maxTv2.l1        3.02473    1.45546   2.078 0.037691 *  
## cb11.maxTv2.l2        0.18715    1.06110   0.176 0.860003    
## cb11.maxTv3.l1        1.06078    0.55160   1.923 0.054469 .  
## cb11.maxTv3.l2        0.24479    0.39210   0.624 0.532422    
## sp_ptbBM1                  NA         NA      NA       NA    
## sp_ptbBM2                  NA         NA      NA       NA    
## sp_ptbBM3                  NA         NA      NA       NA    
## sp_ptbBM4                  NA         NA      NA       NA    
## sp_ptbBM5                  NA         NA      NA       NA    
## sp_ptbBM6                  NA         NA      NA       NA    
## sp_ptbBM7                  NA         NA      NA       NA    
## sp_ptbBM8           -10.01237   43.48939  -0.230 0.817916    
## sp_ptbBM9             2.98475    3.95200   0.755 0.450100    
## sp_ptbBM10           -2.90626    1.63400  -1.779 0.075303 .  
## sp_ptbBM11            0.78985    0.97654   0.809 0.418615    
## sp_ptbBM12           -0.06279    0.81131  -0.077 0.938309    
## sp_ptbBM13            1.67028    0.73281   2.279 0.022650 *  
## sp_ptbBM14           -2.65239    1.19998  -2.210 0.027080 *  
## sp_ptbBM15            2.21791    1.17712   1.884 0.059540 .  
## sp_ptbBM16           -2.29036    1.06207  -2.157 0.031044 *  
## sp_ptbBM17            1.12468    1.00999   1.114 0.265467    
## sp_ptbBM18           -1.39492    1.02550  -1.360 0.173754    
## sp_ptbBM19            1.64652    1.00417   1.640 0.101073    
## sp_ptbBM20           -2.24215    1.04556  -2.144 0.031997 *  
## sp_ptbBM21            0.80032    1.27371   0.628 0.529785    
## sp_ptbBM22            0.19122    1.20972   0.158 0.874405    
## sp_ptbBM23           -1.38763    1.08180  -1.283 0.199597    
## sp_ptbBM24            0.27268    0.93448   0.292 0.770439    
## sp_ptbBM25           -1.25929    1.02905  -1.224 0.221048    
## sp_ptbBM26            0.82229    0.96106   0.856 0.392212    
## sp_ptbBM27           -2.37536    1.04890  -2.265 0.023536 *  
## sp_ptbBM28           -1.35370    1.25249  -1.081 0.279781    
## sp_ptbBM29           -0.41417    1.03881  -0.399 0.690114    
## sp_ptbBM30            0.40539    0.88336   0.459 0.646290    
## sp_ptbBM31            0.11287    0.94331   0.120 0.904756    
## sp_ptbBM32            0.27265    0.90733   0.300 0.763797    
## sp_ptbBM33           -1.59162    0.92982  -1.712 0.086943 .  
## sp_ptbBM34            1.27812    0.88038   1.452 0.146560    
## sp_ptbBM35           -1.59148    1.30388  -1.221 0.222248    
## sp_ptbBM36            1.14254    1.02920   1.110 0.266947    
## sp_ptbBM37           -0.32845    1.11878  -0.294 0.769078    
## sp_ptbBM38           -0.15272    0.87041  -0.175 0.860718    
## sp_ptbBM39            0.57894    0.92043   0.629 0.529357    
## sp_ptbBM40           -0.80482    0.92849  -0.867 0.386053    
## sp_ptbBM41            0.80487    0.91061   0.884 0.376762    
## sp_ptbBM42           -3.24633    1.32546  -2.449 0.014317 *  
## sp_ptbBM43            1.76444    1.10648   1.595 0.110791    
## sp_ptbBM44           -1.98889    0.91039  -2.185 0.028914 *  
## sp_ptbBM45            1.19478    0.88640   1.348 0.177693    
## sp_ptbBM46           -0.99395    0.83102  -1.196 0.231672    
## sp_ptbBM47            0.35126    0.93461   0.376 0.707037    
## sp_ptbBM48           -0.86743    0.87966  -0.986 0.324081    
## sp_ptbBM49            0.73184    1.19805   0.611 0.541295    
## sp_ptbBM50           -0.35574    1.19467  -0.298 0.765879    
## sp_ptbBM51            1.16538    0.88911   1.311 0.189947    
## sp_ptbBM52            0.43822    0.91646   0.478 0.632536    
## sp_ptbBM53            1.01849    0.94561   1.077 0.281449    
## sp_ptbBM54            1.39511    0.93066   1.499 0.133860    
## sp_ptbBM55           -1.12655    1.11180  -1.013 0.310933    
## sp_ptbBM56            1.34596    1.20855   1.114 0.265410    
## sp_ptbBM57            0.14941    1.24947   0.120 0.904818    
## sp_ptbBM58            0.51579    0.88119   0.585 0.558325    
## sp_ptbBM59           -1.24162    1.11139  -1.117 0.263921    
## sp_ptbBM60           -0.08130    1.21353  -0.067 0.946585    
## sp_ptbBM61           -2.01499    1.12239  -1.795 0.072611 .  
## sp_ptbBM62            0.25302    1.13324   0.223 0.823322    
## sp_ptbBM63           -4.48523    1.38836  -3.231 0.001235 ** 
## sp_ptbBM64            0.98660    1.57261   0.627 0.530421    
## sp_ptbBM65           -3.08541    1.12446  -2.744 0.006071 ** 
## sp_ptbBM66            1.64599    0.97499   1.688 0.091370 .  
## sp_ptbBM67           -0.36177    0.84913  -0.426 0.670078    
## sp_ptbBM68            0.77186    0.87714   0.880 0.378875    
## sp_ptbBM69            0.47271    0.99654   0.474 0.635247    
## sp_ptbBM70            0.45224    1.38653   0.326 0.744298    
## sp_ptbBM71           -0.80070    1.37305  -0.583 0.559790    
## sp_ptbBM72            1.05688    1.20574   0.877 0.380734    
## sp_ptbBM73           -2.31359    1.06818  -2.166 0.030317 *  
## sp_ptbBM74            2.79471    0.90357   3.093 0.001982 ** 
## sp_ptbBM75           -3.10240    0.87673  -3.539 0.000402 ***
## sp_ptbBM76            3.51416    0.96958   3.624 0.000290 ***
## sp_ptbBM77           -2.86729    0.95356  -3.007 0.002639 ** 
## sp_ptbBM78            2.28556    1.24941   1.829 0.067354 .  
## sp_ptbBM79            0.04463    1.01262   0.044 0.964845    
## sp_ptbBM80            0.84340    0.93017   0.907 0.364558    
## sp_ptbBM81           -1.77799    0.89765  -1.981 0.047622 *  
## sp_ptbBM82            1.94494    0.85057   2.287 0.022218 *  
## sp_ptbBM83           -3.22692    0.90003  -3.585 0.000337 ***
## sp_ptbBM84            1.18001    1.17241   1.006 0.314187    
## sp_ptbBM85           -2.42488    1.21037  -2.003 0.045132 *  
## sp_ptbBM86            0.70670    0.90850   0.778 0.436637    
## sp_ptbBM87            0.58113    0.87304   0.666 0.505638    
## sp_ptbBM88           -0.34141    1.02373  -0.333 0.738762    
## sp_ptbBM89           -0.55571    1.01715  -0.546 0.584832    
## sp_ptbBM90           -2.19391    1.11649  -1.965 0.049414 *  
## sp_ptbBM91            2.80336    2.08783   1.343 0.179365    
## sp_ptbBM92            1.76337    1.58654   1.111 0.266372    
## sp_ptbBM93            2.54365    1.46180   1.740 0.081844 .  
## sp_ptbBM94            1.40345    1.31193   1.070 0.284729    
## sp_ptbBM95            1.31548    1.36937   0.961 0.336727    
## sp_ptbBM96            2.52985    1.35879   1.862 0.062627 .  
## sp_ptbBM97            2.14737    1.78708   1.202 0.229515    
## sp_ptbBM98           -2.69441    1.56293  -1.724 0.084718 .  
## sp_ptbBM99            1.80287    1.40688   1.281 0.200030    
## sp_ptbBM100           1.20827    1.12825   1.071 0.284203    
## sp_ptbBM101           2.32910    1.03901   2.242 0.024984 *  
## sp_ptbBM102           2.19132    0.99918   2.193 0.028299 *  
## sp_ptbBM103           0.36868    0.93673   0.394 0.693891    
## sp_ptbBM104           2.00894    1.04092   1.930 0.053610 .  
## sp_ptbBM105          -0.52288    1.02570  -0.510 0.610205    
## sp_ptbBM106           0.94505    1.29570   0.729 0.465771    
## sp_ptbBM107          -2.29271    0.83679  -2.740 0.006146 ** 
## sp_ptbBM108           1.04051    0.97213   1.070 0.284467    
## sp_ptbBM109          -0.05316    0.90364  -0.059 0.953093    
## sp_ptbBM110           0.69175    0.74014   0.935 0.349981    
## sp_ptbBM111           0.23033    0.83124   0.277 0.781712    
## sp_ptbBM112          -1.65137    0.93701  -1.762 0.078003 .  
## sp_ptbBM113          -1.11980    1.22600  -0.913 0.361044    
## sp_ptbBM114          -0.44777    0.93604  -0.478 0.632393    
## sp_ptbBM115          -1.73166    0.97052  -1.784 0.074381 .  
## sp_ptbBM116           1.45048    0.99388   1.459 0.144453    
## sp_ptbBM117          -0.72861    1.13163  -0.644 0.519668    
## sp_ptbBM118           1.19723    0.92765   1.291 0.196842    
## sp_ptbBM119          -0.65676    1.24795  -0.526 0.598699    
## sp_ptbBM120           0.16055    1.22291   0.131 0.895550    
## sp_ptbBM121          -1.08101    1.00068  -1.080 0.280018    
## sp_ptbBM122           1.16090    0.84481   1.374 0.169392    
## sp_ptbBM123          -0.23810    0.70580  -0.337 0.735853    
## sp_ptbBM124           1.68549    0.78262   2.154 0.031267 *  
## sp_ptbBM125                NA         NA      NA       NA    
## sp_ptbBM126                NA         NA      NA       NA    
## lag(m11a.resid, 1)   -0.44287    0.03073 -14.411  < 2e-16 ***
## lag(m11a.resid, 2)   -0.49062    0.03587 -13.677  < 2e-16 ***
## lag(m11a.resid, 3)   -0.57803    0.03799 -15.215  < 2e-16 ***
## lag(m11a.resid, 4)   -0.58969    0.04149 -14.213  < 2e-16 ***
## lag(m11a.resid, 5)   -0.59583    0.04179 -14.256  < 2e-16 ***
## lag(m11a.resid, 6)   -0.55176    0.04274 -12.909  < 2e-16 ***
## lag(m11a.resid, 7)   -0.52488    0.04063 -12.917  < 2e-16 ***
## lag(m11a.resid, 8)   -0.46847    0.03892 -12.036  < 2e-16 ***
## lag(m11a.resid, 9)   -0.37479    0.03640 -10.297  < 2e-16 ***
## lag(m11a.resid, 10)  -0.31837    0.03285  -9.692  < 2e-16 ***
## lag(m11a.resid, 11)  -0.20941    0.03174  -6.597 4.20e-11 ***
## lag(m11a.resid, 12)  -0.16756    0.02911  -5.755 8.64e-09 ***
## lag(m11a.resid, 25)  -0.04451    0.02433  -1.829 0.067376 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(47615.61) family taken to be 1)
## 
##     Null deviance: 1055.03  on 861  degrees of freedom
## Residual deviance:  544.86  on 725  degrees of freedom
##   (77 observations deleted due to missingness)
## AIC: 2802.8
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  47616 
##           Std. Err.:  187023 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2526.783
m11a.resid_ac<-residuals(m11a.ac, type="deviance")
m11a.pred_ac<-predict(m11a.ac, type="response")

pacf(m11a.resid_ac,na.action = na.omit) 

length(m11a.pred_ac); length(m11a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m11a.pred,lwd=1, col="blue")

plot(week$time,m11a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m11a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,m11a.pred_ac,lwd=1, col="blue")

plot(week$time,m11a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(m11a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose reponse and slices
pred.m11a <- crosspred(cb11.maxT, m11a.ac, cen = 32.1, by=0.1,cumul=TRUE)


###final model   #####
mod_fullbm<-glm.nb(ptbBM ~ cb3.RF + cb9.minT + cb5.minRH + cb2.sun + cb1.avgWindSp + sp_ptbBM, data = week)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(mod_fullbm)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb3.RF + cb9.minT + cb5.minRH + cb2.sun + 
##     cb1.avgWindSp + sp_ptbBM, data = week, init.theta = 26334.1553, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4316  -0.7824  -0.1085   0.5665   2.4215  
## 
## Coefficients: (5 not defined because of singularities)
##                      Estimate Std. Error z value Pr(>|z|)   
## (Intercept)        -1.280e+01  2.081e+01  -0.615  0.53842   
## cb3.RFv1.l1        -1.734e-01  2.912e-01  -0.595  0.55153   
## cb3.RFv1.l2         2.015e-01  2.136e-01   0.943  0.34566   
## cb3.RFv2.l1         5.018e-02  4.746e-01   0.106  0.91579   
## cb3.RFv2.l2         3.610e-01  3.279e-01   1.101  0.27089   
## cb3.RFv3.l1         3.205e-01  7.315e-01   0.438  0.66129   
## cb3.RFv3.l2         1.446e-01  5.228e-01   0.277  0.78210   
## cb9.minTv1.l1      -3.153e-02  2.898e-01  -0.109  0.91337   
## cb9.minTv1.l2      -8.557e-02  2.125e-01  -0.403  0.68725   
## cb9.minTv2.l1       3.864e-01  9.589e-01   0.403  0.68697   
## cb9.minTv2.l2      -7.364e-01  7.432e-01  -0.991  0.32176   
## cb9.minTv3.l1       8.261e-01  5.447e-01   1.517  0.12936   
## cb9.minTv3.l2       5.500e-01  3.993e-01   1.378  0.16834   
## cb5.minRHv1.l1      2.540e-01  2.847e-01   0.892  0.37225   
## cb5.minRHv1.l2      1.848e-01  1.923e-01   0.961  0.33663   
## cb5.minRHv2.l1     -1.062e+00  1.022e+00  -1.038  0.29905   
## cb5.minRHv2.l2     -4.335e-01  7.436e-01  -0.583  0.55989   
## cb5.minRHv3.l1     -9.220e-01  7.099e-01  -1.299  0.19401   
## cb5.minRHv3.l2     -8.996e-01  5.322e-01  -1.690  0.09095 . 
## cb2.sunv1.l1        1.664e-01  2.299e-01   0.724  0.46927   
## cb2.sunv1.l2       -1.570e-01  1.618e-01  -0.971  0.33164   
## cb2.sunv2.l1        7.668e-01  9.257e-01   0.828  0.40749   
## cb2.sunv2.l2        3.225e-01  6.306e-01   0.511  0.60908   
## cb2.sunv3.l1        5.157e-01  3.563e-01   1.447  0.14777   
## cb2.sunv3.l2        4.750e-01  2.312e-01   2.055  0.03991 * 
## cb1.avgWindSpv1.l1  3.350e-01  3.264e-01   1.026  0.30476   
## cb1.avgWindSpv1.l2  3.870e-01  2.293e-01   1.688  0.09150 . 
## cb1.avgWindSpv2.l1  1.589e+00  7.294e-01   2.179  0.02936 * 
## cb1.avgWindSpv2.l2  1.729e-01  5.060e-01   0.342  0.73259   
## cb1.avgWindSpv3.l1  9.618e-01  8.213e-01   1.171  0.24161   
## cb1.avgWindSpv3.l2 -3.886e-01  5.065e-01  -0.767  0.44288   
## sp_ptbBM1                  NA         NA      NA       NA   
## sp_ptbBM2                  NA         NA      NA       NA   
## sp_ptbBM3                  NA         NA      NA       NA   
## sp_ptbBM4          -1.823e+06  2.230e+06  -0.818  0.41362   
## sp_ptbBM5           2.008e+01  1.263e+01   1.589  0.11197   
## sp_ptbBM6          -6.066e+00  2.510e+00  -2.417  0.01566 * 
## sp_ptbBM7          -3.021e+00  2.383e+00  -1.268  0.20492   
## sp_ptbBM8          -5.988e+00  2.468e+00  -2.427  0.01524 * 
## sp_ptbBM9          -2.039e+00  2.205e+00  -0.925  0.35506   
## sp_ptbBM10         -6.864e+00  2.128e+00  -3.226  0.00126 **
## sp_ptbBM11         -2.288e+00  1.882e+00  -1.216  0.22408   
## sp_ptbBM12         -4.147e+00  1.832e+00  -2.263  0.02361 * 
## sp_ptbBM13         -2.090e+00  2.063e+00  -1.013  0.31087   
## sp_ptbBM14         -5.242e+00  1.962e+00  -2.672  0.00754 **
## sp_ptbBM15         -1.587e+00  1.646e+00  -0.964  0.33520   
## sp_ptbBM16         -1.213e+00  1.864e+00  -0.651  0.51525   
## sp_ptbBM17         -1.825e+00  1.634e+00  -1.117  0.26401   
## sp_ptbBM18         -1.730e+00  1.643e+00  -1.053  0.29234   
## sp_ptbBM19         -3.094e+00  1.616e+00  -1.915  0.05552 . 
## sp_ptbBM20         -2.882e+00  1.733e+00  -1.663  0.09633 . 
## sp_ptbBM21         -2.271e+00  1.936e+00  -1.173  0.24060   
## sp_ptbBM22         -3.110e+00  1.659e+00  -1.875  0.06084 . 
## sp_ptbBM23         -2.060e+00  1.646e+00  -1.252  0.21067   
## sp_ptbBM24         -2.621e+00  1.547e+00  -1.694  0.09019 . 
## sp_ptbBM25         -1.993e+00  1.305e+00  -1.527  0.12671   
## sp_ptbBM26         -2.037e+00  1.471e+00  -1.385  0.16606   
## sp_ptbBM27         -3.990e+00  1.667e+00  -2.394  0.01669 * 
## sp_ptbBM28         -2.076e+00  1.728e+00  -1.201  0.22963   
## sp_ptbBM29         -2.643e+00  1.814e+00  -1.457  0.14512   
## sp_ptbBM30         -1.698e+00  1.712e+00  -0.992  0.32132   
## sp_ptbBM31         -1.001e+00  1.695e+00  -0.591  0.55480   
## sp_ptbBM32         -2.650e+00  1.859e+00  -1.425  0.15416   
## sp_ptbBM33         -1.029e+00  1.842e+00  -0.559  0.57633   
## sp_ptbBM34          3.486e-01  2.212e+00   0.158  0.87479   
## sp_ptbBM35          1.088e+00  2.348e+00   0.464  0.64296   
## sp_ptbBM36          3.622e+00  2.653e+00   1.365  0.17227   
## sp_ptbBM37         -1.308e-01  2.790e+00  -0.047  0.96261   
## sp_ptbBM38          6.059e-02  2.643e+00   0.023  0.98171   
## sp_ptbBM39         -1.944e+00  2.616e+00  -0.743  0.45745   
## sp_ptbBM40         -1.113e+00  2.547e+00  -0.437  0.66219   
## sp_ptbBM41         -2.811e+00  2.335e+00  -1.204  0.22864   
## sp_ptbBM42         -2.355e+00  2.186e+00  -1.077  0.28134   
## sp_ptbBM43         -3.292e+00  2.168e+00  -1.518  0.12895   
## sp_ptbBM44         -2.451e+00  2.013e+00  -1.218  0.22325   
## sp_ptbBM45         -2.496e+00  1.960e+00  -1.273  0.20293   
## sp_ptbBM46         -3.849e+00  2.019e+00  -1.907  0.05656 . 
## sp_ptbBM47         -3.584e+00  2.152e+00  -1.665  0.09584 . 
## sp_ptbBM48         -3.413e+00  2.233e+00  -1.528  0.12644   
## sp_ptbBM49         -2.569e+00  2.438e+00  -1.054  0.29198   
## sp_ptbBM50         -3.533e+00  2.138e+00  -1.653  0.09835 . 
## sp_ptbBM51         -1.426e+00  2.140e+00  -0.666  0.50532   
## sp_ptbBM52         -2.810e+00  2.044e+00  -1.375  0.16913   
## sp_ptbBM53         -1.171e+00  1.945e+00  -0.602  0.54705   
## sp_ptbBM54         -2.126e+00  1.917e+00  -1.109  0.26732   
## sp_ptbBM55         -1.303e+00  1.751e+00  -0.744  0.45697   
## sp_ptbBM56         -1.435e+00  2.168e+00  -0.662  0.50805   
## sp_ptbBM57         -9.701e-01  1.828e+00  -0.531  0.59553   
## sp_ptbBM58         -1.357e+00  1.740e+00  -0.780  0.43540   
## sp_ptbBM59         -3.033e+00  1.629e+00  -1.861  0.06272 . 
## sp_ptbBM60         -3.101e+00  1.705e+00  -1.819  0.06890 . 
## sp_ptbBM61         -1.962e+00  1.585e+00  -1.237  0.21597   
## sp_ptbBM62         -1.615e+00  1.869e+00  -0.864  0.38762   
## sp_ptbBM63         -3.444e+00  2.244e+00  -1.535  0.12484   
## sp_ptbBM64         -3.180e+00  2.560e+00  -1.242  0.21410   
## sp_ptbBM65         -1.837e+00  2.619e+00  -0.701  0.48299   
## sp_ptbBM66         -4.672e+00  2.654e+00  -1.760  0.07833 . 
## sp_ptbBM67         -4.283e+00  2.572e+00  -1.665  0.09587 . 
## sp_ptbBM68         -6.199e+00  2.691e+00  -2.304  0.02124 * 
## sp_ptbBM69         -6.243e+00  2.733e+00  -2.284  0.02235 * 
## sp_ptbBM70         -7.909e+00  2.566e+00  -3.082  0.00205 **
## sp_ptbBM71         -5.079e+00  2.440e+00  -2.082  0.03738 * 
## sp_ptbBM72         -3.418e+00  2.224e+00  -1.537  0.12437   
## sp_ptbBM73         -3.557e+00  2.183e+00  -1.629  0.10322   
## sp_ptbBM74         -2.047e+00  2.060e+00  -0.994  0.32034   
## sp_ptbBM75         -2.293e+00  2.091e+00  -1.097  0.27276   
## sp_ptbBM76         -1.334e+00  2.048e+00  -0.651  0.51491   
## sp_ptbBM77         -2.865e+00  2.271e+00  -1.262  0.20711   
## sp_ptbBM78         -1.920e+00  2.331e+00  -0.824  0.41015   
## sp_ptbBM79         -2.221e+00  2.251e+00  -0.987  0.32372   
## sp_ptbBM80         -3.184e+00  2.258e+00  -1.410  0.15849   
## sp_ptbBM81         -4.274e+00  2.291e+00  -1.866  0.06206 . 
## sp_ptbBM82         -4.425e+00  2.169e+00  -2.040  0.04135 * 
## sp_ptbBM83         -4.138e+00  2.167e+00  -1.909  0.05623 . 
## sp_ptbBM84         -4.253e+00  2.511e+00  -1.693  0.09040 . 
## sp_ptbBM85         -6.855e+00  2.721e+00  -2.519  0.01176 * 
## sp_ptbBM86         -3.952e+00  2.711e+00  -1.458  0.14488   
## sp_ptbBM87         -4.588e+00  2.537e+00  -1.808  0.07056 . 
## sp_ptbBM88         -5.469e+00  2.484e+00  -2.202  0.02768 * 
## sp_ptbBM89         -7.187e+00  2.569e+00  -2.798  0.00514 **
## sp_ptbBM90         -5.837e+00  2.648e+00  -2.205  0.02747 * 
## sp_ptbBM91         -5.802e+00  2.674e+00  -2.170  0.03002 * 
## sp_ptbBM92         -3.888e+00  2.612e+00  -1.489  0.13661   
## sp_ptbBM93         -2.264e+00  2.605e+00  -0.869  0.38462   
## sp_ptbBM94         -2.784e+00  2.509e+00  -1.110  0.26709   
## sp_ptbBM95         -2.629e+00  2.546e+00  -1.033  0.30177   
## sp_ptbBM96         -2.402e+00  2.520e+00  -0.953  0.34043   
## sp_ptbBM97         -2.312e+00  2.796e+00  -0.827  0.40843   
## sp_ptbBM98         -6.646e+00  2.954e+00  -2.250  0.02445 * 
## sp_ptbBM99         -5.743e+00  2.895e+00  -1.984  0.04727 * 
## sp_ptbBM100        -3.852e+00  2.925e+00  -1.317  0.18785   
## sp_ptbBM101        -3.239e+00  2.732e+00  -1.186  0.23578   
## sp_ptbBM102        -3.283e+00  2.466e+00  -1.332  0.18302   
## sp_ptbBM103        -4.162e+00  2.468e+00  -1.686  0.09172 . 
## sp_ptbBM104        -2.644e+00  2.292e+00  -1.154  0.24870   
## sp_ptbBM105        -7.395e+00  3.014e+00  -2.453  0.01416 * 
## sp_ptbBM106        -9.139e+00  3.809e+00  -2.399  0.01643 * 
## sp_ptbBM107        -7.515e+00  4.408e+00  -1.705  0.08819 . 
## sp_ptbBM108        -7.150e+00  3.889e+00  -1.839  0.06596 . 
## sp_ptbBM109        -1.050e+01  4.136e+00  -2.540  0.01110 * 
## sp_ptbBM110        -1.116e+01  4.055e+00  -2.752  0.00592 **
## sp_ptbBM111        -1.314e+01  4.482e+00  -2.931  0.00337 **
## sp_ptbBM112        -1.013e+01  3.768e+00  -2.688  0.00719 **
## sp_ptbBM113        -6.880e+00  2.835e+00  -2.427  0.01521 * 
## sp_ptbBM114        -9.915e-01  1.950e+00  -0.508  0.61122   
## sp_ptbBM115        -3.397e+00  1.853e+00  -1.833  0.06680 . 
## sp_ptbBM116         8.256e-01  1.711e+00   0.483  0.62945   
## sp_ptbBM117        -3.350e+00  1.559e+00  -2.149  0.03162 * 
## sp_ptbBM118         1.249e+00  1.333e+00   0.937  0.34888   
## sp_ptbBM119        -2.342e+00  1.440e+00  -1.626  0.10389   
## sp_ptbBM120        -1.156e+00  1.402e+00  -0.824  0.40983   
## sp_ptbBM121        -6.117e-01  1.187e+00  -0.515  0.60647   
## sp_ptbBM122         2.620e-01  9.913e-01   0.264  0.79156   
## sp_ptbBM123         1.663e-01  9.701e-01   0.171  0.86385   
## sp_ptbBM124         1.323e+00  8.961e-01   1.477  0.13973   
## sp_ptbBM125                NA         NA      NA       NA   
## sp_ptbBM126                NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(26334.16) family taken to be 1)
## 
##     Null deviance: 1101.28  on 886  degrees of freedom
## Residual deviance:  908.66  on 735  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3247.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  26334 
##           Std. Err.:  151768 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2941.513
pred.fullbm<-predict(mod_fullbm, type="response") #fitted
resid.fullbm<-residuals(mod_fullbm, type="deviance") #residuals deviance
length(pred.fullbm)
## [1] 939
length(week$ptbBM)
## [1] 939
length(resid.fullbm)
## [1] 939
pacf(resid.fullbm,na.action=na.omit) #PACF for residuals, sig lags from 1-10, 12,17 & 25

#ensure that the lags are dplyr lags
mod_fullbm.ac<-update(mod_fullbm,.~.+lag(resid.fullbm,1)+lag(resid.fullbm,2)+lag(resid.fullbm,3)+lag(resid.fullbm,4)+
                          lag(resid.fullbm,5)+lag(resid.fullbm,6)+lag(resid.fullbm,7)+lag(resid.fullbm,8)+
                          lag(resid.fullbm,9)+lag(resid.fullbm,10)+lag(resid.fullbm,12)+lag(resid.fullbm,17)+lag(resid.fullbm,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(mod_fullbm.ac)##aic=2853.4
## 
## Call:
## glm.nb(formula = ptbBM ~ cb3.RF + cb9.minT + cb5.minRH + cb2.sun + 
##     cb1.avgWindSp + sp_ptbBM + lag(resid.fullbm, 1) + lag(resid.fullbm, 
##     2) + lag(resid.fullbm, 3) + lag(resid.fullbm, 4) + lag(resid.fullbm, 
##     5) + lag(resid.fullbm, 6) + lag(resid.fullbm, 7) + lag(resid.fullbm, 
##     8) + lag(resid.fullbm, 9) + lag(resid.fullbm, 10) + lag(resid.fullbm, 
##     12) + lag(resid.fullbm, 17) + lag(resid.fullbm, 25), data = week, 
##     init.theta = 48297.52007, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.43365  -0.69942  -0.07149   0.49249   2.06348  
## 
## Coefficients: (9 not defined because of singularities)
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -28.562548  22.231312  -1.285 0.198866    
## cb3.RFv1.l1             0.114837   0.308769   0.372 0.709954    
## cb3.RFv1.l2             0.031240   0.225886   0.138 0.890003    
## cb3.RFv2.l1            -0.126714   0.511190  -0.248 0.804226    
## cb3.RFv2.l2             0.197484   0.355318   0.556 0.578352    
## cb3.RFv3.l1            -0.030323   0.798713  -0.038 0.969716    
## cb3.RFv3.l2             0.205980   0.579959   0.355 0.722468    
## cb9.minTv1.l1           0.097831   0.298037   0.328 0.742721    
## cb9.minTv1.l2          -0.184845   0.224431  -0.824 0.410157    
## cb9.minTv2.l1           1.894780   1.024479   1.850 0.064385 .  
## cb9.minTv2.l2           0.272927   0.781463   0.349 0.726901    
## cb9.minTv3.l1           1.388982   0.557064   2.493 0.012653 *  
## cb9.minTv3.l2           1.030672   0.415889   2.478 0.013203 *  
## cb5.minRHv1.l1          0.237152   0.297142   0.798 0.424805    
## cb5.minRHv1.l2          0.144177   0.195038   0.739 0.459771    
## cb5.minRHv2.l1         -0.631561   1.074396  -0.588 0.556647    
## cb5.minRHv2.l2         -0.425887   0.776675  -0.548 0.583454    
## cb5.minRHv3.l1         -0.533824   0.768072  -0.695 0.487043    
## cb5.minRHv3.l2         -0.126402   0.568118  -0.222 0.823931    
## cb2.sunv1.l1            0.047054   0.241181   0.195 0.845317    
## cb2.sunv1.l2            0.176312   0.170482   1.034 0.301043    
## cb2.sunv2.l1            0.584054   0.974407   0.599 0.548910    
## cb2.sunv2.l2            1.761893   0.664331   2.652 0.007999 ** 
## cb2.sunv3.l1            0.105127   0.381316   0.276 0.782781    
## cb2.sunv3.l2            0.806680   0.239944   3.362 0.000774 ***
## cb1.avgWindSpv1.l1      0.225235   0.341871   0.659 0.510004    
## cb1.avgWindSpv1.l2      0.137268   0.239281   0.574 0.566191    
## cb1.avgWindSpv2.l1      0.421899   0.790568   0.534 0.593573    
## cb1.avgWindSpv2.l2      0.277928   0.531583   0.523 0.601092    
## cb1.avgWindSpv3.l1     -0.606982   0.885746  -0.685 0.493168    
## cb1.avgWindSpv3.l2     -0.035109   0.555268  -0.063 0.949584    
## sp_ptbBM1                     NA         NA      NA       NA    
## sp_ptbBM2                     NA         NA      NA       NA    
## sp_ptbBM3                     NA         NA      NA       NA    
## sp_ptbBM4                     NA         NA      NA       NA    
## sp_ptbBM5                     NA         NA      NA       NA    
## sp_ptbBM6                     NA         NA      NA       NA    
## sp_ptbBM7                     NA         NA      NA       NA    
## sp_ptbBM8               2.274770  45.013654   0.051 0.959696    
## sp_ptbBM9               0.477077   4.664324   0.102 0.918533    
## sp_ptbBM10             -2.948535   2.645762  -1.114 0.265092    
## sp_ptbBM11             -1.067352   2.028066  -0.526 0.598686    
## sp_ptbBM12             -0.749641   1.976049  -0.379 0.704418    
## sp_ptbBM13              0.843765   2.143014   0.394 0.693782    
## sp_ptbBM14             -3.068884   2.077714  -1.477 0.139663    
## sp_ptbBM15              1.869402   1.727686   1.082 0.279241    
## sp_ptbBM16             -0.707872   1.897789  -0.373 0.709150    
## sp_ptbBM17              0.572816   1.694142   0.338 0.735276    
## sp_ptbBM18             -1.981922   1.726615  -1.148 0.251024    
## sp_ptbBM19             -0.082989   1.663215  -0.050 0.960205    
## sp_ptbBM20             -3.159101   1.800187  -1.755 0.079281 .  
## sp_ptbBM21              0.388893   2.037345   0.191 0.848618    
## sp_ptbBM22             -2.399976   1.698869  -1.413 0.157747    
## sp_ptbBM23             -0.638773   1.689087  -0.378 0.705300    
## sp_ptbBM24             -0.782850   1.603256  -0.488 0.625346    
## sp_ptbBM25             -1.798268   1.357032  -1.325 0.185122    
## sp_ptbBM26             -0.275004   1.542580  -0.178 0.858507    
## sp_ptbBM27             -4.101012   1.694131  -2.421 0.015490 *  
## sp_ptbBM28             -0.806805   1.795592  -0.449 0.653197    
## sp_ptbBM29             -1.635411   1.882799  -0.869 0.385062    
## sp_ptbBM30              0.366678   1.799110   0.204 0.838501    
## sp_ptbBM31             -1.441362   1.741708  -0.828 0.407922    
## sp_ptbBM32             -0.358674   1.902639  -0.189 0.850474    
## sp_ptbBM33             -2.728528   1.906209  -1.431 0.152318    
## sp_ptbBM34              2.340206   2.237426   1.046 0.295590    
## sp_ptbBM35              0.373066   2.403179   0.155 0.876633    
## sp_ptbBM36              4.514664   2.696754   1.674 0.094109 .  
## sp_ptbBM37              1.061059   2.891243   0.367 0.713626    
## sp_ptbBM38              1.431577   2.752082   0.520 0.602938    
## sp_ptbBM39              1.017115   2.731588   0.372 0.709630    
## sp_ptbBM40             -0.599127   2.674783  -0.224 0.822764    
## sp_ptbBM41              0.003827   2.472927   0.002 0.998765    
## sp_ptbBM42             -5.035922   2.308236  -2.182 0.029130 *  
## sp_ptbBM43              0.878875   2.323311   0.378 0.705218    
## sp_ptbBM44             -4.270862   2.113080  -2.021 0.043264 *  
## sp_ptbBM45              0.392007   2.101134   0.187 0.851999    
## sp_ptbBM46             -3.068657   2.114783  -1.451 0.146766    
## sp_ptbBM47             -1.651454   2.283079  -0.723 0.469468    
## sp_ptbBM48             -2.760040   2.355082  -1.172 0.241217    
## sp_ptbBM49             -0.980672   2.545698  -0.385 0.700069    
## sp_ptbBM50             -1.663025   2.257917  -0.737 0.461408    
## sp_ptbBM51             -0.182800   2.242320  -0.082 0.935026    
## sp_ptbBM52             -0.442823   2.105248  -0.210 0.833400    
## sp_ptbBM53              0.947888   2.010539   0.471 0.637313    
## sp_ptbBM54              0.066778   1.996602   0.033 0.973319    
## sp_ptbBM55             -0.461606   1.840587  -0.251 0.801975    
## sp_ptbBM56             -0.569687   2.254712  -0.253 0.800527    
## sp_ptbBM57              0.508008   1.909516   0.266 0.790208    
## sp_ptbBM58             -0.859260   1.781730  -0.482 0.629620    
## sp_ptbBM59             -1.496307   1.681322  -0.890 0.373488    
## sp_ptbBM60             -1.791240   1.773943  -1.010 0.312615    
## sp_ptbBM61             -2.570503   1.672862  -1.537 0.124394    
## sp_ptbBM62             -0.905364   1.940919  -0.466 0.640885    
## sp_ptbBM63             -3.536753   2.333562  -1.516 0.129620    
## sp_ptbBM64              1.572254   2.648354   0.594 0.552731    
## sp_ptbBM65             -2.931481   2.705414  -1.084 0.278559    
## sp_ptbBM66             -0.161885   2.767210  -0.059 0.953349    
## sp_ptbBM67             -3.556814   2.698416  -1.318 0.187466    
## sp_ptbBM68             -3.567019   2.829050  -1.261 0.207361    
## sp_ptbBM69             -4.124500   2.877901  -1.433 0.151811    
## sp_ptbBM70             -6.559641   2.677048  -2.450 0.014273 *  
## sp_ptbBM71             -3.148722   2.642337  -1.192 0.233401    
## sp_ptbBM72             -3.308239   2.326213  -1.422 0.154981    
## sp_ptbBM73             -4.899128   2.361512  -2.075 0.038026 *  
## sp_ptbBM74             -0.970548   2.177461  -0.446 0.655796    
## sp_ptbBM75             -5.643491   2.229546  -2.531 0.011366 *  
## sp_ptbBM76              0.799606   2.177754   0.367 0.713492    
## sp_ptbBM77             -4.584730   2.396636  -1.913 0.055750 .  
## sp_ptbBM78              1.367188   2.460376   0.556 0.578428    
## sp_ptbBM79             -1.560238   2.369122  -0.659 0.510171    
## sp_ptbBM80             -0.035781   2.349433  -0.015 0.987849    
## sp_ptbBM81             -4.642427   2.427006  -1.913 0.055771 .  
## sp_ptbBM82             -0.750542   2.294159  -0.327 0.743552    
## sp_ptbBM83             -5.887742   2.299595  -2.560 0.010457 *  
## sp_ptbBM84             -0.553201   2.635398  -0.210 0.833736    
## sp_ptbBM85             -4.777589   2.851921  -1.675 0.093892 .  
## sp_ptbBM86             -2.094519   2.802777  -0.747 0.454882    
## sp_ptbBM87             -1.696407   2.655228  -0.639 0.522892    
## sp_ptbBM88             -4.528334   2.615617  -1.731 0.083404 .  
## sp_ptbBM89             -5.356437   2.726458  -1.965 0.049459 *  
## sp_ptbBM90             -6.082782   2.770801  -2.195 0.028141 *  
## sp_ptbBM91             -3.635547   2.804640  -1.296 0.194885    
## sp_ptbBM92             -1.731640   2.723214  -0.636 0.524854    
## sp_ptbBM93             -0.644562   2.701445  -0.239 0.811417    
## sp_ptbBM94             -1.566225   2.595514  -0.603 0.546219    
## sp_ptbBM95             -3.345100   2.622581  -1.275 0.202133    
## sp_ptbBM96             -1.934744   2.629475  -0.736 0.461858    
## sp_ptbBM97             -2.560235   2.892529  -0.885 0.376092    
## sp_ptbBM98             -7.832546   3.106911  -2.521 0.011702 *  
## sp_ptbBM99             -1.891040   3.027862  -0.625 0.532269    
## sp_ptbBM100            -2.215755   3.026747  -0.732 0.464133    
## sp_ptbBM101            -1.059536   2.820301  -0.376 0.707153    
## sp_ptbBM102            -2.954109   2.531101  -1.167 0.243160    
## sp_ptbBM103            -4.619438   2.545261  -1.815 0.069537 .  
## sp_ptbBM104            -2.730842   2.372104  -1.151 0.249637    
## sp_ptbBM105            -3.273169   3.128867  -1.046 0.295506    
## sp_ptbBM106            -3.787090   3.921888  -0.966 0.334230    
## sp_ptbBM107            -4.738834   4.447391  -1.066 0.286636    
## sp_ptbBM108            -5.031651   3.976530  -1.265 0.205751    
## sp_ptbBM109            -8.157039   4.227390  -1.930 0.053660 .  
## sp_ptbBM110           -12.967765   4.138305  -3.134 0.001727 ** 
## sp_ptbBM111           -13.842832   4.617172  -2.998 0.002717 ** 
## sp_ptbBM112           -13.822036   3.873112  -3.569 0.000359 ***
## sp_ptbBM113            -8.463468   2.918365  -2.900 0.003731 ** 
## sp_ptbBM114            -0.727466   1.997597  -0.364 0.715731    
## sp_ptbBM115            -3.218202   1.902037  -1.692 0.090650 .  
## sp_ptbBM116             1.236617   1.761545   0.702 0.482675    
## sp_ptbBM117            -2.647435   1.595532  -1.659 0.097059 .  
## sp_ptbBM118            -0.155990   1.366134  -0.114 0.909092    
## sp_ptbBM119            -3.205437   1.502580  -2.133 0.032901 *  
## sp_ptbBM120            -2.578330   1.474100  -1.749 0.080276 .  
## sp_ptbBM121            -2.208809   1.231093  -1.794 0.072784 .  
## sp_ptbBM122             0.374962   0.999906   0.375 0.707662    
## sp_ptbBM123            -1.403727   1.004861  -1.397 0.162433    
## sp_ptbBM124             2.396657   0.895385   2.677 0.007436 ** 
## sp_ptbBM125                   NA         NA      NA       NA    
## sp_ptbBM126                   NA         NA      NA       NA    
## lag(resid.fullbm, 1)   -0.436258   0.031389 -13.899  < 2e-16 ***
## lag(resid.fullbm, 2)   -0.478593   0.036135 -13.244  < 2e-16 ***
## lag(resid.fullbm, 3)   -0.562952   0.038915 -14.466  < 2e-16 ***
## lag(resid.fullbm, 4)   -0.566300   0.041519 -13.639  < 2e-16 ***
## lag(resid.fullbm, 5)   -0.548945   0.041140 -13.343  < 2e-16 ***
## lag(resid.fullbm, 6)   -0.494001   0.041447 -11.919  < 2e-16 ***
## lag(resid.fullbm, 7)   -0.430718   0.039031 -11.035  < 2e-16 ***
## lag(resid.fullbm, 8)   -0.359051   0.035833 -10.020  < 2e-16 ***
## lag(resid.fullbm, 9)   -0.262765   0.033135  -7.930 2.19e-15 ***
## lag(resid.fullbm, 10)  -0.209557   0.029323  -7.147 8.89e-13 ***
## lag(resid.fullbm, 12)  -0.071095   0.026202  -2.713 0.006661 ** 
## lag(resid.fullbm, 17)   0.044570   0.024955   1.786 0.074098 .  
## lag(resid.fullbm, 25)  -0.050905   0.025257  -2.015 0.043855 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(48297.52) family taken to be 1)
## 
##     Null deviance: 1055.03  on 861  degrees of freedom
## Residual deviance:  547.46  on 701  degrees of freedom
##   (77 observations deleted due to missingness)
## AIC: 2853.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  48298 
##           Std. Err.:  191308 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2529.387
resid.fullbm.ac<-residuals(mod_fullbm.ac, type="deviance")
pred.fullbm.ac<-predict(mod_fullbm.ac, type="response")

pacf(resid.fullbm.ac,na.action = na.omit) 

length(pred.fullbm.ac)
## [1] 939
length(resid.fullbm.ac)
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,pred.fullbm,lwd=1, col="dark blue")

plot(week$time,resid.fullbm)
abline(h=0,lty=2,lwd=2, col="blue")

plot(pred.fullbm, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,pred.fullbm.ac,lwd=1, col="dark blue")

plot(week$time,resid.fullbm.ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(pred.fullbm.ac, week$ptbBM)
abline(coef = c(0,1), col="red")

##checking general model fit plot
plot(mod_fullbm)
## Warning: not plotting observations with leverage one:
##   53

plot(mod_fullbm.ac)

#1. plotting the dose reponse and slices now for min temperature
predbm.temp <- crosspred(cb9.minT, mod_fullbm.ac,cen = 24.0, by=0.1,cumul=TRUE)

#cumulative effect of mean temperature
plot(predbm.temp, "overall", xlab="Min temperature (?C)",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of min temperature on ptb")

#90th %
plot(predbm.temp,"slices", var=c(24.6),type="p",ci="bars",col=1,pch=19,ylim=c(0.85,1.04),
     xlab="Lag (weeks)",ylab="RR")

##getting est from predbm.temp

#for 5th % - mat
predbm.temp$matRRfit["22.9","lag0"]; predbm.temp$matRRlow["22.9","lag0"]; predbm.temp$matRRhigh["22.9","lag0"]
## [1] 0.9073167
## [1] 0.7475689
## [1] 1.101201
predbm.temp$matRRfit["22.9","lag13"]; predbm.temp$matRRlow["22.9","lag13"]; predbm.temp$matRRhigh["22.9","lag13"]
## [1] 0.934485
## [1] 0.8007847
## [1] 1.090508
predbm.temp$matRRfit["22.9","lag26"]; predbm.temp$matRRlow["22.9","lag26"]; predbm.temp$matRRhigh["22.9","lag26"]
## [1] 0.9624668
## [1] 0.835515
## [1] 1.108708
predbm.temp$matRRfit["22.9","lag39"]; predbm.temp$matRRlow["22.9","lag39"]; predbm.temp$matRRhigh["22.9","lag39"]
## [1] 0.9912864
## [1] 0.8436407
## [1] 1.164772
predbm.temp$matRRfit["22.9","lag52"]; predbm.temp$matRRlow["22.9","lag52"]; predbm.temp$matRRhigh["22.9","lag52"]
## [1] 1.020969
## [1] 0.8320939
## [1] 1.252716
#for 95th % - mat
predbm.temp$matRRfit["25.1","lag0"]; predbm.temp$matRRlow["25.1","lag0"]; predbm.temp$matRRhigh["25.1","lag0"]
## [1] 0.9355388
## [1] 0.7665484
## [1] 1.141784
predbm.temp$matRRfit["25.1","lag13"]; predbm.temp$matRRlow["25.1","lag13"]; predbm.temp$matRRhigh["25.1","lag13"]
## [1] 1.031766
## [1] 0.8789424
## [1] 1.211161
predbm.temp$matRRfit["25.1","lag26"]; predbm.temp$matRRlow["25.1","lag26"]; predbm.temp$matRRhigh["25.1","lag26"]
## [1] 1.137891
## [1] 0.9834511
## [1] 1.316584
predbm.temp$matRRfit["25.1","lag28"]; predbm.temp$matRRlow["25.1","lag28"]; predbm.temp$matRRhigh["25.1","lag28"]
## [1] 1.15516
## [1] 0.9977991
## [1] 1.337338
predbm.temp$matRRfit["25.1","lag29"]; predbm.temp$matRRlow["25.1","lag29"]; predbm.temp$matRRhigh["25.1","lag29"]
## [1] 1.163892
## [1] 1.004762
## [1] 1.348226
predbm.temp$matRRfit["25.1","lag30"]; predbm.temp$matRRlow["25.1","lag30"]; predbm.temp$matRRhigh["25.1","lag30"]
## [1] 1.172691
## [1] 1.011581
## [1] 1.35946
predbm.temp$matRRfit["25.1","lag39"]; predbm.temp$matRRlow["25.1","lag39"]; predbm.temp$matRRhigh["25.1","lag39"]
## [1] 1.254932
## [1] 1.066655
## [1] 1.476441
predbm.temp$matRRfit["25.1","lag52"]; predbm.temp$matRRlow["25.1","lag52"]; predbm.temp$matRRhigh["25.1","lag52"]
## [1] 1.384011
## [1] 1.129929
## [1] 1.695227
#2. plotting the dose reponse and slices now for RF
predbm.rf <- crosspred(cb3.RF, mod_fullbm.ac,cen = 44.9, by=0.1,cumul=TRUE)

#cumulative effect of RF
plot(predbm.rf, "overall", xlab="Total precipitation",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of temperature on ptb")

#3. plotting the dose reponse and slices now for wind
predbm.wind <- crosspred(cb1.avgWindSp, mod_fullbm.ac,cen = 4.5, by=0.1,cumul=TRUE)

#cumulative effect of wind
plot(predbm.wind, "overall", xlab="Av wind speed",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of wind speed on ptb")

#4. plotting the dose reponse and slices now for sun
predbm.sun <- crosspred(cb2.sun, mod_fullbm.ac,cen = 50.7, by=0.1,cumul=TRUE)

#cumulative effect of sun
plot(predbm.sun, "overall", xlab="Total sunshine hours",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of sunshine on ptb")

#5. plotting the dose reponse and slices now for minRH
predbm.minRH <- crosspred(cb5.minRH, mod_fullbm.ac,cen = 63.0, by=0.1, cumul=TRUE)


#cumulative effect
plot(predbm.minRH, "overall", xlab="Mean RH",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of minRH on ptb")

Codes for ptbBM analysis: Figures 1-3 and S1 Figure

##3d plots for ptbBM version or all mod_fullbm model------
## Because not possible to arrange grid for contour plots, used GIMP to form 3d & contour multiplot
#tiff("fig_3dFullptbBM_minT.tiff", units="in", width=5, height=6, res=300)
plot(predbm.temp, xlab="Minimum Temperature", zlab="RR", ylab = "Lag (weeks)", theta=200, phi=40, lphi=30,cex.axis=0.6,cex.lab=0.7)

#dev.off()

#tiff("fig_ConFullptbBM_minT.tiff", units="in", width=5, height=6, res=300)
plot(predbm.temp, "contour", xlab="Minimum Temperature", ylab = "Lag (weeks)", key.title=title("RR"))

#dev.off()

#tiff("fig_3dFullptbBM_wind.tiff", units="in", width=5, height=6, res=300)
plot(predbm.wind, xlab="Average wind speed", zlab="RR", ylab = "Lag (weeks)", theta=200, phi=40, lphi=30,cex.axis=0.8,cex.lab=0.9)

#dev.off()

#tiff("fig_ConFullptbBM_wind.tiff", units="in", width=5, height=6, res=300)
plot(predbm.wind, "contour", xlab="Average wind speed", ylab = "Lag (weeks)", key.title=title("RR"))

#dev.off()

#tiff("fig_3dFullptbBM_rf.tiff", units="in", width=5, height=6, res=300)
plot(predbm.rf, xlab="Total rainfall", zlab="RR", ylab = "Lag (weeks)",theta=200, phi=40, lphi=30,cex.axis=0.8,cex.lab=0.9)

#dev.off()

#tiff("fig_ConFullptbBM_rf.tiff", units="in", width=5, height=6, res=300)
plot(predbm.rf, "contour", xlab="Total rainfall", ylab = "Lag (weeks)", key.title=title("RR"))

#dev.off()

#tiff("fig_3dFullptbBM_sun.tiff", units="in", width=5, height=6, res=300)
plot(predbm.sun, xlab="Total sunshine hours", zlab="RR", ylab = "Lag (weeks)", theta=200, phi=40, lphi=30,cex.axis=0.8,cex.lab=0.9)

#dev.off()

#tiff("fig_ConFullptbBM_sun.tiff", units="in", width=5, height=6, res=300)
plot(predbm.sun, "contour", xlab="Total sunshine hours", ylab = "Lag (weeks)", key.title=title("RR"))

#dev.off()

#tiff("fig_3dFullptbBM_minRH.tiff", units="in", width=5, height=6, res=300)
plot(predbm.minRH, xlab="Minimum RH", zlab="RR", ylab = "Lag (weeks)", theta=200, phi=40, lphi=30,cex.axis=0.8,cex.lab=0.9)

#dev.off()

#tiff("fig_ConFullptbBM_minRH.tiff", units="in", width=5, height=6, res=300)
plot(predbm.minRH, "contour", xlab="Minimum RH", ylab = "Lag (weeks)", key.title=title("RR"))

#dev.off()


###to make lag plots for uni models, ptbBM version -----
##order: minT, rf, sun, minRH & avgWindSp

#tiff("fig_lagUniptbBM_Apr7.tiff", units="in", width=10, height=6, res=400)
par(mfrow=c(5,5),mar=c(2.5,4,2.5,2))

for (i in c(0,13,26,39,52)){
    x = crosspred(cb1.avgWindSp, m1a.ac, cen=4.5)
    title = paste(c(i,"week lag"),collapse=" ")
    plot(x,lag=i,main=title,ylab="RR (Av wind speed)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.5,2.0),xaxt = "n")
    axis(1, at= c(3.0,3.6,4.5,6.1,10.2), labels = c("3.0","5th","50th","95th","10.2"),
         cex.axis=0.8)
}


for (i in c(0,13,26,39,52)){
    x = crosspred(cb9.minT, m9a.ac, cen=24.0)
    title = paste(c("Lag",i),collapse="-")
    plot(x,lag=i,ylab="RR (Min Temp)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.5,2.0),xaxt = "n")
    axis(1, at= c(21.8,22.9,24.0,25.1,26.3), labels = c("21.8","5th","50th","95th","26.3"),
         cex.axis=0.8)
}


for (i in c(0,13,26,39,52)){
    x = crosspred(cb3.RF, m3a.ac, cen=44.9)
    plot(x,lag=i,ylab="RR (Rainfall)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.5,2.0),xaxt = "n")
    axis(1, at= c(0.0,0.8,44.9,160.7,414.5), labels = c("0.0","5th","50th","95th","414.5"),
         cex.axis=0.8)
}


for (i in c(0,13,26,39,52)){
    x = crosspred(cb2.sun, m2a.ac, cen=50.7)
    plot(x,lag=i,ylab="RR (Sunshine hours)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.5,2.0),xaxt = "n")
    axis(1, at= c(11.2,30.8,50.7,66.1,76.0), labels = c("11.2","5th","50th","95th","76.0"),
         cex.axis=0.8)
}


for (i in c(0,13,26,39,52)){
    x = crosspred(cb5.minRH, m5a.ac, cen=63.0)
    plot(x,lag=i,ylab="RR (Min RH)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.5,2.0),xaxt = "n")
    axis(1, at= c(45.0,53.7,63.0,70.3,80.6), labels = c("45.0","5th","50th","95th","80.6"),
         cex.axis=0.8)
}

#dev.off()

###to make lag plots for full model, ptbBM version -----
##order: minT, rf, sun, minRH & avgWindSp

#tiff("fig_lagFullptbBM_Apr7.tiff", units="in", width=10, height=6, res=400)
par(mfrow=c(5,5),mar=c(2.5,4,2.5,2))

#axis(1, at= c(3,3.7,4.5,5.4,10.2)

for (i in c(0,13,26,39,52)){
    x = crosspred(cb1.avgWindSp, mod_fullbm.ac, cen=4.5)
    title = paste(c(i,"week lag"),collapse=" ")
    plot(x,lag=i,main=title,ylab="RR (Av wind speed)", xlab="", col=4,cex.lab=0.9,
         ylim=c(0.5,2.0),xaxt = "n")
    axis(1, at= c(3.0,3.6,4.5,6.1,10.2), labels = c("3.0","5th","50th","95th","10.2"),
         cex.axis=0.8)
}


for (i in c(0,13,26,39,52)){
    x = crosspred(cb9.minT, mod_fullbm.ac, cen=24.1)
    plot(x,lag=i,ylab="RR (Min Temp)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.5,2.0),xaxt = "n")
    axis(1, at= c(21.8,22.9,24.0,25.1,26.3), labels = c("21.8","5th","50th","95th","26.3"),
         cex.axis=0.8)
}


for (i in c(0,13,26,39,52)){
    x = crosspred(cb3.RF, mod_fullbm.ac, cen=44.9)
    plot(x,lag=i,ylab="RR (Rainfall)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.5,2.0),xaxt = "n")
    axis(1, at= c(0.0,0.8,44.9,160.7,414.5), labels = c("0.0","5th","50th","95th","414.5"),
         cex.axis=0.8)
}


for (i in c(0,13,26,39,52)){
    x = crosspred(cb2.sun, mod_fullbm.ac, cen=50.7)
    plot(x,lag=i,ylab="RR (Sunshine hours)", xlab="",col=4,cex.lab=0.9,
         ylim=c(0.5,2.0),xaxt = "n")
    axis(1, at= c(11.2,30.8,50.7,66.1,76.0), labels = c("11.2","5th","50th","95th","76.0"),
         cex.axis=0.8)
}


for (i in c(0,13,26,39,52)){
    x = crosspred(cb5.minRH, mod_fullbm.ac, cen=63.0)
    plot(x,lag=i,ylab="RR (Min RH)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.5,2.0),xaxt = "n")
    axis(1, at= c(45.0,53.7,63.0,70.3,80.6), labels = c("45.0","5th","50th","95th","80.6"),
         cex.axis=0.8)
}

# for (i in c(0,13,26,20,39,52)){
#     x = crosspred(cb6.meanRH, mod_fullbm.ac, cen=82.7)
#     plot(x,lag=i,ylab="RR (Mean RH)",xlab="", col=4,cex.lab=0.9,
#          ylim=c(0.5,2.0),xaxt = "n")
#     axis(1, at= c(70.0,77.7,82.7,86.6,92.1), labels = c("Min","10th","Median","90th","Max"))
# }

#dev.off()

##lag plots from univariate & multivariate models are similar

Analysis fot ptbBM with ns7 for long-term trend

##smptbBM = Weekly smear-positive PTB case counts from Brunei-Muara district

###Sub-analysis SA2- using smptbBM & ns7 -----
sp_ptbBM <-ns(week$time,df=18*7)
options(na.action="na.exclude")
SA2m1a <- glm.nb(smptbBM ~ cb1.avgWindSp + sp_ptbBM,data=week); summary(SA2m1a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ cb1.avgWindSp + sp_ptbBM, data = week, 
##     init.theta = 17447.71098, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1734  -0.8573  -0.1561   0.5224   3.3710  
## 
## Coefficients: (5 not defined because of singularities)
##                      Estimate Std. Error z value Pr(>|z|)  
## (Intercept)        -1.292e+01  7.619e+00  -1.696   0.0900 .
## cb1.avgWindSpv1.l1  1.888e-01  3.652e-01   0.517   0.6052  
## cb1.avgWindSpv1.l2  2.797e-01  2.576e-01   1.086   0.2775  
## cb1.avgWindSpv2.l1  1.384e+00  8.106e-01   1.707   0.0878 .
## cb1.avgWindSpv2.l2  1.731e-01  5.465e-01   0.317   0.7514  
## cb1.avgWindSpv3.l1  9.448e-01  9.295e-01   1.016   0.3094  
## cb1.avgWindSpv3.l2  1.280e-01  5.572e-01   0.230   0.8183  
## sp_ptbBM1                  NA         NA      NA       NA  
## sp_ptbBM2                  NA         NA      NA       NA  
## sp_ptbBM3                  NA         NA      NA       NA  
## sp_ptbBM4          -2.738e+06  2.849e+06  -0.961   0.3365  
## sp_ptbBM5           1.443e+01  1.348e+01   1.070   0.2846  
## sp_ptbBM6          -2.732e+00  2.488e+00  -1.098   0.2722  
## sp_ptbBM7           8.036e-01  2.181e+00   0.368   0.7126  
## sp_ptbBM8          -2.085e+00  2.312e+00  -0.902   0.3672  
## sp_ptbBM9          -5.571e-01  2.061e+00  -0.270   0.7870  
## sp_ptbBM10         -4.160e+00  2.020e+00  -2.060   0.0394 *
## sp_ptbBM11         -5.063e-01  1.851e+00  -0.273   0.7845  
## sp_ptbBM12         -2.161e+00  1.725e+00  -1.253   0.2104  
## sp_ptbBM13         -1.330e+00  1.970e+00  -0.675   0.4994  
## sp_ptbBM14         -6.800e-01  1.669e+00  -0.407   0.6837  
## sp_ptbBM15          6.273e-01  1.174e+00   0.534   0.5932  
## sp_ptbBM16         -6.993e-03  1.129e+00  -0.006   0.9951  
## sp_ptbBM17         -2.985e-01  1.090e+00  -0.274   0.7843  
## sp_ptbBM18         -1.360e-01  1.213e+00  -0.112   0.9107  
## sp_ptbBM19         -1.229e-01  1.151e+00  -0.107   0.9150  
## sp_ptbBM20         -9.573e-01  1.243e+00  -0.770   0.4414  
## sp_ptbBM21          9.940e-01  1.553e+00   0.640   0.5222  
## sp_ptbBM22          1.047e+00  1.206e+00   0.868   0.3855  
## sp_ptbBM23         -4.498e-01  1.183e+00  -0.380   0.7037  
## sp_ptbBM24          3.355e-01  1.234e+00   0.272   0.7858  
## sp_ptbBM25          4.234e-02  1.044e+00   0.041   0.9676  
## sp_ptbBM26          7.956e-01  1.077e+00   0.738   0.4603  
## sp_ptbBM27         -2.206e+00  1.380e+00  -1.599   0.1098  
## sp_ptbBM28          3.666e-01  1.375e+00   0.267   0.7898  
## sp_ptbBM29          8.775e-01  1.522e+00   0.576   0.5644  
## sp_ptbBM30         -2.213e-01  1.132e+00  -0.195   0.8450  
## sp_ptbBM31          8.782e-01  1.146e+00   0.766   0.4437  
## sp_ptbBM32         -2.348e-01  1.120e+00  -0.210   0.8339  
## sp_ptbBM33         -1.144e+00  1.264e+00  -0.905   0.3655  
## sp_ptbBM34          2.072e-01  1.033e+00   0.201   0.8410  
## sp_ptbBM35          3.297e-01  1.041e+00   0.317   0.7515  
## sp_ptbBM36          1.591e+00  1.078e+00   1.475   0.1402  
## sp_ptbBM37         -3.041e-01  1.163e+00  -0.262   0.7937  
## sp_ptbBM38          7.258e-01  1.232e+00   0.589   0.5558  
## sp_ptbBM39         -1.248e+00  1.480e+00  -0.843   0.3991  
## sp_ptbBM40          9.130e-01  1.304e+00   0.700   0.4839  
## sp_ptbBM41         -1.876e+00  1.676e+00  -1.120   0.2629  
## sp_ptbBM42         -1.123e+00  1.761e+00  -0.638   0.5238  
## sp_ptbBM43         -1.024e+00  1.909e+00  -0.536   0.5918  
## sp_ptbBM44         -1.096e+00  1.919e+00  -0.571   0.5680  
## sp_ptbBM45         -4.228e-01  1.893e+00  -0.223   0.8233  
## sp_ptbBM46         -1.298e+00  1.919e+00  -0.677   0.4987  
## sp_ptbBM47         -1.118e+00  2.110e+00  -0.530   0.5962  
## sp_ptbBM48         -1.288e+00  2.276e+00  -0.566   0.5714  
## sp_ptbBM49         -7.155e-01  2.185e+00  -0.327   0.7434  
## sp_ptbBM50         -2.271e+00  2.023e+00  -1.123   0.2616  
## sp_ptbBM51          3.116e-01  1.746e+00   0.178   0.8584  
## sp_ptbBM52         -2.131e+00  1.556e+00  -1.370   0.1707  
## sp_ptbBM53         -5.951e-01  1.482e+00  -0.401   0.6881  
## sp_ptbBM54         -1.312e+00  1.508e+00  -0.870   0.3843  
## sp_ptbBM55         -9.392e-01  1.335e+00  -0.703   0.4818  
## sp_ptbBM56         -1.752e-01  1.395e+00  -0.126   0.9001  
## sp_ptbBM57          5.453e-02  1.265e+00   0.043   0.9656  
## sp_ptbBM58         -2.184e-01  1.220e+00  -0.179   0.8579  
## sp_ptbBM59         -9.233e-01  1.201e+00  -0.769   0.4419  
## sp_ptbBM60         -8.580e-01  1.389e+00  -0.618   0.5369  
## sp_ptbBM61          6.316e-02  1.183e+00   0.053   0.9574  
## sp_ptbBM62         -4.469e-01  1.476e+00  -0.303   0.7620  
## sp_ptbBM63         -1.288e-01  1.675e+00  -0.077   0.9387  
## sp_ptbBM64          3.861e-01  1.985e+00   0.195   0.8457  
## sp_ptbBM65         -1.633e-01  1.986e+00  -0.082   0.9345  
## sp_ptbBM66         -1.921e+00  2.393e+00  -0.803   0.4221  
## sp_ptbBM67         -6.949e-02  2.341e+00  -0.030   0.9763  
## sp_ptbBM68         -1.870e+00  2.574e+00  -0.726   0.4675  
## sp_ptbBM69         -6.537e-01  2.507e+00  -0.261   0.7943  
## sp_ptbBM70         -3.100e+00  2.353e+00  -1.318   0.1876  
## sp_ptbBM71         -9.928e-01  2.373e+00  -0.418   0.6757  
## sp_ptbBM72         -3.409e+00  2.366e+00  -1.441   0.1496  
## sp_ptbBM73         -1.867e+00  2.194e+00  -0.851   0.3947  
## sp_ptbBM74         -1.555e+00  2.106e+00  -0.739   0.4602  
## sp_ptbBM75         -1.331e+00  2.041e+00  -0.652   0.5143  
## sp_ptbBM76         -1.091e+00  2.075e+00  -0.526   0.5990  
## sp_ptbBM77         -1.764e+00  2.151e+00  -0.820   0.4122  
## sp_ptbBM78         -3.780e-01  2.131e+00  -0.177   0.8592  
## sp_ptbBM79         -1.565e+00  2.046e+00  -0.765   0.4444  
## sp_ptbBM80         -9.256e-01  2.132e+00  -0.434   0.6641  
## sp_ptbBM81         -1.991e+00  2.182e+00  -0.913   0.3615  
## sp_ptbBM82         -1.926e+00  2.206e+00  -0.873   0.3827  
## sp_ptbBM83         -1.635e+00  2.131e+00  -0.767   0.4429  
## sp_ptbBM84         -8.141e-01  2.395e+00  -0.340   0.7339  
## sp_ptbBM85         -2.816e+00  2.444e+00  -1.152   0.2493  
## sp_ptbBM86         -6.597e-01  2.243e+00  -0.294   0.7686  
## sp_ptbBM87         -2.476e+00  2.214e+00  -1.118   0.2635  
## sp_ptbBM88         -8.568e-01  2.139e+00  -0.401   0.6887  
## sp_ptbBM89         -3.580e+00  2.313e+00  -1.548   0.1216  
## sp_ptbBM90         -1.411e+00  2.232e+00  -0.632   0.5272  
## sp_ptbBM91         -1.904e+00  2.156e+00  -0.883   0.3773  
## sp_ptbBM92         -2.524e-01  2.317e+00  -0.109   0.9132  
## sp_ptbBM93         -2.605e+00  2.273e+00  -1.146   0.2516  
## sp_ptbBM94         -1.947e+00  2.154e+00  -0.904   0.3661  
## sp_ptbBM95         -2.215e+00  2.168e+00  -1.022   0.3069  
## sp_ptbBM96         -8.057e-01  2.067e+00  -0.390   0.6967  
## sp_ptbBM97         -2.531e+00  2.146e+00  -1.179   0.2382  
## sp_ptbBM98         -1.875e+00  2.305e+00  -0.813   0.4160  
## sp_ptbBM99         -3.847e-01  2.248e+00  -0.171   0.8641  
## sp_ptbBM100        -1.011e+00  2.357e+00  -0.429   0.6679  
## sp_ptbBM101        -8.368e-01  2.196e+00  -0.381   0.7032  
## sp_ptbBM102        -9.472e-01  1.850e+00  -0.512   0.6086  
## sp_ptbBM103        -5.643e-01  1.563e+00  -0.361   0.7180  
## sp_ptbBM104        -4.033e-01  1.431e+00  -0.282   0.7781  
## sp_ptbBM105        -2.954e-01  1.437e+00  -0.206   0.8371  
## sp_ptbBM106        -4.336e-01  1.942e+00  -0.223   0.8234  
## sp_ptbBM107        -6.866e-01  1.568e+00  -0.438   0.6616  
## sp_ptbBM108         3.251e-01  1.498e+00   0.217   0.8283  
## sp_ptbBM109        -5.456e-01  1.541e+00  -0.354   0.7234  
## sp_ptbBM110        -1.294e+00  1.639e+00  -0.790   0.4298  
## sp_ptbBM111        -1.018e+00  1.764e+00  -0.577   0.5638  
## sp_ptbBM112        -2.259e+00  1.405e+00  -1.607   0.1080  
## sp_ptbBM113         1.759e+00  1.017e+00   1.730   0.0837 .
## sp_ptbBM114         4.648e-01  9.390e-01   0.495   0.6206  
## sp_ptbBM115        -4.518e-01  1.005e+00  -0.449   0.6531  
## sp_ptbBM116         1.679e+00  9.161e-01   1.833   0.0669 .
## sp_ptbBM117        -1.008e+00  1.109e+00  -0.908   0.3638  
## sp_ptbBM118         1.673e+00  1.019e+00   1.642   0.1005  
## sp_ptbBM119        -5.145e-01  1.093e+00  -0.471   0.6379  
## sp_ptbBM120         1.698e+00  1.178e+00   1.442   0.1494  
## sp_ptbBM121        -2.708e-01  9.554e-01  -0.283   0.7768  
## sp_ptbBM122         1.899e+00  9.358e-01   2.030   0.0424 *
## sp_ptbBM123        -7.059e-01  8.490e-01  -0.831   0.4057  
## sp_ptbBM124         2.208e+00  1.104e+00   2.000   0.0455 *
## sp_ptbBM125                NA         NA      NA       NA  
## sp_ptbBM126                NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17447.71) family taken to be 1)
## 
##     Null deviance: 1073.13  on 886  degrees of freedom
## Residual deviance:  925.89  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 2887
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17448 
##           Std. Err.:  102606 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2629.011
SA2m2a <- glm.nb(smptbBM ~ cb2.sun + sp_ptbBM,data=week); summary(SA2m2a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ cb2.sun + sp_ptbBM, data = week, init.theta = 17721.422, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2402  -0.8797  -0.1478   0.5391   3.3445  
## 
## Coefficients: (5 not defined because of singularities)
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  -8.467e+00  1.092e+01  -0.775  0.43805   
## cb2.sunv1.l1  2.908e-01  2.303e-01   1.263  0.20667   
## cb2.sunv1.l2 -2.009e-01  1.695e-01  -1.185  0.23596   
## cb2.sunv2.l1  8.097e-01  9.558e-01   0.847  0.39691   
## cb2.sunv2.l2 -5.924e-01  6.575e-01  -0.901  0.36752   
## cb2.sunv3.l1  6.334e-01  3.487e-01   1.816  0.06933 . 
## cb2.sunv3.l2  2.178e-01  2.457e-01   0.887  0.37528   
## sp_ptbBM1            NA         NA      NA       NA   
## sp_ptbBM2            NA         NA      NA       NA   
## sp_ptbBM3            NA         NA      NA       NA   
## sp_ptbBM4    -2.119e+06  2.891e+06  -0.733  0.46359   
## sp_ptbBM5     1.147e+01  1.320e+01   0.869  0.38504   
## sp_ptbBM6    -4.368e-02  2.191e+00  -0.020  0.98409   
## sp_ptbBM7     2.515e+00  1.266e+00   1.986  0.04701 * 
## sp_ptbBM8     1.675e-03  1.131e+00   0.001  0.99882   
## sp_ptbBM9     1.487e+00  1.023e+00   1.453  0.14612   
## sp_ptbBM10   -2.859e+00  1.332e+00  -2.147  0.03180 * 
## sp_ptbBM11    1.597e+00  9.418e-01   1.696  0.08987 . 
## sp_ptbBM12   -4.623e-01  1.133e+00  -0.408  0.68330   
## sp_ptbBM13    4.868e-01  1.125e+00   0.433  0.66513   
## sp_ptbBM14   -2.666e-01  1.146e+00  -0.233  0.81604   
## sp_ptbBM15   -1.837e-01  1.120e+00  -0.164  0.86973   
## sp_ptbBM16    2.534e-01  1.106e+00   0.229  0.81873   
## sp_ptbBM17   -3.439e-01  1.121e+00  -0.307  0.75900   
## sp_ptbBM18    4.976e-02  1.140e+00   0.044  0.96519   
## sp_ptbBM19   -2.994e-01  1.153e+00  -0.260  0.79506   
## sp_ptbBM20    2.776e-01  1.098e+00   0.253  0.80032   
## sp_ptbBM21    6.544e-01  1.186e+00   0.552  0.58115   
## sp_ptbBM22    1.388e+00  1.065e+00   1.303  0.19247   
## sp_ptbBM23    5.676e-01  1.173e+00   0.484  0.62846   
## sp_ptbBM24    1.413e+00  1.042e+00   1.356  0.17513   
## sp_ptbBM25    7.012e-01  1.078e+00   0.650  0.51551   
## sp_ptbBM26    1.197e+00  1.162e+00   1.030  0.30287   
## sp_ptbBM27   -7.627e-01  1.352e+00  -0.564  0.57257   
## sp_ptbBM28   -6.348e-01  1.236e+00  -0.513  0.60763   
## sp_ptbBM29    5.601e-01  1.222e+00   0.458  0.64668   
## sp_ptbBM30    9.812e-02  1.144e+00   0.086  0.93167   
## sp_ptbBM31    9.386e-01  1.151e+00   0.816  0.41463   
## sp_ptbBM32   -1.915e-01  1.223e+00  -0.157  0.87563   
## sp_ptbBM33   -3.646e-01  1.221e+00  -0.299  0.76522   
## sp_ptbBM34    1.408e+00  1.190e+00   1.184  0.23660   
## sp_ptbBM35    1.426e+00  1.217e+00   1.172  0.24131   
## sp_ptbBM36    2.298e+00  1.217e+00   1.888  0.05897 . 
## sp_ptbBM37    1.599e+00  1.173e+00   1.364  0.17264   
## sp_ptbBM38    2.810e+00  1.139e+00   2.466  0.01366 * 
## sp_ptbBM39    1.103e+00  1.152e+00   0.957  0.33848   
## sp_ptbBM40    3.704e+00  1.211e+00   3.059  0.00222 **
## sp_ptbBM41    1.024e+00  1.129e+00   0.907  0.36440   
## sp_ptbBM42    1.968e+00  1.224e+00   1.608  0.10773   
## sp_ptbBM43    1.465e+00  1.033e+00   1.418  0.15616   
## sp_ptbBM44    1.285e+00  9.393e-01   1.368  0.17125   
## sp_ptbBM45    1.374e+00  8.925e-01   1.539  0.12374   
## sp_ptbBM46    5.825e-02  9.360e-01   0.062  0.95038   
## sp_ptbBM47    3.205e-01  1.093e+00   0.293  0.76931   
## sp_ptbBM48    6.675e-01  9.452e-01   0.706  0.48008   
## sp_ptbBM49    6.725e-01  1.282e+00   0.525  0.59990   
## sp_ptbBM50    5.094e-01  1.052e+00   0.484  0.62811   
## sp_ptbBM51    2.731e+00  1.056e+00   2.585  0.00973 **
## sp_ptbBM52    2.523e-01  9.977e-01   0.253  0.80034   
## sp_ptbBM53    1.492e+00  9.840e-01   1.516  0.12949   
## sp_ptbBM54    2.814e-01  1.004e+00   0.280  0.77930   
## sp_ptbBM55    1.620e-01  1.030e+00   0.157  0.87502   
## sp_ptbBM56    1.293e+00  1.208e+00   1.070  0.28464   
## sp_ptbBM57    1.580e+00  1.154e+00   1.369  0.17098   
## sp_ptbBM58    1.080e+00  1.043e+00   1.035  0.30056   
## sp_ptbBM59    1.014e+00  1.042e+00   0.973  0.33064   
## sp_ptbBM60    7.721e-01  9.887e-01   0.781  0.43485   
## sp_ptbBM61    1.244e+00  1.070e+00   1.163  0.24491   
## sp_ptbBM62    4.166e-01  1.073e+00   0.388  0.69794   
## sp_ptbBM63    8.239e-02  1.236e+00   0.067  0.94686   
## sp_ptbBM64    2.293e-01  1.158e+00   0.198  0.84304   
## sp_ptbBM65    1.355e+00  1.058e+00   1.281  0.20031   
## sp_ptbBM66   -5.301e-01  1.035e+00  -0.512  0.60854   
## sp_ptbBM67    1.466e+00  9.512e-01   1.541  0.12322   
## sp_ptbBM68   -3.877e-01  1.010e+00  -0.384  0.70111   
## sp_ptbBM69    7.004e-01  1.036e+00   0.676  0.49881   
## sp_ptbBM70   -7.821e-01  1.417e+00  -0.552  0.58103   
## sp_ptbBM71    2.085e+00  1.323e+00   1.576  0.11508   
## sp_ptbBM72   -3.898e-01  1.452e+00  -0.268  0.78834   
## sp_ptbBM73    1.398e+00  1.295e+00   1.079  0.28037   
## sp_ptbBM74    1.572e+00  1.293e+00   1.215  0.22426   
## sp_ptbBM75    1.580e+00  1.173e+00   1.347  0.17813   
## sp_ptbBM76    1.910e+00  1.205e+00   1.585  0.11294   
## sp_ptbBM77    1.222e+00  1.240e+00   0.985  0.32449   
## sp_ptbBM78    2.035e+00  1.201e+00   1.694  0.09035 . 
## sp_ptbBM79    9.500e-01  1.146e+00   0.829  0.40710   
## sp_ptbBM80    1.565e+00  1.185e+00   1.321  0.18666   
## sp_ptbBM81   -7.640e-02  1.269e+00  -0.060  0.95198   
## sp_ptbBM82    3.392e-01  1.147e+00   0.296  0.76734   
## sp_ptbBM83    1.949e-01  1.151e+00   0.169  0.86547   
## sp_ptbBM84    4.363e-01  1.159e+00   0.376  0.70662   
## sp_ptbBM85   -1.779e+00  1.309e+00  -1.359  0.17412   
## sp_ptbBM86    8.353e-01  1.236e+00   0.676  0.49910   
## sp_ptbBM87   -4.653e-02  1.178e+00  -0.040  0.96849   
## sp_ptbBM88    1.786e+00  1.197e+00   1.492  0.13571   
## sp_ptbBM89   -8.129e-01  1.422e+00  -0.572  0.56764   
## sp_ptbBM90    1.882e+00  1.306e+00   1.440  0.14973   
## sp_ptbBM91    1.870e+00  1.374e+00   1.361  0.17356   
## sp_ptbBM92    2.376e+00  1.144e+00   2.076  0.03786 * 
## sp_ptbBM93    7.167e-01  1.234e+00   0.581  0.56155   
## sp_ptbBM94    1.181e+00  1.189e+00   0.993  0.32077   
## sp_ptbBM95    9.451e-01  1.080e+00   0.875  0.38154   
## sp_ptbBM96    2.252e+00  1.052e+00   2.140  0.03233 * 
## sp_ptbBM97    2.473e-01  1.074e+00   0.230  0.81791   
## sp_ptbBM98    1.336e+00  1.420e+00   0.941  0.34672   
## sp_ptbBM99    1.985e+00  1.067e+00   1.859  0.06301 . 
## sp_ptbBM100   1.836e+00  1.102e+00   1.666  0.09564 . 
## sp_ptbBM101   1.491e+00  1.010e+00   1.476  0.13982   
## sp_ptbBM102   1.356e+00  1.041e+00   1.302  0.19277   
## sp_ptbBM103   1.168e+00  1.052e+00   1.110  0.26679   
## sp_ptbBM104   1.310e+00  9.769e-01   1.341  0.17985   
## sp_ptbBM105  -4.534e-01  1.317e+00  -0.344  0.73060   
## sp_ptbBM106  -3.253e-01  1.134e+00  -0.287  0.77425   
## sp_ptbBM107  -1.059e+00  1.232e+00  -0.859  0.39027   
## sp_ptbBM108   3.786e-03  1.245e+00   0.003  0.99757   
## sp_ptbBM109  -2.306e-01  1.210e+00  -0.190  0.84893   
## sp_ptbBM110  -3.911e-01  1.381e+00  -0.283  0.77701   
## sp_ptbBM111   6.038e-01  1.248e+00   0.484  0.62841   
## sp_ptbBM112  -4.786e-01  1.143e+00  -0.419  0.67534   
## sp_ptbBM113   2.366e+00  1.072e+00   2.208  0.02728 * 
## sp_ptbBM114   1.193e+00  9.805e-01   1.217  0.22379   
## sp_ptbBM115   8.943e-01  1.151e+00   0.777  0.43713   
## sp_ptbBM116   2.755e+00  1.023e+00   2.694  0.00707 **
## sp_ptbBM117  -8.531e-01  1.275e+00  -0.669  0.50330   
## sp_ptbBM118   2.922e+00  1.162e+00   2.514  0.01193 * 
## sp_ptbBM119   7.258e-01  1.324e+00   0.548  0.58365   
## sp_ptbBM120   2.051e+00  1.133e+00   1.811  0.07019 . 
## sp_ptbBM121   4.275e-01  1.064e+00   0.402  0.68783   
## sp_ptbBM122   2.271e+00  9.682e-01   2.346  0.01899 * 
## sp_ptbBM123   7.221e-01  8.618e-01   0.838  0.40209   
## sp_ptbBM124   1.970e+00  1.122e+00   1.756  0.07912 . 
## sp_ptbBM125          NA         NA      NA       NA   
## sp_ptbBM126          NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17721.42) family taken to be 1)
## 
##     Null deviance: 1073.1  on 886  degrees of freedom
## Residual deviance:  920.3  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 2881.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17721 
##           Std. Err.:  102690 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2623.416
SA2m3a <- glm.nb(smptbBM ~ cb3.RF + sp_ptbBM,data=week); summary(SA2m3a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ cb3.RF + sp_ptbBM, data = week, init.theta = 17311.02781, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1072  -0.8474  -0.1545   0.5437   3.3762  
## 
## Coefficients: (5 not defined because of singularities)
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  6.039e-01  3.091e+00   0.195  0.84509    
## cb3.RFv1.l1  2.795e-01  3.032e-01   0.922  0.35673    
## cb3.RFv1.l2  5.948e-02  2.121e-01   0.280  0.77918    
## cb3.RFv2.l1 -3.413e-01  4.369e-01  -0.781  0.43464    
## cb3.RFv2.l2  4.430e-01  3.182e-01   1.392  0.16393    
## cb3.RFv3.l1 -4.776e-01  7.029e-01  -0.679  0.49683    
## cb3.RFv3.l2  5.909e-01  5.428e-01   1.089  0.27628    
## sp_ptbBM1           NA         NA      NA       NA    
## sp_ptbBM2           NA         NA      NA       NA    
## sp_ptbBM3           NA         NA      NA       NA    
## sp_ptbBM4   -2.127e+06  2.881e+06  -0.738  0.46045    
## sp_ptbBM5    9.343e+00  1.300e+01   0.719  0.47230    
## sp_ptbBM6   -1.472e-01  2.150e+00  -0.068  0.94541    
## sp_ptbBM7    2.343e+00  1.288e+00   1.820  0.06881 .  
## sp_ptbBM8    5.184e-02  1.201e+00   0.043  0.96557    
## sp_ptbBM9    2.209e+00  1.103e+00   2.002  0.04530 *  
## sp_ptbBM10  -1.757e+00  1.397e+00  -1.257  0.20873    
## sp_ptbBM11   2.289e+00  9.885e-01   2.315  0.02059 *  
## sp_ptbBM12   8.056e-01  1.116e+00   0.722  0.47046    
## sp_ptbBM13   2.493e+00  1.160e+00   2.149  0.03164 *  
## sp_ptbBM14   9.179e-01  1.116e+00   0.823  0.41064    
## sp_ptbBM15   1.380e+00  1.029e+00   1.341  0.17988    
## sp_ptbBM16   1.299e+00  1.160e+00   1.120  0.26280    
## sp_ptbBM17   1.235e+00  1.123e+00   1.099  0.27183    
## sp_ptbBM18   1.364e+00  1.118e+00   1.220  0.22237    
## sp_ptbBM19   1.429e+00  1.082e+00   1.321  0.18636    
## sp_ptbBM20   2.140e+00  1.300e+00   1.646  0.09973 .  
## sp_ptbBM21   1.889e+00  1.070e+00   1.765  0.07748 .  
## sp_ptbBM22   2.051e+00  1.055e+00   1.945  0.05175 .  
## sp_ptbBM23   8.189e-01  1.085e+00   0.755  0.45028    
## sp_ptbBM24   1.761e+00  1.109e+00   1.587  0.11243    
## sp_ptbBM25   1.351e+00  1.073e+00   1.259  0.20811    
## sp_ptbBM26   2.111e+00  1.134e+00   1.861  0.06275 .  
## sp_ptbBM27   3.860e-01  1.369e+00   0.282  0.77803    
## sp_ptbBM28   8.888e-01  1.259e+00   0.706  0.48027    
## sp_ptbBM29   1.938e+00  1.140e+00   1.699  0.08924 .  
## sp_ptbBM30   1.195e+00  1.149e+00   1.040  0.29846    
## sp_ptbBM31   2.028e+00  9.850e-01   2.059  0.03946 *  
## sp_ptbBM32   1.036e+00  1.060e+00   0.978  0.32831    
## sp_ptbBM33   6.523e-01  1.147e+00   0.569  0.56967    
## sp_ptbBM34   1.885e+00  1.088e+00   1.733  0.08308 .  
## sp_ptbBM35   1.669e+00  1.015e+00   1.644  0.10018    
## sp_ptbBM36   1.487e+00  9.289e-01   1.601  0.10942    
## sp_ptbBM37   1.420e+00  1.074e+00   1.322  0.18619    
## sp_ptbBM38   1.827e+00  9.800e-01   1.864  0.06232 .  
## sp_ptbBM39   6.273e-01  1.033e+00   0.607  0.54388    
## sp_ptbBM40   2.226e+00  9.734e-01   2.287  0.02222 *  
## sp_ptbBM41   1.082e+00  1.066e+00   1.016  0.30985    
## sp_ptbBM42   1.446e+00  1.116e+00   1.295  0.19534    
## sp_ptbBM43   1.406e+00  1.030e+00   1.365  0.17228    
## sp_ptbBM44   1.827e+00  1.015e+00   1.799  0.07198 .  
## sp_ptbBM45   2.026e+00  1.005e+00   2.016  0.04383 *  
## sp_ptbBM46   1.327e+00  9.894e-01   1.341  0.17993    
## sp_ptbBM47   1.198e+00  9.042e-01   1.325  0.18528    
## sp_ptbBM48   1.473e+00  9.582e-01   1.537  0.12425    
## sp_ptbBM49   2.367e+00  1.036e+00   2.285  0.02230 *  
## sp_ptbBM50   5.538e-01  1.060e+00   0.522  0.60138    
## sp_ptbBM51   3.215e+00  9.693e-01   3.317  0.00091 ***
## sp_ptbBM52   8.381e-01  1.060e+00   0.790  0.42932    
## sp_ptbBM53   1.713e+00  1.022e+00   1.676  0.09370 .  
## sp_ptbBM54   1.085e+00  1.074e+00   1.010  0.31239    
## sp_ptbBM55   9.351e-01  1.069e+00   0.875  0.38173    
## sp_ptbBM56   2.306e+00  1.449e+00   1.592  0.11149    
## sp_ptbBM57   2.171e+00  1.160e+00   1.872  0.06122 .  
## sp_ptbBM58   1.297e+00  1.126e+00   1.152  0.24917    
## sp_ptbBM59   8.377e-01  1.065e+00   0.787  0.43152    
## sp_ptbBM60   6.641e-01  1.108e+00   0.599  0.54902    
## sp_ptbBM61   1.261e+00  1.023e+00   1.233  0.21763    
## sp_ptbBM62   1.011e+00  1.277e+00   0.792  0.42842    
## sp_ptbBM63   2.032e+00  1.454e+00   1.397  0.16239    
## sp_ptbBM64   2.248e+00  1.298e+00   1.732  0.08329 .  
## sp_ptbBM65   2.450e+00  1.146e+00   2.138  0.03249 *  
## sp_ptbBM66   1.086e+00  1.092e+00   0.995  0.31993    
## sp_ptbBM67   3.150e+00  1.137e+00   2.771  0.00559 ** 
## sp_ptbBM68   1.235e+00  9.704e-01   1.272  0.20330    
## sp_ptbBM69   2.731e+00  1.234e+00   2.212  0.02695 *  
## sp_ptbBM70   7.114e-02  1.289e+00   0.055  0.95597    
## sp_ptbBM71   1.381e+00  1.313e+00   1.052  0.29287    
## sp_ptbBM72  -8.720e-01  1.318e+00  -0.661  0.50831    
## sp_ptbBM73   2.941e-01  1.130e+00   0.260  0.79468    
## sp_ptbBM74   8.138e-01  9.769e-01   0.833  0.40481    
## sp_ptbBM75   1.131e+00  1.056e+00   1.071  0.28412    
## sp_ptbBM76   1.309e+00  1.047e+00   1.250  0.21148    
## sp_ptbBM77   1.065e+00  1.078e+00   0.988  0.32309    
## sp_ptbBM78   2.457e+00  1.153e+00   2.131  0.03305 *  
## sp_ptbBM79   1.399e+00  1.181e+00   1.184  0.23624    
## sp_ptbBM80   1.923e+00  1.100e+00   1.749  0.08028 .  
## sp_ptbBM81   7.618e-01  1.201e+00   0.634  0.52589    
## sp_ptbBM82   8.513e-01  1.089e+00   0.781  0.43457    
## sp_ptbBM83   1.363e+00  1.090e+00   1.251  0.21088    
## sp_ptbBM84   1.684e+00  1.069e+00   1.575  0.11524    
## sp_ptbBM85  -3.127e-01  1.192e+00  -0.262  0.79314    
## sp_ptbBM86   2.462e+00  1.015e+00   2.425  0.01533 *  
## sp_ptbBM87   3.422e-01  1.031e+00   0.332  0.73990    
## sp_ptbBM88   2.147e+00  9.900e-01   2.168  0.03014 *  
## sp_ptbBM89  -7.474e-01  1.161e+00  -0.644  0.51959    
## sp_ptbBM90   2.262e+00  1.079e+00   2.097  0.03598 *  
## sp_ptbBM91   1.452e+00  1.202e+00   1.208  0.22701    
## sp_ptbBM92   1.631e+00  1.024e+00   1.594  0.11104    
## sp_ptbBM93   6.669e-01  1.221e+00   0.546  0.58481    
## sp_ptbBM94   1.129e+00  1.174e+00   0.962  0.33620    
## sp_ptbBM95   9.532e-01  1.082e+00   0.881  0.37836    
## sp_ptbBM96   1.854e+00  9.216e-01   2.012  0.04421 *  
## sp_ptbBM97   5.638e-01  1.148e+00   0.491  0.62332    
## sp_ptbBM98   1.678e+00  1.272e+00   1.319  0.18721    
## sp_ptbBM99   1.826e+00  1.130e+00   1.616  0.10609    
## sp_ptbBM100  1.551e+00  1.052e+00   1.475  0.14015    
## sp_ptbBM101  1.529e+00  9.687e-01   1.579  0.11445    
## sp_ptbBM102  1.299e+00  1.009e+00   1.288  0.19784    
## sp_ptbBM103  1.403e+00  1.009e+00   1.391  0.16429    
## sp_ptbBM104  2.148e+00  9.998e-01   2.148  0.03169 *  
## sp_ptbBM105  1.416e+00  1.286e+00   1.101  0.27109    
## sp_ptbBM106  6.852e-01  1.185e+00   0.578  0.56308    
## sp_ptbBM107  3.551e-01  1.110e+00   0.320  0.74908    
## sp_ptbBM108  1.269e+00  1.068e+00   1.188  0.23497    
## sp_ptbBM109  1.451e+00  1.144e+00   1.269  0.20456    
## sp_ptbBM110  8.159e-01  9.817e-01   0.831  0.40595    
## sp_ptbBM111  2.318e+00  1.289e+00   1.798  0.07216 .  
## sp_ptbBM112 -6.968e-02  1.226e+00  -0.057  0.95467    
## sp_ptbBM113  2.564e+00  1.003e+00   2.556  0.01059 *  
## sp_ptbBM114  1.483e+00  1.042e+00   1.424  0.15458    
## sp_ptbBM115  7.475e-01  1.129e+00   0.662  0.50802    
## sp_ptbBM116  2.507e+00  1.005e+00   2.495  0.01259 *  
## sp_ptbBM117 -7.662e-01  1.201e+00  -0.638  0.52351    
## sp_ptbBM118  2.598e+00  1.116e+00   2.328  0.01993 *  
## sp_ptbBM119  1.365e-01  1.302e+00   0.105  0.91650    
## sp_ptbBM120  1.603e+00  1.076e+00   1.489  0.13645    
## sp_ptbBM121  4.199e-03  1.043e+00   0.004  0.99679    
## sp_ptbBM122  1.997e+00  1.005e+00   1.987  0.04692 *  
## sp_ptbBM123 -7.013e-01  8.890e-01  -0.789  0.43016    
## sp_ptbBM124  1.960e+00  1.110e+00   1.766  0.07741 .  
## sp_ptbBM125         NA         NA      NA       NA    
## sp_ptbBM126         NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17311.03) family taken to be 1)
## 
##     Null deviance: 1073.13  on 886  degrees of freedom
## Residual deviance:  926.96  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 2888.1
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17311 
##           Std. Err.:  101315 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2630.083
SA2m5a <- glm.nb(smptbBM ~ cb5.minRH + sp_ptbBM,data=week); summary(SA2m5a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ cb5.minRH + sp_ptbBM, data = week, 
##     init.theta = 17146.60379, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2022  -0.8207  -0.1746   0.5366   3.4423  
## 
## Coefficients: (5 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)     1.245e+01  1.203e+01   1.035   0.3006  
## cb5.minRHv1.l1 -2.014e-01  2.717e-01  -0.741   0.4584  
## cb5.minRHv1.l2 -1.065e-01  1.854e-01  -0.574   0.5657  
## cb5.minRHv2.l1 -1.326e+00  1.052e+00  -1.261   0.2075  
## cb5.minRHv2.l2 -4.867e-01  7.829e-01  -0.622   0.5341  
## cb5.minRHv3.l1 -1.049e+00  6.873e-01  -1.526   0.1269  
## cb5.minRHv3.l2 -7.475e-02  5.228e-01  -0.143   0.8863  
## sp_ptbBM1              NA         NA      NA       NA  
## sp_ptbBM2              NA         NA      NA       NA  
## sp_ptbBM3              NA         NA      NA       NA  
## sp_ptbBM4      -2.208e+06  2.877e+06  -0.768   0.4427  
## sp_ptbBM5       1.047e+01  1.294e+01   0.809   0.4185  
## sp_ptbBM6      -7.047e-01  2.175e+00  -0.324   0.7459  
## sp_ptbBM7       1.768e+00  1.268e+00   1.394   0.1633  
## sp_ptbBM8      -4.314e-01  1.200e+00  -0.360   0.7191  
## sp_ptbBM9       1.238e+00  1.170e+00   1.058   0.2903  
## sp_ptbBM10     -2.633e+00  1.299e+00  -2.028   0.0426 *
## sp_ptbBM11      1.305e+00  1.140e+00   1.145   0.2523  
## sp_ptbBM12     -6.931e-01  1.044e+00  -0.664   0.5066  
## sp_ptbBM13      3.038e-01  1.177e+00   0.258   0.7963  
## sp_ptbBM14     -5.900e-01  1.317e+00  -0.448   0.6541  
## sp_ptbBM15     -3.868e-01  1.396e+00  -0.277   0.7818  
## sp_ptbBM16     -9.142e-01  1.547e+00  -0.591   0.5546  
## sp_ptbBM17     -6.489e-01  1.325e+00  -0.490   0.6242  
## sp_ptbBM18     -3.635e-02  1.334e+00  -0.027   0.9783  
## sp_ptbBM19     -1.132e-01  1.236e+00  -0.092   0.9270  
## sp_ptbBM20     -2.381e-01  1.373e+00  -0.173   0.8623  
## sp_ptbBM21      1.008e+00  1.268e+00   0.795   0.4266  
## sp_ptbBM22      1.222e+00  1.158e+00   1.055   0.2914  
## sp_ptbBM23      1.961e-02  1.155e+00   0.017   0.9865  
## sp_ptbBM24      8.196e-01  1.013e+00   0.809   0.4184  
## sp_ptbBM25      6.572e-01  9.107e-01   0.722   0.4705  
## sp_ptbBM26      8.621e-01  9.685e-01   0.890   0.3734  
## sp_ptbBM27     -7.593e-01  1.087e+00  -0.699   0.4848  
## sp_ptbBM28     -3.870e-01  1.224e+00  -0.316   0.7519  
## sp_ptbBM29      9.068e-01  1.082e+00   0.838   0.4020  
## sp_ptbBM30     -5.232e-01  1.228e+00  -0.426   0.6700  
## sp_ptbBM31      6.980e-01  1.266e+00   0.551   0.5813  
## sp_ptbBM32     -7.384e-01  1.568e+00  -0.471   0.6378  
## sp_ptbBM33     -1.423e+00  1.493e+00  -0.953   0.3407  
## sp_ptbBM34     -7.583e-01  1.593e+00  -0.476   0.6340  
## sp_ptbBM35     -1.153e+00  1.830e+00  -0.630   0.5285  
## sp_ptbBM36     -1.079e+00  1.866e+00  -0.579   0.5629  
## sp_ptbBM37     -1.159e+00  1.633e+00  -0.710   0.4777  
## sp_ptbBM38      2.210e-01  1.385e+00   0.160   0.8732  
## sp_ptbBM39     -8.584e-01  1.402e+00  -0.612   0.5404  
## sp_ptbBM40      1.136e+00  1.181e+00   0.962   0.3359  
## sp_ptbBM41     -8.396e-01  1.295e+00  -0.648   0.5168  
## sp_ptbBM42     -2.606e-02  1.289e+00  -0.020   0.9839  
## sp_ptbBM43      1.044e-01  1.127e+00   0.093   0.9261  
## sp_ptbBM44      3.191e-02  1.146e+00   0.028   0.9778  
## sp_ptbBM45      5.143e-01  1.079e+00   0.477   0.6336  
## sp_ptbBM46      4.816e-02  1.123e+00   0.043   0.9658  
## sp_ptbBM47     -3.113e-02  1.181e+00  -0.026   0.9790  
## sp_ptbBM48      1.395e-02  9.592e-01   0.015   0.9884  
## sp_ptbBM49      2.430e-01  1.427e+00   0.170   0.8648  
## sp_ptbBM50     -9.178e-01  1.200e+00  -0.765   0.4443  
## sp_ptbBM51      1.035e+00  1.294e+00   0.800   0.4236  
## sp_ptbBM52     -8.799e-01  1.229e+00  -0.716   0.4741  
## sp_ptbBM53      5.530e-01  1.159e+00   0.477   0.6334  
## sp_ptbBM54     -1.093e-01  1.138e+00  -0.096   0.9235  
## sp_ptbBM55     -4.604e-01  1.232e+00  -0.374   0.7087  
## sp_ptbBM56      9.365e-01  1.345e+00   0.696   0.4861  
## sp_ptbBM57      7.976e-01  1.277e+00   0.624   0.5323  
## sp_ptbBM58      5.718e-01  1.086e+00   0.527   0.5984  
## sp_ptbBM59     -3.490e-02  1.221e+00  -0.029   0.9772  
## sp_ptbBM60      2.655e-01  1.227e+00   0.216   0.8288  
## sp_ptbBM61      1.734e-01  1.214e+00   0.143   0.8864  
## sp_ptbBM62     -1.327e-01  1.233e+00  -0.108   0.9143  
## sp_ptbBM63     -7.531e-01  1.552e+00  -0.485   0.6274  
## sp_ptbBM64     -4.754e-01  1.676e+00  -0.284   0.7767  
## sp_ptbBM65     -2.762e-01  1.380e+00  -0.200   0.8414  
## sp_ptbBM66     -6.488e-01  1.104e+00  -0.588   0.5566  
## sp_ptbBM67      1.470e+00  8.933e-01   1.646   0.0998 .
## sp_ptbBM68      6.558e-02  8.663e-01   0.076   0.9397  
## sp_ptbBM69      1.229e+00  9.491e-01   1.295   0.1952  
## sp_ptbBM70     -9.788e-01  1.315e+00  -0.744   0.4567  
## sp_ptbBM71      1.067e+00  1.249e+00   0.854   0.3933  
## sp_ptbBM72     -1.312e+00  1.312e+00  -1.000   0.3173  
## sp_ptbBM73      1.094e-01  1.154e+00   0.095   0.9245  
## sp_ptbBM74      4.537e-01  1.064e+00   0.426   0.6698  
## sp_ptbBM75      3.540e-01  1.088e+00   0.325   0.7449  
## sp_ptbBM76      7.591e-01  9.293e-01   0.817   0.4140  
## sp_ptbBM77     -6.185e-02  1.186e+00  -0.052   0.9584  
## sp_ptbBM78      1.106e+00  1.316e+00   0.840   0.4009  
## sp_ptbBM79     -1.316e-02  1.172e+00  -0.011   0.9910  
## sp_ptbBM80      5.194e-01  1.195e+00   0.435   0.6637  
## sp_ptbBM81     -6.148e-01  1.150e+00  -0.535   0.5929  
## sp_ptbBM82     -2.858e-01  1.061e+00  -0.269   0.7877  
## sp_ptbBM83     -1.521e-01  1.114e+00  -0.137   0.8913  
## sp_ptbBM84      6.460e-01  1.222e+00   0.529   0.5969  
## sp_ptbBM85     -1.577e+00  1.428e+00  -1.105   0.2693  
## sp_ptbBM86      9.463e-01  1.302e+00   0.727   0.4673  
## sp_ptbBM87     -1.639e-01  1.065e+00  -0.154   0.8778  
## sp_ptbBM88      1.374e+00  1.078e+00   1.275   0.2023  
## sp_ptbBM89     -1.308e+00  1.142e+00  -1.146   0.2517  
## sp_ptbBM90      1.393e+00  1.118e+00   1.246   0.2129  
## sp_ptbBM91      2.003e+00  2.044e+00   0.980   0.3271  
## sp_ptbBM92      2.735e+00  1.500e+00   1.823   0.0683 .
## sp_ptbBM93      1.142e+00  1.629e+00   0.701   0.4833  
## sp_ptbBM94      1.855e+00  1.363e+00   1.361   0.1735  
## sp_ptbBM95      1.701e+00  1.360e+00   1.251   0.2110  
## sp_ptbBM96      2.962e+00  1.381e+00   2.144   0.0320 *
## sp_ptbBM97      1.752e+00  1.721e+00   1.018   0.3087  
## sp_ptbBM98      1.769e+00  1.646e+00   1.075   0.2825  
## sp_ptbBM99      2.603e+00  1.409e+00   1.847   0.0648 .
## sp_ptbBM100     2.406e+00  1.297e+00   1.855   0.0637 .
## sp_ptbBM101     2.288e+00  1.244e+00   1.839   0.0659 .
## sp_ptbBM102     1.968e+00  1.193e+00   1.650   0.0990 .
## sp_ptbBM103     1.781e+00  1.137e+00   1.566   0.1173  
## sp_ptbBM104     2.172e+00  1.078e+00   2.016   0.0438 *
## sp_ptbBM105     1.047e+00  1.180e+00   0.887   0.3751  
## sp_ptbBM106     1.587e+00  1.273e+00   1.246   0.2126  
## sp_ptbBM107     3.905e-01  1.060e+00   0.368   0.7126  
## sp_ptbBM108     1.574e+00  1.102e+00   1.429   0.1531  
## sp_ptbBM109     1.133e+00  8.777e-01   1.291   0.1967  
## sp_ptbBM110     1.061e+00  9.052e-01   1.172   0.2413  
## sp_ptbBM111     1.779e+00  9.014e-01   1.974   0.0484 *
## sp_ptbBM112    -7.253e-01  1.017e+00  -0.713   0.4756  
## sp_ptbBM113     1.956e+00  1.163e+00   1.682   0.0926 .
## sp_ptbBM114     9.573e-01  1.120e+00   0.855   0.3928  
## sp_ptbBM115    -2.512e-02  1.137e+00  -0.022   0.9824  
## sp_ptbBM116     2.074e+00  1.022e+00   2.029   0.0424 *
## sp_ptbBM117    -9.378e-01  1.308e+00  -0.717   0.4735  
## sp_ptbBM118     1.805e+00  1.073e+00   1.682   0.0926 .
## sp_ptbBM119     2.527e-01  1.332e+00   0.190   0.8496  
## sp_ptbBM120     1.523e+00  1.298e+00   1.174   0.2406  
## sp_ptbBM121     2.957e-01  1.210e+00   0.244   0.8069  
## sp_ptbBM122     2.439e+00  1.081e+00   2.256   0.0240 *
## sp_ptbBM123    -1.224e-01  8.909e-01  -0.137   0.8907  
## sp_ptbBM124     2.149e+00  1.095e+00   1.963   0.0496 *
## sp_ptbBM125            NA         NA      NA       NA  
## sp_ptbBM126            NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17146.6) family taken to be 1)
## 
##     Null deviance: 1073.12  on 886  degrees of freedom
## Residual deviance:  927.39  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 2888.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17147 
##           Std. Err.:  101690 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2630.514
SA2m6a <- glm.nb(smptbBM ~ cb6.meanRH + sp_ptbBM,data=week); summary(SA2m6a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ cb6.meanRH + sp_ptbBM, data = week, 
##     init.theta = 17067.03987, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1893  -0.8318  -0.1696   0.5429   3.5139  
## 
## Coefficients: (5 not defined because of singularities)
##                   Estimate Std. Error z value Pr(>|z|)   
## (Intercept)      1.322e+01  1.434e+01   0.922  0.35641   
## cb6.meanRHv1.l1 -3.531e-01  3.273e-01  -1.079  0.28069   
## cb6.meanRHv1.l2 -2.075e-01  2.090e-01  -0.993  0.32080   
## cb6.meanRHv2.l1 -1.075e+00  1.182e+00  -0.909  0.36319   
## cb6.meanRHv2.l2  3.727e-02  7.894e-01   0.047  0.96234   
## cb6.meanRHv3.l1 -5.443e-01  5.374e-01  -1.013  0.31118   
## cb6.meanRHv3.l2  4.040e-01  3.875e-01   1.043  0.29714   
## sp_ptbBM1               NA         NA      NA       NA   
## sp_ptbBM2               NA         NA      NA       NA   
## sp_ptbBM3               NA         NA      NA       NA   
## sp_ptbBM4       -2.019e+06  2.868e+06  -0.704  0.48148   
## sp_ptbBM5        9.276e+00  1.286e+01   0.721  0.47070   
## sp_ptbBM6       -4.270e-02  2.213e+00  -0.019  0.98461   
## sp_ptbBM7        2.120e+00  1.274e+00   1.664  0.09612 . 
## sp_ptbBM8       -3.400e-01  1.191e+00  -0.286  0.77523   
## sp_ptbBM9        1.252e+00  1.179e+00   1.062  0.28826   
## sp_ptbBM10      -2.471e+00  1.356e+00  -1.822  0.06843 . 
## sp_ptbBM11       1.531e+00  1.095e+00   1.398  0.16215   
## sp_ptbBM12      -5.186e-01  1.063e+00  -0.488  0.62557   
## sp_ptbBM13       1.185e+00  1.347e+00   0.880  0.37880   
## sp_ptbBM14      -3.506e-02  1.359e+00  -0.026  0.97942   
## sp_ptbBM15       2.898e-01  1.309e+00   0.221  0.82482   
## sp_ptbBM16      -3.720e-01  1.498e+00  -0.248  0.80381   
## sp_ptbBM17       1.592e-02  1.320e+00   0.012  0.99037   
## sp_ptbBM18       3.850e-01  1.344e+00   0.287  0.77447   
## sp_ptbBM19       3.461e-01  1.300e+00   0.266  0.79013   
## sp_ptbBM20       5.118e-01  1.437e+00   0.356  0.72173   
## sp_ptbBM21       9.967e-01  1.201e+00   0.830  0.40653   
## sp_ptbBM22       7.815e-01  1.322e+00   0.591  0.55452   
## sp_ptbBM23      -1.120e+00  1.733e+00  -0.646  0.51811   
## sp_ptbBM24      -8.019e-01  2.229e+00  -0.360  0.71899   
## sp_ptbBM25      -1.804e+00  2.650e+00  -0.681  0.49602   
## sp_ptbBM26      -1.724e+00  2.896e+00  -0.595  0.55162   
## sp_ptbBM27      -4.399e+00  3.241e+00  -1.358  0.17462   
## sp_ptbBM28      -3.763e+00  3.290e+00  -1.144  0.25272   
## sp_ptbBM29      -2.470e+00  3.275e+00  -0.754  0.45073   
## sp_ptbBM30      -3.317e+00  3.200e+00  -1.037  0.29991   
## sp_ptbBM31      -2.243e+00  3.221e+00  -0.696  0.48623   
## sp_ptbBM32      -2.951e+00  3.227e+00  -0.915  0.36040   
## sp_ptbBM33      -3.544e+00  3.215e+00  -1.102  0.27036   
## sp_ptbBM34      -2.619e+00  3.080e+00  -0.850  0.39514   
## sp_ptbBM35      -3.253e+00  3.448e+00  -0.943  0.34554   
## sp_ptbBM36      -2.867e+00  3.228e+00  -0.888  0.37442   
## sp_ptbBM37      -2.750e+00  2.697e+00  -1.019  0.30801   
## sp_ptbBM38      -1.098e+00  2.425e+00  -0.453  0.65071   
## sp_ptbBM39      -2.164e+00  2.160e+00  -1.002  0.31641   
## sp_ptbBM40       3.826e-01  1.786e+00   0.214  0.83032   
## sp_ptbBM41      -1.480e+00  1.792e+00  -0.826  0.40881   
## sp_ptbBM42      -4.178e-01  1.485e+00  -0.281  0.77845   
## sp_ptbBM43      -1.640e-02  1.487e+00  -0.011  0.99120   
## sp_ptbBM44      -3.618e-01  1.584e+00  -0.228  0.81938   
## sp_ptbBM45       3.111e-01  1.677e+00   0.186  0.85283   
## sp_ptbBM46      -3.853e-01  1.681e+00  -0.229  0.81867   
## sp_ptbBM47      -4.561e-01  1.866e+00  -0.244  0.80689   
## sp_ptbBM48      -5.871e-01  1.643e+00  -0.357  0.72087   
## sp_ptbBM49      -4.409e-01  1.970e+00  -0.224  0.82295   
## sp_ptbBM50      -1.074e+00  1.556e+00  -0.690  0.49009   
## sp_ptbBM51       1.040e+00  1.567e+00   0.664  0.50665   
## sp_ptbBM52      -7.777e-01  1.408e+00  -0.552  0.58076   
## sp_ptbBM53       5.517e-01  1.377e+00   0.401  0.68858   
## sp_ptbBM54       3.996e-01  1.264e+00   0.316  0.75183   
## sp_ptbBM55      -2.326e-01  1.238e+00  -0.188  0.85101   
## sp_ptbBM56       1.475e+00  1.256e+00   1.175  0.24001   
## sp_ptbBM57       1.295e+00  1.307e+00   0.991  0.32174   
## sp_ptbBM58       6.961e-01  1.184e+00   0.588  0.55652   
## sp_ptbBM59      -8.252e-02  1.376e+00  -0.060  0.95219   
## sp_ptbBM60      -2.446e-01  1.463e+00  -0.167  0.86720   
## sp_ptbBM61      -5.959e-02  1.439e+00  -0.041  0.96696   
## sp_ptbBM62      -1.181e+00  1.455e+00  -0.811  0.41716   
## sp_ptbBM63      -7.913e-01  1.751e+00  -0.452  0.65139   
## sp_ptbBM64      -9.411e-01  2.024e+00  -0.465  0.64189   
## sp_ptbBM65      -2.937e-01  1.604e+00  -0.183  0.85468   
## sp_ptbBM66      -6.373e-01  1.386e+00  -0.460  0.64565   
## sp_ptbBM67       1.653e+00  1.165e+00   1.418  0.15605   
## sp_ptbBM68       1.840e-01  1.117e+00   0.165  0.86918   
## sp_ptbBM69       1.619e+00  1.164e+00   1.390  0.16440   
## sp_ptbBM70      -5.437e-02  1.390e+00  -0.039  0.96881   
## sp_ptbBM71       1.800e+00  1.334e+00   1.349  0.17723   
## sp_ptbBM72      -6.125e-01  1.331e+00  -0.460  0.64535   
## sp_ptbBM73       6.208e-01  1.147e+00   0.541  0.58846   
## sp_ptbBM74       7.104e-01  1.071e+00   0.664  0.50695   
## sp_ptbBM75       5.841e-01  1.095e+00   0.533  0.59382   
## sp_ptbBM76       7.045e-01  9.403e-01   0.749  0.45373   
## sp_ptbBM77       5.353e-01  1.162e+00   0.461  0.64495   
## sp_ptbBM78       1.614e+00  1.321e+00   1.221  0.22193   
## sp_ptbBM79       2.837e-01  1.203e+00   0.236  0.81365   
## sp_ptbBM80       7.936e-01  1.243e+00   0.638  0.52326   
## sp_ptbBM81      -1.137e-01  1.251e+00  -0.091  0.92762   
## sp_ptbBM82      -1.229e-01  1.123e+00  -0.109  0.91288   
## sp_ptbBM83       1.583e-01  1.189e+00   0.133  0.89411   
## sp_ptbBM84       6.627e-01  1.232e+00   0.538  0.59052   
## sp_ptbBM85      -1.730e+00  1.547e+00  -1.118  0.26344   
## sp_ptbBM86       9.198e-01  1.395e+00   0.659  0.50962   
## sp_ptbBM87      -1.932e-01  1.237e+00  -0.156  0.87587   
## sp_ptbBM88       1.695e+00  1.221e+00   1.388  0.16500   
## sp_ptbBM89      -1.164e+00  1.375e+00  -0.847  0.39718   
## sp_ptbBM90       2.266e+00  1.264e+00   1.792  0.07309 . 
## sp_ptbBM91       2.311e+00  1.607e+00   1.438  0.15057   
## sp_ptbBM92       2.651e+00  1.230e+00   2.156  0.03105 * 
## sp_ptbBM93       5.767e-01  1.291e+00   0.447  0.65505   
## sp_ptbBM94       9.585e-01  1.081e+00   0.887  0.37513   
## sp_ptbBM95       5.947e-01  9.941e-01   0.598  0.54970   
## sp_ptbBM96       1.447e+00  1.070e+00   1.352  0.17634   
## sp_ptbBM97       4.177e-01  1.135e+00   0.368  0.71289   
## sp_ptbBM98       2.354e+00  1.514e+00   1.555  0.11990   
## sp_ptbBM99       2.285e+00  1.127e+00   2.027  0.04269 * 
## sp_ptbBM100      2.400e+00  1.088e+00   2.206  0.02739 * 
## sp_ptbBM101      1.724e+00  9.718e-01   1.774  0.07613 . 
## sp_ptbBM102      1.114e+00  9.309e-01   1.197  0.23139   
## sp_ptbBM103      8.615e-01  9.362e-01   0.920  0.35747   
## sp_ptbBM104      1.753e+00  9.875e-01   1.775  0.07592 . 
## sp_ptbBM105      1.569e+00  1.216e+00   1.290  0.19696   
## sp_ptbBM106      8.454e-01  1.001e+00   0.845  0.39834   
## sp_ptbBM107      1.547e-02  1.053e+00   0.015  0.98828   
## sp_ptbBM108      1.452e+00  9.930e-01   1.462  0.14367   
## sp_ptbBM109      1.084e+00  9.254e-01   1.171  0.24155   
## sp_ptbBM110      4.492e-01  8.735e-01   0.514  0.60709   
## sp_ptbBM111      1.698e+00  1.142e+00   1.487  0.13692   
## sp_ptbBM112     -6.338e-01  1.185e+00  -0.535  0.59266   
## sp_ptbBM113      2.259e+00  1.161e+00   1.946  0.05162 . 
## sp_ptbBM114      9.062e-01  1.098e+00   0.825  0.40919   
## sp_ptbBM115      7.514e-02  1.148e+00   0.065  0.94784   
## sp_ptbBM116      2.341e+00  1.101e+00   2.125  0.03357 * 
## sp_ptbBM117     -6.456e-01  1.332e+00  -0.485  0.62784   
## sp_ptbBM118      2.749e+00  1.228e+00   2.239  0.02514 * 
## sp_ptbBM119      9.527e-01  1.423e+00   0.670  0.50313   
## sp_ptbBM120      2.473e+00  1.292e+00   1.914  0.05564 . 
## sp_ptbBM121      6.759e-01  1.136e+00   0.595  0.55173   
## sp_ptbBM122      2.785e+00  1.053e+00   2.644  0.00819 **
## sp_ptbBM123     -1.935e-01  9.057e-01  -0.214  0.83083   
## sp_ptbBM124      1.992e+00  1.090e+00   1.827  0.06764 . 
## sp_ptbBM125             NA         NA      NA       NA   
## sp_ptbBM126             NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17067.04) family taken to be 1)
## 
##     Null deviance: 1073.12  on 886  degrees of freedom
## Residual deviance:  926.37  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 2887.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17067 
##           Std. Err.:  100044 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2629.492
SA2m7a <- glm.nb(smptbBM ~ cb7.maxRH + sp_ptbBM,data=week); summary(SA2m7a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ cb7.maxRH + sp_ptbBM, data = week, 
##     init.theta = 17158.53339, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1619  -0.8170  -0.1844   0.5355   3.3494  
## 
## Coefficients: (5 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)     3.825e+00  1.399e+01   0.273   0.7846  
## cb7.maxRHv1.l1 -2.678e-01  3.385e-01  -0.791   0.4289  
## cb7.maxRHv1.l2 -2.562e-02  2.333e-01  -0.110   0.9126  
## cb7.maxRHv2.l1 -1.244e-01  1.105e+00  -0.113   0.9104  
## cb7.maxRHv2.l2 -6.610e-02  7.754e-01  -0.085   0.9321  
## cb7.maxRHv3.l1  1.198e-01  3.285e-01   0.365   0.7153  
## cb7.maxRHv3.l2  2.017e-01  2.168e-01   0.930   0.3522  
## sp_ptbBM1              NA         NA      NA       NA  
## sp_ptbBM2              NA         NA      NA       NA  
## sp_ptbBM3              NA         NA      NA       NA  
## sp_ptbBM4      -2.128e+06  2.871e+06  -0.741   0.4585  
## sp_ptbBM5       1.035e+01  1.316e+01   0.786   0.4316  
## sp_ptbBM6       9.651e-01  2.370e+00   0.407   0.6838  
## sp_ptbBM7       2.780e+00  1.584e+00   1.755   0.0793 .
## sp_ptbBM8       7.044e-01  1.356e+00   0.519   0.6035  
## sp_ptbBM9       2.341e+00  1.220e+00   1.918   0.0551 .
## sp_ptbBM10     -1.815e+00  1.319e+00  -1.376   0.1687  
## sp_ptbBM11      2.211e+00  9.793e-01   2.257   0.0240 *
## sp_ptbBM12     -2.688e-01  9.576e-01  -0.281   0.7789  
## sp_ptbBM13      2.149e+00  1.213e+00   1.772   0.0764 .
## sp_ptbBM14      4.869e-01  1.003e+00   0.486   0.6272  
## sp_ptbBM15      5.584e-01  9.027e-01   0.619   0.5362  
## sp_ptbBM16      9.567e-01  9.819e-01   0.974   0.3299  
## sp_ptbBM17      3.323e-01  9.428e-01   0.352   0.7245  
## sp_ptbBM18      6.789e-02  9.590e-01   0.071   0.9436  
## sp_ptbBM19      9.319e-02  9.904e-01   0.094   0.9250  
## sp_ptbBM20      1.179e+00  1.395e+00   0.845   0.3979  
## sp_ptbBM21      1.008e+00  9.418e-01   1.071   0.2844  
## sp_ptbBM22      1.244e+00  9.503e-01   1.309   0.1906  
## sp_ptbBM23     -3.688e-01  1.055e+00  -0.349   0.7268  
## sp_ptbBM24      9.571e-01  9.150e-01   1.046   0.2956  
## sp_ptbBM25     -1.084e-01  1.128e+00  -0.096   0.9234  
## sp_ptbBM26      3.789e-01  1.324e+00   0.286   0.7748  
## sp_ptbBM27     -5.618e-01  1.660e+00  -0.338   0.7350  
## sp_ptbBM28     -1.066e+00  1.498e+00  -0.712   0.4766  
## sp_ptbBM29     -4.480e-01  2.466e+00  -0.182   0.8559  
## sp_ptbBM30     -2.052e+00  2.849e+00  -0.720   0.4714  
## sp_ptbBM31     -2.155e+00  4.080e+00  -0.528   0.5974  
## sp_ptbBM32     -3.509e+00  5.315e+00  -0.660   0.5092  
## sp_ptbBM33     -3.878e+00  6.534e+00  -0.594   0.5528  
## sp_ptbBM34     -1.758e+00  7.125e+00  -0.247   0.8051  
## sp_ptbBM35     -2.330e+00  8.526e+00  -0.273   0.7847  
## sp_ptbBM36     -1.765e+00  7.346e+00  -0.240   0.8101  
## sp_ptbBM37     -1.717e+00  6.744e+00  -0.255   0.7990  
## sp_ptbBM38     -5.712e-01  6.021e+00  -0.095   0.9244  
## sp_ptbBM39     -1.648e+00  4.937e+00  -0.334   0.7386  
## sp_ptbBM40      8.077e-01  3.871e+00   0.209   0.8347  
## sp_ptbBM41     -5.186e-01  3.422e+00  -0.152   0.8795  
## sp_ptbBM42      6.324e-01  2.394e+00   0.264   0.7917  
## sp_ptbBM43      9.099e-01  2.496e+00   0.364   0.7155  
## sp_ptbBM44      5.956e-01  2.778e+00   0.214   0.8302  
## sp_ptbBM45      1.022e+00  2.966e+00   0.345   0.7304  
## sp_ptbBM46      5.142e-02  3.047e+00   0.017   0.9865  
## sp_ptbBM47     -1.525e-02  3.468e+00  -0.004   0.9965  
## sp_ptbBM48      1.440e-01  3.178e+00   0.045   0.9639  
## sp_ptbBM49      7.561e-01  3.121e+00   0.242   0.8086  
## sp_ptbBM50      2.571e-03  2.553e+00   0.001   0.9992  
## sp_ptbBM51      2.628e+00  2.394e+00   1.098   0.2721  
## sp_ptbBM52      5.124e-01  2.141e+00   0.239   0.8108  
## sp_ptbBM53      1.784e+00  1.926e+00   0.926   0.3543  
## sp_ptbBM54      1.658e+00  1.658e+00   1.000   0.3173  
## sp_ptbBM55      1.831e+00  1.624e+00   1.128   0.2594  
## sp_ptbBM56      2.172e+00  1.477e+00   1.470   0.1416  
## sp_ptbBM57      2.775e+00  1.560e+00   1.779   0.0753 .
## sp_ptbBM58      1.827e+00  1.526e+00   1.198   0.2311  
## sp_ptbBM59      1.298e+00  1.677e+00   0.774   0.4390  
## sp_ptbBM60      1.061e+00  1.951e+00   0.544   0.5863  
## sp_ptbBM61      1.088e+00  1.955e+00   0.557   0.5778  
## sp_ptbBM62      7.409e-01  1.952e+00   0.380   0.7043  
## sp_ptbBM63      8.693e-01  2.147e+00   0.405   0.6856  
## sp_ptbBM64      1.286e+00  2.500e+00   0.514   0.6070  
## sp_ptbBM65      1.723e+00  2.117e+00   0.814   0.4157  
## sp_ptbBM66      9.272e-01  1.974e+00   0.470   0.6385  
## sp_ptbBM67      3.150e+00  1.665e+00   1.892   0.0585 .
## sp_ptbBM68      1.786e+00  1.587e+00   1.125   0.2604  
## sp_ptbBM69      3.485e+00  1.441e+00   2.418   0.0156 *
## sp_ptbBM70      9.634e-01  1.494e+00   0.645   0.5190  
## sp_ptbBM71      2.742e+00  1.466e+00   1.871   0.0613 .
## sp_ptbBM72      3.441e-01  1.510e+00   0.228   0.8198  
## sp_ptbBM73      1.383e+00  1.353e+00   1.022   0.3068  
## sp_ptbBM74      1.406e+00  1.400e+00   1.004   0.3155  
## sp_ptbBM75      1.375e+00  1.341e+00   1.026   0.3049  
## sp_ptbBM76      1.794e+00  1.348e+00   1.331   0.1831  
## sp_ptbBM77      1.473e+00  1.317e+00   1.118   0.2634  
## sp_ptbBM78      2.961e+00  1.371e+00   2.159   0.0308 *
## sp_ptbBM79      1.558e+00  1.314e+00   1.186   0.2356  
## sp_ptbBM80      1.891e+00  1.325e+00   1.427   0.1536  
## sp_ptbBM81      5.147e-01  1.474e+00   0.349   0.7269  
## sp_ptbBM82      5.527e-01  1.373e+00   0.403   0.6873  
## sp_ptbBM83      1.092e+00  1.238e+00   0.882   0.3777  
## sp_ptbBM84      1.844e+00  1.385e+00   1.332   0.1829  
## sp_ptbBM85      7.517e-02  1.739e+00   0.043   0.9655  
## sp_ptbBM86      2.715e+00  1.510e+00   1.798   0.0722 .
## sp_ptbBM87      1.109e+00  1.512e+00   0.734   0.4632  
## sp_ptbBM88      2.612e+00  1.437e+00   1.818   0.0691 .
## sp_ptbBM89     -1.875e-01  1.646e+00  -0.114   0.9093  
## sp_ptbBM90      2.876e+00  1.418e+00   2.029   0.0425 *
## sp_ptbBM91      1.470e+00  1.312e+00   1.121   0.2625  
## sp_ptbBM92      2.221e+00  1.184e+00   1.875   0.0607 .
## sp_ptbBM93      1.720e-01  1.247e+00   0.138   0.8903  
## sp_ptbBM94      6.312e-01  1.152e+00   0.548   0.5838  
## sp_ptbBM95      3.523e-01  1.109e+00   0.318   0.7506  
## sp_ptbBM96      1.173e+00  1.050e+00   1.117   0.2638  
## sp_ptbBM97      5.261e-01  1.086e+00   0.485   0.6280  
## sp_ptbBM98      1.489e+00  1.342e+00   1.109   0.2672  
## sp_ptbBM99      2.039e+00  1.030e+00   1.979   0.0478 *
## sp_ptbBM100     1.786e+00  9.639e-01   1.853   0.0639 .
## sp_ptbBM101     1.213e+00  8.996e-01   1.348   0.1777  
## sp_ptbBM102     1.063e+00  9.421e-01   1.128   0.2593  
## sp_ptbBM103     8.971e-01  9.111e-01   0.985   0.3248  
## sp_ptbBM104     1.771e+00  9.334e-01   1.898   0.0578 .
## sp_ptbBM105     1.675e+00  1.168e+00   1.434   0.1516  
## sp_ptbBM106     2.682e-01  1.295e+00   0.207   0.8360  
## sp_ptbBM107     2.977e-01  1.369e+00   0.217   0.8279  
## sp_ptbBM108     7.931e-01  1.125e+00   0.705   0.4806  
## sp_ptbBM109     6.152e-01  1.278e+00   0.482   0.6302  
## sp_ptbBM110     1.639e-02  1.246e+00   0.013   0.9895  
## sp_ptbBM111     2.427e+00  1.600e+00   1.517   0.1294  
## sp_ptbBM112    -5.123e-01  1.435e+00  -0.357   0.7211  
## sp_ptbBM113     2.505e+00  1.085e+00   2.310   0.0209 *
## sp_ptbBM114     5.899e-01  1.069e+00   0.552   0.5811  
## sp_ptbBM115     4.337e-02  1.057e+00   0.041   0.9673  
## sp_ptbBM116     1.866e+00  1.046e+00   1.784   0.0745 .
## sp_ptbBM117    -1.789e+00  1.312e+00  -1.364   0.1727  
## sp_ptbBM118     1.553e+00  1.399e+00   1.110   0.2671  
## sp_ptbBM119    -1.140e+00  1.450e+00  -0.786   0.4316  
## sp_ptbBM120     9.145e-01  1.189e+00   0.769   0.4416  
## sp_ptbBM121    -4.970e-01  1.066e+00  -0.466   0.6410  
## sp_ptbBM122     1.279e+00  1.088e+00   1.175   0.2399  
## sp_ptbBM123    -1.407e+00  1.005e+00  -1.400   0.1615  
## sp_ptbBM124     1.657e+00  1.157e+00   1.432   0.1521  
## sp_ptbBM125            NA         NA      NA       NA  
## sp_ptbBM126            NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17158.53) family taken to be 1)
## 
##     Null deviance: 1073.12  on 886  degrees of freedom
## Residual deviance:  927.74  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 2888.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17159 
##           Std. Err.:  101850 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2630.858
SA2m9a <- glm.nb(smptbBM ~ cb9.minT + sp_ptbBM,data=week); summary(SA2m9a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ cb9.minT + sp_ptbBM, data = week, 
##     init.theta = 17244.58218, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2806  -0.8281  -0.1674   0.5151   3.4436  
## 
## Coefficients: (5 not defined because of singularities)
##                 Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   -6.655e+00  1.181e+01  -0.563  0.57320   
## cb9.minTv1.l1  1.717e-01  2.921e-01   0.588  0.55677   
## cb9.minTv1.l2 -3.204e-01  2.064e-01  -1.552  0.12061   
## cb9.minTv2.l1  1.055e+00  1.003e+00   1.052  0.29277   
## cb9.minTv2.l2 -1.871e+00  7.590e-01  -2.465  0.01368 * 
## cb9.minTv3.l1  9.312e-01  5.899e-01   1.579  0.11440   
## cb9.minTv3.l2 -2.211e-01  4.271e-01  -0.518  0.60467   
## sp_ptbBM1             NA         NA      NA       NA   
## sp_ptbBM2             NA         NA      NA       NA   
## sp_ptbBM3             NA         NA      NA       NA   
## sp_ptbBM4     -2.192e+06  2.875e+06  -0.762  0.44583   
## sp_ptbBM5      9.556e+00  1.293e+01   0.739  0.45989   
## sp_ptbBM6     -1.237e+00  2.136e+00  -0.579  0.56256   
## sp_ptbBM7      9.743e-01  1.303e+00   0.748  0.45459   
## sp_ptbBM8     -1.159e+00  1.262e+00  -0.918  0.35854   
## sp_ptbBM9      1.203e+00  1.206e+00   0.997  0.31860   
## sp_ptbBM10    -2.838e+00  1.528e+00  -1.857  0.06334 . 
## sp_ptbBM11     1.716e+00  1.066e+00   1.609  0.10760   
## sp_ptbBM12    -8.127e-01  1.139e+00  -0.713  0.47564   
## sp_ptbBM13     2.837e-01  1.085e+00   0.262  0.79368   
## sp_ptbBM14    -5.042e-01  1.161e+00  -0.434  0.66396   
## sp_ptbBM15     1.789e-01  1.094e+00   0.163  0.87016   
## sp_ptbBM16    -1.238e-01  1.301e+00  -0.095  0.92421   
## sp_ptbBM17    -2.990e-01  1.183e+00  -0.253  0.80045   
## sp_ptbBM18    -2.622e-01  1.271e+00  -0.206  0.83658   
## sp_ptbBM19    -9.826e-01  1.317e+00  -0.746  0.45573   
## sp_ptbBM20    -7.331e-01  1.312e+00  -0.559  0.57637   
## sp_ptbBM21     1.608e-01  1.139e+00   0.141  0.88771   
## sp_ptbBM22     7.798e-02  1.117e+00   0.070  0.94434   
## sp_ptbBM23    -1.166e-01  1.116e+00  -0.104  0.91681   
## sp_ptbBM24     4.975e-01  1.004e+00   0.495  0.62041   
## sp_ptbBM25     5.006e-01  8.988e-01   0.557  0.57754   
## sp_ptbBM26     7.711e-01  9.535e-01   0.809  0.41865   
## sp_ptbBM27    -1.738e+00  1.249e+00  -1.391  0.16418   
## sp_ptbBM28     6.916e-01  1.095e+00   0.632  0.52753   
## sp_ptbBM29     1.133e+00  9.108e-01   1.244  0.21354   
## sp_ptbBM30     3.826e-01  1.019e+00   0.376  0.70725   
## sp_ptbBM31     1.562e+00  1.079e+00   1.448  0.14770   
## sp_ptbBM32     8.492e-01  1.085e+00   0.783  0.43374   
## sp_ptbBM33     7.951e-01  1.216e+00   0.654  0.51320   
## sp_ptbBM34     2.631e+00  1.621e+00   1.622  0.10471   
## sp_ptbBM35     3.228e+00  1.655e+00   1.950  0.05115 . 
## sp_ptbBM36     3.409e+00  1.896e+00   1.798  0.07216 . 
## sp_ptbBM37     2.641e+00  2.287e+00   1.155  0.24826   
## sp_ptbBM38     2.817e+00  2.161e+00   1.304  0.19240   
## sp_ptbBM39     5.310e-01  2.047e+00   0.259  0.79538   
## sp_ptbBM40     1.662e+00  2.038e+00   0.816  0.41469   
## sp_ptbBM41    -6.515e-01  1.571e+00  -0.415  0.67843   
## sp_ptbBM42     7.416e-01  1.393e+00   0.533  0.59434   
## sp_ptbBM43     3.800e-01  1.305e+00   0.291  0.77092   
## sp_ptbBM44     4.347e-01  9.476e-01   0.459  0.64645   
## sp_ptbBM45     1.429e+00  9.538e-01   1.498  0.13420   
## sp_ptbBM46     8.901e-01  1.002e+00   0.888  0.37436   
## sp_ptbBM47     1.304e+00  9.612e-01   1.356  0.17497   
## sp_ptbBM48     3.732e-01  1.152e+00   0.324  0.74602   
## sp_ptbBM49     2.506e+00  1.049e+00   2.390  0.01684 * 
## sp_ptbBM50     8.726e-01  1.220e+00   0.715  0.47453   
## sp_ptbBM51     3.290e+00  1.145e+00   2.873  0.00407 **
## sp_ptbBM52     1.112e+00  1.442e+00   0.771  0.44045   
## sp_ptbBM53     2.467e+00  1.411e+00   1.749  0.08025 . 
## sp_ptbBM54     1.032e+00  1.449e+00   0.712  0.47633   
## sp_ptbBM55    -2.079e-01  1.328e+00  -0.157  0.87555   
## sp_ptbBM56     1.319e+00  1.386e+00   0.952  0.34128   
## sp_ptbBM57     1.307e+00  1.159e+00   1.127  0.25956   
## sp_ptbBM58     9.991e-01  1.151e+00   0.868  0.38521   
## sp_ptbBM59     2.573e-01  9.622e-01   0.267  0.78919   
## sp_ptbBM60     8.643e-01  9.156e-01   0.944  0.34517   
## sp_ptbBM61     5.587e-01  8.883e-01   0.629  0.52941   
## sp_ptbBM62    -1.903e-01  9.764e-01  -0.195  0.84547   
## sp_ptbBM63     1.250e-01  1.040e+00   0.120  0.90433   
## sp_ptbBM64    -4.573e-01  1.486e+00  -0.308  0.75830   
## sp_ptbBM65     4.506e-01  1.574e+00   0.286  0.77461   
## sp_ptbBM66    -1.368e+00  1.532e+00  -0.893  0.37172   
## sp_ptbBM67     1.182e-01  1.413e+00   0.084  0.93334   
## sp_ptbBM68    -1.629e+00  1.493e+00  -1.090  0.27551   
## sp_ptbBM69    -1.079e+00  1.504e+00  -0.717  0.47317   
## sp_ptbBM70    -2.806e+00  1.576e+00  -1.780  0.07509 . 
## sp_ptbBM71     4.137e-02  1.221e+00   0.034  0.97296   
## sp_ptbBM72    -1.140e+00  1.235e+00  -0.923  0.35621   
## sp_ptbBM73     6.324e-01  1.080e+00   0.586  0.55813   
## sp_ptbBM74     5.359e-01  1.006e+00   0.533  0.59412   
## sp_ptbBM75     8.929e-01  1.055e+00   0.846  0.39758   
## sp_ptbBM76     3.291e-01  1.009e+00   0.326  0.74427   
## sp_ptbBM77    -5.638e-02  1.056e+00  -0.053  0.95741   
## sp_ptbBM78     7.911e-01  1.123e+00   0.705  0.48109   
## sp_ptbBM79    -2.908e-01  1.157e+00  -0.251  0.80160   
## sp_ptbBM80     9.298e-01  1.096e+00   0.848  0.39619   
## sp_ptbBM81    -6.246e-01  1.168e+00  -0.535  0.59279   
## sp_ptbBM82    -4.184e-01  1.183e+00  -0.354  0.72360   
## sp_ptbBM83    -2.222e-01  1.206e+00  -0.184  0.85377   
## sp_ptbBM84     4.044e-01  1.329e+00   0.304  0.76094   
## sp_ptbBM85    -2.666e+00  1.659e+00  -1.607  0.10804   
## sp_ptbBM86     7.108e-01  1.626e+00   0.437  0.66194   
## sp_ptbBM87    -1.082e+00  1.627e+00  -0.665  0.50606   
## sp_ptbBM88    -5.881e-02  1.562e+00  -0.038  0.96997   
## sp_ptbBM89    -3.142e+00  1.666e+00  -1.886  0.05934 . 
## sp_ptbBM90    -1.254e+00  1.683e+00  -0.745  0.45632   
## sp_ptbBM91    -6.237e-01  1.338e+00  -0.466  0.64101   
## sp_ptbBM92     5.943e-01  1.256e+00   0.473  0.63604   
## sp_ptbBM93    -1.049e+00  1.488e+00  -0.705  0.48091   
## sp_ptbBM94     2.211e-01  1.484e+00   0.149  0.88154   
## sp_ptbBM95    -1.067e+00  1.463e+00  -0.729  0.46586   
## sp_ptbBM96     1.020e-01  1.418e+00   0.072  0.94265   
## sp_ptbBM97    -2.585e+00  1.635e+00  -1.581  0.11382   
## sp_ptbBM98    -1.779e+00  1.688e+00  -1.054  0.29185   
## sp_ptbBM99    -1.191e+00  1.645e+00  -0.724  0.46904   
## sp_ptbBM100   -1.260e-01  1.658e+00  -0.076  0.93944   
## sp_ptbBM101   -7.338e-01  1.817e+00  -0.404  0.68624   
## sp_ptbBM102   -1.010e+00  1.688e+00  -0.598  0.54977   
## sp_ptbBM103   -1.443e+00  1.874e+00  -0.770  0.44118   
## sp_ptbBM104   -8.012e-01  1.814e+00  -0.442  0.65869   
## sp_ptbBM105   -3.293e+00  2.800e+00  -1.176  0.23962   
## sp_ptbBM106   -5.380e+00  3.910e+00  -1.376  0.16883   
## sp_ptbBM107   -6.159e+00  4.737e+00  -1.300  0.19348   
## sp_ptbBM108   -5.147e+00  4.158e+00  -1.238  0.21576   
## sp_ptbBM109   -6.187e+00  4.475e+00  -1.383  0.16679   
## sp_ptbBM110   -6.522e+00  4.291e+00  -1.520  0.12855   
## sp_ptbBM111   -6.321e+00  4.814e+00  -1.313  0.18917   
## sp_ptbBM112   -6.662e+00  4.074e+00  -1.635  0.10205   
## sp_ptbBM113   -2.352e+00  2.668e+00  -0.882  0.37799   
## sp_ptbBM114   -1.463e+00  1.782e+00  -0.821  0.41163   
## sp_ptbBM115   -2.146e+00  1.667e+00  -1.288  0.19785   
## sp_ptbBM116    2.054e-01  1.623e+00   0.127  0.89928   
## sp_ptbBM117   -2.752e+00  1.449e+00  -1.899  0.05752 . 
## sp_ptbBM118    4.002e-01  1.189e+00   0.337  0.73633   
## sp_ptbBM119   -1.210e+00  1.185e+00  -1.021  0.30704   
## sp_ptbBM120    3.803e-01  1.100e+00   0.346  0.72967   
## sp_ptbBM121   -4.307e-01  9.751e-01  -0.442  0.65867   
## sp_ptbBM122    1.917e+00  9.272e-01   2.068  0.03867 * 
## sp_ptbBM123   -3.913e-01  9.475e-01  -0.413  0.67958   
## sp_ptbBM124    2.574e+00  1.134e+00   2.270  0.02319 * 
## sp_ptbBM125           NA         NA      NA       NA   
## sp_ptbBM126           NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17244.58) family taken to be 1)
## 
##     Null deviance: 1073.12  on 886  degrees of freedom
## Residual deviance:  919.41  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 2880.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17245 
##           Std. Err.:  95888 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2622.532
SA2m10a <- glm.nb(smptbBM ~ cb10.aveT + sp_ptbBM,data=week); summary(SA2m10a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ cb10.aveT + sp_ptbBM, data = week, 
##     init.theta = 17620.30367, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1542  -0.8562  -0.1691   0.5245   3.4475  
## 
## Coefficients: (5 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    -2.545e+01  1.767e+01  -1.441 0.149693    
## cb10.aveTv1.l1  4.852e-01  3.776e-01   1.285 0.198871    
## cb10.aveTv1.l2 -5.254e-01  2.796e-01  -1.879 0.060200 .  
## cb10.aveTv2.l1  2.360e+00  1.404e+00   1.681 0.092849 .  
## cb10.aveTv2.l2 -2.002e+00  1.098e+00  -1.823 0.068297 .  
## cb10.aveTv3.l1  1.300e+00  5.970e-01   2.178 0.029405 *  
## cb10.aveTv3.l2 -3.019e-01  4.457e-01  -0.677 0.498201    
## sp_ptbBM1              NA         NA      NA       NA    
## sp_ptbBM2              NA         NA      NA       NA    
## sp_ptbBM3              NA         NA      NA       NA    
## sp_ptbBM4      -2.112e+06  2.877e+06  -0.734 0.462712    
## sp_ptbBM5       1.166e+01  1.301e+01   0.896 0.370025    
## sp_ptbBM6       1.050e+00  2.199e+00   0.477 0.633142    
## sp_ptbBM7       3.582e+00  1.612e+00   2.223 0.026238 *  
## sp_ptbBM8       9.892e-01  1.296e+00   0.764 0.445161    
## sp_ptbBM9       2.823e+00  1.188e+00   2.375 0.017527 *  
## sp_ptbBM10     -1.069e+00  1.307e+00  -0.818 0.413474    
## sp_ptbBM11      3.461e+00  1.266e+00   2.734 0.006263 ** 
## sp_ptbBM12      1.134e+00  1.180e+00   0.961 0.336618    
## sp_ptbBM13      2.533e+00  1.141e+00   2.219 0.026476 *  
## sp_ptbBM14      1.355e+00  1.296e+00   1.045 0.295957    
## sp_ptbBM15      1.826e+00  1.286e+00   1.420 0.155565    
## sp_ptbBM16      1.376e+00  1.087e+00   1.267 0.205271    
## sp_ptbBM17      1.892e+00  1.190e+00   1.591 0.111722    
## sp_ptbBM18      1.821e+00  1.147e+00   1.587 0.112410    
## sp_ptbBM19      2.006e+00  1.195e+00   1.678 0.093287 .  
## sp_ptbBM20      1.799e+00  1.273e+00   1.413 0.157581    
## sp_ptbBM21      2.261e+00  1.385e+00   1.633 0.102412    
## sp_ptbBM22      2.282e+00  1.269e+00   1.799 0.072015 .  
## sp_ptbBM23      1.693e+00  1.269e+00   1.334 0.182146    
## sp_ptbBM24      2.709e+00  1.312e+00   2.066 0.038850 *  
## sp_ptbBM25      2.704e+00  1.460e+00   1.852 0.063991 .  
## sp_ptbBM26      3.347e+00  1.404e+00   2.383 0.017175 *  
## sp_ptbBM27      1.025e+00  1.557e+00   0.659 0.510185    
## sp_ptbBM28      2.127e+00  1.635e+00   1.301 0.193377    
## sp_ptbBM29      3.261e+00  1.367e+00   2.385 0.017073 *  
## sp_ptbBM30      2.271e+00  1.252e+00   1.813 0.069791 .  
## sp_ptbBM31      3.109e+00  1.248e+00   2.492 0.012689 *  
## sp_ptbBM32      2.136e+00  1.212e+00   1.762 0.078020 .  
## sp_ptbBM33      1.295e+00  1.345e+00   0.963 0.335551    
## sp_ptbBM34      3.324e+00  1.365e+00   2.436 0.014870 *  
## sp_ptbBM35      2.989e+00  1.534e+00   1.948 0.051450 .  
## sp_ptbBM36      2.850e+00  1.399e+00   2.038 0.041593 *  
## sp_ptbBM37      2.916e+00  1.606e+00   1.815 0.069501 .  
## sp_ptbBM38      3.636e+00  1.365e+00   2.665 0.007706 ** 
## sp_ptbBM39      2.072e+00  1.488e+00   1.393 0.163749    
## sp_ptbBM40      4.128e+00  1.542e+00   2.677 0.007424 ** 
## sp_ptbBM41      1.909e+00  1.383e+00   1.380 0.167553    
## sp_ptbBM42      3.159e+00  1.628e+00   1.940 0.052342 .  
## sp_ptbBM43      2.887e+00  1.367e+00   2.111 0.034730 *  
## sp_ptbBM44      2.517e+00  1.211e+00   2.078 0.037741 *  
## sp_ptbBM45      3.335e+00  1.241e+00   2.688 0.007196 ** 
## sp_ptbBM46      2.413e+00  1.318e+00   1.831 0.067083 .  
## sp_ptbBM47      3.244e+00  1.330e+00   2.439 0.014745 *  
## sp_ptbBM48      2.831e+00  1.473e+00   1.922 0.054562 .  
## sp_ptbBM49      4.394e+00  1.524e+00   2.882 0.003948 ** 
## sp_ptbBM50      3.456e+00  1.776e+00   1.946 0.051674 .  
## sp_ptbBM51      5.277e+00  1.544e+00   3.418 0.000632 ***
## sp_ptbBM52      2.640e+00  1.657e+00   1.593 0.111163    
## sp_ptbBM53      3.424e+00  1.654e+00   2.070 0.038445 *  
## sp_ptbBM54      2.487e+00  1.667e+00   1.492 0.135726    
## sp_ptbBM55      1.805e+00  1.638e+00   1.103 0.270220    
## sp_ptbBM56      3.793e+00  1.755e+00   2.161 0.030683 *  
## sp_ptbBM57      3.990e+00  1.681e+00   2.374 0.017585 *  
## sp_ptbBM58      2.635e+00  1.248e+00   2.112 0.034709 *  
## sp_ptbBM59      1.898e+00  1.140e+00   1.665 0.095967 .  
## sp_ptbBM60      1.323e+00  1.037e+00   1.277 0.201762    
## sp_ptbBM61      1.230e+00  9.080e-01   1.355 0.175530    
## sp_ptbBM62      2.172e-01  1.027e+00   0.212 0.832430    
## sp_ptbBM63      8.572e-01  1.108e+00   0.774 0.439055    
## sp_ptbBM64      3.134e-01  1.285e+00   0.244 0.807361    
## sp_ptbBM65      1.364e+00  9.735e-01   1.401 0.161242    
## sp_ptbBM66      5.860e-01  9.607e-01   0.610 0.541859    
## sp_ptbBM67      2.686e+00  9.317e-01   2.883 0.003943 ** 
## sp_ptbBM68      1.045e+00  9.604e-01   1.088 0.276431    
## sp_ptbBM69      2.329e+00  1.169e+00   1.992 0.046323 *  
## sp_ptbBM70      1.134e+00  1.533e+00   0.740 0.459372    
## sp_ptbBM71      3.188e+00  1.704e+00   1.871 0.061366 .  
## sp_ptbBM72      1.790e+00  1.713e+00   1.045 0.295932    
## sp_ptbBM73      2.785e+00  1.423e+00   1.957 0.050333 .  
## sp_ptbBM74      2.781e+00  1.353e+00   2.055 0.039836 *  
## sp_ptbBM75      2.461e+00  1.370e+00   1.796 0.072488 .  
## sp_ptbBM76      2.088e+00  1.355e+00   1.541 0.123402    
## sp_ptbBM77      1.769e+00  1.262e+00   1.402 0.160927    
## sp_ptbBM78      2.910e+00  1.537e+00   1.893 0.058311 .  
## sp_ptbBM79      1.528e+00  1.208e+00   1.265 0.206042    
## sp_ptbBM80      2.638e+00  1.163e+00   2.268 0.023315 *  
## sp_ptbBM81      1.446e+00  1.165e+00   1.241 0.214605    
## sp_ptbBM82      1.640e+00  1.203e+00   1.364 0.172577    
## sp_ptbBM83      1.564e+00  1.169e+00   1.337 0.181067    
## sp_ptbBM84      2.081e+00  1.252e+00   1.663 0.096299 .  
## sp_ptbBM85     -3.791e-01  1.388e+00  -0.273 0.784737    
## sp_ptbBM86      2.647e+00  1.274e+00   2.077 0.037761 *  
## sp_ptbBM87      1.314e+00  1.272e+00   1.033 0.301498    
## sp_ptbBM88      2.998e+00  1.354e+00   2.214 0.026862 *  
## sp_ptbBM89      6.403e-01  1.434e+00   0.447 0.655191    
## sp_ptbBM90      2.003e+00  1.467e+00   1.366 0.172003    
## sp_ptbBM91      4.955e+00  1.998e+00   2.480 0.013128 *  
## sp_ptbBM92      4.360e+00  1.628e+00   2.677 0.007419 ** 
## sp_ptbBM93      2.279e+00  1.421e+00   1.604 0.108806    
## sp_ptbBM94      2.856e+00  1.395e+00   2.048 0.040556 *  
## sp_ptbBM95      2.102e+00  1.347e+00   1.560 0.118804    
## sp_ptbBM96      3.151e+00  1.213e+00   2.599 0.009360 ** 
## sp_ptbBM97      5.768e-01  1.659e+00   0.348 0.728078    
## sp_ptbBM98      2.863e+00  1.449e+00   1.976 0.048139 *  
## sp_ptbBM99      2.528e+00  1.343e+00   1.883 0.059727 .  
## sp_ptbBM100     3.334e+00  1.320e+00   2.527 0.011513 *  
## sp_ptbBM101     2.137e+00  1.029e+00   2.077 0.037766 *  
## sp_ptbBM102     2.331e+00  1.007e+00   2.316 0.020547 *  
## sp_ptbBM103     1.837e+00  9.489e-01   1.936 0.052870 .  
## sp_ptbBM104     1.609e+00  8.625e-01   1.866 0.062040 .  
## sp_ptbBM105     1.132e+00  1.065e+00   1.062 0.288196    
## sp_ptbBM106     1.610e-01  1.124e+00   0.143 0.886107    
## sp_ptbBM107    -2.068e+00  1.700e+00  -1.217 0.223759    
## sp_ptbBM108     3.573e-02  1.210e+00   0.030 0.976451    
## sp_ptbBM109    -7.995e-01  1.507e+00  -0.531 0.595643    
## sp_ptbBM110    -1.020e+00  1.355e+00  -0.753 0.451592    
## sp_ptbBM111    -6.142e-01  1.522e+00  -0.404 0.686529    
## sp_ptbBM112    -2.228e+00  1.574e+00  -1.416 0.156860    
## sp_ptbBM113     1.391e-01  1.876e+00   0.074 0.940895    
## sp_ptbBM114     1.893e+00  1.248e+00   1.517 0.129306    
## sp_ptbBM115     6.061e-01  1.145e+00   0.529 0.596591    
## sp_ptbBM116     3.484e+00  1.383e+00   2.519 0.011775 *  
## sp_ptbBM117     1.824e-01  1.398e+00   0.130 0.896224    
## sp_ptbBM118     3.267e+00  1.253e+00   2.607 0.009136 ** 
## sp_ptbBM119     1.415e+00  1.434e+00   0.987 0.323855    
## sp_ptbBM120     2.875e+00  1.356e+00   2.120 0.034028 *  
## sp_ptbBM121     1.303e+00  1.166e+00   1.118 0.263590    
## sp_ptbBM122     2.974e+00  1.027e+00   2.895 0.003793 ** 
## sp_ptbBM123     6.467e-02  9.618e-01   0.067 0.946391    
## sp_ptbBM124     2.022e+00  1.083e+00   1.866 0.062008 .  
## sp_ptbBM125            NA         NA      NA       NA    
## sp_ptbBM126            NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17620.3) family taken to be 1)
## 
##     Null deviance: 1073.13  on 886  degrees of freedom
## Residual deviance:  920.36  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 2881.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17620 
##           Std. Err.:  101020 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2623.481
SA2m11a <- glm.nb(smptbBM ~ cb11.maxT + sp_ptbBM,data=week); summary(SA2m11a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = smptbBM ~ cb11.maxT + sp_ptbBM, data = week, 
##     init.theta = 17657.07734, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1960  -0.8504  -0.1813   0.5293   3.5106  
## 
## Coefficients: (5 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    -3.447e+01  1.967e+01  -1.752  0.07974 . 
## cb11.maxTv1.l1  7.338e-01  4.336e-01   1.692  0.09060 . 
## cb11.maxTv1.l2 -2.381e-01  3.119e-01  -0.763  0.44531   
## cb11.maxTv2.l1  2.965e+00  1.537e+00   1.929  0.05376 . 
## cb11.maxTv2.l2 -1.619e+00  1.144e+00  -1.415  0.15698   
## cb11.maxTv3.l1  1.278e+00  5.970e-01   2.141  0.03224 * 
## cb11.maxTv3.l2 -2.029e-01  4.335e-01  -0.468  0.63982   
## sp_ptbBM1              NA         NA      NA       NA   
## sp_ptbBM2              NA         NA      NA       NA   
## sp_ptbBM3              NA         NA      NA       NA   
## sp_ptbBM4      -2.014e+06  2.911e+06  -0.692  0.48914   
## sp_ptbBM5       9.672e+00  1.306e+01   0.740  0.45904   
## sp_ptbBM6       1.700e-01  2.176e+00   0.078  0.93774   
## sp_ptbBM7       2.201e+00  1.722e+00   1.278  0.20114   
## sp_ptbBM8      -2.236e-01  1.400e+00  -0.160  0.87313   
## sp_ptbBM9       2.375e+00  1.156e+00   2.055  0.03991 * 
## sp_ptbBM10     -1.806e+00  1.233e+00  -1.465  0.14299   
## sp_ptbBM11      3.189e+00  1.060e+00   3.009  0.00262 **
## sp_ptbBM12      4.452e-01  9.314e-01   0.478  0.63262   
## sp_ptbBM13      1.205e+00  9.182e-01   1.313  0.18934   
## sp_ptbBM14     -7.388e-01  1.405e+00  -0.526  0.59913   
## sp_ptbBM15     -3.086e-01  1.390e+00  -0.222  0.82435   
## sp_ptbBM16     -3.761e-01  1.260e+00  -0.298  0.76541   
## sp_ptbBM17     -4.096e-02  1.218e+00  -0.034  0.97318   
## sp_ptbBM18      6.804e-01  1.204e+00   0.565  0.57190   
## sp_ptbBM19      3.060e-01  1.217e+00   0.251  0.80156   
## sp_ptbBM20     -1.164e-01  1.255e+00  -0.093  0.92609   
## sp_ptbBM21      6.143e-01  1.488e+00   0.413  0.67965   
## sp_ptbBM22      8.342e-01  1.445e+00   0.577  0.56374   
## sp_ptbBM23      3.264e-01  1.282e+00   0.255  0.79905   
## sp_ptbBM24      1.241e+00  1.102e+00   1.126  0.26024   
## sp_ptbBM25      1.621e+00  1.149e+00   1.410  0.15856   
## sp_ptbBM26      1.899e+00  1.093e+00   1.738  0.08222 . 
## sp_ptbBM27     -1.362e-01  1.256e+00  -0.108  0.91370   
## sp_ptbBM28      2.786e-01  1.441e+00   0.193  0.84673   
## sp_ptbBM29      1.347e+00  1.218e+00   1.106  0.26864   
## sp_ptbBM30      5.759e-01  1.042e+00   0.553  0.58036   
## sp_ptbBM31      2.093e+00  1.076e+00   1.946  0.05168 . 
## sp_ptbBM32      9.284e-01  1.014e+00   0.915  0.35996   
## sp_ptbBM33      1.522e-01  1.096e+00   0.139  0.88959   
## sp_ptbBM34      9.529e-01  1.012e+00   0.941  0.34648   
## sp_ptbBM35     -1.879e-01  1.537e+00  -0.122  0.90271   
## sp_ptbBM36      2.398e-01  1.251e+00   0.192  0.84802   
## sp_ptbBM37      4.468e-01  1.292e+00   0.346  0.72936   
## sp_ptbBM38      1.787e+00  9.986e-01   1.789  0.07358 . 
## sp_ptbBM39      5.518e-01  1.100e+00   0.502  0.61592   
## sp_ptbBM40      2.496e+00  1.051e+00   2.373  0.01762 * 
## sp_ptbBM41      1.788e-01  1.096e+00   0.163  0.87041   
## sp_ptbBM42      6.946e-01  1.481e+00   0.469  0.63905   
## sp_ptbBM43      9.028e-01  1.219e+00   0.741  0.45881   
## sp_ptbBM44      1.098e+00  1.091e+00   1.006  0.31421   
## sp_ptbBM45      1.690e+00  1.038e+00   1.628  0.10348   
## sp_ptbBM46      1.021e+00  9.709e-01   1.052  0.29290   
## sp_ptbBM47      7.966e-01  1.118e+00   0.712  0.47628   
## sp_ptbBM48      8.523e-01  1.027e+00   0.830  0.40682   
## sp_ptbBM49      1.233e+00  1.414e+00   0.872  0.38324   
## sp_ptbBM50      4.391e-01  1.414e+00   0.311  0.75609   
## sp_ptbBM51      2.965e+00  1.055e+00   2.811  0.00493 **
## sp_ptbBM52      9.533e-01  1.103e+00   0.864  0.38758   
## sp_ptbBM53      2.291e+00  1.139e+00   2.011  0.04434 * 
## sp_ptbBM54      1.269e+00  1.134e+00   1.118  0.26339   
## sp_ptbBM55      4.936e-01  1.270e+00   0.389  0.69752   
## sp_ptbBM56      1.329e+00  1.434e+00   0.926  0.35422   
## sp_ptbBM57      1.085e+00  1.451e+00   0.748  0.45470   
## sp_ptbBM58      9.557e-01  1.061e+00   0.901  0.36760   
## sp_ptbBM59     -1.151e-01  1.261e+00  -0.091  0.92730   
## sp_ptbBM60     -6.087e-02  1.388e+00  -0.044  0.96503   
## sp_ptbBM61     -9.423e-04  1.235e+00  -0.001  0.99939   
## sp_ptbBM62     -9.163e-01  1.273e+00  -0.720  0.47165   
## sp_ptbBM63     -1.781e+00  1.577e+00  -1.129  0.25887   
## sp_ptbBM64     -1.478e+00  1.762e+00  -0.839  0.40158   
## sp_ptbBM65     -3.645e-01  1.351e+00  -0.270  0.78731   
## sp_ptbBM66     -7.856e-01  1.143e+00  -0.687  0.49180   
## sp_ptbBM67      1.603e+00  1.040e+00   1.541  0.12322   
## sp_ptbBM68      9.113e-01  1.062e+00   0.858  0.39086   
## sp_ptbBM69      1.083e+00  1.199e+00   0.903  0.36668   
## sp_ptbBM70     -6.644e-01  1.691e+00  -0.393  0.69433   
## sp_ptbBM71      9.057e-01  1.606e+00   0.564  0.57269   
## sp_ptbBM72     -2.436e-01  1.567e+00  -0.155  0.87644   
## sp_ptbBM73      1.245e+00  1.260e+00   0.988  0.32325   
## sp_ptbBM74      1.560e+00  1.117e+00   1.396  0.16260   
## sp_ptbBM75      1.844e+00  1.065e+00   1.731  0.08341 . 
## sp_ptbBM76      1.389e+00  1.095e+00   1.269  0.20451   
## sp_ptbBM77      1.488e-01  1.186e+00   0.126  0.90012   
## sp_ptbBM78      6.386e-01  1.484e+00   0.430  0.66685   
## sp_ptbBM79     -1.953e-01  1.252e+00  -0.156  0.87607   
## sp_ptbBM80      6.775e-01  1.157e+00   0.586  0.55817   
## sp_ptbBM81      8.801e-03  1.150e+00   0.008  0.99389   
## sp_ptbBM82      2.885e-01  1.106e+00   0.261  0.79423   
## sp_ptbBM83      1.023e-01  1.116e+00   0.092  0.92695   
## sp_ptbBM84      4.713e-01  1.393e+00   0.338  0.73516   
## sp_ptbBM85     -1.958e+00  1.511e+00  -1.296  0.19511   
## sp_ptbBM86      1.423e+00  1.154e+00   1.233  0.21751   
## sp_ptbBM87      2.492e-01  1.131e+00   0.220  0.82558   
## sp_ptbBM88      2.144e+00  1.235e+00   1.737  0.08245 . 
## sp_ptbBM89     -8.341e-02  1.283e+00  -0.065  0.94817   
## sp_ptbBM90      6.998e-01  1.342e+00   0.521  0.60204   
## sp_ptbBM91      4.489e+00  2.385e+00   1.882  0.05985 . 
## sp_ptbBM92      3.390e+00  1.867e+00   1.816  0.06936 . 
## sp_ptbBM93      2.363e+00  1.759e+00   1.343  0.17918   
## sp_ptbBM94      2.919e+00  1.517e+00   1.924  0.05439 . 
## sp_ptbBM95      2.585e+00  1.599e+00   1.617  0.10588   
## sp_ptbBM96      3.468e+00  1.456e+00   2.382  0.01724 * 
## sp_ptbBM97      1.164e+00  2.095e+00   0.556  0.57825   
## sp_ptbBM98      2.784e+00  1.810e+00   1.538  0.12397   
## sp_ptbBM99      2.621e+00  1.605e+00   1.633  0.10247   
## sp_ptbBM100     2.939e+00  1.317e+00   2.232  0.02564 * 
## sp_ptbBM101     2.839e+00  1.228e+00   2.312  0.02077 * 
## sp_ptbBM102     2.822e+00  1.211e+00   2.330  0.01979 * 
## sp_ptbBM103     2.132e+00  1.091e+00   1.953  0.05077 . 
## sp_ptbBM104     2.171e+00  1.190e+00   1.823  0.06826 . 
## sp_ptbBM105     6.207e-01  1.226e+00   0.506  0.61261   
## sp_ptbBM106    -8.946e-02  1.469e+00  -0.061  0.95143   
## sp_ptbBM107    -3.481e-01  1.098e+00  -0.317  0.75129   
## sp_ptbBM108     5.216e-01  1.165e+00   0.448  0.65436   
## sp_ptbBM109     1.571e-01  1.104e+00   0.142  0.88678   
## sp_ptbBM110     2.090e-01  9.601e-01   0.218  0.82770   
## sp_ptbBM111     4.433e-01  1.031e+00   0.430  0.66736   
## sp_ptbBM112    -2.050e+00  1.246e+00  -1.646  0.09983 . 
## sp_ptbBM113     8.349e-02  1.489e+00   0.056  0.95529   
## sp_ptbBM114     5.382e-01  1.155e+00   0.466  0.64122   
## sp_ptbBM115    -4.721e-01  1.209e+00  -0.391  0.69616   
## sp_ptbBM116     2.315e+00  1.237e+00   1.872  0.06128 . 
## sp_ptbBM117    -7.567e-01  1.416e+00  -0.535  0.59298   
## sp_ptbBM118     2.246e+00  1.210e+00   1.856  0.06342 . 
## sp_ptbBM119     4.739e-01  1.457e+00   0.325  0.74494   
## sp_ptbBM120     1.657e+00  1.501e+00   1.104  0.26967   
## sp_ptbBM121     5.124e-01  1.221e+00   0.420  0.67459   
## sp_ptbBM122     2.398e+00  1.098e+00   2.184  0.02899 * 
## sp_ptbBM123    -7.699e-03  9.545e-01  -0.008  0.99356   
## sp_ptbBM124     1.863e+00  1.087e+00   1.713  0.08672 . 
## sp_ptbBM125            NA         NA      NA       NA   
## sp_ptbBM126            NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17657.08) family taken to be 1)
## 
##     Null deviance: 1073.13  on 886  degrees of freedom
## Residual deviance:  921.32  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 2882.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17657 
##           Std. Err.:  102559 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2624.439
##to check model diag for univariate models

options(na.action="na.exclude")
library(dplyr) ##make sure lags are dplyr lags

##for SA2m1a avgWindSp ######
scatter.smooth(predict(SA2m1a, type='response'), rstandard(SA2m1a, type='deviance'), col='gray')

SA2m1a.resid<-residuals(SA2m1a, type="deviance")
SA2m1a.pred<-predict(SA2m1a, type="response")
length(SA2m1a.resid); length(SA2m1a.pred)
## [1] 939
## [1] 939
pacf(SA2m1a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-10,12,19 & 25

library(dplyr)
#ensure that the lags are dplyr lags
SA2m1a.ac<-update(SA2m1a,.~.+lag(SA2m1a.resid,1)+lag(SA2m1a.resid,2)+lag(SA2m1a.resid,3)+ lag(SA2m1a.resid,4)+
                      lag(SA2m1a.resid,5)+lag(SA2m1a.resid,6)+lag(SA2m1a.resid,7)+ lag(SA2m1a.resid,8)+
                      lag(SA2m1a.resid,9)+lag(SA2m1a.resid,10)+lag(SA2m1a.resid,12)+ lag(SA2m1a.resid,19)+
                      lag(SA2m1a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
SA2m1a.resid_ac<-residuals(SA2m1a.ac, type="deviance")
SA2m1a.pred_ac<-predict(SA2m1a.ac, type="response")

pacf(SA2m1a.resid_ac,na.action = na.omit) 

length(SA2m1a.pred_ac)
## [1] 939
length(SA2m1a.resid_ac)
## [1] 939
##plot b4 ac
plot(week$time, week$smptbBM,type="l")
lines(week$time,SA2m1a.pred,lwd=1, col="blue")

plot(week$time,SA2m1a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA2m1a.pred, week$smptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$smptbBM,type="l")
lines(week$time,SA2m1a.pred_ac,lwd=1, col="blue")

plot(week$time,SA2m1a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA2m1a.pred_ac, week$smptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose reponse and slices 
pred.SA2m1a <- crosspred(cb1.avgWindSp, SA2m1a.ac, cen = 4.5, by=0.1,cumul=TRUE)



##for SA2m2a sun ######
summary(SA2m2a)
## 
## Call:
## glm.nb(formula = smptbBM ~ cb2.sun + sp_ptbBM, data = week, init.theta = 17721.422, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2402  -0.8797  -0.1478   0.5391   3.3445  
## 
## Coefficients: (5 not defined because of singularities)
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  -8.467e+00  1.092e+01  -0.775  0.43805   
## cb2.sunv1.l1  2.908e-01  2.303e-01   1.263  0.20667   
## cb2.sunv1.l2 -2.009e-01  1.695e-01  -1.185  0.23596   
## cb2.sunv2.l1  8.097e-01  9.558e-01   0.847  0.39691   
## cb2.sunv2.l2 -5.924e-01  6.575e-01  -0.901  0.36752   
## cb2.sunv3.l1  6.334e-01  3.487e-01   1.816  0.06933 . 
## cb2.sunv3.l2  2.178e-01  2.457e-01   0.887  0.37528   
## sp_ptbBM1            NA         NA      NA       NA   
## sp_ptbBM2            NA         NA      NA       NA   
## sp_ptbBM3            NA         NA      NA       NA   
## sp_ptbBM4    -2.119e+06  2.891e+06  -0.733  0.46359   
## sp_ptbBM5     1.147e+01  1.320e+01   0.869  0.38504   
## sp_ptbBM6    -4.368e-02  2.191e+00  -0.020  0.98409   
## sp_ptbBM7     2.515e+00  1.266e+00   1.986  0.04701 * 
## sp_ptbBM8     1.675e-03  1.131e+00   0.001  0.99882   
## sp_ptbBM9     1.487e+00  1.023e+00   1.453  0.14612   
## sp_ptbBM10   -2.859e+00  1.332e+00  -2.147  0.03180 * 
## sp_ptbBM11    1.597e+00  9.418e-01   1.696  0.08987 . 
## sp_ptbBM12   -4.623e-01  1.133e+00  -0.408  0.68330   
## sp_ptbBM13    4.868e-01  1.125e+00   0.433  0.66513   
## sp_ptbBM14   -2.666e-01  1.146e+00  -0.233  0.81604   
## sp_ptbBM15   -1.837e-01  1.120e+00  -0.164  0.86973   
## sp_ptbBM16    2.534e-01  1.106e+00   0.229  0.81873   
## sp_ptbBM17   -3.439e-01  1.121e+00  -0.307  0.75900   
## sp_ptbBM18    4.976e-02  1.140e+00   0.044  0.96519   
## sp_ptbBM19   -2.994e-01  1.153e+00  -0.260  0.79506   
## sp_ptbBM20    2.776e-01  1.098e+00   0.253  0.80032   
## sp_ptbBM21    6.544e-01  1.186e+00   0.552  0.58115   
## sp_ptbBM22    1.388e+00  1.065e+00   1.303  0.19247   
## sp_ptbBM23    5.676e-01  1.173e+00   0.484  0.62846   
## sp_ptbBM24    1.413e+00  1.042e+00   1.356  0.17513   
## sp_ptbBM25    7.012e-01  1.078e+00   0.650  0.51551   
## sp_ptbBM26    1.197e+00  1.162e+00   1.030  0.30287   
## sp_ptbBM27   -7.627e-01  1.352e+00  -0.564  0.57257   
## sp_ptbBM28   -6.348e-01  1.236e+00  -0.513  0.60763   
## sp_ptbBM29    5.601e-01  1.222e+00   0.458  0.64668   
## sp_ptbBM30    9.812e-02  1.144e+00   0.086  0.93167   
## sp_ptbBM31    9.386e-01  1.151e+00   0.816  0.41463   
## sp_ptbBM32   -1.915e-01  1.223e+00  -0.157  0.87563   
## sp_ptbBM33   -3.646e-01  1.221e+00  -0.299  0.76522   
## sp_ptbBM34    1.408e+00  1.190e+00   1.184  0.23660   
## sp_ptbBM35    1.426e+00  1.217e+00   1.172  0.24131   
## sp_ptbBM36    2.298e+00  1.217e+00   1.888  0.05897 . 
## sp_ptbBM37    1.599e+00  1.173e+00   1.364  0.17264   
## sp_ptbBM38    2.810e+00  1.139e+00   2.466  0.01366 * 
## sp_ptbBM39    1.103e+00  1.152e+00   0.957  0.33848   
## sp_ptbBM40    3.704e+00  1.211e+00   3.059  0.00222 **
## sp_ptbBM41    1.024e+00  1.129e+00   0.907  0.36440   
## sp_ptbBM42    1.968e+00  1.224e+00   1.608  0.10773   
## sp_ptbBM43    1.465e+00  1.033e+00   1.418  0.15616   
## sp_ptbBM44    1.285e+00  9.393e-01   1.368  0.17125   
## sp_ptbBM45    1.374e+00  8.925e-01   1.539  0.12374   
## sp_ptbBM46    5.825e-02  9.360e-01   0.062  0.95038   
## sp_ptbBM47    3.205e-01  1.093e+00   0.293  0.76931   
## sp_ptbBM48    6.675e-01  9.452e-01   0.706  0.48008   
## sp_ptbBM49    6.725e-01  1.282e+00   0.525  0.59990   
## sp_ptbBM50    5.094e-01  1.052e+00   0.484  0.62811   
## sp_ptbBM51    2.731e+00  1.056e+00   2.585  0.00973 **
## sp_ptbBM52    2.523e-01  9.977e-01   0.253  0.80034   
## sp_ptbBM53    1.492e+00  9.840e-01   1.516  0.12949   
## sp_ptbBM54    2.814e-01  1.004e+00   0.280  0.77930   
## sp_ptbBM55    1.620e-01  1.030e+00   0.157  0.87502   
## sp_ptbBM56    1.293e+00  1.208e+00   1.070  0.28464   
## sp_ptbBM57    1.580e+00  1.154e+00   1.369  0.17098   
## sp_ptbBM58    1.080e+00  1.043e+00   1.035  0.30056   
## sp_ptbBM59    1.014e+00  1.042e+00   0.973  0.33064   
## sp_ptbBM60    7.721e-01  9.887e-01   0.781  0.43485   
## sp_ptbBM61    1.244e+00  1.070e+00   1.163  0.24491   
## sp_ptbBM62    4.166e-01  1.073e+00   0.388  0.69794   
## sp_ptbBM63    8.239e-02  1.236e+00   0.067  0.94686   
## sp_ptbBM64    2.293e-01  1.158e+00   0.198  0.84304   
## sp_ptbBM65    1.355e+00  1.058e+00   1.281  0.20031   
## sp_ptbBM66   -5.301e-01  1.035e+00  -0.512  0.60854   
## sp_ptbBM67    1.466e+00  9.512e-01   1.541  0.12322   
## sp_ptbBM68   -3.877e-01  1.010e+00  -0.384  0.70111   
## sp_ptbBM69    7.004e-01  1.036e+00   0.676  0.49881   
## sp_ptbBM70   -7.821e-01  1.417e+00  -0.552  0.58103   
## sp_ptbBM71    2.085e+00  1.323e+00   1.576  0.11508   
## sp_ptbBM72   -3.898e-01  1.452e+00  -0.268  0.78834   
## sp_ptbBM73    1.398e+00  1.295e+00   1.079  0.28037   
## sp_ptbBM74    1.572e+00  1.293e+00   1.215  0.22426   
## sp_ptbBM75    1.580e+00  1.173e+00   1.347  0.17813   
## sp_ptbBM76    1.910e+00  1.205e+00   1.585  0.11294   
## sp_ptbBM77    1.222e+00  1.240e+00   0.985  0.32449   
## sp_ptbBM78    2.035e+00  1.201e+00   1.694  0.09035 . 
## sp_ptbBM79    9.500e-01  1.146e+00   0.829  0.40710   
## sp_ptbBM80    1.565e+00  1.185e+00   1.321  0.18666   
## sp_ptbBM81   -7.640e-02  1.269e+00  -0.060  0.95198   
## sp_ptbBM82    3.392e-01  1.147e+00   0.296  0.76734   
## sp_ptbBM83    1.949e-01  1.151e+00   0.169  0.86547   
## sp_ptbBM84    4.363e-01  1.159e+00   0.376  0.70662   
## sp_ptbBM85   -1.779e+00  1.309e+00  -1.359  0.17412   
## sp_ptbBM86    8.353e-01  1.236e+00   0.676  0.49910   
## sp_ptbBM87   -4.653e-02  1.178e+00  -0.040  0.96849   
## sp_ptbBM88    1.786e+00  1.197e+00   1.492  0.13571   
## sp_ptbBM89   -8.129e-01  1.422e+00  -0.572  0.56764   
## sp_ptbBM90    1.882e+00  1.306e+00   1.440  0.14973   
## sp_ptbBM91    1.870e+00  1.374e+00   1.361  0.17356   
## sp_ptbBM92    2.376e+00  1.144e+00   2.076  0.03786 * 
## sp_ptbBM93    7.167e-01  1.234e+00   0.581  0.56155   
## sp_ptbBM94    1.181e+00  1.189e+00   0.993  0.32077   
## sp_ptbBM95    9.451e-01  1.080e+00   0.875  0.38154   
## sp_ptbBM96    2.252e+00  1.052e+00   2.140  0.03233 * 
## sp_ptbBM97    2.473e-01  1.074e+00   0.230  0.81791   
## sp_ptbBM98    1.336e+00  1.420e+00   0.941  0.34672   
## sp_ptbBM99    1.985e+00  1.067e+00   1.859  0.06301 . 
## sp_ptbBM100   1.836e+00  1.102e+00   1.666  0.09564 . 
## sp_ptbBM101   1.491e+00  1.010e+00   1.476  0.13982   
## sp_ptbBM102   1.356e+00  1.041e+00   1.302  0.19277   
## sp_ptbBM103   1.168e+00  1.052e+00   1.110  0.26679   
## sp_ptbBM104   1.310e+00  9.769e-01   1.341  0.17985   
## sp_ptbBM105  -4.534e-01  1.317e+00  -0.344  0.73060   
## sp_ptbBM106  -3.253e-01  1.134e+00  -0.287  0.77425   
## sp_ptbBM107  -1.059e+00  1.232e+00  -0.859  0.39027   
## sp_ptbBM108   3.786e-03  1.245e+00   0.003  0.99757   
## sp_ptbBM109  -2.306e-01  1.210e+00  -0.190  0.84893   
## sp_ptbBM110  -3.911e-01  1.381e+00  -0.283  0.77701   
## sp_ptbBM111   6.038e-01  1.248e+00   0.484  0.62841   
## sp_ptbBM112  -4.786e-01  1.143e+00  -0.419  0.67534   
## sp_ptbBM113   2.366e+00  1.072e+00   2.208  0.02728 * 
## sp_ptbBM114   1.193e+00  9.805e-01   1.217  0.22379   
## sp_ptbBM115   8.943e-01  1.151e+00   0.777  0.43713   
## sp_ptbBM116   2.755e+00  1.023e+00   2.694  0.00707 **
## sp_ptbBM117  -8.531e-01  1.275e+00  -0.669  0.50330   
## sp_ptbBM118   2.922e+00  1.162e+00   2.514  0.01193 * 
## sp_ptbBM119   7.258e-01  1.324e+00   0.548  0.58365   
## sp_ptbBM120   2.051e+00  1.133e+00   1.811  0.07019 . 
## sp_ptbBM121   4.275e-01  1.064e+00   0.402  0.68783   
## sp_ptbBM122   2.271e+00  9.682e-01   2.346  0.01899 * 
## sp_ptbBM123   7.221e-01  8.618e-01   0.838  0.40209   
## sp_ptbBM124   1.970e+00  1.122e+00   1.756  0.07912 . 
## sp_ptbBM125          NA         NA      NA       NA   
## sp_ptbBM126          NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17721.42) family taken to be 1)
## 
##     Null deviance: 1073.1  on 886  degrees of freedom
## Residual deviance:  920.3  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 2881.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17721 
##           Std. Err.:  102690 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2623.416
scatter.smooth(predict(SA2m2a, type='response'), rstandard(SA2m2a, type='deviance'), col='gray')

SA2m2a.resid<-residuals(SA2m2a, type="deviance")
SA2m2a.pred<-predict(SA2m2a, type="response")
length(SA2m2a.resid); length(SA2m2a.pred)
## [1] 939
## [1] 939
pacf(SA2m2a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-10, 12, 19 & 25

#ensure that the lags are dplyr lags
SA2m2a.ac<-update(SA2m2a,.~.+lag(SA2m2a.resid,1)+lag(SA2m2a.resid,2)+lag(SA2m2a.resid,3)+lag(SA2m2a.resid,4)+
                      lag(SA2m2a.resid,5)+lag(SA2m2a.resid,6)+lag(SA2m2a.resid,7)+lag(SA2m2a.resid,8)+
                      lag(SA2m2a.resid,9)+lag(SA2m2a.resid,10)+lag(SA2m2a.resid,12)+lag(SA2m2a.resid,19)+
                      lag(SA2m2a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
SA2m2a.resid_ac<-residuals(SA2m2a.ac, type="deviance")
SA2m2a.pred_ac<-predict(SA2m2a.ac, type="response")

pacf(SA2m2a.resid_ac,na.action = na.omit) 

length(SA2m2a.pred_ac); length(SA2m2a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$smptbBM,type="l")
lines(week$time,SA2m2a.pred,lwd=1, col="blue")

plot(week$time,SA2m2a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA2m2a.pred, week$smptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$smptbBM,type="l")
lines(week$time,SA2m2a.pred_ac,lwd=1, col="blue")

plot(week$time,SA2m2a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA2m2a.pred_ac, week$smptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose reponse and slices 
pred.SA2m2a <- crosspred(cb2.sun, SA2m2a.ac, cen = 50.7, by=0.1,cumul=TRUE)



##for SA2m3a RF ######
summary(SA2m3a)
## 
## Call:
## glm.nb(formula = smptbBM ~ cb3.RF + sp_ptbBM, data = week, init.theta = 17311.02781, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1072  -0.8474  -0.1545   0.5437   3.3762  
## 
## Coefficients: (5 not defined because of singularities)
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  6.039e-01  3.091e+00   0.195  0.84509    
## cb3.RFv1.l1  2.795e-01  3.032e-01   0.922  0.35673    
## cb3.RFv1.l2  5.948e-02  2.121e-01   0.280  0.77918    
## cb3.RFv2.l1 -3.413e-01  4.369e-01  -0.781  0.43464    
## cb3.RFv2.l2  4.430e-01  3.182e-01   1.392  0.16393    
## cb3.RFv3.l1 -4.776e-01  7.029e-01  -0.679  0.49683    
## cb3.RFv3.l2  5.909e-01  5.428e-01   1.089  0.27628    
## sp_ptbBM1           NA         NA      NA       NA    
## sp_ptbBM2           NA         NA      NA       NA    
## sp_ptbBM3           NA         NA      NA       NA    
## sp_ptbBM4   -2.127e+06  2.881e+06  -0.738  0.46045    
## sp_ptbBM5    9.343e+00  1.300e+01   0.719  0.47230    
## sp_ptbBM6   -1.472e-01  2.150e+00  -0.068  0.94541    
## sp_ptbBM7    2.343e+00  1.288e+00   1.820  0.06881 .  
## sp_ptbBM8    5.184e-02  1.201e+00   0.043  0.96557    
## sp_ptbBM9    2.209e+00  1.103e+00   2.002  0.04530 *  
## sp_ptbBM10  -1.757e+00  1.397e+00  -1.257  0.20873    
## sp_ptbBM11   2.289e+00  9.885e-01   2.315  0.02059 *  
## sp_ptbBM12   8.056e-01  1.116e+00   0.722  0.47046    
## sp_ptbBM13   2.493e+00  1.160e+00   2.149  0.03164 *  
## sp_ptbBM14   9.179e-01  1.116e+00   0.823  0.41064    
## sp_ptbBM15   1.380e+00  1.029e+00   1.341  0.17988    
## sp_ptbBM16   1.299e+00  1.160e+00   1.120  0.26280    
## sp_ptbBM17   1.235e+00  1.123e+00   1.099  0.27183    
## sp_ptbBM18   1.364e+00  1.118e+00   1.220  0.22237    
## sp_ptbBM19   1.429e+00  1.082e+00   1.321  0.18636    
## sp_ptbBM20   2.140e+00  1.300e+00   1.646  0.09973 .  
## sp_ptbBM21   1.889e+00  1.070e+00   1.765  0.07748 .  
## sp_ptbBM22   2.051e+00  1.055e+00   1.945  0.05175 .  
## sp_ptbBM23   8.189e-01  1.085e+00   0.755  0.45028    
## sp_ptbBM24   1.761e+00  1.109e+00   1.587  0.11243    
## sp_ptbBM25   1.351e+00  1.073e+00   1.259  0.20811    
## sp_ptbBM26   2.111e+00  1.134e+00   1.861  0.06275 .  
## sp_ptbBM27   3.860e-01  1.369e+00   0.282  0.77803    
## sp_ptbBM28   8.888e-01  1.259e+00   0.706  0.48027    
## sp_ptbBM29   1.938e+00  1.140e+00   1.699  0.08924 .  
## sp_ptbBM30   1.195e+00  1.149e+00   1.040  0.29846    
## sp_ptbBM31   2.028e+00  9.850e-01   2.059  0.03946 *  
## sp_ptbBM32   1.036e+00  1.060e+00   0.978  0.32831    
## sp_ptbBM33   6.523e-01  1.147e+00   0.569  0.56967    
## sp_ptbBM34   1.885e+00  1.088e+00   1.733  0.08308 .  
## sp_ptbBM35   1.669e+00  1.015e+00   1.644  0.10018    
## sp_ptbBM36   1.487e+00  9.289e-01   1.601  0.10942    
## sp_ptbBM37   1.420e+00  1.074e+00   1.322  0.18619    
## sp_ptbBM38   1.827e+00  9.800e-01   1.864  0.06232 .  
## sp_ptbBM39   6.273e-01  1.033e+00   0.607  0.54388    
## sp_ptbBM40   2.226e+00  9.734e-01   2.287  0.02222 *  
## sp_ptbBM41   1.082e+00  1.066e+00   1.016  0.30985    
## sp_ptbBM42   1.446e+00  1.116e+00   1.295  0.19534    
## sp_ptbBM43   1.406e+00  1.030e+00   1.365  0.17228    
## sp_ptbBM44   1.827e+00  1.015e+00   1.799  0.07198 .  
## sp_ptbBM45   2.026e+00  1.005e+00   2.016  0.04383 *  
## sp_ptbBM46   1.327e+00  9.894e-01   1.341  0.17993    
## sp_ptbBM47   1.198e+00  9.042e-01   1.325  0.18528    
## sp_ptbBM48   1.473e+00  9.582e-01   1.537  0.12425    
## sp_ptbBM49   2.367e+00  1.036e+00   2.285  0.02230 *  
## sp_ptbBM50   5.538e-01  1.060e+00   0.522  0.60138    
## sp_ptbBM51   3.215e+00  9.693e-01   3.317  0.00091 ***
## sp_ptbBM52   8.381e-01  1.060e+00   0.790  0.42932    
## sp_ptbBM53   1.713e+00  1.022e+00   1.676  0.09370 .  
## sp_ptbBM54   1.085e+00  1.074e+00   1.010  0.31239    
## sp_ptbBM55   9.351e-01  1.069e+00   0.875  0.38173    
## sp_ptbBM56   2.306e+00  1.449e+00   1.592  0.11149    
## sp_ptbBM57   2.171e+00  1.160e+00   1.872  0.06122 .  
## sp_ptbBM58   1.297e+00  1.126e+00   1.152  0.24917    
## sp_ptbBM59   8.377e-01  1.065e+00   0.787  0.43152    
## sp_ptbBM60   6.641e-01  1.108e+00   0.599  0.54902    
## sp_ptbBM61   1.261e+00  1.023e+00   1.233  0.21763    
## sp_ptbBM62   1.011e+00  1.277e+00   0.792  0.42842    
## sp_ptbBM63   2.032e+00  1.454e+00   1.397  0.16239    
## sp_ptbBM64   2.248e+00  1.298e+00   1.732  0.08329 .  
## sp_ptbBM65   2.450e+00  1.146e+00   2.138  0.03249 *  
## sp_ptbBM66   1.086e+00  1.092e+00   0.995  0.31993    
## sp_ptbBM67   3.150e+00  1.137e+00   2.771  0.00559 ** 
## sp_ptbBM68   1.235e+00  9.704e-01   1.272  0.20330    
## sp_ptbBM69   2.731e+00  1.234e+00   2.212  0.02695 *  
## sp_ptbBM70   7.114e-02  1.289e+00   0.055  0.95597    
## sp_ptbBM71   1.381e+00  1.313e+00   1.052  0.29287    
## sp_ptbBM72  -8.720e-01  1.318e+00  -0.661  0.50831    
## sp_ptbBM73   2.941e-01  1.130e+00   0.260  0.79468    
## sp_ptbBM74   8.138e-01  9.769e-01   0.833  0.40481    
## sp_ptbBM75   1.131e+00  1.056e+00   1.071  0.28412    
## sp_ptbBM76   1.309e+00  1.047e+00   1.250  0.21148    
## sp_ptbBM77   1.065e+00  1.078e+00   0.988  0.32309    
## sp_ptbBM78   2.457e+00  1.153e+00   2.131  0.03305 *  
## sp_ptbBM79   1.399e+00  1.181e+00   1.184  0.23624    
## sp_ptbBM80   1.923e+00  1.100e+00   1.749  0.08028 .  
## sp_ptbBM81   7.618e-01  1.201e+00   0.634  0.52589    
## sp_ptbBM82   8.513e-01  1.089e+00   0.781  0.43457    
## sp_ptbBM83   1.363e+00  1.090e+00   1.251  0.21088    
## sp_ptbBM84   1.684e+00  1.069e+00   1.575  0.11524    
## sp_ptbBM85  -3.127e-01  1.192e+00  -0.262  0.79314    
## sp_ptbBM86   2.462e+00  1.015e+00   2.425  0.01533 *  
## sp_ptbBM87   3.422e-01  1.031e+00   0.332  0.73990    
## sp_ptbBM88   2.147e+00  9.900e-01   2.168  0.03014 *  
## sp_ptbBM89  -7.474e-01  1.161e+00  -0.644  0.51959    
## sp_ptbBM90   2.262e+00  1.079e+00   2.097  0.03598 *  
## sp_ptbBM91   1.452e+00  1.202e+00   1.208  0.22701    
## sp_ptbBM92   1.631e+00  1.024e+00   1.594  0.11104    
## sp_ptbBM93   6.669e-01  1.221e+00   0.546  0.58481    
## sp_ptbBM94   1.129e+00  1.174e+00   0.962  0.33620    
## sp_ptbBM95   9.532e-01  1.082e+00   0.881  0.37836    
## sp_ptbBM96   1.854e+00  9.216e-01   2.012  0.04421 *  
## sp_ptbBM97   5.638e-01  1.148e+00   0.491  0.62332    
## sp_ptbBM98   1.678e+00  1.272e+00   1.319  0.18721    
## sp_ptbBM99   1.826e+00  1.130e+00   1.616  0.10609    
## sp_ptbBM100  1.551e+00  1.052e+00   1.475  0.14015    
## sp_ptbBM101  1.529e+00  9.687e-01   1.579  0.11445    
## sp_ptbBM102  1.299e+00  1.009e+00   1.288  0.19784    
## sp_ptbBM103  1.403e+00  1.009e+00   1.391  0.16429    
## sp_ptbBM104  2.148e+00  9.998e-01   2.148  0.03169 *  
## sp_ptbBM105  1.416e+00  1.286e+00   1.101  0.27109    
## sp_ptbBM106  6.852e-01  1.185e+00   0.578  0.56308    
## sp_ptbBM107  3.551e-01  1.110e+00   0.320  0.74908    
## sp_ptbBM108  1.269e+00  1.068e+00   1.188  0.23497    
## sp_ptbBM109  1.451e+00  1.144e+00   1.269  0.20456    
## sp_ptbBM110  8.159e-01  9.817e-01   0.831  0.40595    
## sp_ptbBM111  2.318e+00  1.289e+00   1.798  0.07216 .  
## sp_ptbBM112 -6.968e-02  1.226e+00  -0.057  0.95467    
## sp_ptbBM113  2.564e+00  1.003e+00   2.556  0.01059 *  
## sp_ptbBM114  1.483e+00  1.042e+00   1.424  0.15458    
## sp_ptbBM115  7.475e-01  1.129e+00   0.662  0.50802    
## sp_ptbBM116  2.507e+00  1.005e+00   2.495  0.01259 *  
## sp_ptbBM117 -7.662e-01  1.201e+00  -0.638  0.52351    
## sp_ptbBM118  2.598e+00  1.116e+00   2.328  0.01993 *  
## sp_ptbBM119  1.365e-01  1.302e+00   0.105  0.91650    
## sp_ptbBM120  1.603e+00  1.076e+00   1.489  0.13645    
## sp_ptbBM121  4.199e-03  1.043e+00   0.004  0.99679    
## sp_ptbBM122  1.997e+00  1.005e+00   1.987  0.04692 *  
## sp_ptbBM123 -7.013e-01  8.890e-01  -0.789  0.43016    
## sp_ptbBM124  1.960e+00  1.110e+00   1.766  0.07741 .  
## sp_ptbBM125         NA         NA      NA       NA    
## sp_ptbBM126         NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17311.03) family taken to be 1)
## 
##     Null deviance: 1073.13  on 886  degrees of freedom
## Residual deviance:  926.96  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 2888.1
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17311 
##           Std. Err.:  101315 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2630.083
scatter.smooth(predict(SA2m3a, type='response'), rstandard(SA2m3a, type='deviance'), col='gray')

SA2m3a.resid<-residuals(SA2m3a, type="deviance")
SA2m3a.pred<-predict(SA2m3a, type="response")
length(SA2m3a.resid); length(SA2m3a.pred)
## [1] 939
## [1] 939
pacf(SA2m3a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-10, 12, 19 & 25

#ensure that the lags are dplyr lags
SA2m3a.ac<-update(SA2m3a,.~.+lag(SA2m3a.resid,1)+lag(SA2m3a.resid,2)+lag(SA2m3a.resid,3)+lag(SA2m3a.resid,4)+
                      lag(SA2m3a.resid,5)+lag(SA2m3a.resid,6)+lag(SA2m3a.resid,7)+lag(SA2m3a.resid,8)+
                      lag(SA2m3a.resid,9)+lag(SA2m3a.resid,10)+lag(SA2m3a.resid,12)+lag(SA2m3a.resid,19)+
                      lag(SA2m3a.resid,25)) 
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
SA2m3a.resid_ac<-residuals(SA2m3a.ac, type="deviance")
SA2m3a.pred_ac<-predict(SA2m3a.ac, type="response")

pacf(SA2m3a.resid_ac,na.action = na.omit) 

length(SA2m3a.pred_ac); length(SA2m3a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$smptbBM,type="l")
lines(week$time,SA2m3a.pred,lwd=1, col="blue")

plot(week$time,SA2m3a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA2m3a.pred, week$smptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$smptbBM,type="l")
lines(week$time,SA2m3a.pred_ac,lwd=1, col="blue")

plot(week$time,SA2m3a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA2m3a.pred_ac, week$smptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose reponse and slices now
pred.SA2m3a <- crosspred(cb3.RF, SA2m3a.ac, cen = 44.9, by=0.1,cumul=TRUE)



##for SA2m5a minRH ######
summary(SA2m5a)
## 
## Call:
## glm.nb(formula = smptbBM ~ cb5.minRH + sp_ptbBM, data = week, 
##     init.theta = 17146.60379, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2022  -0.8207  -0.1746   0.5366   3.4423  
## 
## Coefficients: (5 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)     1.245e+01  1.203e+01   1.035   0.3006  
## cb5.minRHv1.l1 -2.014e-01  2.717e-01  -0.741   0.4584  
## cb5.minRHv1.l2 -1.065e-01  1.854e-01  -0.574   0.5657  
## cb5.minRHv2.l1 -1.326e+00  1.052e+00  -1.261   0.2075  
## cb5.minRHv2.l2 -4.867e-01  7.829e-01  -0.622   0.5341  
## cb5.minRHv3.l1 -1.049e+00  6.873e-01  -1.526   0.1269  
## cb5.minRHv3.l2 -7.475e-02  5.228e-01  -0.143   0.8863  
## sp_ptbBM1              NA         NA      NA       NA  
## sp_ptbBM2              NA         NA      NA       NA  
## sp_ptbBM3              NA         NA      NA       NA  
## sp_ptbBM4      -2.208e+06  2.877e+06  -0.768   0.4427  
## sp_ptbBM5       1.047e+01  1.294e+01   0.809   0.4185  
## sp_ptbBM6      -7.047e-01  2.175e+00  -0.324   0.7459  
## sp_ptbBM7       1.768e+00  1.268e+00   1.394   0.1633  
## sp_ptbBM8      -4.314e-01  1.200e+00  -0.360   0.7191  
## sp_ptbBM9       1.238e+00  1.170e+00   1.058   0.2903  
## sp_ptbBM10     -2.633e+00  1.299e+00  -2.028   0.0426 *
## sp_ptbBM11      1.305e+00  1.140e+00   1.145   0.2523  
## sp_ptbBM12     -6.931e-01  1.044e+00  -0.664   0.5066  
## sp_ptbBM13      3.038e-01  1.177e+00   0.258   0.7963  
## sp_ptbBM14     -5.900e-01  1.317e+00  -0.448   0.6541  
## sp_ptbBM15     -3.868e-01  1.396e+00  -0.277   0.7818  
## sp_ptbBM16     -9.142e-01  1.547e+00  -0.591   0.5546  
## sp_ptbBM17     -6.489e-01  1.325e+00  -0.490   0.6242  
## sp_ptbBM18     -3.635e-02  1.334e+00  -0.027   0.9783  
## sp_ptbBM19     -1.132e-01  1.236e+00  -0.092   0.9270  
## sp_ptbBM20     -2.381e-01  1.373e+00  -0.173   0.8623  
## sp_ptbBM21      1.008e+00  1.268e+00   0.795   0.4266  
## sp_ptbBM22      1.222e+00  1.158e+00   1.055   0.2914  
## sp_ptbBM23      1.961e-02  1.155e+00   0.017   0.9865  
## sp_ptbBM24      8.196e-01  1.013e+00   0.809   0.4184  
## sp_ptbBM25      6.572e-01  9.107e-01   0.722   0.4705  
## sp_ptbBM26      8.621e-01  9.685e-01   0.890   0.3734  
## sp_ptbBM27     -7.593e-01  1.087e+00  -0.699   0.4848  
## sp_ptbBM28     -3.870e-01  1.224e+00  -0.316   0.7519  
## sp_ptbBM29      9.068e-01  1.082e+00   0.838   0.4020  
## sp_ptbBM30     -5.232e-01  1.228e+00  -0.426   0.6700  
## sp_ptbBM31      6.980e-01  1.266e+00   0.551   0.5813  
## sp_ptbBM32     -7.384e-01  1.568e+00  -0.471   0.6378  
## sp_ptbBM33     -1.423e+00  1.493e+00  -0.953   0.3407  
## sp_ptbBM34     -7.583e-01  1.593e+00  -0.476   0.6340  
## sp_ptbBM35     -1.153e+00  1.830e+00  -0.630   0.5285  
## sp_ptbBM36     -1.079e+00  1.866e+00  -0.579   0.5629  
## sp_ptbBM37     -1.159e+00  1.633e+00  -0.710   0.4777  
## sp_ptbBM38      2.210e-01  1.385e+00   0.160   0.8732  
## sp_ptbBM39     -8.584e-01  1.402e+00  -0.612   0.5404  
## sp_ptbBM40      1.136e+00  1.181e+00   0.962   0.3359  
## sp_ptbBM41     -8.396e-01  1.295e+00  -0.648   0.5168  
## sp_ptbBM42     -2.606e-02  1.289e+00  -0.020   0.9839  
## sp_ptbBM43      1.044e-01  1.127e+00   0.093   0.9261  
## sp_ptbBM44      3.191e-02  1.146e+00   0.028   0.9778  
## sp_ptbBM45      5.143e-01  1.079e+00   0.477   0.6336  
## sp_ptbBM46      4.816e-02  1.123e+00   0.043   0.9658  
## sp_ptbBM47     -3.113e-02  1.181e+00  -0.026   0.9790  
## sp_ptbBM48      1.395e-02  9.592e-01   0.015   0.9884  
## sp_ptbBM49      2.430e-01  1.427e+00   0.170   0.8648  
## sp_ptbBM50     -9.178e-01  1.200e+00  -0.765   0.4443  
## sp_ptbBM51      1.035e+00  1.294e+00   0.800   0.4236  
## sp_ptbBM52     -8.799e-01  1.229e+00  -0.716   0.4741  
## sp_ptbBM53      5.530e-01  1.159e+00   0.477   0.6334  
## sp_ptbBM54     -1.093e-01  1.138e+00  -0.096   0.9235  
## sp_ptbBM55     -4.604e-01  1.232e+00  -0.374   0.7087  
## sp_ptbBM56      9.365e-01  1.345e+00   0.696   0.4861  
## sp_ptbBM57      7.976e-01  1.277e+00   0.624   0.5323  
## sp_ptbBM58      5.718e-01  1.086e+00   0.527   0.5984  
## sp_ptbBM59     -3.490e-02  1.221e+00  -0.029   0.9772  
## sp_ptbBM60      2.655e-01  1.227e+00   0.216   0.8288  
## sp_ptbBM61      1.734e-01  1.214e+00   0.143   0.8864  
## sp_ptbBM62     -1.327e-01  1.233e+00  -0.108   0.9143  
## sp_ptbBM63     -7.531e-01  1.552e+00  -0.485   0.6274  
## sp_ptbBM64     -4.754e-01  1.676e+00  -0.284   0.7767  
## sp_ptbBM65     -2.762e-01  1.380e+00  -0.200   0.8414  
## sp_ptbBM66     -6.488e-01  1.104e+00  -0.588   0.5566  
## sp_ptbBM67      1.470e+00  8.933e-01   1.646   0.0998 .
## sp_ptbBM68      6.558e-02  8.663e-01   0.076   0.9397  
## sp_ptbBM69      1.229e+00  9.491e-01   1.295   0.1952  
## sp_ptbBM70     -9.788e-01  1.315e+00  -0.744   0.4567  
## sp_ptbBM71      1.067e+00  1.249e+00   0.854   0.3933  
## sp_ptbBM72     -1.312e+00  1.312e+00  -1.000   0.3173  
## sp_ptbBM73      1.094e-01  1.154e+00   0.095   0.9245  
## sp_ptbBM74      4.537e-01  1.064e+00   0.426   0.6698  
## sp_ptbBM75      3.540e-01  1.088e+00   0.325   0.7449  
## sp_ptbBM76      7.591e-01  9.293e-01   0.817   0.4140  
## sp_ptbBM77     -6.185e-02  1.186e+00  -0.052   0.9584  
## sp_ptbBM78      1.106e+00  1.316e+00   0.840   0.4009  
## sp_ptbBM79     -1.316e-02  1.172e+00  -0.011   0.9910  
## sp_ptbBM80      5.194e-01  1.195e+00   0.435   0.6637  
## sp_ptbBM81     -6.148e-01  1.150e+00  -0.535   0.5929  
## sp_ptbBM82     -2.858e-01  1.061e+00  -0.269   0.7877  
## sp_ptbBM83     -1.521e-01  1.114e+00  -0.137   0.8913  
## sp_ptbBM84      6.460e-01  1.222e+00   0.529   0.5969  
## sp_ptbBM85     -1.577e+00  1.428e+00  -1.105   0.2693  
## sp_ptbBM86      9.463e-01  1.302e+00   0.727   0.4673  
## sp_ptbBM87     -1.639e-01  1.065e+00  -0.154   0.8778  
## sp_ptbBM88      1.374e+00  1.078e+00   1.275   0.2023  
## sp_ptbBM89     -1.308e+00  1.142e+00  -1.146   0.2517  
## sp_ptbBM90      1.393e+00  1.118e+00   1.246   0.2129  
## sp_ptbBM91      2.003e+00  2.044e+00   0.980   0.3271  
## sp_ptbBM92      2.735e+00  1.500e+00   1.823   0.0683 .
## sp_ptbBM93      1.142e+00  1.629e+00   0.701   0.4833  
## sp_ptbBM94      1.855e+00  1.363e+00   1.361   0.1735  
## sp_ptbBM95      1.701e+00  1.360e+00   1.251   0.2110  
## sp_ptbBM96      2.962e+00  1.381e+00   2.144   0.0320 *
## sp_ptbBM97      1.752e+00  1.721e+00   1.018   0.3087  
## sp_ptbBM98      1.769e+00  1.646e+00   1.075   0.2825  
## sp_ptbBM99      2.603e+00  1.409e+00   1.847   0.0648 .
## sp_ptbBM100     2.406e+00  1.297e+00   1.855   0.0637 .
## sp_ptbBM101     2.288e+00  1.244e+00   1.839   0.0659 .
## sp_ptbBM102     1.968e+00  1.193e+00   1.650   0.0990 .
## sp_ptbBM103     1.781e+00  1.137e+00   1.566   0.1173  
## sp_ptbBM104     2.172e+00  1.078e+00   2.016   0.0438 *
## sp_ptbBM105     1.047e+00  1.180e+00   0.887   0.3751  
## sp_ptbBM106     1.587e+00  1.273e+00   1.246   0.2126  
## sp_ptbBM107     3.905e-01  1.060e+00   0.368   0.7126  
## sp_ptbBM108     1.574e+00  1.102e+00   1.429   0.1531  
## sp_ptbBM109     1.133e+00  8.777e-01   1.291   0.1967  
## sp_ptbBM110     1.061e+00  9.052e-01   1.172   0.2413  
## sp_ptbBM111     1.779e+00  9.014e-01   1.974   0.0484 *
## sp_ptbBM112    -7.253e-01  1.017e+00  -0.713   0.4756  
## sp_ptbBM113     1.956e+00  1.163e+00   1.682   0.0926 .
## sp_ptbBM114     9.573e-01  1.120e+00   0.855   0.3928  
## sp_ptbBM115    -2.512e-02  1.137e+00  -0.022   0.9824  
## sp_ptbBM116     2.074e+00  1.022e+00   2.029   0.0424 *
## sp_ptbBM117    -9.378e-01  1.308e+00  -0.717   0.4735  
## sp_ptbBM118     1.805e+00  1.073e+00   1.682   0.0926 .
## sp_ptbBM119     2.527e-01  1.332e+00   0.190   0.8496  
## sp_ptbBM120     1.523e+00  1.298e+00   1.174   0.2406  
## sp_ptbBM121     2.957e-01  1.210e+00   0.244   0.8069  
## sp_ptbBM122     2.439e+00  1.081e+00   2.256   0.0240 *
## sp_ptbBM123    -1.224e-01  8.909e-01  -0.137   0.8907  
## sp_ptbBM124     2.149e+00  1.095e+00   1.963   0.0496 *
## sp_ptbBM125            NA         NA      NA       NA  
## sp_ptbBM126            NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17146.6) family taken to be 1)
## 
##     Null deviance: 1073.12  on 886  degrees of freedom
## Residual deviance:  927.39  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 2888.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17147 
##           Std. Err.:  101690 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2630.514
scatter.smooth(predict(SA2m5a, type='response'), rstandard(SA2m5a, type='deviance'), col='gray')

SA2m5a.resid<-residuals(SA2m5a, type="deviance")
SA2m5a.pred<-predict(SA2m5a, type="response")
length(SA2m5a.resid); length(SA2m5a.pred)
## [1] 939
## [1] 939
pacf(SA2m5a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-10, 12, 19 & 25

#ensure that the lags are dplyr lags
SA2m5a.ac<-update(SA2m5a,.~.+lag(SA2m5a.resid,1)+lag(SA2m5a.resid,2)+lag(SA2m5a.resid,3)+lag(SA2m5a.resid,4)+
                      lag(SA2m5a.resid,5)+lag(SA2m5a.resid,6)+lag(SA2m5a.resid,7)+lag(SA2m5a.resid,8)+
                      lag(SA2m5a.resid,9)+lag(SA2m5a.resid,10)+lag(SA2m5a.resid,12)+lag(SA2m5a.resid,19)+
                      lag(SA2m5a.resid,25)) 
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(SA2m5a.ac)
## 
## Call:
## glm.nb(formula = smptbBM ~ cb5.minRH + sp_ptbBM + lag(SA2m5a.resid, 
##     1) + lag(SA2m5a.resid, 2) + lag(SA2m5a.resid, 3) + lag(SA2m5a.resid, 
##     4) + lag(SA2m5a.resid, 5) + lag(SA2m5a.resid, 6) + lag(SA2m5a.resid, 
##     7) + lag(SA2m5a.resid, 8) + lag(SA2m5a.resid, 9) + lag(SA2m5a.resid, 
##     10) + lag(SA2m5a.resid, 12) + lag(SA2m5a.resid, 19) + lag(SA2m5a.resid, 
##     25), data = week, init.theta = 31275.64283, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.16995  -0.80626  -0.09892   0.49257   2.28119  
## 
## Coefficients: (9 not defined because of singularities)
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             4.39911   12.85044   0.342 0.732102    
## cb5.minRHv1.l1          0.06066    0.28604   0.212 0.832061    
## cb5.minRHv1.l2         -0.05990    0.19311  -0.310 0.756426    
## cb5.minRHv2.l1         -0.79951    1.14345  -0.699 0.484423    
## cb5.minRHv2.l2         -0.61549    0.83298  -0.739 0.459964    
## cb5.minRHv3.l1         -0.84077    0.75756  -1.110 0.267068    
## cb5.minRHv3.l2         -0.11387    0.55988  -0.203 0.838838    
## sp_ptbBM1                    NA         NA      NA       NA    
## sp_ptbBM2                    NA         NA      NA       NA    
## sp_ptbBM3                    NA         NA      NA       NA    
## sp_ptbBM4                    NA         NA      NA       NA    
## sp_ptbBM5                    NA         NA      NA       NA    
## sp_ptbBM6                    NA         NA      NA       NA    
## sp_ptbBM7                    NA         NA      NA       NA    
## sp_ptbBM8             -39.45843   53.12206  -0.743 0.457610    
## sp_ptbBM9               6.16205    4.82212   1.278 0.201295    
## sp_ptbBM10             -4.22890    2.29995  -1.839 0.065960 .  
## sp_ptbBM11              1.49648    1.23797   1.209 0.226731    
## sp_ptbBM12             -0.53868    1.10636  -0.487 0.626336    
## sp_ptbBM13              2.65591    1.18523   2.241 0.025036 *  
## sp_ptbBM14             -1.50910    1.32154  -1.142 0.253488    
## sp_ptbBM15              2.99976    1.44399   2.077 0.037763 *  
## sp_ptbBM16             -1.25185    1.55836  -0.803 0.421796    
## sp_ptbBM17              1.69168    1.33869   1.264 0.206343    
## sp_ptbBM18             -0.89762    1.36501  -0.658 0.510799    
## sp_ptbBM19              2.41770    1.19894   2.017 0.043744 *  
## sp_ptbBM20             -2.01465    1.38283  -1.457 0.145145    
## sp_ptbBM21              3.10289    1.30642   2.375 0.017544 *  
## sp_ptbBM22             -0.04881    1.11562  -0.044 0.965104    
## sp_ptbBM23              0.45007    1.13495   0.397 0.691697    
## sp_ptbBM24              0.57969    0.98543   0.588 0.556360    
## sp_ptbBM25             -0.13144    0.90745  -0.145 0.884835    
## sp_ptbBM26              1.68309    0.96170   1.750 0.080099 .  
## sp_ptbBM27             -1.80222    0.97168  -1.855 0.063633 .  
## sp_ptbBM28              0.02088    1.23102   0.017 0.986465    
## sp_ptbBM29              0.48634    1.09043   0.446 0.655593    
## sp_ptbBM30              1.66062    1.22748   1.353 0.176096    
## sp_ptbBM31             -0.02322    1.31722  -0.018 0.985936    
## sp_ptbBM32              2.21853    1.61815   1.371 0.170368    
## sp_ptbBM33             -2.68384    1.50630  -1.782 0.074791 .  
## sp_ptbBM34              3.13048    1.65678   1.889 0.058825 .  
## sp_ptbBM35             -1.03369    1.87502  -0.551 0.581430    
## sp_ptbBM36              1.82809    1.93014   0.947 0.343572    
## sp_ptbBM37             -0.20748    1.68336  -0.123 0.901908    
## sp_ptbBM38              1.36240    1.40669   0.969 0.332788    
## sp_ptbBM39              0.30147    1.35955   0.222 0.824514    
## sp_ptbBM40              0.73670    1.18728   0.620 0.534931    
## sp_ptbBM41              1.07061    1.25603   0.852 0.394004    
## sp_ptbBM42             -2.48705    1.34419  -1.850 0.064281 .  
## sp_ptbBM43              2.54855    1.19923   2.125 0.033574 *  
## sp_ptbBM44             -1.99842    1.13032  -1.768 0.077059 .  
## sp_ptbBM45              1.95188    1.05461   1.851 0.064198 .  
## sp_ptbBM46             -0.50783    1.13256  -0.448 0.653867    
## sp_ptbBM47              1.30042    1.15401   1.127 0.259797    
## sp_ptbBM48             -0.58116    0.97697  -0.595 0.551938    
## sp_ptbBM49              1.88492    1.44009   1.309 0.190571    
## sp_ptbBM50             -1.40572    1.19360  -1.178 0.238910    
## sp_ptbBM51              2.10192    1.31800   1.595 0.110761    
## sp_ptbBM52             -0.29848    1.27772  -0.234 0.815296    
## sp_ptbBM53              1.29958    1.12790   1.152 0.249234    
## sp_ptbBM54              0.33204    1.11431   0.298 0.765721    
## sp_ptbBM55              0.26103    1.27290   0.205 0.837518    
## sp_ptbBM56              0.42874    1.32532   0.323 0.746318    
## sp_ptbBM57              1.56053    1.26772   1.231 0.218334    
## sp_ptbBM58              0.70832    1.06993   0.662 0.507957    
## sp_ptbBM59              0.81148    1.23524   0.657 0.511219    
## sp_ptbBM60              1.34291    1.24024   1.083 0.278903    
## sp_ptbBM61             -0.12402    1.23968  -0.100 0.920309    
## sp_ptbBM62              2.42212    1.26878   1.909 0.056261 .  
## sp_ptbBM63             -2.04265    1.59476  -1.281 0.200245    
## sp_ptbBM64              3.81125    1.76238   2.163 0.030575 *  
## sp_ptbBM65             -2.37255    1.40376  -1.690 0.091002 .  
## sp_ptbBM66              3.13894    1.12357   2.794 0.005211 ** 
## sp_ptbBM67             -0.17221    0.88072  -0.196 0.844979    
## sp_ptbBM68              1.65752    0.85296   1.943 0.051986 .  
## sp_ptbBM69              0.71958    0.91873   0.783 0.433492    
## sp_ptbBM70              0.57638    1.28796   0.448 0.654507    
## sp_ptbBM71             -0.55385    1.30794  -0.423 0.671962    
## sp_ptbBM72              0.97466    1.29360   0.753 0.451182    
## sp_ptbBM73             -3.18125    1.23835  -2.569 0.010201 *  
## sp_ptbBM74              2.56191    1.08148   2.369 0.017841 *  
## sp_ptbBM75             -4.02771    1.09404  -3.681 0.000232 ***
## sp_ptbBM76              2.81648    1.01930   2.763 0.005725 ** 
## sp_ptbBM77             -1.24709    1.17913  -1.058 0.290219    
## sp_ptbBM78              2.97666    1.33357   2.232 0.025608 *  
## sp_ptbBM79             -0.11534    1.20225  -0.096 0.923569    
## sp_ptbBM80              1.61243    1.16071   1.389 0.164779    
## sp_ptbBM81             -2.53117    1.21920  -2.076 0.037887 *  
## sp_ptbBM82              1.53934    1.09458   1.406 0.159625    
## sp_ptbBM83             -2.07705    1.11411  -1.864 0.062279 .  
## sp_ptbBM84              2.78661    1.26393   2.205 0.027474 *  
## sp_ptbBM85             -3.68067    1.48194  -2.484 0.013003 *  
## sp_ptbBM86              1.75661    1.28330   1.369 0.171055    
## sp_ptbBM87             -0.92982    1.01077  -0.920 0.357617    
## sp_ptbBM88              1.46878    1.10150   1.333 0.182390    
## sp_ptbBM89             -2.17665    1.15866  -1.879 0.060300 .  
## sp_ptbBM90              0.29806    1.10976   0.269 0.788251    
## sp_ptbBM91              1.90442    2.07870   0.916 0.359584    
## sp_ptbBM92              2.38891    1.53859   1.553 0.120503    
## sp_ptbBM93              2.16096    1.70926   1.264 0.206133    
## sp_ptbBM94             -0.58094    1.42665  -0.407 0.683857    
## sp_ptbBM95              1.29215    1.38785   0.931 0.351832    
## sp_ptbBM96              2.45357    1.54477   1.588 0.112217    
## sp_ptbBM97              1.37540    1.78596   0.770 0.441230    
## sp_ptbBM98             -1.99197    1.67186  -1.191 0.233470    
## sp_ptbBM99              2.86035    1.49837   1.909 0.056265 .  
## sp_ptbBM100             1.65780    1.30500   1.270 0.203963    
## sp_ptbBM101             2.98836    1.30180   2.296 0.021702 *  
## sp_ptbBM102             1.38793    1.20250   1.154 0.248417    
## sp_ptbBM103             0.72179    1.15333   0.626 0.531426    
## sp_ptbBM104             1.74407    1.12737   1.547 0.121859    
## sp_ptbBM105             1.50226    1.17340   1.280 0.200451    
## sp_ptbBM106             1.33848    1.35728   0.986 0.324059    
## sp_ptbBM107             0.11996    1.02171   0.117 0.906533    
## sp_ptbBM108            -1.36543    1.14053  -1.197 0.231233    
## sp_ptbBM109             3.26138    0.88307   3.693 0.000221 ***
## sp_ptbBM110            -0.46485    0.90211  -0.515 0.606350    
## sp_ptbBM111             4.14165    0.92546   4.475 7.63e-06 ***
## sp_ptbBM112            -2.86286    1.01531  -2.820 0.004807 ** 
## sp_ptbBM113             2.46979    1.13326   2.179 0.029304 *  
## sp_ptbBM114            -0.05189    1.10151  -0.047 0.962425    
## sp_ptbBM115             1.30729    1.12904   1.158 0.246912    
## sp_ptbBM116             0.11971    1.02790   0.116 0.907290    
## sp_ptbBM117             0.18346    1.29956   0.141 0.887734    
## sp_ptbBM118            -1.87401    1.11199  -1.685 0.091936 .  
## sp_ptbBM119             2.07727    1.44738   1.435 0.151232    
## sp_ptbBM120            -1.79605    1.33366  -1.347 0.178074    
## sp_ptbBM121             0.28388    1.21149   0.234 0.814732    
## sp_ptbBM122             1.61285    1.06516   1.514 0.129978    
## sp_ptbBM123            -0.78211    0.90689  -0.862 0.388465    
## sp_ptbBM124             1.86183    1.09048   1.707 0.087757 .  
## sp_ptbBM125                  NA         NA      NA       NA    
## sp_ptbBM126                  NA         NA      NA       NA    
## lag(SA2m5a.resid, 1)   -0.45869    0.03505 -13.085  < 2e-16 ***
## lag(SA2m5a.resid, 2)   -0.51139    0.03973 -12.870  < 2e-16 ***
## lag(SA2m5a.resid, 3)   -0.58420    0.04193 -13.932  < 2e-16 ***
## lag(SA2m5a.resid, 4)   -0.59920    0.04510 -13.287  < 2e-16 ***
## lag(SA2m5a.resid, 5)   -0.60767    0.04522 -13.438  < 2e-16 ***
## lag(SA2m5a.resid, 6)   -0.51920    0.04505 -11.525  < 2e-16 ***
## lag(SA2m5a.resid, 7)   -0.44693    0.04209 -10.619  < 2e-16 ***
## lag(SA2m5a.resid, 8)   -0.40417    0.03912 -10.331  < 2e-16 ***
## lag(SA2m5a.resid, 9)   -0.31845    0.03618  -8.801  < 2e-16 ***
## lag(SA2m5a.resid, 10)  -0.23531    0.03346  -7.033 2.03e-12 ***
## lag(SA2m5a.resid, 12)  -0.09478    0.03047  -3.111 0.001865 ** 
## lag(SA2m5a.resid, 19)   0.01691    0.02984   0.567 0.570926    
## lag(SA2m5a.resid, 25)  -0.06204    0.02916  -2.128 0.033362 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(31275.64) family taken to be 1)
## 
##     Null deviance: 1033.68  on 861  degrees of freedom
## Residual deviance:  575.95  on 725  degrees of freedom
##   (77 observations deleted due to missingness)
## AIC: 2509.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  31276 
##           Std. Err.:  119480 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2233.373
SA2m5a.resid_ac<-residuals(SA2m5a.ac, type="deviance")
SA2m5a.pred_ac<-predict(SA2m5a.ac, type="response")

pacf(SA2m5a.resid_ac,na.action = na.omit) 

length(SA2m5a.pred_ac); length(SA2m5a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$smptbBM,type="l")
lines(week$time,SA2m5a.pred,lwd=1, col="blue")

plot(week$time,SA2m5a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA2m5a.pred, week$smptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$smptbBM,type="l")
lines(week$time,SA2m5a.pred_ac,lwd=1, col="blue")

plot(week$time,SA2m5a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA2m5a.pred_ac, week$smptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose response and slices
pred.SA2m5a <- crosspred(cb5.minRH, SA2m5a.ac, cen = 63, by=0.1,cumul=TRUE)


##for SA2m9a minT ######
summary(SA2m9a)
## 
## Call:
## glm.nb(formula = smptbBM ~ cb9.minT + sp_ptbBM, data = week, 
##     init.theta = 17244.58218, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2806  -0.8281  -0.1674   0.5151   3.4436  
## 
## Coefficients: (5 not defined because of singularities)
##                 Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   -6.655e+00  1.181e+01  -0.563  0.57320   
## cb9.minTv1.l1  1.717e-01  2.921e-01   0.588  0.55677   
## cb9.minTv1.l2 -3.204e-01  2.064e-01  -1.552  0.12061   
## cb9.minTv2.l1  1.055e+00  1.003e+00   1.052  0.29277   
## cb9.minTv2.l2 -1.871e+00  7.590e-01  -2.465  0.01368 * 
## cb9.minTv3.l1  9.312e-01  5.899e-01   1.579  0.11440   
## cb9.minTv3.l2 -2.211e-01  4.271e-01  -0.518  0.60467   
## sp_ptbBM1             NA         NA      NA       NA   
## sp_ptbBM2             NA         NA      NA       NA   
## sp_ptbBM3             NA         NA      NA       NA   
## sp_ptbBM4     -2.192e+06  2.875e+06  -0.762  0.44583   
## sp_ptbBM5      9.556e+00  1.293e+01   0.739  0.45989   
## sp_ptbBM6     -1.237e+00  2.136e+00  -0.579  0.56256   
## sp_ptbBM7      9.743e-01  1.303e+00   0.748  0.45459   
## sp_ptbBM8     -1.159e+00  1.262e+00  -0.918  0.35854   
## sp_ptbBM9      1.203e+00  1.206e+00   0.997  0.31860   
## sp_ptbBM10    -2.838e+00  1.528e+00  -1.857  0.06334 . 
## sp_ptbBM11     1.716e+00  1.066e+00   1.609  0.10760   
## sp_ptbBM12    -8.127e-01  1.139e+00  -0.713  0.47564   
## sp_ptbBM13     2.837e-01  1.085e+00   0.262  0.79368   
## sp_ptbBM14    -5.042e-01  1.161e+00  -0.434  0.66396   
## sp_ptbBM15     1.789e-01  1.094e+00   0.163  0.87016   
## sp_ptbBM16    -1.238e-01  1.301e+00  -0.095  0.92421   
## sp_ptbBM17    -2.990e-01  1.183e+00  -0.253  0.80045   
## sp_ptbBM18    -2.622e-01  1.271e+00  -0.206  0.83658   
## sp_ptbBM19    -9.826e-01  1.317e+00  -0.746  0.45573   
## sp_ptbBM20    -7.331e-01  1.312e+00  -0.559  0.57637   
## sp_ptbBM21     1.608e-01  1.139e+00   0.141  0.88771   
## sp_ptbBM22     7.798e-02  1.117e+00   0.070  0.94434   
## sp_ptbBM23    -1.166e-01  1.116e+00  -0.104  0.91681   
## sp_ptbBM24     4.975e-01  1.004e+00   0.495  0.62041   
## sp_ptbBM25     5.006e-01  8.988e-01   0.557  0.57754   
## sp_ptbBM26     7.711e-01  9.535e-01   0.809  0.41865   
## sp_ptbBM27    -1.738e+00  1.249e+00  -1.391  0.16418   
## sp_ptbBM28     6.916e-01  1.095e+00   0.632  0.52753   
## sp_ptbBM29     1.133e+00  9.108e-01   1.244  0.21354   
## sp_ptbBM30     3.826e-01  1.019e+00   0.376  0.70725   
## sp_ptbBM31     1.562e+00  1.079e+00   1.448  0.14770   
## sp_ptbBM32     8.492e-01  1.085e+00   0.783  0.43374   
## sp_ptbBM33     7.951e-01  1.216e+00   0.654  0.51320   
## sp_ptbBM34     2.631e+00  1.621e+00   1.622  0.10471   
## sp_ptbBM35     3.228e+00  1.655e+00   1.950  0.05115 . 
## sp_ptbBM36     3.409e+00  1.896e+00   1.798  0.07216 . 
## sp_ptbBM37     2.641e+00  2.287e+00   1.155  0.24826   
## sp_ptbBM38     2.817e+00  2.161e+00   1.304  0.19240   
## sp_ptbBM39     5.310e-01  2.047e+00   0.259  0.79538   
## sp_ptbBM40     1.662e+00  2.038e+00   0.816  0.41469   
## sp_ptbBM41    -6.515e-01  1.571e+00  -0.415  0.67843   
## sp_ptbBM42     7.416e-01  1.393e+00   0.533  0.59434   
## sp_ptbBM43     3.800e-01  1.305e+00   0.291  0.77092   
## sp_ptbBM44     4.347e-01  9.476e-01   0.459  0.64645   
## sp_ptbBM45     1.429e+00  9.538e-01   1.498  0.13420   
## sp_ptbBM46     8.901e-01  1.002e+00   0.888  0.37436   
## sp_ptbBM47     1.304e+00  9.612e-01   1.356  0.17497   
## sp_ptbBM48     3.732e-01  1.152e+00   0.324  0.74602   
## sp_ptbBM49     2.506e+00  1.049e+00   2.390  0.01684 * 
## sp_ptbBM50     8.726e-01  1.220e+00   0.715  0.47453   
## sp_ptbBM51     3.290e+00  1.145e+00   2.873  0.00407 **
## sp_ptbBM52     1.112e+00  1.442e+00   0.771  0.44045   
## sp_ptbBM53     2.467e+00  1.411e+00   1.749  0.08025 . 
## sp_ptbBM54     1.032e+00  1.449e+00   0.712  0.47633   
## sp_ptbBM55    -2.079e-01  1.328e+00  -0.157  0.87555   
## sp_ptbBM56     1.319e+00  1.386e+00   0.952  0.34128   
## sp_ptbBM57     1.307e+00  1.159e+00   1.127  0.25956   
## sp_ptbBM58     9.991e-01  1.151e+00   0.868  0.38521   
## sp_ptbBM59     2.573e-01  9.622e-01   0.267  0.78919   
## sp_ptbBM60     8.643e-01  9.156e-01   0.944  0.34517   
## sp_ptbBM61     5.587e-01  8.883e-01   0.629  0.52941   
## sp_ptbBM62    -1.903e-01  9.764e-01  -0.195  0.84547   
## sp_ptbBM63     1.250e-01  1.040e+00   0.120  0.90433   
## sp_ptbBM64    -4.573e-01  1.486e+00  -0.308  0.75830   
## sp_ptbBM65     4.506e-01  1.574e+00   0.286  0.77461   
## sp_ptbBM66    -1.368e+00  1.532e+00  -0.893  0.37172   
## sp_ptbBM67     1.182e-01  1.413e+00   0.084  0.93334   
## sp_ptbBM68    -1.629e+00  1.493e+00  -1.090  0.27551   
## sp_ptbBM69    -1.079e+00  1.504e+00  -0.717  0.47317   
## sp_ptbBM70    -2.806e+00  1.576e+00  -1.780  0.07509 . 
## sp_ptbBM71     4.137e-02  1.221e+00   0.034  0.97296   
## sp_ptbBM72    -1.140e+00  1.235e+00  -0.923  0.35621   
## sp_ptbBM73     6.324e-01  1.080e+00   0.586  0.55813   
## sp_ptbBM74     5.359e-01  1.006e+00   0.533  0.59412   
## sp_ptbBM75     8.929e-01  1.055e+00   0.846  0.39758   
## sp_ptbBM76     3.291e-01  1.009e+00   0.326  0.74427   
## sp_ptbBM77    -5.638e-02  1.056e+00  -0.053  0.95741   
## sp_ptbBM78     7.911e-01  1.123e+00   0.705  0.48109   
## sp_ptbBM79    -2.908e-01  1.157e+00  -0.251  0.80160   
## sp_ptbBM80     9.298e-01  1.096e+00   0.848  0.39619   
## sp_ptbBM81    -6.246e-01  1.168e+00  -0.535  0.59279   
## sp_ptbBM82    -4.184e-01  1.183e+00  -0.354  0.72360   
## sp_ptbBM83    -2.222e-01  1.206e+00  -0.184  0.85377   
## sp_ptbBM84     4.044e-01  1.329e+00   0.304  0.76094   
## sp_ptbBM85    -2.666e+00  1.659e+00  -1.607  0.10804   
## sp_ptbBM86     7.108e-01  1.626e+00   0.437  0.66194   
## sp_ptbBM87    -1.082e+00  1.627e+00  -0.665  0.50606   
## sp_ptbBM88    -5.881e-02  1.562e+00  -0.038  0.96997   
## sp_ptbBM89    -3.142e+00  1.666e+00  -1.886  0.05934 . 
## sp_ptbBM90    -1.254e+00  1.683e+00  -0.745  0.45632   
## sp_ptbBM91    -6.237e-01  1.338e+00  -0.466  0.64101   
## sp_ptbBM92     5.943e-01  1.256e+00   0.473  0.63604   
## sp_ptbBM93    -1.049e+00  1.488e+00  -0.705  0.48091   
## sp_ptbBM94     2.211e-01  1.484e+00   0.149  0.88154   
## sp_ptbBM95    -1.067e+00  1.463e+00  -0.729  0.46586   
## sp_ptbBM96     1.020e-01  1.418e+00   0.072  0.94265   
## sp_ptbBM97    -2.585e+00  1.635e+00  -1.581  0.11382   
## sp_ptbBM98    -1.779e+00  1.688e+00  -1.054  0.29185   
## sp_ptbBM99    -1.191e+00  1.645e+00  -0.724  0.46904   
## sp_ptbBM100   -1.260e-01  1.658e+00  -0.076  0.93944   
## sp_ptbBM101   -7.338e-01  1.817e+00  -0.404  0.68624   
## sp_ptbBM102   -1.010e+00  1.688e+00  -0.598  0.54977   
## sp_ptbBM103   -1.443e+00  1.874e+00  -0.770  0.44118   
## sp_ptbBM104   -8.012e-01  1.814e+00  -0.442  0.65869   
## sp_ptbBM105   -3.293e+00  2.800e+00  -1.176  0.23962   
## sp_ptbBM106   -5.380e+00  3.910e+00  -1.376  0.16883   
## sp_ptbBM107   -6.159e+00  4.737e+00  -1.300  0.19348   
## sp_ptbBM108   -5.147e+00  4.158e+00  -1.238  0.21576   
## sp_ptbBM109   -6.187e+00  4.475e+00  -1.383  0.16679   
## sp_ptbBM110   -6.522e+00  4.291e+00  -1.520  0.12855   
## sp_ptbBM111   -6.321e+00  4.814e+00  -1.313  0.18917   
## sp_ptbBM112   -6.662e+00  4.074e+00  -1.635  0.10205   
## sp_ptbBM113   -2.352e+00  2.668e+00  -0.882  0.37799   
## sp_ptbBM114   -1.463e+00  1.782e+00  -0.821  0.41163   
## sp_ptbBM115   -2.146e+00  1.667e+00  -1.288  0.19785   
## sp_ptbBM116    2.054e-01  1.623e+00   0.127  0.89928   
## sp_ptbBM117   -2.752e+00  1.449e+00  -1.899  0.05752 . 
## sp_ptbBM118    4.002e-01  1.189e+00   0.337  0.73633   
## sp_ptbBM119   -1.210e+00  1.185e+00  -1.021  0.30704   
## sp_ptbBM120    3.803e-01  1.100e+00   0.346  0.72967   
## sp_ptbBM121   -4.307e-01  9.751e-01  -0.442  0.65867   
## sp_ptbBM122    1.917e+00  9.272e-01   2.068  0.03867 * 
## sp_ptbBM123   -3.913e-01  9.475e-01  -0.413  0.67958   
## sp_ptbBM124    2.574e+00  1.134e+00   2.270  0.02319 * 
## sp_ptbBM125           NA         NA      NA       NA   
## sp_ptbBM126           NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17244.58) family taken to be 1)
## 
##     Null deviance: 1073.12  on 886  degrees of freedom
## Residual deviance:  919.41  on 759  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 2880.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17245 
##           Std. Err.:  95888 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2622.532
scatter.smooth(predict(SA2m9a, type='response'), rstandard(SA2m9a, type='deviance'), col='gray')

SA2m9a.resid<-residuals(SA2m9a, type="deviance")
SA2m9a.pred<-predict(SA2m9a, type="response")
length(SA2m9a.resid); length(SA2m9a.pred)
## [1] 939
## [1] 939
pacf(SA2m9a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-10, 12, 19 & 25

#ensure that the lags are dplyr lags
SA2m9a.ac<-update(SA2m9a,.~.+lag(SA2m9a.resid,1)+lag(SA2m9a.resid,2)+lag(SA2m9a.resid,3)+lag(SA2m9a.resid,4)+
                      lag(SA2m9a.resid,5)+lag(SA2m9a.resid,6)+lag(SA2m9a.resid,7)+lag(SA2m9a.resid,8)+
                      lag(SA2m9a.resid,9)+lag(SA2m9a.resid,10)+lag(SA2m9a.resid,12)+lag(SA2m9a.resid,19)+
                      lag(SA2m9a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(SA2m9a.ac)
## 
## Call:
## glm.nb(formula = smptbBM ~ cb9.minT + sp_ptbBM + lag(SA2m9a.resid, 
##     1) + lag(SA2m9a.resid, 2) + lag(SA2m9a.resid, 3) + lag(SA2m9a.resid, 
##     4) + lag(SA2m9a.resid, 5) + lag(SA2m9a.resid, 6) + lag(SA2m9a.resid, 
##     7) + lag(SA2m9a.resid, 8) + lag(SA2m9a.resid, 9) + lag(SA2m9a.resid, 
##     10) + lag(SA2m9a.resid, 12) + lag(SA2m9a.resid, 19) + lag(SA2m9a.resid, 
##     25), data = week, init.theta = 31407.68312, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0835  -0.7860  -0.0962   0.4706   2.1814  
## 
## Coefficients: (9 not defined because of singularities)
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -27.63115   12.83361  -2.153  0.03132 *  
## cb9.minTv1.l1           0.26842    0.31295   0.858  0.39106    
## cb9.minTv1.l2          -0.20454    0.21813  -0.938  0.34840    
## cb9.minTv2.l1           2.71474    1.07995   2.514  0.01195 *  
## cb9.minTv2.l2          -0.25883    0.79829  -0.324  0.74577    
## cb9.minTv3.l1           1.47517    0.61149   2.412  0.01585 *  
## cb9.minTv3.l2           0.37115    0.45347   0.818  0.41309    
## sp_ptbBM1                    NA         NA      NA       NA    
## sp_ptbBM2                    NA         NA      NA       NA    
## sp_ptbBM3                    NA         NA      NA       NA    
## sp_ptbBM4                    NA         NA      NA       NA    
## sp_ptbBM5                    NA         NA      NA       NA    
## sp_ptbBM6                    NA         NA      NA       NA    
## sp_ptbBM7                    NA         NA      NA       NA    
## sp_ptbBM8             -42.21952   53.00113  -0.797  0.42570    
## sp_ptbBM9               5.54218    4.83132   1.147  0.25132    
## sp_ptbBM10             -4.90431    2.40821  -2.037  0.04170 *  
## sp_ptbBM11              0.97309    1.19386   0.815  0.41503    
## sp_ptbBM12             -1.07425    1.21612  -0.883  0.37705    
## sp_ptbBM13              1.82672    1.09908   1.662  0.09650 .  
## sp_ptbBM14             -2.17002    1.18458  -1.832  0.06697 .  
## sp_ptbBM15              2.23664    1.13427   1.972  0.04862 *  
## sp_ptbBM16             -2.01471    1.31235  -1.535  0.12474    
## sp_ptbBM17              0.44305    1.19980   0.369  0.71192    
## sp_ptbBM18             -2.24344    1.32654  -1.691  0.09080 .  
## sp_ptbBM19              0.63513    1.31512   0.483  0.62913    
## sp_ptbBM20             -2.37431    1.35150  -1.757  0.07895 .  
## sp_ptbBM21              0.90559    1.16799   0.775  0.43814    
## sp_ptbBM22             -1.12650    1.12503  -1.001  0.31668    
## sp_ptbBM23             -0.91082    1.13042  -0.806  0.42039    
## sp_ptbBM24              1.02739    0.98615   1.042  0.29750    
## sp_ptbBM25             -1.08733    0.86913  -1.251  0.21091    
## sp_ptbBM26              2.92658    0.94825   3.086  0.00203 ** 
## sp_ptbBM27             -3.38850    1.19710  -2.831  0.00465 ** 
## sp_ptbBM28              1.39800    1.08981   1.283  0.19957    
## sp_ptbBM29             -0.00411    0.91288  -0.005  0.99641    
## sp_ptbBM30              1.42912    1.02516   1.394  0.16330    
## sp_ptbBM31             -0.44587    1.10842  -0.402  0.68750    
## sp_ptbBM32              2.26242    1.09846   2.060  0.03943 *  
## sp_ptbBM33             -1.51856    1.21579  -1.249  0.21166    
## sp_ptbBM34              4.83904    1.64456   2.942  0.00326 ** 
## sp_ptbBM35              2.02800    1.67184   1.213  0.22512    
## sp_ptbBM36              4.94920    1.95447   2.532  0.01133 *  
## sp_ptbBM37              3.53731    2.45072   1.443  0.14891    
## sp_ptbBM38              4.84119    2.29560   2.109  0.03495 *  
## sp_ptbBM39              2.14444    2.18682   0.981  0.32678    
## sp_ptbBM40              3.29974    2.18067   1.513  0.13023    
## sp_ptbBM41              1.83259    1.69343   1.082  0.27918    
## sp_ptbBM42             -1.24203    1.49992  -0.828  0.40763    
## sp_ptbBM43              2.77991    1.43095   1.943  0.05205 .  
## sp_ptbBM44             -1.67413    0.92129  -1.817  0.06919 .  
## sp_ptbBM45              1.71290    0.96705   1.771  0.07652 .  
## sp_ptbBM46             -0.40481    0.99249  -0.408  0.68337    
## sp_ptbBM47              1.01691    0.93443   1.088  0.27648    
## sp_ptbBM48             -0.55666    1.17693  -0.473  0.63623    
## sp_ptbBM49              1.98901    1.04303   1.907  0.05653 .  
## sp_ptbBM50             -0.49013    1.20663  -0.406  0.68460    
## sp_ptbBM51              2.95159    1.17624   2.509  0.01210 *  
## sp_ptbBM52              0.41549    1.50314   0.276  0.78223    
## sp_ptbBM53              2.26031    1.43001   1.581  0.11396    
## sp_ptbBM54              0.22365    1.44474   0.155  0.87698    
## sp_ptbBM55              1.13292    1.42761   0.794  0.42744    
## sp_ptbBM56             -0.44398    1.40779  -0.315  0.75248    
## sp_ptbBM57              1.72019    1.17002   1.470  0.14150    
## sp_ptbBM58              0.02893    1.16862   0.025  0.98025    
## sp_ptbBM59              0.04244    0.96823   0.044  0.96503    
## sp_ptbBM60              0.72677    0.90107   0.807  0.41992    
## sp_ptbBM61             -0.96536    0.90904  -1.062  0.28825    
## sp_ptbBM62              1.74951    0.97474   1.795  0.07268 .  
## sp_ptbBM63             -2.79709    1.10148  -2.539  0.01110 *  
## sp_ptbBM64              2.88936    1.54276   1.873  0.06109 .  
## sp_ptbBM65             -2.86405    1.66387  -1.721  0.08519 .  
## sp_ptbBM66              2.15825    1.57870   1.367  0.17159    
## sp_ptbBM67             -1.67730    1.44240  -1.163  0.24489    
## sp_ptbBM68              0.24199    1.52124   0.159  0.87361    
## sp_ptbBM69             -1.44373    1.51758  -0.951  0.34143    
## sp_ptbBM70             -1.84984    1.59205  -1.162  0.24527    
## sp_ptbBM71             -1.56992    1.31464  -1.194  0.23241    
## sp_ptbBM72             -0.04705    1.21596  -0.039  0.96914    
## sp_ptbBM73             -3.88327    1.19369  -3.253  0.00114 ** 
## sp_ptbBM74              1.75454    1.03961   1.688  0.09147 .  
## sp_ptbBM75             -4.89613    1.09250  -4.482 7.41e-06 ***
## sp_ptbBM76              2.34893    1.09866   2.138  0.03252 *  
## sp_ptbBM77             -2.28400    1.06589  -2.143  0.03213 *  
## sp_ptbBM78              2.09622    1.16011   1.807  0.07078 .  
## sp_ptbBM79             -1.15420    1.23340  -0.936  0.34938    
## sp_ptbBM80              0.72235    1.07833   0.670  0.50294    
## sp_ptbBM81             -3.48017    1.26825  -2.744  0.00607 ** 
## sp_ptbBM82              0.71755    1.22792   0.584  0.55898    
## sp_ptbBM83             -2.93828    1.24795  -2.354  0.01855 *  
## sp_ptbBM84              1.62060    1.40852   1.151  0.24991    
## sp_ptbBM85             -4.61338    1.77395  -2.601  0.00931 ** 
## sp_ptbBM86              1.04476    1.62728   0.642  0.52085    
## sp_ptbBM87             -1.52219    1.65821  -0.918  0.35863    
## sp_ptbBM88              0.63063    1.61467   0.391  0.69612    
## sp_ptbBM89             -2.99904    1.71765  -1.746  0.08081 .  
## sp_ptbBM90             -1.59319    1.71796  -0.927  0.35373    
## sp_ptbBM91              0.17881    1.32582   0.135  0.89272    
## sp_ptbBM92              0.76631    1.25667   0.610  0.54200    
## sp_ptbBM93              0.36066    1.57121   0.230  0.81845    
## sp_ptbBM94             -1.84323    1.49010  -1.237  0.21609    
## sp_ptbBM95             -0.26121    1.46587  -0.178  0.85857    
## sp_ptbBM96              1.02369    1.48271   0.690  0.48993    
## sp_ptbBM97             -1.07362    1.71734  -0.625  0.53186    
## sp_ptbBM98             -4.66739    1.78758  -2.611  0.00903 ** 
## sp_ptbBM99              0.24701    1.69898   0.145  0.88441    
## sp_ptbBM100             0.08491    1.71818   0.049  0.96059    
## sp_ptbBM101             0.85848    1.86033   0.461  0.64446    
## sp_ptbBM102            -0.75386    1.73565  -0.434  0.66404    
## sp_ptbBM103            -1.52594    1.91889  -0.795  0.42648    
## sp_ptbBM104            -0.84313    1.87005  -0.451  0.65209    
## sp_ptbBM105            -1.62220    2.88817  -0.562  0.57434    
## sp_ptbBM106            -4.96673    3.99992  -1.242  0.21434    
## sp_ptbBM107            -6.05040    4.80259  -1.260  0.20773    
## sp_ptbBM108            -7.48538    4.29621  -1.742  0.08145 .  
## sp_ptbBM109            -4.76713    4.58620  -1.039  0.29860    
## sp_ptbBM110            -9.02316    4.41051  -2.046  0.04077 *  
## sp_ptbBM111            -6.80190    4.98816  -1.364  0.17269    
## sp_ptbBM112           -10.92573    4.22236  -2.588  0.00967 ** 
## sp_ptbBM113            -3.40441    2.81048  -1.211  0.22577    
## sp_ptbBM114            -1.50255    1.80577  -0.832  0.40536    
## sp_ptbBM115            -0.51182    1.72029  -0.298  0.76607    
## sp_ptbBM116            -0.45349    1.67075  -0.271  0.78606    
## sp_ptbBM117            -0.58345    1.43354  -0.407  0.68401    
## sp_ptbBM118            -2.28986    1.22528  -1.869  0.06164 .  
## sp_ptbBM119             0.68019    1.30386   0.522  0.60190    
## sp_ptbBM120            -2.52609    1.12048  -2.254  0.02417 *  
## sp_ptbBM121            -0.70983    0.96999  -0.732  0.46429    
## sp_ptbBM122             1.00859    0.88946   1.134  0.25682    
## sp_ptbBM123            -1.23130    1.00583  -1.224  0.22089    
## sp_ptbBM124             1.64907    1.09122   1.511  0.13073    
## sp_ptbBM125                  NA         NA      NA       NA    
## sp_ptbBM126                  NA         NA      NA       NA    
## lag(SA2m9a.resid, 1)   -0.47271    0.03580 -13.204  < 2e-16 ***
## lag(SA2m9a.resid, 2)   -0.53314    0.04146 -12.860  < 2e-16 ***
## lag(SA2m9a.resid, 3)   -0.60432    0.04380 -13.799  < 2e-16 ***
## lag(SA2m9a.resid, 4)   -0.61955    0.04682 -13.233  < 2e-16 ***
## lag(SA2m9a.resid, 5)   -0.62310    0.04676 -13.326  < 2e-16 ***
## lag(SA2m9a.resid, 6)   -0.53458    0.04685 -11.411  < 2e-16 ***
## lag(SA2m9a.resid, 7)   -0.45406    0.04355 -10.426  < 2e-16 ***
## lag(SA2m9a.resid, 8)   -0.40718    0.03998 -10.184  < 2e-16 ***
## lag(SA2m9a.resid, 9)   -0.32267    0.03677  -8.775  < 2e-16 ***
## lag(SA2m9a.resid, 10)  -0.23151    0.03402  -6.805 1.01e-11 ***
## lag(SA2m9a.resid, 12)  -0.09235    0.03078  -3.000  0.00270 ** 
## lag(SA2m9a.resid, 19)   0.01972    0.02977   0.662  0.50765    
## lag(SA2m9a.resid, 25)  -0.06634    0.02923  -2.269  0.02324 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(31407.68) family taken to be 1)
## 
##     Null deviance: 1033.68  on 861  degrees of freedom
## Residual deviance:  568.79  on 725  degrees of freedom
##   (77 observations deleted due to missingness)
## AIC: 2502.2
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  31408 
##           Std. Err.:  119252 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2226.217
SA2m9a.resid_ac<-residuals(SA2m9a.ac, type="deviance")
SA2m9a.pred_ac<-predict(SA2m9a.ac, type="response")

pacf(SA2m9a.resid_ac,na.action = na.omit) 

length(SA2m9a.pred_ac); length(SA2m9a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$smptbBM,type="l")
lines(week$time,SA2m9a.pred,lwd=1, col="blue")

plot(week$time,SA2m9a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA2m9a.pred, week$smptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$smptbBM,type="l")
lines(week$time,SA2m9a.pred_ac,lwd=1, col="blue")

plot(week$time,SA2m9a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA2m9a.pred_ac, week$smptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose response and slices
pred.SA2m9a <- crosspred(cb9.minT, SA2m9a.ac, cen = 24.0, by=0.1,cumul=TRUE)



###final SA #2 model   #####
mod_fullSA2bm<-glm.nb(smptbBM ~ cb3.RF + cb9.minT + cb5.minRH + cb2.sun + cb1.avgWindSp + sp_ptbBM, data = week)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(mod_fullSA2bm) 
## 
## Call:
## glm.nb(formula = smptbBM ~ cb3.RF + cb9.minT + cb5.minRH + cb2.sun + 
##     cb1.avgWindSp + sp_ptbBM, data = week, init.theta = 18565.20813, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3728  -0.8366  -0.1217   0.5363   3.3675  
## 
## Coefficients: (5 not defined because of singularities)
##                      Estimate Std. Error z value Pr(>|z|)  
## (Intercept)        -1.678e+01  2.388e+01  -0.703   0.4822  
## cb3.RFv1.l1         3.959e-02  3.422e-01   0.116   0.9079  
## cb3.RFv1.l2         2.275e-01  2.520e-01   0.903   0.3665  
## cb3.RFv2.l1         4.213e-01  5.470e-01   0.770   0.4411  
## cb3.RFv2.l2         7.258e-01  3.812e-01   1.904   0.0570 .
## cb3.RFv3.l1         6.001e-01  8.430e-01   0.712   0.4766  
## cb3.RFv3.l2         6.941e-01  6.034e-01   1.150   0.2501  
## cb9.minTv1.l1       2.230e-01  3.315e-01   0.673   0.5012  
## cb9.minTv1.l2      -1.368e-01  2.427e-01  -0.564   0.5728  
## cb9.minTv2.l1       1.280e+00  1.102e+00   1.161   0.2456  
## cb9.minTv2.l2      -1.653e+00  8.462e-01  -1.954   0.0507 .
## cb9.minTv3.l1       1.093e+00  6.504e-01   1.681   0.0927 .
## cb9.minTv3.l2      -5.759e-02  4.697e-01  -0.123   0.9024  
## cb5.minRHv1.l1      4.187e-02  3.253e-01   0.129   0.8976  
## cb5.minRHv1.l2     -5.912e-02  2.235e-01  -0.264   0.7914  
## cb5.minRHv2.l1     -1.096e+00  1.175e+00  -0.933   0.3508  
## cb5.minRHv2.l2     -7.188e-01  8.666e-01  -0.829   0.4069  
## cb5.minRHv3.l1     -1.121e+00  8.395e-01  -1.336   0.1817  
## cb5.minRHv3.l2     -9.411e-01  6.323e-01  -1.488   0.1366  
## cb2.sunv1.l1        1.029e-01  2.709e-01   0.380   0.7040  
## cb2.sunv1.l2       -2.525e-01  1.957e-01  -1.290   0.1971  
## cb2.sunv2.l1        1.607e-01  1.112e+00   0.145   0.8851  
## cb2.sunv2.l2       -4.048e-01  7.562e-01  -0.535   0.5925  
## cb2.sunv3.l1        3.488e-01  4.166e-01   0.837   0.4025  
## cb2.sunv3.l2        3.654e-01  2.737e-01   1.335   0.1818  
## cb1.avgWindSpv1.l1  2.409e-01  3.878e-01   0.621   0.5345  
## cb1.avgWindSpv1.l2  3.244e-01  2.684e-01   1.208   0.2269  
## cb1.avgWindSpv2.l1  1.251e+00  8.585e-01   1.457   0.1450  
## cb1.avgWindSpv2.l2  1.938e-01  5.959e-01   0.325   0.7451  
## cb1.avgWindSpv3.l1  6.656e-01  9.992e-01   0.666   0.5053  
## cb1.avgWindSpv3.l2  5.458e-02  6.132e-01   0.089   0.9291  
## sp_ptbBM1                  NA         NA      NA       NA  
## sp_ptbBM2                  NA         NA      NA       NA  
## sp_ptbBM3                  NA         NA      NA       NA  
## sp_ptbBM4          -2.086e+06  2.936e+06  -0.710   0.4774  
## sp_ptbBM5           1.162e+01  1.406e+01   0.827   0.4084  
## sp_ptbBM6          -2.824e+00  2.815e+00  -1.003   0.3158  
## sp_ptbBM7          -2.470e-01  2.800e+00  -0.088   0.9297  
## sp_ptbBM8          -3.578e+00  2.901e+00  -1.234   0.2174  
## sp_ptbBM9          -4.141e-01  2.612e+00  -0.159   0.8740  
## sp_ptbBM10         -5.245e+00  2.520e+00  -2.082   0.0374 *
## sp_ptbBM11         -1.090e-01  2.223e+00  -0.049   0.9609  
## sp_ptbBM12         -2.903e+00  2.198e+00  -1.321   0.1865  
## sp_ptbBM13         -1.927e+00  2.514e+00  -0.766   0.4435  
## sp_ptbBM14         -3.557e+00  2.360e+00  -1.507   0.1318  
## sp_ptbBM15         -1.687e+00  1.999e+00  -0.844   0.3987  
## sp_ptbBM16         -7.819e-01  2.216e+00  -0.353   0.7242  
## sp_ptbBM17         -2.073e+00  1.975e+00  -1.049   0.2940  
## sp_ptbBM18         -7.235e-01  1.991e+00  -0.363   0.7163  
## sp_ptbBM19         -3.008e+00  1.954e+00  -1.540   0.1237  
## sp_ptbBM20         -2.049e+00  2.132e+00  -0.961   0.3364  
## sp_ptbBM21         -1.361e+00  2.359e+00  -0.577   0.5639  
## sp_ptbBM22         -1.287e+00  2.011e+00  -0.640   0.5221  
## sp_ptbBM23         -3.226e-01  1.966e+00  -0.164   0.8697  
## sp_ptbBM24         -8.270e-01  1.841e+00  -0.449   0.6533  
## sp_ptbBM25          3.762e-01  1.573e+00   0.239   0.8111  
## sp_ptbBM26          5.213e-01  1.782e+00   0.293   0.7698  
## sp_ptbBM27         -1.818e+00  1.981e+00  -0.918   0.3588  
## sp_ptbBM28          1.910e-01  2.124e+00   0.090   0.9283  
## sp_ptbBM29         -5.580e-01  2.214e+00  -0.252   0.8010  
## sp_ptbBM30          1.565e-01  2.052e+00   0.076   0.9392  
## sp_ptbBM31          1.119e+00  2.043e+00   0.548   0.5839  
## sp_ptbBM32          1.384e-01  2.197e+00   0.063   0.9498  
## sp_ptbBM33          8.688e-01  2.215e+00   0.392   0.6949  
## sp_ptbBM34          2.650e+00  2.659e+00   0.997   0.3189  
## sp_ptbBM35          2.413e+00  2.844e+00   0.849   0.3961  
## sp_ptbBM36          3.641e+00  3.195e+00   1.140   0.2545  
## sp_ptbBM37          1.736e+00  3.322e+00   0.523   0.6012  
## sp_ptbBM38          2.258e+00  3.117e+00   0.725   0.4687  
## sp_ptbBM39          9.985e-02  3.089e+00   0.032   0.9742  
## sp_ptbBM40          1.581e+00  2.988e+00   0.529   0.5968  
## sp_ptbBM41         -1.367e+00  2.752e+00  -0.497   0.6193  
## sp_ptbBM42          4.770e-01  2.585e+00   0.185   0.8536  
## sp_ptbBM43         -1.148e+00  2.553e+00  -0.450   0.6531  
## sp_ptbBM44         -9.788e-01  2.383e+00  -0.411   0.6812  
## sp_ptbBM45         -1.225e+00  2.314e+00  -0.530   0.5964  
## sp_ptbBM46         -1.470e+00  2.351e+00  -0.625   0.5317  
## sp_ptbBM47         -2.709e+00  2.561e+00  -1.058   0.2902  
## sp_ptbBM48         -2.173e+00  2.639e+00  -0.824   0.4102  
## sp_ptbBM49         -7.541e-01  2.926e+00  -0.258   0.7966  
## sp_ptbBM50         -2.469e+00  2.563e+00  -0.963   0.3355  
## sp_ptbBM51          5.326e-01  2.555e+00   0.208   0.8349  
## sp_ptbBM52         -1.621e+00  2.441e+00  -0.664   0.5067  
## sp_ptbBM53          7.631e-01  2.327e+00   0.328   0.7429  
## sp_ptbBM54         -1.085e+00  2.298e+00  -0.472   0.6368  
## sp_ptbBM55         -1.111e+00  2.106e+00  -0.527   0.5980  
## sp_ptbBM56          3.050e-01  2.601e+00   0.117   0.9066  
## sp_ptbBM57          3.379e-01  2.211e+00   0.153   0.8785  
## sp_ptbBM58         -1.620e-01  2.070e+00  -0.078   0.9376  
## sp_ptbBM59         -1.661e+00  1.884e+00  -0.882   0.3780  
## sp_ptbBM60         -1.833e+00  1.959e+00  -0.935   0.3496  
## sp_ptbBM61         -9.158e-01  1.855e+00  -0.494   0.6215  
## sp_ptbBM62         -9.320e-01  2.173e+00  -0.429   0.6680  
## sp_ptbBM63         -1.200e+00  2.675e+00  -0.449   0.6537  
## sp_ptbBM64         -2.397e+00  3.054e+00  -0.785   0.4326  
## sp_ptbBM65         -7.039e-01  3.114e+00  -0.226   0.8212  
## sp_ptbBM66         -4.165e+00  3.158e+00  -1.319   0.1872  
## sp_ptbBM67         -2.815e+00  3.038e+00  -0.926   0.3542  
## sp_ptbBM68         -5.568e+00  3.184e+00  -1.749   0.0803 .
## sp_ptbBM69         -5.490e+00  3.234e+00  -1.698   0.0896 .
## sp_ptbBM70         -7.364e+00  3.104e+00  -2.372   0.0177 *
## sp_ptbBM71         -3.873e+00  2.924e+00  -1.325   0.1853  
## sp_ptbBM72         -4.418e+00  2.755e+00  -1.604   0.1088  
## sp_ptbBM73         -2.930e+00  2.628e+00  -1.115   0.2649  
## sp_ptbBM74         -1.783e+00  2.495e+00  -0.714   0.4750  
## sp_ptbBM75         -9.793e-01  2.506e+00  -0.391   0.6960  
## sp_ptbBM76         -1.029e-01  2.456e+00  -0.042   0.9666  
## sp_ptbBM77         -2.185e+00  2.722e+00  -0.803   0.4221  
## sp_ptbBM78         -9.868e-01  2.805e+00  -0.352   0.7249  
## sp_ptbBM79         -2.085e+00  2.705e+00  -0.771   0.4408  
## sp_ptbBM80         -1.111e+00  2.673e+00  -0.416   0.6777  
## sp_ptbBM81         -3.750e+00  2.768e+00  -1.355   0.1754  
## sp_ptbBM82         -3.057e+00  2.607e+00  -1.172   0.2410  
## sp_ptbBM83         -2.704e+00  2.602e+00  -1.039   0.2987  
## sp_ptbBM84         -2.693e+00  2.995e+00  -0.899   0.3686  
## sp_ptbBM85         -5.971e+00  3.269e+00  -1.826   0.0678 .
## sp_ptbBM86         -2.903e+00  3.233e+00  -0.898   0.3692  
## sp_ptbBM87         -4.038e+00  3.029e+00  -1.333   0.1825  
## sp_ptbBM88         -3.022e+00  2.942e+00  -1.027   0.3043  
## sp_ptbBM89         -6.263e+00  3.089e+00  -2.028   0.0426 *
## sp_ptbBM90         -3.864e+00  3.135e+00  -1.232   0.2178  
## sp_ptbBM91         -2.251e+00  3.201e+00  -0.703   0.4818  
## sp_ptbBM92         -1.511e+00  3.117e+00  -0.485   0.6278  
## sp_ptbBM93         -1.263e+00  3.132e+00  -0.403   0.6866  
## sp_ptbBM94         -4.735e-01  2.994e+00  -0.158   0.8744  
## sp_ptbBM95         -1.274e+00  3.030e+00  -0.420   0.6742  
## sp_ptbBM96         -3.534e-02  2.985e+00  -0.012   0.9906  
## sp_ptbBM97         -1.925e+00  3.340e+00  -0.576   0.5644  
## sp_ptbBM98         -2.953e+00  3.499e+00  -0.844   0.3987  
## sp_ptbBM99         -2.899e+00  3.414e+00  -0.849   0.3957  
## sp_ptbBM100        -1.220e+00  3.448e+00  -0.354   0.7236  
## sp_ptbBM101        -1.025e+00  3.243e+00  -0.316   0.7518  
## sp_ptbBM102        -8.784e-01  2.923e+00  -0.300   0.7638  
## sp_ptbBM103        -1.191e+00  2.927e+00  -0.407   0.6840  
## sp_ptbBM104        -3.033e-01  2.714e+00  -0.112   0.9110  
## sp_ptbBM105        -5.065e+00  3.598e+00  -1.407   0.1593  
## sp_ptbBM106        -7.719e+00  4.569e+00  -1.690   0.0911 .
## sp_ptbBM107        -8.684e+00  5.292e+00  -1.641   0.1008  
## sp_ptbBM108        -6.500e+00  4.670e+00  -1.392   0.1640  
## sp_ptbBM109        -8.567e+00  5.003e+00  -1.712   0.0868 .
## sp_ptbBM110        -9.737e+00  4.910e+00  -1.983   0.0474 *
## sp_ptbBM111        -8.618e+00  5.436e+00  -1.585   0.1129  
## sp_ptbBM112        -7.915e+00  4.583e+00  -1.727   0.0842 .
## sp_ptbBM113        -3.853e+00  3.417e+00  -1.127   0.2596  
## sp_ptbBM114        -1.087e+00  2.324e+00  -0.468   0.6398  
## sp_ptbBM115        -1.815e+00  2.239e+00  -0.811   0.4176  
## sp_ptbBM116         8.398e-01  2.071e+00   0.406   0.6850  
## sp_ptbBM117        -2.287e+00  1.974e+00  -1.159   0.2466  
## sp_ptbBM118         1.504e+00  1.709e+00   0.880   0.3789  
## sp_ptbBM119        -7.013e-01  1.781e+00  -0.394   0.6938  
## sp_ptbBM120        -1.444e-01  1.771e+00  -0.082   0.9350  
## sp_ptbBM121         3.949e-02  1.483e+00   0.027   0.9788  
## sp_ptbBM122         1.648e+00  1.285e+00   1.283   0.1996  
## sp_ptbBM123        -4.599e-02  1.238e+00  -0.037   0.9704  
## sp_ptbBM124         2.292e+00  1.283e+00   1.786   0.0741 .
## sp_ptbBM125                NA         NA      NA       NA  
## sp_ptbBM126                NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(18565.21) family taken to be 1)
## 
##     Null deviance: 1073.13  on 886  degrees of freedom
## Residual deviance:  898.46  on 735  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 2907.6
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  18565 
##           Std. Err.:  98707 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2601.578
pred.fullbm<-predict(mod_fullSA2bm, type="response") #fitted
resid.fullbm<-residuals(mod_fullSA2bm, type="deviance") #residuals deviance
length(pred.fullbm)
## [1] 939
length(week$smptbBM)
## [1] 939
length(resid.fullbm)
## [1] 939
pacf(resid.fullbm,na.action=na.omit) #PACF for residuals, sig lags from 1-6,8-10,12,13,19,25

# SET THE DEFAULT ACTION FOR MISSING DATA TO na.exclude

#ensure that the lags are dplyr lags
mod_fullSA2bm.ac<-update(mod_fullSA2bm,.~.+lag(resid.fullbm,1)+lag(resid.fullbm,2)+lag(resid.fullbm,3)+lag(resid.fullbm,4)+
                             lag(resid.fullbm,5)+lag(resid.fullbm,6)+lag(resid.fullbm,8)+lag(resid.fullbm,9)+
                             lag(resid.fullbm,10)+lag(resid.fullbm,12)+lag(resid.fullbm,13)+lag(resid.fullbm,19)+
                             lag(resid.fullbm,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(mod_fullSA2bm.ac)##aic=3045
## 
## Call:
## glm.nb(formula = smptbBM ~ cb3.RF + cb9.minT + cb5.minRH + cb2.sun + 
##     cb1.avgWindSp + sp_ptbBM + lag(resid.fullbm, 1) + lag(resid.fullbm, 
##     2) + lag(resid.fullbm, 3) + lag(resid.fullbm, 4) + lag(resid.fullbm, 
##     5) + lag(resid.fullbm, 6) + lag(resid.fullbm, 8) + lag(resid.fullbm, 
##     9) + lag(resid.fullbm, 10) + lag(resid.fullbm, 12) + lag(resid.fullbm, 
##     13) + lag(resid.fullbm, 19) + lag(resid.fullbm, 25), data = week, 
##     init.theta = 27550.77346, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.18529  -0.84253  -0.09727   0.47832   2.25899  
## 
## Coefficients: (9 not defined because of singularities)
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -48.181070  25.484311  -1.891 0.058675 .  
## cb3.RFv1.l1             0.162425   0.360768   0.450 0.652551    
## cb3.RFv1.l2             0.265317   0.262993   1.009 0.313054    
## cb3.RFv2.l1             0.169895   0.577268   0.294 0.768522    
## cb3.RFv2.l2             0.944378   0.409483   2.306 0.021096 *  
## cb3.RFv3.l1             0.519691   0.891860   0.583 0.560092    
## cb3.RFv3.l2             1.296176   0.659989   1.964 0.049537 *  
## cb9.minTv1.l1           0.415468   0.343624   1.209 0.226634    
## cb9.minTv1.l2          -0.140108   0.253925  -0.552 0.581107    
## cb9.minTv2.l1           3.081881   1.179307   2.613 0.008967 ** 
## cb9.minTv2.l2          -1.222156   0.874914  -1.397 0.162447    
## cb9.minTv3.l1           2.013377   0.678649   2.967 0.003010 ** 
## cb9.minTv3.l2           0.026239   0.479025   0.055 0.956317    
## cb5.minRHv1.l1         -0.010066   0.342847  -0.029 0.976577    
## cb5.minRHv1.l2         -0.153049   0.229750  -0.666 0.505312    
## cb5.minRHv2.l1         -0.472653   1.233013  -0.383 0.701474    
## cb5.minRHv2.l2         -1.432145   0.905582  -1.581 0.113772    
## cb5.minRHv3.l1         -0.744005   0.897367  -0.829 0.407049    
## cb5.minRHv3.l2         -1.159184   0.663796  -1.746 0.080760 .  
## cb2.sunv1.l1            0.114230   0.283815   0.402 0.687331    
## cb2.sunv1.l2           -0.177473   0.203215  -0.873 0.382487    
## cb2.sunv2.l1            0.548884   1.160404   0.473 0.636205    
## cb2.sunv2.l2            0.330696   0.793167   0.417 0.676729    
## cb2.sunv3.l1            0.058327   0.436878   0.134 0.893791    
## cb2.sunv3.l2            0.630874   0.283590   2.225 0.026108 *  
## cb1.avgWindSpv1.l1      0.028008   0.409515   0.068 0.945472    
## cb1.avgWindSpv1.l2     -0.100858   0.283750  -0.355 0.722255    
## cb1.avgWindSpv2.l1      1.026160   0.932998   1.100 0.271397    
## cb1.avgWindSpv2.l2      0.214544   0.627634   0.342 0.732479    
## cb1.avgWindSpv3.l1     -0.200827   1.120104  -0.179 0.857708    
## cb1.avgWindSpv3.l2      0.381423   0.674185   0.566 0.571561    
## sp_ptbBM1                     NA         NA      NA       NA    
## sp_ptbBM2                     NA         NA      NA       NA    
## sp_ptbBM3                     NA         NA      NA       NA    
## sp_ptbBM4                     NA         NA      NA       NA    
## sp_ptbBM5                     NA         NA      NA       NA    
## sp_ptbBM6                     NA         NA      NA       NA    
## sp_ptbBM7                     NA         NA      NA       NA    
## sp_ptbBM8             -72.902465  53.844635  -1.354 0.175755    
## sp_ptbBM9               7.630543   5.348970   1.427 0.153711    
## sp_ptbBM10             -4.973577   3.099977  -1.604 0.108628    
## sp_ptbBM11              2.205507   2.377977   0.927 0.353681    
## sp_ptbBM12             -1.427734   2.327162  -0.614 0.539540    
## sp_ptbBM13              1.343153   2.628511   0.511 0.609355    
## sp_ptbBM14             -3.909740   2.453250  -1.594 0.111004    
## sp_ptbBM15              0.197869   2.078662   0.095 0.924164    
## sp_ptbBM16             -2.071956   2.266914  -0.914 0.360718    
## sp_ptbBM17             -1.130099   2.032135  -0.556 0.578133    
## sp_ptbBM18             -1.960556   2.077200  -0.944 0.345249    
## sp_ptbBM19             -1.853467   2.023124  -0.916 0.359593    
## sp_ptbBM20             -2.632233   2.211641  -1.190 0.233979    
## sp_ptbBM21             -1.029910   2.475231  -0.416 0.677347    
## sp_ptbBM22             -2.616598   2.068789  -1.265 0.205944    
## sp_ptbBM23              0.558112   2.031651   0.275 0.783540    
## sp_ptbBM24             -0.403290   1.891997  -0.213 0.831205    
## sp_ptbBM25              0.782148   1.609429   0.486 0.626982    
## sp_ptbBM26              2.350403   1.867231   1.259 0.208116    
## sp_ptbBM27             -1.351471   2.000100  -0.676 0.499230    
## sp_ptbBM28              0.354681   2.188543   0.162 0.871257    
## sp_ptbBM29             -1.302725   2.245000  -0.580 0.561727    
## sp_ptbBM30              1.054521   2.127991   0.496 0.620213    
## sp_ptbBM31              0.639975   2.071596   0.309 0.757376    
## sp_ptbBM32              2.363726   2.254411   1.048 0.294413    
## sp_ptbBM33             -0.559390   2.245877  -0.249 0.803303    
## sp_ptbBM34              5.863624   2.736069   2.143 0.032106 *  
## sp_ptbBM35              1.759664   2.914306   0.604 0.545975    
## sp_ptbBM36              4.254669   3.254094   1.307 0.191049    
## sp_ptbBM37              2.066005   3.402133   0.607 0.543673    
## sp_ptbBM38              3.245319   3.168202   1.024 0.305674    
## sp_ptbBM39              1.169974   3.174042   0.369 0.712421    
## sp_ptbBM40              1.898271   3.051714   0.622 0.533919    
## sp_ptbBM41              0.247695   2.834378   0.087 0.930362    
## sp_ptbBM42             -1.169345   2.633579  -0.444 0.657033    
## sp_ptbBM43              1.090852   2.665147   0.409 0.682318    
## sp_ptbBM44             -2.417338   2.471679  -0.978 0.328067    
## sp_ptbBM45              0.684454   2.416145   0.283 0.776960    
## sp_ptbBM46             -0.920028   2.433584  -0.378 0.705390    
## sp_ptbBM47             -1.806644   2.645863  -0.683 0.494722    
## sp_ptbBM48             -1.180475   2.744390  -0.430 0.667093    
## sp_ptbBM49              0.678813   3.007626   0.226 0.821437    
## sp_ptbBM50             -1.811419   2.652722  -0.683 0.494700    
## sp_ptbBM51              1.705275   2.638470   0.646 0.518077    
## sp_ptbBM52             -0.031938   2.494615  -0.013 0.989785    
## sp_ptbBM53              3.170827   2.392268   1.325 0.185023    
## sp_ptbBM54              0.537332   2.353202   0.228 0.819381    
## sp_ptbBM55              0.031687   2.168390   0.015 0.988341    
## sp_ptbBM56              0.523768   2.677393   0.196 0.844903    
## sp_ptbBM57              0.572895   2.274641   0.252 0.801148    
## sp_ptbBM58             -0.243966   2.095753  -0.116 0.907328    
## sp_ptbBM59             -1.235466   1.905733  -0.648 0.516798    
## sp_ptbBM60             -2.187043   1.995321  -1.096 0.273041    
## sp_ptbBM61             -2.905163   1.918133  -1.515 0.129879    
## sp_ptbBM62             -1.594016   2.219742  -0.718 0.472690    
## sp_ptbBM63             -2.860058   2.754020  -1.039 0.299036    
## sp_ptbBM64             -1.190376   3.131381  -0.380 0.703839    
## sp_ptbBM65             -3.525827   3.217493  -1.096 0.273153    
## sp_ptbBM66             -1.650171   3.292132  -0.501 0.616197    
## sp_ptbBM67             -2.900124   3.185430  -0.910 0.362594    
## sp_ptbBM68             -3.389714   3.355758  -1.010 0.312438    
## sp_ptbBM69             -4.519968   3.393550  -1.332 0.182884    
## sp_ptbBM70             -6.513216   3.252324  -2.003 0.045217 *  
## sp_ptbBM71             -3.414458   3.126802  -1.092 0.274835    
## sp_ptbBM72             -4.277693   2.899422  -1.475 0.140116    
## sp_ptbBM73             -5.063093   2.789908  -1.815 0.069556 .  
## sp_ptbBM74             -1.849250   2.603373  -0.710 0.477500    
## sp_ptbBM75             -4.526854   2.599918  -1.741 0.081657 .  
## sp_ptbBM76              1.089706   2.574481   0.423 0.672097    
## sp_ptbBM77             -3.548714   2.844098  -1.248 0.212124    
## sp_ptbBM78              0.365005   2.947429   0.124 0.901443    
## sp_ptbBM79             -2.565489   2.826780  -0.908 0.364108    
## sp_ptbBM80              0.323631   2.763539   0.117 0.906775    
## sp_ptbBM81             -4.600392   2.895963  -1.589 0.112161    
## sp_ptbBM82             -0.974199   2.732078  -0.357 0.721408    
## sp_ptbBM83             -3.898726   2.743298  -1.421 0.155264    
## sp_ptbBM84             -0.094396   3.128933  -0.030 0.975932    
## sp_ptbBM85             -7.577812   3.480545  -2.177 0.029466 *  
## sp_ptbBM86             -1.581088   3.366128  -0.470 0.638566    
## sp_ptbBM87             -3.987372   3.178286  -1.255 0.209636    
## sp_ptbBM88             -2.213552   3.106084  -0.713 0.476062    
## sp_ptbBM89             -6.349281   3.274351  -1.939 0.052490 .  
## sp_ptbBM90             -3.366317   3.315806  -1.015 0.309995    
## sp_ptbBM91             -2.462161   3.373325  -0.730 0.465457    
## sp_ptbBM92             -1.998064   3.267782  -0.611 0.540906    
## sp_ptbBM93             -1.350303   3.285855  -0.411 0.681113    
## sp_ptbBM94             -1.621404   3.133461  -0.517 0.604843    
## sp_ptbBM95             -1.414587   3.168411  -0.446 0.655261    
## sp_ptbBM96              0.078464   3.148489   0.025 0.980118    
## sp_ptbBM97             -2.022037   3.520271  -0.574 0.565698    
## sp_ptbBM98             -4.281357   3.694658  -1.159 0.246539    
## sp_ptbBM99             -2.054982   3.597578  -0.571 0.567856    
## sp_ptbBM100            -1.642418   3.600805  -0.456 0.648300    
## sp_ptbBM101            -0.190844   3.374334  -0.057 0.954898    
## sp_ptbBM102            -0.229850   3.049239  -0.075 0.939913    
## sp_ptbBM103            -0.886489   3.071424  -0.289 0.772869    
## sp_ptbBM104             1.497373   2.868321   0.522 0.601644    
## sp_ptbBM105            -3.814511   3.765883  -1.013 0.311102    
## sp_ptbBM106            -8.643063   4.741660  -1.823 0.068335 .  
## sp_ptbBM107           -11.186552   5.359864  -2.087 0.036879 *  
## sp_ptbBM108           -10.240159   4.853194  -2.110 0.034860 *  
## sp_ptbBM109           -10.208898   5.181304  -1.970 0.048800 *  
## sp_ptbBM110           -14.476870   5.101054  -2.838 0.004540 ** 
## sp_ptbBM111            -9.991480   5.675495  -1.760 0.078330 .  
## sp_ptbBM112           -12.850885   4.736910  -2.713 0.006669 ** 
## sp_ptbBM113            -6.424704   3.606748  -1.781 0.074863 .  
## sp_ptbBM114            -1.768848   2.403259  -0.736 0.461718    
## sp_ptbBM115            -2.276006   2.348567  -0.969 0.332493    
## sp_ptbBM116            -0.065414   2.146390  -0.030 0.975687    
## sp_ptbBM117            -1.890932   2.028551  -0.932 0.351254    
## sp_ptbBM118            -0.438758   1.762664  -0.249 0.803425    
## sp_ptbBM119             0.238460   1.911190   0.125 0.900705    
## sp_ptbBM120            -2.548563   1.885565  -1.352 0.176498    
## sp_ptbBM121            -0.315440   1.521684  -0.207 0.835778    
## sp_ptbBM122             1.305012   1.307032   0.998 0.318059    
## sp_ptbBM123            -0.801052   1.271655  -0.630 0.528741    
## sp_ptbBM124             2.025362   1.296089   1.563 0.118130    
## sp_ptbBM125                   NA         NA      NA       NA    
## sp_ptbBM126                   NA         NA      NA       NA    
## lag(resid.fullbm, 1)   -0.392552   0.035638 -11.015  < 2e-16 ***
## lag(resid.fullbm, 2)   -0.384397   0.037582 -10.228  < 2e-16 ***
## lag(resid.fullbm, 3)   -0.422358   0.039157 -10.786  < 2e-16 ***
## lag(resid.fullbm, 4)   -0.381769   0.039737  -9.608  < 2e-16 ***
## lag(resid.fullbm, 5)   -0.353130   0.038900  -9.078  < 2e-16 ***
## lag(resid.fullbm, 6)   -0.241832   0.036367  -6.650 2.93e-11 ***
## lag(resid.fullbm, 8)   -0.118254   0.033262  -3.555 0.000378 ***
## lag(resid.fullbm, 9)   -0.085983   0.033680  -2.553 0.010683 *  
## lag(resid.fullbm, 10)  -0.056761   0.032390  -1.752 0.079699 .  
## lag(resid.fullbm, 12)   0.010290   0.032327   0.318 0.750237    
## lag(resid.fullbm, 13)   0.063879   0.032138   1.988 0.046853 *  
## lag(resid.fullbm, 19)  -0.005607   0.030209  -0.186 0.852742    
## lag(resid.fullbm, 25)  -0.038620   0.029812  -1.295 0.195174    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(27550.77) family taken to be 1)
## 
##     Null deviance: 1033.68  on 861  degrees of freedom
## Residual deviance:  639.45  on 701  degrees of freedom
##   (77 observations deleted due to missingness)
## AIC: 2620.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  27551 
##           Std. Err.:  106971 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2296.887
resid.fullbm.ac<-residuals(mod_fullSA2bm.ac, type="deviance")
pred.fullbm.ac<-predict(mod_fullSA2bm.ac, type="response")

pacf(resid.fullbm.ac,na.action = na.omit) 

length(pred.fullbm.ac)
## [1] 939
length(resid.fullbm.ac)
## [1] 939
##plot b4 ac
plot(week$time, week$smptbBM,type="l")
lines(week$time,pred.fullbm,lwd=1, col="dark blue")

plot(week$time,resid.fullbm)
abline(h=0,lty=2,lwd=2, col="blue")

plot(pred.fullbm, week$smptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$smptbBM,type="l")
lines(week$time,pred.fullbm.ac,lwd=1, col="dark blue")

plot(week$time,resid.fullbm.ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(pred.fullbm.ac, week$smptbBM)
abline(coef = c(0,1), col="red")

##checking general model fit plot
plot(mod_fullSA2bm)
## Warning: not plotting observations with leverage one:
##   53

plot(mod_fullSA2bm.ac)

summary(week$minT)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   21.84   23.49   23.96   23.97   24.40   26.33
#1. plotting the dose reponse and slices now for min temperature
SA2predbm.temp <- crosspred(cb9.minT, mod_fullSA2bm.ac,cen = 24.0, by=0.1,cumul=TRUE)

#cumulative effect
plot(SA2predbm.temp, "overall", xlab="Min temperature (?C)",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of min temperature on ptb")

##getting est from SA2predbm.temp

#for 5th % - mat
SA2predbm.temp$matRRfit["22.9","lag0"]; SA2predbm.temp$matRRlow["22.9","lag0"]; SA2predbm.temp$matRRhigh["22.9","lag0"]
## [1] 0.8212599
## [1] 0.6570365
## [1] 1.02653
SA2predbm.temp$matRRfit["22.9","lag13"]; SA2predbm.temp$matRRlow["22.9","lag13"]; SA2predbm.temp$matRRhigh["22.9","lag13"]
## [1] 0.8539718
## [1] 0.7146072
## [1] 1.020516
SA2predbm.temp$matRRfit["22.9","lag26"]; SA2predbm.temp$matRRlow["22.9","lag26"]; SA2predbm.temp$matRRhigh["22.9","lag26"]
## [1] 0.8879867
## [1] 0.7553308
## [1] 1.043941
SA2predbm.temp$matRRfit["22.9","lag39"]; SA2predbm.temp$matRRlow["22.9","lag39"]; SA2predbm.temp$matRRhigh["22.9","lag39"]
## [1] 0.9233564
## [1] 0.7697961
## [1] 1.107549
SA2predbm.temp$matRRfit["22.9","lag52"]; SA2predbm.temp$matRRlow["22.9","lag52"]; SA2predbm.temp$matRRhigh["22.9","lag52"]
## [1] 0.960135
## [1] 0.7635984
## [1] 1.207257
#for 95th % - mat
SA2predbm.temp$matRRfit["25.1","lag0"]; SA2predbm.temp$matRRlow["25.1","lag0"]; SA2predbm.temp$matRRhigh["25.1","lag0"]
## [1] 1.072408
## [1] 0.8419419
## [1] 1.365961
SA2predbm.temp$matRRfit["25.1","lag13"]; SA2predbm.temp$matRRlow["25.1","lag13"]; SA2predbm.temp$matRRhigh["25.1","lag13"]
## [1] 1.131484
## [1] 0.929412
## [1] 1.377491
SA2predbm.temp$matRRfit["25.1","lag26"]; SA2predbm.temp$matRRlow["25.1","lag26"]; SA2predbm.temp$matRRhigh["25.1","lag26"]
## [1] 1.193815
## [1] 0.9968997
## [1] 1.429626
SA2predbm.temp$matRRfit["25.1","lag27"]; SA2predbm.temp$matRRlow["25.1","lag27"]; SA2predbm.temp$matRRhigh["25.1","lag27"]
## [1] 1.198749
## [1] 1.00078
## [1] 1.43588
SA2predbm.temp$matRRfit["25.1","lag28"]; SA2predbm.temp$matRRlow["25.1","lag28"]; SA2predbm.temp$matRRhigh["25.1","lag28"]
## [1] 1.203704
## [1] 1.004452
## [1] 1.442482
SA2predbm.temp$matRRfit["25.1","lag29"]; SA2predbm.temp$matRRlow["25.1","lag29"]; SA2predbm.temp$matRRhigh["25.1","lag29"]
## [1] 1.20868
## [1] 1.007914
## [1] 1.449435
SA2predbm.temp$matRRfit["25.1","lag30"]; SA2predbm.temp$matRRlow["25.1","lag30"]; SA2predbm.temp$matRRhigh["25.1","lag30"]
## [1] 1.213676
## [1] 1.011168
## [1] 1.45674
SA2predbm.temp$matRRfit["25.1","lag31"]; SA2predbm.temp$matRRlow["25.1","lag31"]; SA2predbm.temp$matRRhigh["25.1","lag31"]
## [1] 1.218692
## [1] 1.014214
## [1] 1.464396
SA2predbm.temp$matRRfit["25.1","lag32"]; SA2predbm.temp$matRRlow["25.1","lag32"]; SA2predbm.temp$matRRhigh["25.1","lag32"]
## [1] 1.22373
## [1] 1.017054
## [1] 1.472404
SA2predbm.temp$matRRfit["25.1","lag33"]; SA2predbm.temp$matRRlow["25.1","lag33"]; SA2predbm.temp$matRRhigh["25.1","lag33"]
## [1] 1.228788
## [1] 1.019691
## [1] 1.480761
SA2predbm.temp$matRRfit["25.1","lag34"]; SA2predbm.temp$matRRlow["25.1","lag34"]; SA2predbm.temp$matRRhigh["25.1","lag34"]
## [1] 1.233867
## [1] 1.022129
## [1] 1.489467
SA2predbm.temp$matRRfit["25.1","lag35"]; SA2predbm.temp$matRRlow["25.1","lag35"]; SA2predbm.temp$matRRhigh["25.1","lag35"]
## [1] 1.238967
## [1] 1.024372
## [1] 1.498517
SA2predbm.temp$matRRfit["25.1","lag36"]; SA2predbm.temp$matRRlow["25.1","lag36"]; SA2predbm.temp$matRRhigh["25.1","lag36"]
## [1] 1.244088
## [1] 1.026424
## [1] 1.50791
SA2predbm.temp$matRRfit["25.1","lag37"]; SA2predbm.temp$matRRlow["25.1","lag37"]; SA2predbm.temp$matRRhigh["25.1","lag37"]
## [1] 1.24923
## [1] 1.028291
## [1] 1.51764
SA2predbm.temp$matRRfit["25.1","lag38"]; SA2predbm.temp$matRRlow["25.1","lag38"]; SA2predbm.temp$matRRhigh["25.1","lag38"]
## [1] 1.254394
## [1] 1.029979
## [1] 1.527705
SA2predbm.temp$matRRfit["25.1","lag39"]; SA2predbm.temp$matRRlow["25.1","lag39"]; SA2predbm.temp$matRRhigh["25.1","lag39"]
## [1] 1.259579
## [1] 1.031493
## [1] 1.538099
SA2predbm.temp$matRRfit["25.1","lag52"]; SA2predbm.temp$matRRlow["25.1","lag52"]; SA2predbm.temp$matRRhigh["25.1","lag52"]
## [1] 1.328966
## [1] 1.038237
## [1] 1.701105
#2. plotting the dose reponse and slices now for RF
SA2predbm.rf <- crosspred(cb3.RF, mod_fullSA2bm.ac,cen = 44.9, by=0.1,cumul=TRUE)

#cumulative effect of RF
plot(SA2predbm.rf, "overall", xlab="Total rainfall",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of rainfall on ptb")

##getting est from SA2predbm.rf
##10th %
SA2predbm.rf$allRRfit["4.5"]; cbind(SA2predbm.rf$allRRlow,SA2predbm.rf$allRRhigh)["4.5",]
##      4.5 
## 8.584097
## [1] 1.339303e-03 5.501869e+04
##90th %
SA2predbm.rf$allRRfit["134.6"]; cbind(SA2predbm.rf$allRRlow,SA2predbm.rf$allRRhigh)["134.6",]
##    134.6 
## 63.89346
## [1] 1.912297e-02 2.134802e+05
#for 95th % - mat
SA2predbm.rf$matRRfit["160.7","lag0"]; SA2predbm.rf$matRRlow["160.7","lag0"]; SA2predbm.rf$matRRhigh["160.7","lag0"]
## [1] 0.9411438
## [1] 0.7396032
## [1] 1.197604
SA2predbm.rf$matRRfit["160.7","lag13"]; SA2predbm.rf$matRRlow["160.7","lag13"]; SA2predbm.rf$matRRhigh["160.7","lag13"]
## [1] 1.02117
## [1] 0.84108
## [1] 1.239821
SA2predbm.rf$matRRfit["160.7","lag26"]; SA2predbm.rf$matRRlow["160.7","lag26"]; SA2predbm.rf$matRRhigh["160.7","lag26"]
## [1] 1.108002
## [1] 0.9310641
## [1] 1.318564
SA2predbm.rf$matRRfit["160.7","lag39"]; SA2predbm.rf$matRRlow["160.7","lag39"]; SA2predbm.rf$matRRhigh["160.7","lag39"]
## [1] 1.202216
## [1] 0.9945605
## [1] 1.453228
SA2predbm.rf$matRRfit["160.7","lag40"]; SA2predbm.rf$matRRlow["160.7","lag40"]; SA2predbm.rf$matRRhigh["160.7","lag40"]
## [1] 1.209787
## [1] 0.9982628
## [1] 1.466131
SA2predbm.rf$matRRfit["160.7","lag41"]; SA2predbm.rf$matRRlow["160.7","lag41"]; SA2predbm.rf$matRRhigh["160.7","lag41"]
## [1] 1.217405
## [1] 1.001814
## [1] 1.479392
SA2predbm.rf$matRRfit["160.7","lag42"]; SA2predbm.rf$matRRlow["160.7","lag42"]; SA2predbm.rf$matRRhigh["160.7","lag42"]
## [1] 1.225072
## [1] 1.005219
## [1] 1.493008
SA2predbm.rf$matRRfit["160.7","lag52"]; SA2predbm.rf$matRRlow["160.7","lag52"]; SA2predbm.rf$matRRhigh["160.7","lag52"]
## [1] 1.304442
## [1] 1.032412
## [1] 1.648149
#3. plotting the dose reponse and slices now for wind
SA2predbm.wind <- crosspred(cb1.avgWindSp, mod_fullSA2bm.ac,cen = 4.5, by=0.1,cumul=TRUE)

#cumulative effect of wind
plot(SA2predbm.wind, "overall", xlab="Av wind speed",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of wind speed on ptb")

#4. plotting the dose reponse and slices now for sun
SA2predbm.sun <- crosspred(cb2.sun, mod_fullSA2bm.ac,cen = 50.7, by=0.1,cumul=TRUE)

#cumulative effect of sun
plot(SA2predbm.sun, "overall", xlab="Total sunshine hours",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of sunshine on ptb")

#5. plotting the dose reponse and slices now for minRH
SA2predbm.minRH <- crosspred(cb5.minRH, mod_fullSA2bm.ac,cen = 63, by=0.1, cumul=TRUE)


#cumulative effect
plot(SA2predbm.minRH, "overall", xlab="Min RH",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of minRH on ptb")

##3d plots for smptbBM version ------
#tiff("fig_3dUniMar22smptbBM.tiff", units="in", width=7, height=4, res=300)
par(mfrow=c(2,3),mar = c(1,1,1,1))
plot(pred.SA2m1a, xlab="Average wind speed", zlab="RR", theta=200, phi=40, lphi=30,cex.axis=0.8,cex.lab=0.9)
plot(pred.SA2m9a, xlab="Minimum Temp", zlab="RR", theta=200, phi=40, lphi=30,cex.axis=0.8,cex.lab=0.9)
plot(pred.SA2m3a, xlab="Total rainfall", zlab="RR", theta=200, phi=40, lphi=30,cex.axis=0.8,cex.lab=0.9)
plot(pred.SA2m2a, xlab="Total sunshine hours", zlab="RR", theta=200, phi=40, lphi=30,cex.axis=0.8,cex.lab=0.9)
plot(pred.SA2m5a, xlab="Min RH", zlab="RR", theta=200, phi=40, lphi=30,cex.axis=0.8,cex.lab=0.9)
dev.off()
## null device 
##           1
##2. the 3d plots for all mod_full model smptbBM SA2 version
#tiff("fig_3dFullMar22smptbBM.tiff", units="in", width=7, height=4, res=300)
par(mfrow=c(2,3),mar = c(1,1,1,1))
plot(SA2predbm.wind, xlab="Average wind speed", zlab="RR", theta=200, phi=40, lphi=30,cex.axis=0.8,cex.lab=0.9)
plot(SA2predbm.temp, xlab="Minimum Temp", zlab="RR", theta=200, phi=40, lphi=30,cex.axis=0.8,cex.lab=0.9)
plot(SA2predbm.rf, xlab="Total rainfall", zlab="RR", theta=200, phi=40, lphi=30,cex.axis=0.8,cex.lab=0.9)
plot(SA2predbm.sun, xlab="Total sunshine hours", zlab="RR", theta=200, phi=40, lphi=30,cex.axis=0.8,cex.lab=0.9)
plot(SA2predbm.minRH, xlab="Min RH", zlab="RR", theta=200, phi=40, lphi=30,cex.axis=0.8,cex.lab=0.9)
dev.off()
## null device 
##           1
###to make lag plots for uni models, smptbBM version SA2 -----
##order: minT, rf, sun, minRH & avgWindSp

#tiff("fig_lagUnismptbBM_SA1_Apr10.tiff", units="in", width=8, height=6, res=300)
par(mfrow=c(5,5),mar=c(2.5,4,2.5,2))

for (i in c(0,13,26,39,52)){
    x = crosspred(cb1.avgWindSp, SA2m1a.ac, cen=4.5)
    title = paste(c("Lag",i),collapse="-")
    plot(x,lag=i,main=title,ylab="RR (Av wind speed)", xlab="", col=4,cex.lab=0.9,
         ylim=c(0.9,1.1),xaxt = "n")
    axis(1, at= c(3.0,3.6,4.5,6.1,10.2), labels = c("3.0","5th","50th","95th","10.2"),
         cex.axis=0.8)
}

for (i in c(0,13,26,39,52)){
    x = crosspred(cb9.minT, SA2m9a.ac, cen=24.0)
    title = paste(c("Lag",i),collapse="-")
    plot(x,lag=i,ylab="RR (Min Temp)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.9,1.1),xaxt = "n")
    axis(1, at= c(21.8,22.9,24.0,25.1,26.3), labels = c("21.8","5th","50th","95th","26.3"),
         cex.axis=0.8)
}

for (i in c(0,13,26,39,52)){
    x = crosspred(cb3.RF, SA2m3a.ac, cen=44.9)
    plot(x,lag=i,ylab="RR (Rainfall)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.9,1.1),xaxt = "n")
    axis(1, at= c(0.0,0.8,44.9,160.7,414.5), labels = c("0.0","5th","50th","95th","414.5"),
         cex.axis=0.8)
}

for (i in c(0,13,26,39,52)){
    x = crosspred(cb2.sun, SA2m2a.ac, cen=50.7)
    plot(x,lag=i,ylab="RR (Sunshine hours)", xlab="",col=4,cex.lab=0.9,
         ylim=c(0.9,1.1),xaxt = "n")
    axis(1, at= c(11.2,30.8,50.7,66.1,76.0), labels = c("11.2","5th","50th","95th","76.0"),
         cex.axis=0.8)
}

for (i in c(0,13,26,39,52)){
    x = crosspred(cb5.minRH, SA2m5a.ac, cen=63)
    plot(x,lag=i,ylab="RR (Min RH)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.9,1.1),xaxt = "n")
    axis(1, at= c(45.0,53.7,63.0,70.3,80.6), labels = c("45.0","5th","50th","95th","80.6"),
         cex.axis=0.8)
}

dev.off()
## null device 
##           1
###to make lag plots for full model, smptbBM version, SA2 -----
##order: minT, rf, sun, minRH & avgWindSp

#tiff("fig_lagFullsmptbBM_SA2_Apr7.tiff", units="in", width=10, height=6, res=400)
par(mfrow=c(5,5),mar=c(2.5,4,2.5,2))

#axis(1, at= c(3,3.7,4.5,5.4,10.2)

for (i in c(0,13,26,39,52)){
    x = crosspred(cb1.avgWindSp, mod_fullSA2bm.ac, cen=4.5)
    title = paste(c(i,"week lag"),collapse=" ")
    plot(x,lag=i,main=title,ylab="RR (Av wind speed)", xlab="", col=4,cex.lab=0.9,
         ylim=c(0.6,1.1),xaxt = "n")
    axis(1, at= c(3.0,3.6,4.5,6.1,10.2), labels = c("3.0","5th","50th","95th","10.2"),
         cex.axis=0.8)
}

for (i in c(0,13,26,39,52)){
    x = crosspred(cb9.minT, mod_fullSA2bm.ac, cen=24.0)
    plot(x,lag=i,ylab="RR (Min Temp)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.8,1.5),xaxt = "n")
    axis(1, at= c(21.8,22.9,24.0,25.1,26.3), labels = c("21.8","5th","50th","95th","26.3"),
         cex.axis=0.8)
}

for (i in c(0,13,26,39,52)){
    x = crosspred(cb3.RF, mod_fullSA2bm.ac, cen=44.9)
    plot(x,lag=i,ylab="RR (Rainfall)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.8,1.5),xaxt = "n")
    axis(1, at= c(0.0,0.8,44.9,160.7,414.5), labels = c("0.0","5th","50th","95th","414.5"),
         cex.axis=0.8)
}


for (i in c(0,13,26,39,52)){
    x = crosspred(cb2.sun, mod_fullSA2bm.ac, cen=50.7)
    plot(x,lag=i,ylab="RR (Sunshine hours)", xlab="",col=4,cex.lab=0.9,
         ylim=c(0.8,1.5),xaxt = "n")
    axis(1, at= c(11.2,30.8,50.7,66.1,76.0), labels = c("11.2","5th","50th","95th","76.0"),
         cex.axis=0.8)
}

for (i in c(0,13,26,39,52)){
    x = crosspred(cb5.minRH, mod_fullSA2bm.ac, cen=63.0)
    plot(x,lag=i,ylab="RR (Min RH)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.6,1.2),xaxt = "n")
    axis(1, at= c(45.0,53.7,63.0,70.3,80.6), labels = c("45.0","5th","50th","95th","80.6"),
         cex.axis=0.8)
}

dev.off()
## null device 
##           1

Sensitivity analysis 1 - using ptbBM & ns5 for long term trend

sp_ptbBMns5 <-ns(week$time,df=18*5)
options(na.action="na.exclude")
SA3m1a <- glm.nb(ptbBM ~ cb1.avgWindSp + sp_ptbBMns5,data=week); summary(SA3m1a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb1.avgWindSp + sp_ptbBMns5, data = week, 
##     init.theta = 15998.72081, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3731  -0.8041  -0.1177   0.5606   2.8827  
## 
## Coefficients: (3 not defined because of singularities)
##                      Estimate Std. Error z value Pr(>|z|)  
## (Intercept)        -6.410e+00  5.482e+00  -1.169   0.2423  
## cb1.avgWindSpv1.l1 -1.828e-01  2.455e-01  -0.745   0.4565  
## cb1.avgWindSpv1.l2  1.055e-01  1.903e-01   0.554   0.5794  
## cb1.avgWindSpv2.l1  9.247e-01  5.839e-01   1.584   0.1133  
## cb1.avgWindSpv2.l2 -5.022e-02  3.943e-01  -0.127   0.8986  
## cb1.avgWindSpv3.l1  9.489e-01  6.639e-01   1.429   0.1529  
## cb1.avgWindSpv3.l2 -2.170e-01  3.726e-01  -0.582   0.5603  
## sp_ptbBMns51               NA         NA      NA       NA  
## sp_ptbBMns52        9.238e+05  5.316e+06   0.174   0.8621  
## sp_ptbBMns53        4.988e+00  1.126e+01   0.443   0.6579  
## sp_ptbBMns54       -4.860e-01  1.828e+00  -0.266   0.7903  
## sp_ptbBMns55       -9.223e-01  1.712e+00  -0.539   0.5901  
## sp_ptbBMns56       -2.959e-01  1.450e+00  -0.204   0.8383  
## sp_ptbBMns57       -2.155e+00  1.334e+00  -1.616   0.1061  
## sp_ptbBMns58       -7.291e-02  1.175e+00  -0.062   0.9505  
## sp_ptbBMns59       -4.196e-01  1.292e+00  -0.325   0.7453  
## sp_ptbBMns510      -2.212e-01  1.046e+00  -0.211   0.8326  
## sp_ptbBMns511      -3.404e-01  7.859e-01  -0.433   0.6649  
## sp_ptbBMns512      -5.409e-01  7.636e-01  -0.708   0.4787  
## sp_ptbBMns513       5.441e-02  8.107e-01   0.067   0.9465  
## sp_ptbBMns514      -5.448e-01  8.370e-01  -0.651   0.5151  
## sp_ptbBMns515       9.119e-01  1.114e+00   0.818   0.4131  
## sp_ptbBMns516      -5.360e-01  8.456e-01  -0.634   0.5261  
## sp_ptbBMns517      -1.529e-01  8.494e-01  -0.180   0.8571  
## sp_ptbBMns518       4.412e-01  7.474e-01   0.590   0.5550  
## sp_ptbBMns519      -1.697e+00  9.404e-01  -1.805   0.0711 .
## sp_ptbBMns520       2.846e-01  1.160e+00   0.245   0.8063  
## sp_ptbBMns521      -1.527e-01  8.581e-01  -0.178   0.8588  
## sp_ptbBMns522       4.859e-01  7.500e-01   0.648   0.5171  
## sp_ptbBMns523      -1.099e+00  8.500e-01  -1.293   0.1961  
## sp_ptbBMns524      -2.742e-01  8.225e-01  -0.333   0.7389  
## sp_ptbBMns525       5.687e-01  7.327e-01   0.776   0.4376  
## sp_ptbBMns526      -1.091e-02  7.309e-01  -0.015   0.9881  
## sp_ptbBMns527      -3.092e-01  9.652e-01  -0.320   0.7487  
## sp_ptbBMns528      -1.449e-01  9.208e-01  -0.157   0.8749  
## sp_ptbBMns529      -6.590e-01  1.092e+00  -0.603   0.5463  
## sp_ptbBMns530      -1.181e+00  1.272e+00  -0.929   0.3531  
## sp_ptbBMns531      -9.326e-02  1.297e+00  -0.072   0.9427  
## sp_ptbBMns532       7.121e-02  1.241e+00   0.057   0.9542  
## sp_ptbBMns533      -7.669e-01  1.342e+00  -0.571   0.5677  
## sp_ptbBMns534       6.535e-01  1.541e+00   0.424   0.6715  
## sp_ptbBMns535      -6.095e-01  1.394e+00  -0.437   0.6620  
## sp_ptbBMns536       4.044e-01  1.212e+00   0.334   0.7386  
## sp_ptbBMns537      -6.041e-01  9.923e-01  -0.609   0.5427  
## sp_ptbBMns538       1.284e-01  1.026e+00   0.125   0.9004  
## sp_ptbBMns539      -8.682e-01  8.979e-01  -0.967   0.3336  
## sp_ptbBMns540      -2.882e-02  9.259e-01  -0.031   0.9752  
## sp_ptbBMns541      -4.852e-02  8.070e-01  -0.060   0.9521  
## sp_ptbBMns542      -1.207e+00  9.043e-01  -1.335   0.1820  
## sp_ptbBMns543       5.631e-02  8.879e-01   0.063   0.9494  
## sp_ptbBMns544      -7.584e-01  9.488e-01  -0.799   0.4241  
## sp_ptbBMns545       1.363e-01  1.271e+00   0.107   0.9147  
## sp_ptbBMns546       4.405e-01  1.341e+00   0.329   0.7425  
## sp_ptbBMns547       1.372e-01  1.548e+00   0.089   0.9294  
## sp_ptbBMns548       1.032e+00  1.661e+00   0.622   0.5342  
## sp_ptbBMns549       4.627e-01  1.712e+00   0.270   0.7869  
## sp_ptbBMns550      -1.658e-01  1.496e+00  -0.111   0.9118  
## sp_ptbBMns551      -5.275e-01  1.536e+00  -0.343   0.7313  
## sp_ptbBMns552      -1.093e-01  1.398e+00  -0.078   0.9377  
## sp_ptbBMns553       3.088e-01  1.341e+00   0.230   0.8179  
## sp_ptbBMns554      -2.315e-01  1.332e+00  -0.174   0.8621  
## sp_ptbBMns555       4.619e-01  1.427e+00   0.324   0.7462  
## sp_ptbBMns556       5.951e-01  1.308e+00   0.455   0.6490  
## sp_ptbBMns557      -1.515e-01  1.403e+00  -0.108   0.9140  
## sp_ptbBMns558       3.126e-01  1.410e+00   0.222   0.8246  
## sp_ptbBMns559       4.736e-02  1.398e+00   0.034   0.9730  
## sp_ptbBMns560      -3.734e-01  1.628e+00  -0.229   0.8187  
## sp_ptbBMns561       2.058e-01  1.477e+00   0.139   0.8892  
## sp_ptbBMns562       2.632e-01  1.412e+00   0.186   0.8521  
## sp_ptbBMns563      -7.274e-01  1.469e+00  -0.495   0.6205  
## sp_ptbBMns564       2.430e-02  1.491e+00   0.016   0.9870  
## sp_ptbBMns565      -7.381e-02  1.467e+00  -0.050   0.9599  
## sp_ptbBMns566       6.050e-01  1.485e+00   0.407   0.6837  
## sp_ptbBMns567      -1.299e+00  1.416e+00  -0.917   0.3589  
## sp_ptbBMns568       6.827e-01  1.354e+00   0.504   0.6140  
## sp_ptbBMns569      -5.432e-01  1.400e+00  -0.388   0.6980  
## sp_ptbBMns570      -9.005e-02  1.504e+00  -0.060   0.9522  
## sp_ptbBMns571       8.192e-02  1.552e+00   0.053   0.9579  
## sp_ptbBMns572       8.998e-01  1.474e+00   0.610   0.5415  
## sp_ptbBMns573       1.785e-01  1.125e+00   0.159   0.8740  
## sp_ptbBMns574       6.036e-01  1.058e+00   0.570   0.5685  
## sp_ptbBMns575      -6.015e-01  1.275e+00  -0.472   0.6371  
## sp_ptbBMns576      -9.125e-01  1.173e+00  -0.778   0.4364  
## sp_ptbBMns577      -5.685e-01  1.010e+00  -0.563   0.5735  
## sp_ptbBMns578      -3.479e-01  1.074e+00  -0.324   0.7461  
## sp_ptbBMns579      -7.763e-01  1.263e+00  -0.615   0.5387  
## sp_ptbBMns580      -2.881e-01  7.291e-01  -0.395   0.6928  
## sp_ptbBMns581       1.915e-01  5.948e-01   0.322   0.7474  
## sp_ptbBMns582      -4.676e-01  6.583e-01  -0.710   0.4775  
## sp_ptbBMns583       2.895e-01  5.897e-01   0.491   0.6235  
## sp_ptbBMns584       1.048e-02  6.081e-01   0.017   0.9863  
## sp_ptbBMns585      -3.118e-01  7.502e-01  -0.416   0.6777  
## sp_ptbBMns586       2.731e-01  6.453e-01   0.423   0.6722  
## sp_ptbBMns587       2.057e-01  4.933e-01   0.417   0.6766  
## sp_ptbBMns588       8.003e-01  6.609e-01   1.211   0.2259  
## sp_ptbBMns589              NA         NA      NA       NA  
## sp_ptbBMns590              NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(15998.72) family taken to be 1)
## 
##     Null deviance: 1101.23  on 886  degrees of freedom
## Residual deviance:  983.15  on 793  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3206.1
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  15999 
##           Std. Err.:  132658 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3016.051
SA3m2a <- glm.nb(ptbBM ~ cb2.sun + sp_ptbBMns5,data=week); summary(SA3m2a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb2.sun + sp_ptbBMns5, data = week, 
##     init.theta = 17573.9797, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3727  -0.8197  -0.1328   0.5694   2.9565  
## 
## Coefficients: (3 not defined because of singularities)
##                 Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    5.466e-01  7.208e+00   0.076  0.93955   
## cb2.sunv1.l1   3.279e-02  1.591e-01   0.206  0.83669   
## cb2.sunv1.l2  -1.493e-01  1.163e-01  -1.284  0.19914   
## cb2.sunv2.l1   2.104e-01  6.288e-01   0.335  0.73785   
## cb2.sunv2.l2   2.844e-01  4.338e-01   0.656  0.51209   
## cb2.sunv3.l1   6.067e-01  2.355e-01   2.576  0.01000 * 
## cb2.sunv3.l2   2.388e-01  1.645e-01   1.452  0.14652   
## sp_ptbBMns51          NA         NA      NA       NA   
## sp_ptbBMns52   2.212e+06  5.346e+06   0.414  0.67907   
## sp_ptbBMns53  -1.541e-01  9.688e+00  -0.016  0.98731   
## sp_ptbBMns54   9.027e-01  1.605e+00   0.562  0.57385   
## sp_ptbBMns55   4.112e-01  9.267e-01   0.444  0.65726   
## sp_ptbBMns56  -7.939e-03  7.519e-01  -0.011  0.99158   
## sp_ptbBMns57  -2.044e+00  7.747e-01  -2.639  0.00833 **
## sp_ptbBMns58   7.074e-01  6.737e-01   1.050  0.29370   
## sp_ptbBMns59  -1.377e-01  7.843e-01  -0.176  0.86059   
## sp_ptbBMns510 -6.452e-01  7.399e-01  -0.872  0.38318   
## sp_ptbBMns511 -7.617e-01  7.663e-01  -0.994  0.32023   
## sp_ptbBMns512 -5.489e-01  7.468e-01  -0.735  0.46239   
## sp_ptbBMns513 -3.688e-01  7.418e-01  -0.497  0.61907   
## sp_ptbBMns514 -3.228e-01  7.175e-01  -0.450  0.65282   
## sp_ptbBMns515  1.081e+00  7.763e-01   1.392  0.16377   
## sp_ptbBMns516 -1.006e-01  7.674e-01  -0.131  0.89571   
## sp_ptbBMns517  7.785e-02  7.510e-01   0.104  0.91744   
## sp_ptbBMns518  5.355e-01  7.658e-01   0.699  0.48438   
## sp_ptbBMns519 -1.444e+00  9.396e-01  -1.537  0.12438   
## sp_ptbBMns520 -6.901e-01  8.207e-01  -0.841  0.40044   
## sp_ptbBMns521 -2.008e-01  7.900e-01  -0.254  0.79937   
## sp_ptbBMns522  1.690e-01  7.562e-01   0.224  0.82311   
## sp_ptbBMns523 -9.989e-01  8.239e-01  -1.212  0.22539   
## sp_ptbBMns524  4.373e-01  7.997e-01   0.547  0.58455   
## sp_ptbBMns525  1.522e+00  8.542e-01   1.782  0.07480 . 
## sp_ptbBMns526  1.085e+00  8.463e-01   1.282  0.19981   
## sp_ptbBMns527  8.456e-01  7.990e-01   1.058  0.28992   
## sp_ptbBMns528  1.188e+00  8.714e-01   1.363  0.17296   
## sp_ptbBMns529  7.675e-01  8.081e-01   0.950  0.34222   
## sp_ptbBMns530 -1.263e-01  8.160e-01  -0.155  0.87696   
## sp_ptbBMns531 -6.384e-02  6.613e-01  -0.097  0.92309   
## sp_ptbBMns532 -2.672e-01  6.477e-01  -0.412  0.67999   
## sp_ptbBMns533 -1.145e+00  6.847e-01  -1.672  0.09444 . 
## sp_ptbBMns534  3.953e-01  6.925e-01   0.571  0.56813   
## sp_ptbBMns535 -6.465e-01  8.014e-01  -0.807  0.41985   
## sp_ptbBMns536  8.034e-01  6.995e-01   1.149  0.25072   
## sp_ptbBMns537 -3.413e-01  6.871e-01  -0.497  0.61937   
## sp_ptbBMns538  3.942e-01  6.580e-01   0.599  0.54906   
## sp_ptbBMns539 -5.521e-01  6.729e-01  -0.820  0.41195   
## sp_ptbBMns540  1.110e+00  8.786e-01   1.263  0.20661   
## sp_ptbBMns541 -1.339e-01  7.262e-01  -0.184  0.85367   
## sp_ptbBMns542 -5.081e-01  7.239e-01  -0.702  0.48276   
## sp_ptbBMns543  2.770e-01  7.407e-01   0.374  0.70846   
## sp_ptbBMns544 -6.001e-01  7.665e-01  -0.783  0.43366   
## sp_ptbBMns545 -1.194e+00  8.621e-01  -1.386  0.16590   
## sp_ptbBMns546 -6.228e-02  7.106e-01  -0.088  0.93016   
## sp_ptbBMns547 -8.362e-01  6.801e-01  -1.230  0.21888   
## sp_ptbBMns548  4.391e-01  6.161e-01   0.713  0.47604   
## sp_ptbBMns549 -2.848e-01  7.340e-01  -0.388  0.69799   
## sp_ptbBMns550  8.935e-01  9.347e-01   0.956  0.33907   
## sp_ptbBMns551  8.199e-01  8.302e-01   0.988  0.32337   
## sp_ptbBMns552  1.049e+00  8.662e-01   1.212  0.22569   
## sp_ptbBMns553  1.459e+00  8.053e-01   1.812  0.07003 . 
## sp_ptbBMns554  8.031e-01  8.269e-01   0.971  0.33145   
## sp_ptbBMns555  1.324e+00  8.233e-01   1.608  0.10776   
## sp_ptbBMns556  1.214e+00  7.321e-01   1.658  0.09733 . 
## sp_ptbBMns557 -3.406e-01  8.187e-01  -0.416  0.67743   
## sp_ptbBMns558 -2.044e-01  7.356e-01  -0.278  0.78113   
## sp_ptbBMns559 -1.811e-01  7.130e-01  -0.254  0.79949   
## sp_ptbBMns560 -9.123e-01  7.533e-01  -1.211  0.22587   
## sp_ptbBMns561 -3.871e-01  7.996e-01  -0.484  0.62836   
## sp_ptbBMns562  1.216e+00  7.331e-01   1.660  0.09701 . 
## sp_ptbBMns563  8.952e-03  8.632e-01   0.010  0.99173   
## sp_ptbBMns564  1.174e+00  8.815e-01   1.332  0.18294   
## sp_ptbBMns565  8.050e-01  8.764e-01   0.918  0.35837   
## sp_ptbBMns566  1.238e+00  7.411e-01   1.670  0.09492 . 
## sp_ptbBMns567 -4.519e-01  7.913e-01  -0.571  0.56796   
## sp_ptbBMns568  1.766e+00  6.697e-01   2.637  0.00836 **
## sp_ptbBMns569  7.331e-01  7.185e-01   1.020  0.30753   
## sp_ptbBMns570  1.288e+00  8.950e-01   1.439  0.15025   
## sp_ptbBMns571  6.955e-01  7.233e-01   0.962  0.33626   
## sp_ptbBMns572  5.884e-01  6.804e-01   0.865  0.38716   
## sp_ptbBMns573  2.847e-01  6.928e-01   0.411  0.68109   
## sp_ptbBMns574 -1.214e-01  6.682e-01  -0.182  0.85583   
## sp_ptbBMns575 -1.218e+00  8.415e-01  -1.447  0.14793   
## sp_ptbBMns576 -1.260e+00  7.272e-01  -1.732  0.08324 . 
## sp_ptbBMns577 -1.630e+00  8.056e-01  -2.024  0.04301 * 
## sp_ptbBMns578 -7.450e-01  8.249e-01  -0.903  0.36647   
## sp_ptbBMns579 -8.901e-01  7.907e-01  -1.126  0.26026   
## sp_ptbBMns580  9.987e-01  7.041e-01   1.418  0.15608   
## sp_ptbBMns581  6.099e-01  6.560e-01   0.930  0.35246   
## sp_ptbBMns582  7.729e-01  7.250e-01   1.066  0.28637   
## sp_ptbBMns583  8.030e-01  6.669e-01   1.204  0.22854   
## sp_ptbBMns584  1.098e+00  7.561e-01   1.452  0.14658   
## sp_ptbBMns585 -1.908e-02  8.283e-01  -0.023  0.98162   
## sp_ptbBMns586  3.675e-01  6.717e-01   0.547  0.58431   
## sp_ptbBMns587  6.609e-01  5.501e-01   1.201  0.22963   
## sp_ptbBMns588  1.401e+00  6.712e-01   2.088  0.03682 * 
## sp_ptbBMns589         NA         NA      NA       NA   
## sp_ptbBMns590         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17573.98) family taken to be 1)
## 
##     Null deviance: 1101.24  on 886  degrees of freedom
## Residual deviance:  972.32  on 793  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3195.2
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17574 
##           Std. Err.:  134180 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3005.203
SA3m3a <- glm.nb(ptbBM ~ cb3.RF + sp_ptbBMns5,data=week); summary(SA3m3a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb3.RF + sp_ptbBMns5, data = week, init.theta = 15595.28843, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3932  -0.8221  -0.1343   0.5622   2.8897  
## 
## Coefficients: (3 not defined because of singularities)
##                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    1.847e+00  2.141e+00   0.863   0.3884  
## cb3.RFv1.l1    8.706e-02  2.229e-01   0.391   0.6961  
## cb3.RFv1.l2    1.256e-01  1.419e-01   0.885   0.3760  
## cb3.RFv2.l1   -1.372e-01  3.107e-01  -0.442   0.6588  
## cb3.RFv2.l2    1.504e-01  2.034e-01   0.739   0.4598  
## cb3.RFv3.l1   -5.048e-02  5.084e-01  -0.099   0.9209  
## cb3.RFv3.l2    7.432e-02  3.526e-01   0.211   0.8331  
## sp_ptbBMns51          NA         NA      NA       NA  
## sp_ptbBMns52   2.303e+06  5.361e+06   0.430   0.6675  
## sp_ptbBMns53  -2.913e+00  9.759e+00  -0.298   0.7653  
## sp_ptbBMns54   1.060e+00  1.609e+00   0.659   0.5102  
## sp_ptbBMns55  -4.793e-01  9.862e-01  -0.486   0.6269  
## sp_ptbBMns56   5.063e-01  7.873e-01   0.643   0.5201  
## sp_ptbBMns57  -1.552e+00  8.352e-01  -1.858   0.0632 .
## sp_ptbBMns58   7.621e-01  6.759e-01   1.128   0.2595  
## sp_ptbBMns59   7.744e-01  8.081e-01   0.958   0.3379  
## sp_ptbBMns510 -1.267e-01  7.456e-01  -0.170   0.8650  
## sp_ptbBMns511  9.749e-02  7.648e-01   0.127   0.8986  
## sp_ptbBMns512  1.376e-01  7.872e-01   0.175   0.8612  
## sp_ptbBMns513  2.145e-01  7.341e-01   0.292   0.7701  
## sp_ptbBMns514  4.553e-01  8.508e-01   0.535   0.5926  
## sp_ptbBMns515  9.638e-01  7.553e-01   1.276   0.2019  
## sp_ptbBMns516 -1.417e-01  7.573e-01  -0.187   0.8516  
## sp_ptbBMns517 -7.015e-02  8.071e-01  -0.087   0.9307  
## sp_ptbBMns518  7.806e-01  7.900e-01   0.988   0.3231  
## sp_ptbBMns519 -1.026e+00  9.774e-01  -1.050   0.2938  
## sp_ptbBMns520  2.553e-01  8.305e-01   0.307   0.7585  
## sp_ptbBMns521  2.482e-01  8.192e-01   0.303   0.7619  
## sp_ptbBMns522  6.761e-01  6.885e-01   0.982   0.3261  
## sp_ptbBMns523 -7.674e-01  8.009e-01  -0.958   0.3380  
## sp_ptbBMns524  4.873e-01  7.673e-01   0.635   0.5254  
## sp_ptbBMns525  5.423e-01  6.345e-01   0.855   0.3927  
## sp_ptbBMns526  5.333e-01  7.360e-01   0.725   0.4687  
## sp_ptbBMns527  2.610e-01  6.860e-01   0.381   0.7036  
## sp_ptbBMns528  2.669e-01  7.288e-01   0.366   0.7142  
## sp_ptbBMns529  4.667e-01  7.230e-01   0.646   0.5186  
## sp_ptbBMns530 -4.013e-01  7.624e-01  -0.526   0.5986  
## sp_ptbBMns531  5.814e-01  6.638e-01   0.876   0.3811  
## sp_ptbBMns532  6.771e-01  7.563e-01   0.895   0.3706  
## sp_ptbBMns533 -4.642e-01  6.570e-01  -0.707   0.4799  
## sp_ptbBMns534  8.015e-01  6.543e-01   1.225   0.2206  
## sp_ptbBMns535  7.315e-02  7.319e-01   0.100   0.9204  
## sp_ptbBMns536  9.969e-01  6.782e-01   1.470   0.1416  
## sp_ptbBMns537  2.986e-01  7.405e-01   0.403   0.6868  
## sp_ptbBMns538  5.245e-01  6.884e-01   0.762   0.4461  
## sp_ptbBMns539 -1.791e-01  7.238e-01  -0.247   0.8046  
## sp_ptbBMns540  6.900e-01  1.022e+00   0.675   0.4996  
## sp_ptbBMns541  1.643e-01  7.149e-01   0.230   0.8183  
## sp_ptbBMns542 -1.034e+00  8.198e-01  -1.261   0.2072  
## sp_ptbBMns543  1.627e-01  7.484e-01   0.217   0.8279  
## sp_ptbBMns544 -3.629e-01  8.775e-01  -0.414   0.6792  
## sp_ptbBMns545  3.725e-01  1.044e+00   0.357   0.7213  
## sp_ptbBMns546  7.102e-01  7.885e-01   0.901   0.3677  
## sp_ptbBMns547  6.216e-01  7.737e-01   0.803   0.4217  
## sp_ptbBMns548  9.988e-01  7.273e-01   1.373   0.1697  
## sp_ptbBMns549  9.101e-01  7.441e-01   1.223   0.2213  
## sp_ptbBMns550 -4.083e-02  8.740e-01  -0.047   0.9627  
## sp_ptbBMns551 -4.631e-01  7.978e-01  -0.580   0.5616  
## sp_ptbBMns552 -2.041e-01  6.354e-01  -0.321   0.7480  
## sp_ptbBMns553  4.695e-01  6.637e-01   0.707   0.4794  
## sp_ptbBMns554  4.446e-03  7.074e-01   0.006   0.9950  
## sp_ptbBMns555  9.562e-01  7.475e-01   1.279   0.2008  
## sp_ptbBMns556  1.237e+00  8.063e-01   1.534   0.1251  
## sp_ptbBMns557  1.856e-01  7.755e-01   0.239   0.8109  
## sp_ptbBMns558  4.637e-01  7.323e-01   0.633   0.5266  
## sp_ptbBMns559  4.951e-01  6.804e-01   0.728   0.4668  
## sp_ptbBMns560 -1.756e-01  7.515e-01  -0.234   0.8152  
## sp_ptbBMns561  6.378e-01  6.420e-01   0.993   0.3205  
## sp_ptbBMns562  7.228e-01  6.668e-01   1.084   0.2784  
## sp_ptbBMns563 -6.946e-01  6.992e-01  -0.993   0.3205  
## sp_ptbBMns564  8.190e-01  7.479e-01   1.095   0.2735  
## sp_ptbBMns565 -2.495e-02  7.457e-01  -0.033   0.9733  
## sp_ptbBMns566  7.215e-01  6.955e-01   1.037   0.2996  
## sp_ptbBMns567 -6.392e-01  8.307e-01  -0.769   0.4416  
## sp_ptbBMns568  8.859e-01  6.168e-01   1.436   0.1509  
## sp_ptbBMns569  1.281e-01  7.461e-01   0.172   0.8637  
## sp_ptbBMns570  7.129e-01  8.445e-01   0.844   0.3986  
## sp_ptbBMns571  1.857e-01  7.798e-01   0.238   0.8117  
## sp_ptbBMns572  8.178e-01  6.616e-01   1.236   0.2164  
## sp_ptbBMns573 -9.975e-03  7.012e-01  -0.014   0.9887  
## sp_ptbBMns574  6.764e-01  6.670e-01   1.014   0.3105  
## sp_ptbBMns575  1.357e-01  9.146e-01   0.148   0.8821  
## sp_ptbBMns576 -3.685e-01  6.712e-01  -0.549   0.5830  
## sp_ptbBMns577  3.210e-01  7.836e-01   0.410   0.6821  
## sp_ptbBMns578  3.797e-01  6.372e-01   0.596   0.5512  
## sp_ptbBMns579  3.907e-01  8.332e-01   0.469   0.6391  
## sp_ptbBMns580  4.818e-01  7.383e-01   0.653   0.5140  
## sp_ptbBMns581  8.058e-01  6.633e-01   1.215   0.2244  
## sp_ptbBMns582  4.439e-01  7.217e-01   0.615   0.5384  
## sp_ptbBMns583  6.840e-01  6.367e-01   1.074   0.2827  
## sp_ptbBMns584  8.207e-01  7.229e-01   1.135   0.2563  
## sp_ptbBMns585 -1.039e-01  8.041e-01  -0.129   0.8972  
## sp_ptbBMns586  4.408e-01  6.461e-01   0.682   0.4951  
## sp_ptbBMns587  2.259e-01  5.833e-01   0.387   0.6986  
## sp_ptbBMns588  4.589e-01  6.659e-01   0.689   0.4907  
## sp_ptbBMns589         NA         NA      NA       NA  
## sp_ptbBMns590         NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(15595.29) family taken to be 1)
## 
##     Null deviance: 1101.22  on 886  degrees of freedom
## Residual deviance:  983.64  on 793  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3206.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  15595 
##           Std. Err.:  130089 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3016.537
SA3m5a <- glm.nb(ptbBM ~ cb5.minRH + sp_ptbBMns5,data=week); summary(SA3m5a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb5.minRH + sp_ptbBMns5, data = week, 
##     init.theta = 15825.53811, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4178  -0.8148  -0.1139   0.5813   2.9998  
## 
## Coefficients: (3 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     1.414e+01  9.125e+00   1.550  0.12121   
## cb5.minRHv1.l1 -3.329e-01  2.014e-01  -1.654  0.09822 . 
## cb5.minRHv1.l2 -9.099e-03  1.201e-01  -0.076  0.93963   
## cb5.minRHv2.l1 -1.161e+00  7.819e-01  -1.485  0.13743   
## cb5.minRHv2.l2 -3.286e-01  5.247e-01  -0.626  0.53108   
## cb5.minRHv3.l1 -6.686e-01  4.523e-01  -1.478  0.13939   
## cb5.minRHv3.l2 -1.229e-01  2.934e-01  -0.419  0.67518   
## sp_ptbBMns51           NA         NA      NA       NA   
## sp_ptbBMns52    2.227e+06  5.339e+06   0.417  0.67667   
## sp_ptbBMns53   -1.952e+00  9.664e+00  -0.202  0.83996   
## sp_ptbBMns54    8.671e-01  1.617e+00   0.536  0.59184   
## sp_ptbBMns55   -2.462e-01  9.454e-01  -0.260  0.79458   
## sp_ptbBMns56    3.776e-01  8.730e-01   0.433  0.66534   
## sp_ptbBMns57   -2.197e+00  8.272e-01  -2.656  0.00791 **
## sp_ptbBMns58   -2.096e-01  7.209e-01  -0.291  0.77119   
## sp_ptbBMns59   -8.091e-01  8.039e-01  -1.006  0.31421   
## sp_ptbBMns510  -1.143e+00  8.936e-01  -1.279  0.20086   
## sp_ptbBMns511  -1.552e+00  1.051e+00  -1.477  0.13962   
## sp_ptbBMns512  -1.075e+00  8.438e-01  -1.274  0.20255   
## sp_ptbBMns513  -7.352e-01  8.327e-01  -0.883  0.37726   
## sp_ptbBMns514  -9.332e-01  9.105e-01  -1.025  0.30542   
## sp_ptbBMns515   1.000e+00  8.129e-01   1.230  0.21863   
## sp_ptbBMns516  -3.255e-01  7.961e-01  -0.409  0.68260   
## sp_ptbBMns517  -4.119e-01  7.143e-01  -0.577  0.56414   
## sp_ptbBMns518   3.106e-01  6.959e-01   0.446  0.65538   
## sp_ptbBMns519  -1.767e+00  7.707e-01  -2.293  0.02186 * 
## sp_ptbBMns520  -2.331e-02  8.041e-01  -0.029  0.97687   
## sp_ptbBMns521  -8.950e-01  7.965e-01  -1.124  0.26111   
## sp_ptbBMns522  -8.213e-01  1.000e+00  -0.821  0.41148   
## sp_ptbBMns523  -2.865e+00  1.178e+00  -2.432  0.01502 * 
## sp_ptbBMns524  -1.965e+00  1.059e+00  -1.856  0.06344 . 
## sp_ptbBMns525  -1.951e+00  1.358e+00  -1.437  0.15079   
## sp_ptbBMns526  -1.340e+00  1.098e+00  -1.220  0.22249   
## sp_ptbBMns527  -1.014e+00  9.507e-01  -1.067  0.28603   
## sp_ptbBMns528  -5.400e-01  8.572e-01  -0.630  0.52871   
## sp_ptbBMns529  -6.991e-01  8.506e-01  -0.822  0.41113   
## sp_ptbBMns530  -1.033e+00  8.364e-01  -1.235  0.21700   
## sp_ptbBMns531  -3.802e-01  7.927e-01  -0.480  0.63148   
## sp_ptbBMns532  -4.809e-01  7.305e-01  -0.658  0.51035   
## sp_ptbBMns533  -1.364e+00  8.241e-01  -1.655  0.09783 . 
## sp_ptbBMns534  -4.898e-01  7.179e-01  -0.682  0.49509   
## sp_ptbBMns535  -1.190e+00  9.089e-01  -1.309  0.19060   
## sp_ptbBMns536  -4.386e-01  8.215e-01  -0.534  0.59337   
## sp_ptbBMns537  -1.064e+00  8.104e-01  -1.313  0.18926   
## sp_ptbBMns538  -2.890e-01  7.425e-01  -0.389  0.69712   
## sp_ptbBMns539  -1.218e+00  7.792e-01  -1.563  0.11795   
## sp_ptbBMns540   3.989e-01  9.292e-01   0.429  0.66769   
## sp_ptbBMns541  -3.427e-01  7.371e-01  -0.465  0.64193   
## sp_ptbBMns542  -1.668e+00  9.568e-01  -1.743  0.08127 . 
## sp_ptbBMns543  -8.418e-01  9.407e-01  -0.895  0.37088   
## sp_ptbBMns544  -1.592e+00  8.472e-01  -1.879  0.06028 . 
## sp_ptbBMns545  -1.548e+00  1.239e+00  -1.250  0.21135   
## sp_ptbBMns546  -1.195e+00  1.012e+00  -1.181  0.23742   
## sp_ptbBMns547  -4.381e-01  7.003e-01  -0.626  0.53152   
## sp_ptbBMns548   2.059e-01  5.566e-01   0.370  0.71142   
## sp_ptbBMns549  -3.266e-01  6.453e-01  -0.506  0.61273   
## sp_ptbBMns550  -2.425e-01  8.999e-01  -0.269  0.78757   
## sp_ptbBMns551  -5.284e-01  7.463e-01  -0.708  0.47892   
## sp_ptbBMns552  -2.186e-01  6.778e-01  -0.322  0.74710   
## sp_ptbBMns553   6.017e-02  7.031e-01   0.086  0.93181   
## sp_ptbBMns554  -2.981e-01  5.869e-01  -0.508  0.61151   
## sp_ptbBMns555   1.993e-01  8.621e-01   0.231  0.81722   
## sp_ptbBMns556   6.383e-01  7.610e-01   0.839  0.40160   
## sp_ptbBMns557  -1.050e+00  8.360e-01  -1.256  0.20926   
## sp_ptbBMns558  -2.767e-01  6.268e-01  -0.441  0.65886   
## sp_ptbBMns559  -4.447e-01  7.019e-01  -0.633  0.52641   
## sp_ptbBMns560  -6.508e-01  8.602e-01  -0.757  0.44927   
## sp_ptbBMns561  -3.764e-02  9.179e-01  -0.041  0.96730   
## sp_ptbBMns562   7.099e-01  6.727e-01   1.055  0.29125   
## sp_ptbBMns563  -7.556e-01  7.202e-01  -1.049  0.29408   
## sp_ptbBMns564   5.117e-01  7.303e-01   0.701  0.48357   
## sp_ptbBMns565   9.909e-01  1.245e+00   0.796  0.42608   
## sp_ptbBMns566   1.493e+00  8.836e-01   1.689  0.09118 . 
## sp_ptbBMns567   8.977e-03  9.261e-01   0.010  0.99227   
## sp_ptbBMns568   2.039e+00  8.855e-01   2.303  0.02127 * 
## sp_ptbBMns569   1.211e+00  1.061e+00   1.141  0.25396   
## sp_ptbBMns570   1.079e+00  1.091e+00   0.989  0.32256   
## sp_ptbBMns571   1.525e+00  8.927e-01   1.708  0.08767 . 
## sp_ptbBMns572   1.554e+00  8.162e-01   1.904  0.05696 . 
## sp_ptbBMns573   1.139e+00  8.290e-01   1.374  0.16955   
## sp_ptbBMns574   9.574e-01  6.830e-01   1.402  0.16095   
## sp_ptbBMns575   8.485e-01  8.559e-01   0.991  0.32149   
## sp_ptbBMns576   4.891e-01  6.837e-01   0.715  0.47443   
## sp_ptbBMns577   6.335e-01  7.051e-01   0.899  0.36892   
## sp_ptbBMns578   4.844e-01  5.988e-01   0.809  0.41858   
## sp_ptbBMns579   4.633e-01  5.886e-01   0.787  0.43118   
## sp_ptbBMns580   1.226e-01  6.534e-01   0.188  0.85113   
## sp_ptbBMns581   8.279e-01  7.745e-01   1.069  0.28507   
## sp_ptbBMns582   1.979e-01  6.703e-01   0.295  0.76783   
## sp_ptbBMns583   1.039e+00  7.758e-01   1.339  0.18051   
## sp_ptbBMns584   7.137e-01  6.704e-01   1.065  0.28709   
## sp_ptbBMns585   4.546e-01  8.681e-01   0.524  0.60051   
## sp_ptbBMns586   9.236e-01  8.327e-01   1.109  0.26738   
## sp_ptbBMns587   8.453e-01  6.350e-01   1.331  0.18318   
## sp_ptbBMns588   5.890e-01  6.610e-01   0.891  0.37288   
## sp_ptbBMns589          NA         NA      NA       NA   
## sp_ptbBMns590          NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(15825.54) family taken to be 1)
## 
##     Null deviance: 1101.22  on 886  degrees of freedom
## Residual deviance:  981.24  on 793  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3204.1
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  15826 
##           Std. Err.:  130488 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3014.141
SA3m6a <- glm.nb(ptbBM ~ cb6.meanRH + sp_ptbBMns5,data=week); summary(SA3m6a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb6.meanRH + sp_ptbBMns5, data = week, 
##     init.theta = 15555.69816, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4008  -0.8285  -0.1313   0.5538   2.9451  
## 
## Coefficients: (3 not defined because of singularities)
##                   Estimate Std. Error z value Pr(>|z|)  
## (Intercept)      1.053e+01  1.139e+01   0.925   0.3552  
## cb6.meanRHv1.l1 -2.417e-01  2.494e-01  -0.969   0.3326  
## cb6.meanRHv1.l2 -3.576e-02  1.509e-01  -0.237   0.8127  
## cb6.meanRHv2.l1 -8.063e-01  9.213e-01  -0.875   0.3815  
## cb6.meanRHv2.l2  6.489e-04  5.680e-01   0.001   0.9991  
## cb6.meanRHv3.l1 -4.197e-01  3.665e-01  -1.145   0.2521  
## cb6.meanRHv3.l2  1.985e-01  2.421e-01   0.820   0.4122  
## sp_ptbBMns51            NA         NA      NA       NA  
## sp_ptbBMns52     2.328e+06  5.326e+06   0.437   0.6620  
## sp_ptbBMns53    -2.466e+00  9.638e+00  -0.256   0.7981  
## sp_ptbBMns54     9.266e-01  1.654e+00   0.560   0.5754  
## sp_ptbBMns55    -3.479e-01  9.083e-01  -0.383   0.7017  
## sp_ptbBMns56     1.706e-01  8.755e-01   0.195   0.8455  
## sp_ptbBMns57    -1.961e+00  8.408e-01  -2.332   0.0197 *
## sp_ptbBMns58    -2.259e-02  6.945e-01  -0.033   0.9741  
## sp_ptbBMns59    -6.700e-02  9.457e-01  -0.071   0.9435  
## sp_ptbBMns510   -5.417e-01  8.698e-01  -0.623   0.5334  
## sp_ptbBMns511   -7.369e-01  1.010e+00  -0.730   0.4656  
## sp_ptbBMns512   -5.666e-01  8.461e-01  -0.670   0.5031  
## sp_ptbBMns513   -4.559e-01  9.009e-01  -0.506   0.6128  
## sp_ptbBMns514   -1.656e-01  1.000e+00  -0.166   0.8685  
## sp_ptbBMns515    5.524e-01  7.680e-01   0.719   0.4720  
## sp_ptbBMns516   -1.460e+00  1.221e+00  -1.196   0.2317  
## sp_ptbBMns517   -1.916e+00  1.782e+00  -1.075   0.2824  
## sp_ptbBMns518   -2.029e+00  2.236e+00  -0.907   0.3644  
## sp_ptbBMns519   -4.159e+00  2.429e+00  -1.712   0.0869 .
## sp_ptbBMns520   -2.417e+00  2.431e+00  -0.994   0.3201  
## sp_ptbBMns521   -2.528e+00  2.397e+00  -1.055   0.2916  
## sp_ptbBMns522   -2.116e+00  2.409e+00  -0.878   0.3798  
## sp_ptbBMns523   -3.448e+00  2.486e+00  -1.387   0.1654  
## sp_ptbBMns524   -2.652e+00  2.264e+00  -1.171   0.2416  
## sp_ptbBMns525   -2.615e+00  2.658e+00  -0.984   0.3253  
## sp_ptbBMns526   -1.849e+00  1.964e+00  -0.941   0.3466  
## sp_ptbBMns527   -1.548e+00  1.741e+00  -0.889   0.3742  
## sp_ptbBMns528   -9.276e-01  1.328e+00  -0.698   0.4850  
## sp_ptbBMns529   -9.305e-01  1.228e+00  -0.758   0.4486  
## sp_ptbBMns530   -1.262e+00  9.497e-01  -1.329   0.1840  
## sp_ptbBMns531   -6.492e-01  1.121e+00  -0.579   0.5626  
## sp_ptbBMns532   -6.795e-01  1.144e+00  -0.594   0.5524  
## sp_ptbBMns533   -1.625e+00  1.270e+00  -1.280   0.2005  
## sp_ptbBMns534   -7.177e-01  1.240e+00  -0.579   0.5629  
## sp_ptbBMns535   -1.074e+00  1.266e+00  -0.849   0.3960  
## sp_ptbBMns536    1.456e-02  1.027e+00   0.014   0.9887  
## sp_ptbBMns537   -7.781e-01  9.545e-01  -0.815   0.4149  
## sp_ptbBMns538   -1.078e-02  8.560e-01  -0.013   0.9899  
## sp_ptbBMns539   -9.242e-01  7.565e-01  -1.222   0.2218  
## sp_ptbBMns540    8.336e-01  9.224e-01   0.904   0.3661  
## sp_ptbBMns541    2.656e-02  8.141e-01   0.033   0.9740  
## sp_ptbBMns542   -1.474e+00  1.144e+00  -1.288   0.1977  
## sp_ptbBMns543   -6.796e-01  1.107e+00  -0.614   0.5391  
## sp_ptbBMns544   -1.715e+00  1.016e+00  -1.688   0.0914 .
## sp_ptbBMns545   -9.547e-01  1.432e+00  -0.667   0.5049  
## sp_ptbBMns546   -8.544e-01  1.229e+00  -0.695   0.4871  
## sp_ptbBMns547   -1.446e-01  8.955e-01  -0.161   0.8717  
## sp_ptbBMns548    2.928e-01  6.982e-01   0.419   0.6750  
## sp_ptbBMns549    9.591e-02  7.801e-01   0.123   0.9022  
## sp_ptbBMns550    2.763e-01  9.408e-01   0.294   0.7690  
## sp_ptbBMns551   -2.779e-01  8.194e-01  -0.339   0.7345  
## sp_ptbBMns552   -5.170e-02  6.754e-01  -0.077   0.9390  
## sp_ptbBMns553    6.262e-02  6.838e-01   0.092   0.9270  
## sp_ptbBMns554   -4.149e-01  5.980e-01  -0.694   0.4878  
## sp_ptbBMns555    6.089e-01  8.224e-01   0.740   0.4590  
## sp_ptbBMns556    7.200e-01  8.096e-01   0.889   0.3738  
## sp_ptbBMns557   -6.353e-01  8.844e-01  -0.718   0.4725  
## sp_ptbBMns558   -2.297e-01  7.100e-01  -0.324   0.7463  
## sp_ptbBMns559   -2.937e-01  7.671e-01  -0.383   0.7018  
## sp_ptbBMns560   -7.680e-01  8.682e-01  -0.885   0.3764  
## sp_ptbBMns561   -1.720e-01  9.941e-01  -0.173   0.8626  
## sp_ptbBMns562    5.260e-01  7.328e-01   0.718   0.4729  
## sp_ptbBMns563   -1.079e+00  8.672e-01  -1.245   0.2133  
## sp_ptbBMns564    6.760e-01  8.255e-01   0.819   0.4129  
## sp_ptbBMns565    1.112e+00  1.020e+00   1.090   0.2758  
## sp_ptbBMns566    1.018e+00  6.937e-01   1.468   0.1422  
## sp_ptbBMns567   -5.427e-01  7.234e-01  -0.750   0.4531  
## sp_ptbBMns568    8.305e-01  7.132e-01   1.164   0.2443  
## sp_ptbBMns569    2.612e-01  7.396e-01   0.353   0.7239  
## sp_ptbBMns570    1.160e+00  9.630e-01   1.205   0.2284  
## sp_ptbBMns571    9.090e-01  7.093e-01   1.282   0.2000  
## sp_ptbBMns572    1.034e+00  6.531e-01   1.584   0.1133  
## sp_ptbBMns573    7.660e-02  6.923e-01   0.111   0.9119  
## sp_ptbBMns574    7.141e-01  6.301e-01   1.133   0.2571  
## sp_ptbBMns575    6.818e-01  7.739e-01   0.881   0.3784  
## sp_ptbBMns576   -1.559e-01  5.990e-01  -0.260   0.7947  
## sp_ptbBMns577    3.829e-01  6.860e-01   0.558   0.5767  
## sp_ptbBMns578    2.542e-01  5.928e-01   0.429   0.6681  
## sp_ptbBMns579    4.495e-02  7.044e-01   0.064   0.9491  
## sp_ptbBMns580    3.918e-01  7.714e-01   0.508   0.6115  
## sp_ptbBMns581    6.709e-01  7.486e-01   0.896   0.3701  
## sp_ptbBMns582    1.400e-01  6.944e-01   0.202   0.8403  
## sp_ptbBMns583    7.093e-01  7.672e-01   0.925   0.3552  
## sp_ptbBMns584    8.695e-01  7.843e-01   1.109   0.2676  
## sp_ptbBMns585    5.544e-01  9.246e-01   0.600   0.5488  
## sp_ptbBMns586    8.757e-01  7.547e-01   1.160   0.2459  
## sp_ptbBMns587    8.265e-01  6.222e-01   1.328   0.1841  
## sp_ptbBMns588    5.018e-01  6.979e-01   0.719   0.4721  
## sp_ptbBMns589           NA         NA      NA       NA  
## sp_ptbBMns590           NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(15555.7) family taken to be 1)
## 
##     Null deviance: 1101.22  on 886  degrees of freedom
## Residual deviance:  983.29  on 793  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3206.2
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  15556 
##           Std. Err.:  131004 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3016.188
SA3m7a <- glm.nb(ptbBM ~ cb7.maxRH + sp_ptbBMns5,data=week); summary(SA3m7a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb7.maxRH + sp_ptbBMns5, data = week, 
##     init.theta = 15534.75875, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4135  -0.8018  -0.1179   0.5469   2.7803  
## 
## Coefficients: (3 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)     1.974e+00  9.388e+00   0.210    0.833
## cb7.maxRHv1.l1 -2.680e-02  2.341e-01  -0.114    0.909
## cb7.maxRHv1.l2  2.456e-01  1.672e-01   1.469    0.142
## cb7.maxRHv2.l1 -1.710e-01  7.281e-01  -0.235    0.814
## cb7.maxRHv2.l2  5.635e-01  5.483e-01   1.028    0.304
## cb7.maxRHv3.l1  4.095e-02  2.261e-01   0.181    0.856
## cb7.maxRHv3.l2  2.147e-01  1.445e-01   1.486    0.137
## sp_ptbBMns51           NA         NA      NA       NA
## sp_ptbBMns52    1.929e+06  5.313e+06   0.363    0.717
## sp_ptbBMns53   -1.524e+00  9.731e+00  -0.157    0.876
## sp_ptbBMns54    1.098e+00  1.677e+00   0.655    0.513
## sp_ptbBMns55   -9.971e-03  1.172e+00  -0.009    0.993
## sp_ptbBMns56    7.533e-01  8.582e-01   0.878    0.380
## sp_ptbBMns57   -1.239e+00  8.409e-01  -1.474    0.141
## sp_ptbBMns58    3.143e-01  6.752e-01   0.465    0.642
## sp_ptbBMns59    7.303e-01  8.345e-01   0.875    0.381
## sp_ptbBMns510  -5.108e-01  7.035e-01  -0.726    0.468
## sp_ptbBMns511  -7.763e-02  6.301e-01  -0.123    0.902
## sp_ptbBMns512  -2.829e-01  6.366e-01  -0.444    0.657
## sp_ptbBMns513  -1.649e-01  7.221e-01  -0.228    0.819
## sp_ptbBMns514   3.802e-01  9.520e-01   0.399    0.690
## sp_ptbBMns515   4.922e-01  6.209e-01   0.793    0.428
## sp_ptbBMns516  -4.861e-01  7.558e-01  -0.643    0.520
## sp_ptbBMns517  -2.487e-01  6.452e-01  -0.385    0.700
## sp_ptbBMns518  -9.247e-02  9.582e-01  -0.097    0.923
## sp_ptbBMns519  -1.240e+00  1.217e+00  -1.018    0.309
## sp_ptbBMns520  -1.310e+00  1.327e+00  -0.987    0.324
## sp_ptbBMns521  -1.813e+00  2.019e+00  -0.898    0.369
## sp_ptbBMns522  -1.861e+00  2.937e+00  -0.634    0.526
## sp_ptbBMns523  -3.488e+00  4.344e+00  -0.803    0.422
## sp_ptbBMns524  -3.450e-01  5.072e+00  -0.068    0.946
## sp_ptbBMns525  -2.912e-01  5.825e+00  -0.050    0.960
## sp_ptbBMns526   1.437e+00  4.507e+00   0.319    0.750
## sp_ptbBMns527   1.998e+00  4.188e+00   0.477    0.633
## sp_ptbBMns528   1.774e+00  2.830e+00   0.627    0.531
## sp_ptbBMns529   1.924e+00  2.465e+00   0.781    0.435
## sp_ptbBMns530  -4.676e-01  1.583e+00  -0.295    0.768
## sp_ptbBMns531   6.778e-01  1.932e+00   0.351    0.726
## sp_ptbBMns532   6.917e-01  2.012e+00   0.344    0.731
## sp_ptbBMns533  -5.795e-01  2.334e+00  -0.248    0.804
## sp_ptbBMns534   1.275e+00  2.317e+00   0.550    0.582
## sp_ptbBMns535   1.027e+00  2.041e+00   0.503    0.615
## sp_ptbBMns536   2.055e+00  1.655e+00   1.241    0.214
## sp_ptbBMns537   1.138e+00  1.546e+00   0.736    0.462
## sp_ptbBMns538   8.160e-01  1.189e+00   0.686    0.493
## sp_ptbBMns539  -2.969e-01  1.071e+00  -0.277    0.782
## sp_ptbBMns540   7.982e-01  1.027e+00   0.777    0.437
## sp_ptbBMns541   6.474e-01  1.044e+00   0.620    0.535
## sp_ptbBMns542  -9.488e-01  1.213e+00  -0.782    0.434
## sp_ptbBMns543   1.259e-01  1.414e+00   0.089    0.929
## sp_ptbBMns544  -3.245e-01  1.312e+00  -0.247    0.805
## sp_ptbBMns545   1.003e+00  1.689e+00   0.594    0.553
## sp_ptbBMns546   1.405e+00  1.609e+00   0.873    0.383
## sp_ptbBMns547   1.009e+00  1.300e+00   0.776    0.438
## sp_ptbBMns548   1.073e+00  1.104e+00   0.972    0.331
## sp_ptbBMns549   1.170e+00  1.009e+00   1.159    0.246
## sp_ptbBMns550   2.177e-01  9.460e-01   0.230    0.818
## sp_ptbBMns551  -3.172e-01  9.111e-01  -0.348    0.728
## sp_ptbBMns552   5.820e-02  8.543e-01   0.068    0.946
## sp_ptbBMns553   2.128e-01  9.030e-01   0.236    0.814
## sp_ptbBMns554  -7.948e-02  8.811e-01  -0.090    0.928
## sp_ptbBMns555   8.290e-01  8.523e-01   0.973    0.331
## sp_ptbBMns556   1.271e+00  8.825e-01   1.441    0.150
## sp_ptbBMns557  -1.600e-01  9.122e-01  -0.175    0.861
## sp_ptbBMns558   1.492e-01  9.656e-01   0.154    0.877
## sp_ptbBMns559   3.494e-01  7.781e-01   0.449    0.653
## sp_ptbBMns560  -6.017e-02  1.049e+00  -0.057    0.954
## sp_ptbBMns561   1.163e+00  1.122e+00   1.037    0.300
## sp_ptbBMns562   7.993e-01  9.433e-01   0.847    0.397
## sp_ptbBMns563  -6.739e-01  1.099e+00  -0.613    0.540
## sp_ptbBMns564   8.112e-01  9.359e-01   0.867    0.386
## sp_ptbBMns565   1.739e-01  7.922e-01   0.220    0.826
## sp_ptbBMns566   7.451e-01  7.460e-01   0.999    0.318
## sp_ptbBMns567  -9.468e-01  7.597e-01  -1.246    0.213
## sp_ptbBMns568   7.327e-01  7.499e-01   0.977    0.329
## sp_ptbBMns569   6.729e-03  6.853e-01   0.010    0.992
## sp_ptbBMns570   5.825e-01  8.576e-01   0.679    0.497
## sp_ptbBMns571   3.859e-01  6.075e-01   0.635    0.525
## sp_ptbBMns572   6.155e-01  5.877e-01   1.047    0.295
## sp_ptbBMns573  -9.145e-02  6.723e-01  -0.136    0.892
## sp_ptbBMns574   6.879e-01  6.502e-01   1.058    0.290
## sp_ptbBMns575   1.223e-01  7.982e-01   0.153    0.878
## sp_ptbBMns576  -1.592e-01  9.001e-01  -0.177    0.860
## sp_ptbBMns577   2.154e-01  7.727e-01   0.279    0.780
## sp_ptbBMns578   4.911e-01  8.799e-01   0.558    0.577
## sp_ptbBMns579   1.113e+00  1.081e+00   1.030    0.303
## sp_ptbBMns580   6.543e-01  8.400e-01   0.779    0.436
## sp_ptbBMns581   2.649e-01  6.805e-01   0.389    0.697
## sp_ptbBMns582   2.131e-01  6.537e-01   0.326    0.744
## sp_ptbBMns583   5.150e-02  7.214e-01   0.071    0.943
## sp_ptbBMns584   2.554e-01  9.340e-01   0.273    0.785
## sp_ptbBMns585  -7.986e-01  8.914e-01  -0.896    0.370
## sp_ptbBMns586   4.673e-02  6.901e-01   0.068    0.946
## sp_ptbBMns587  -7.754e-02  6.513e-01  -0.119    0.905
## sp_ptbBMns588   3.875e-01  7.684e-01   0.504    0.614
## sp_ptbBMns589          NA         NA      NA       NA
## sp_ptbBMns590          NA         NA      NA       NA
## 
## (Dispersion parameter for Negative Binomial(15534.76) family taken to be 1)
## 
##     Null deviance: 1101.22  on 886  degrees of freedom
## Residual deviance:  983.52  on 793  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3206.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  15535 
##           Std. Err.:  130957 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3016.422
SA3m8a <- glm.nb(ptbBM ~ cb8.AH + sp_ptbBMns5,data=week); summary(SA3m8a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb8.AH + sp_ptbBMns5, data = week, init.theta = 16491.29833, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5551  -0.8036  -0.1209   0.5460   2.8761  
## 
## Coefficients: (3 not defined because of singularities)
##                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   -5.482e+00  1.061e+01  -0.516   0.6055  
## cb8.AHv1.l1    1.216e-01  2.550e-01   0.477   0.6335  
## cb8.AHv1.l2   -1.548e-01  1.804e-01  -0.858   0.3908  
## cb8.AHv2.l1    6.262e-01  8.445e-01   0.741   0.4584  
## cb8.AHv2.l2   -3.246e-01  6.087e-01  -0.533   0.5939  
## cb8.AHv3.l1    5.600e-01  4.266e-01   1.313   0.1893  
## cb8.AHv3.l2    2.452e-01  2.389e-01   1.027   0.3046  
## sp_ptbBMns51          NA         NA      NA       NA  
## sp_ptbBMns52   2.468e+06  5.383e+06   0.459   0.6465  
## sp_ptbBMns53  -1.387e+00  9.756e+00  -0.142   0.8869  
## sp_ptbBMns54   1.877e+00  1.958e+00   0.959   0.3377  
## sp_ptbBMns55   9.504e-01  1.668e+00   0.570   0.5688  
## sp_ptbBMns56   1.804e+00  1.337e+00   1.349   0.1772  
## sp_ptbBMns57  -6.218e-02  1.308e+00  -0.048   0.9621  
## sp_ptbBMns58   1.884e+00  1.454e+00   1.296   0.1951  
## sp_ptbBMns59   1.219e+00  1.173e+00   1.039   0.2989  
## sp_ptbBMns510  6.585e-01  1.355e+00   0.486   0.6270  
## sp_ptbBMns511  1.153e+00  1.250e+00   0.922   0.3563  
## sp_ptbBMns512  1.025e+00  1.338e+00   0.766   0.4439  
## sp_ptbBMns513  8.705e-01  1.298e+00   0.671   0.5025  
## sp_ptbBMns514  7.281e-01  1.430e+00   0.509   0.6106  
## sp_ptbBMns515  1.923e+00  1.638e+00   1.174   0.2405  
## sp_ptbBMns516  1.691e+00  2.094e+00   0.807   0.4195  
## sp_ptbBMns517  3.062e+00  2.747e+00   1.115   0.2650  
## sp_ptbBMns518  4.213e+00  3.417e+00   1.233   0.2176  
## sp_ptbBMns519  1.388e+00  3.567e+00   0.389   0.6972  
## sp_ptbBMns520  3.074e+00  3.536e+00   0.869   0.3847  
## sp_ptbBMns521  2.000e+00  3.403e+00   0.588   0.5566  
## sp_ptbBMns522  2.767e+00  3.363e+00   0.823   0.4107  
## sp_ptbBMns523  1.860e+00  3.142e+00   0.592   0.5538  
## sp_ptbBMns524  3.054e+00  3.515e+00   0.869   0.3848  
## sp_ptbBMns525  3.840e+00  3.691e+00   1.040   0.2982  
## sp_ptbBMns526  2.462e+00  3.370e+00   0.730   0.4651  
## sp_ptbBMns527  2.008e+00  2.956e+00   0.679   0.4969  
## sp_ptbBMns528  1.914e+00  2.853e+00   0.671   0.5023  
## sp_ptbBMns529  1.536e+00  2.300e+00   0.668   0.5044  
## sp_ptbBMns530  1.320e+00  2.257e+00   0.585   0.5586  
## sp_ptbBMns531  1.903e+00  2.133e+00   0.892   0.3722  
## sp_ptbBMns532  2.252e+00  2.312e+00   0.974   0.3301  
## sp_ptbBMns533  1.880e+00  2.439e+00   0.771   0.4408  
## sp_ptbBMns534  2.834e+00  2.598e+00   1.091   0.2754  
## sp_ptbBMns535  1.893e+00  2.484e+00   0.762   0.4461  
## sp_ptbBMns536  2.551e+00  2.525e+00   1.010   0.3124  
## sp_ptbBMns537  1.656e+00  2.537e+00   0.653   0.5138  
## sp_ptbBMns538  2.177e+00  2.347e+00   0.928   0.3536  
## sp_ptbBMns539  1.211e+00  2.075e+00   0.584   0.5595  
## sp_ptbBMns540  1.978e+00  1.999e+00   0.989   0.3225  
## sp_ptbBMns541  1.802e+00  1.730e+00   1.042   0.2976  
## sp_ptbBMns542  8.129e-01  1.781e+00   0.456   0.6481  
## sp_ptbBMns543  2.085e+00  1.692e+00   1.232   0.2181  
## sp_ptbBMns544  8.900e-01  1.708e+00   0.521   0.6023  
## sp_ptbBMns545  1.647e+00  1.708e+00   0.964   0.3350  
## sp_ptbBMns546  1.704e+00  1.256e+00   1.356   0.1749  
## sp_ptbBMns547  1.105e+00  9.497e-01   1.164   0.2445  
## sp_ptbBMns548  1.370e+00  8.593e-01   1.595   0.1107  
## sp_ptbBMns549  1.020e+00  9.812e-01   1.040   0.2986  
## sp_ptbBMns550 -2.983e-01  1.390e+00  -0.215   0.8301  
## sp_ptbBMns551  7.316e-01  1.608e+00   0.455   0.6492  
## sp_ptbBMns552  1.601e+00  1.637e+00   0.978   0.3279  
## sp_ptbBMns553  1.916e+00  1.693e+00   1.132   0.2578  
## sp_ptbBMns554  1.300e+00  1.472e+00   0.883   0.3771  
## sp_ptbBMns555  1.668e+00  1.297e+00   1.287   0.1982  
## sp_ptbBMns556  1.836e+00  1.210e+00   1.517   0.1293  
## sp_ptbBMns557  1.363e+00  1.365e+00   0.999   0.3179  
## sp_ptbBMns558  1.467e+00  1.422e+00   1.032   0.3022  
## sp_ptbBMns559  1.553e+00  1.317e+00   1.179   0.2383  
## sp_ptbBMns560  8.575e-01  1.306e+00   0.656   0.5115  
## sp_ptbBMns561  1.492e+00  1.037e+00   1.438   0.1504  
## sp_ptbBMns562  1.600e+00  9.505e-01   1.683   0.0923 .
## sp_ptbBMns563 -3.271e-02  1.158e+00  -0.028   0.9775  
## sp_ptbBMns564  9.422e-01  8.690e-01   1.084   0.2782  
## sp_ptbBMns565  6.041e-01  1.297e+00   0.466   0.6414  
## sp_ptbBMns566  1.842e+00  1.075e+00   1.714   0.0866 .
## sp_ptbBMns567  7.389e-02  1.054e+00   0.070   0.9441  
## sp_ptbBMns568  1.324e+00  8.518e-01   1.555   0.1200  
## sp_ptbBMns569  3.388e-01  8.562e-01   0.396   0.6923  
## sp_ptbBMns570 -2.655e-03  8.546e-01  -0.003   0.9975  
## sp_ptbBMns571  8.322e-01  7.919e-01   1.051   0.2933  
## sp_ptbBMns572  1.516e+00  7.269e-01   2.086   0.0370 *
## sp_ptbBMns573  2.490e-01  6.874e-01   0.362   0.7171  
## sp_ptbBMns574  8.438e-01  6.702e-01   1.259   0.2080  
## sp_ptbBMns575 -1.283e-01  7.418e-01  -0.173   0.8627  
## sp_ptbBMns576 -1.112e+00  1.723e+00  -0.645   0.5187  
## sp_ptbBMns577 -9.395e-01  1.467e+00  -0.641   0.5218  
## sp_ptbBMns578 -2.086e+00  1.489e+00  -1.400   0.1614  
## sp_ptbBMns579 -1.990e+00  1.136e+00  -1.751   0.0799 .
## sp_ptbBMns580 -2.027e+00  1.173e+00  -1.727   0.0841 .
## sp_ptbBMns581  4.482e-01  5.817e-01   0.770   0.4410  
## sp_ptbBMns582  9.205e-01  7.248e-01   1.270   0.2041  
## sp_ptbBMns583  3.505e-01  6.113e-01   0.573   0.5664  
## sp_ptbBMns584  6.364e-01  6.570e-01   0.969   0.3327  
## sp_ptbBMns585 -8.589e-01  7.474e-01  -1.149   0.2505  
## sp_ptbBMns586  5.569e-01  6.195e-01   0.899   0.3686  
## sp_ptbBMns587  5.605e-01  5.033e-01   1.114   0.2654  
## sp_ptbBMns588  6.416e-01  6.700e-01   0.958   0.3382  
## sp_ptbBMns589         NA         NA      NA       NA  
## sp_ptbBMns590         NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(16491.3) family taken to be 1)
## 
##     Null deviance: 1101.23  on 886  degrees of freedom
## Residual deviance:  979.78  on 793  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3202.7
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  16491 
##           Std. Err.:  131680 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3012.67
SA3m9a <- glm.nb(ptbBM ~ cb9.minT + sp_ptbBMns5,data=week); summary(SA3m9a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb9.minT + sp_ptbBMns5, data = week, 
##     init.theta = 17448.55852, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3977  -0.8342  -0.1111   0.5435   2.8324  
## 
## Coefficients: (3 not defined because of singularities)
##                 Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    2.883e-01  8.973e+00   0.032  0.97437   
## cb9.minTv1.l1  2.738e-01  2.171e-01   1.261  0.20724   
## cb9.minTv1.l2 -3.795e-01  1.497e-01  -2.535  0.01123 * 
## cb9.minTv2.l1  1.316e-01  7.587e-01   0.173  0.86226   
## cb9.minTv2.l2 -8.424e-01  5.516e-01  -1.527  0.12675   
## cb9.minTv3.l1  1.779e-01  4.041e-01   0.440  0.65973   
## cb9.minTv3.l2  2.391e-01  3.077e-01   0.777  0.43720   
## sp_ptbBMns51          NA         NA      NA       NA   
## sp_ptbBMns52   2.288e+06  5.352e+06   0.427  0.66906   
## sp_ptbBMns53  -3.215e+00  9.649e+00  -0.333  0.73902   
## sp_ptbBMns54   1.517e-01  1.592e+00   0.095  0.92408   
## sp_ptbBMns55  -1.351e+00  1.013e+00  -1.333  0.18249   
## sp_ptbBMns56  -7.888e-01  8.786e-01  -0.898  0.36928   
## sp_ptbBMns57  -2.564e+00  9.731e-01  -2.634  0.00843 **
## sp_ptbBMns58   2.176e-01  7.092e-01   0.307  0.75901   
## sp_ptbBMns59  -5.288e-01  7.909e-01  -0.669  0.50374   
## sp_ptbBMns510 -9.688e-01  7.792e-01  -1.243  0.21372   
## sp_ptbBMns511 -8.698e-01  8.503e-01  -1.023  0.30632   
## sp_ptbBMns512 -6.818e-01  8.364e-01  -0.815  0.41493   
## sp_ptbBMns513 -1.559e+00  9.759e-01  -1.598  0.11015   
## sp_ptbBMns514 -1.003e+00  8.471e-01  -1.184  0.23656   
## sp_ptbBMns515 -1.378e-01  7.560e-01  -0.182  0.85539   
## sp_ptbBMns516 -1.464e+00  7.654e-01  -1.913  0.05580 . 
## sp_ptbBMns517 -5.405e-01  6.984e-01  -0.774  0.43897   
## sp_ptbBMns518  2.708e-01  6.889e-01   0.393  0.69421   
## sp_ptbBMns519 -1.722e+00  8.219e-01  -2.095  0.03620 * 
## sp_ptbBMns520  8.761e-01  7.094e-01   1.235  0.21687   
## sp_ptbBMns521 -2.945e-01  7.139e-01  -0.413  0.67996   
## sp_ptbBMns522  8.915e-01  7.909e-01   1.127  0.25966   
## sp_ptbBMns523 -2.045e-01  7.899e-01  -0.259  0.79576   
## sp_ptbBMns524  1.445e+00  1.181e+00   1.223  0.22131   
## sp_ptbBMns525  2.467e+00  1.185e+00   2.081  0.03740 * 
## sp_ptbBMns526  2.202e+00  1.740e+00   1.266  0.20551   
## sp_ptbBMns527  9.763e-01  1.538e+00   0.635  0.52570   
## sp_ptbBMns528  5.225e-01  1.636e+00   0.319  0.74948   
## sp_ptbBMns529 -5.243e-01  1.138e+00  -0.461  0.64496   
## sp_ptbBMns530 -2.397e-01  1.058e+00  -0.227  0.82079   
## sp_ptbBMns531 -2.175e-01  7.228e-01  -0.301  0.76345   
## sp_ptbBMns532  4.706e-01  7.048e-01   0.668  0.50429   
## sp_ptbBMns533  1.320e-01  6.889e-01   0.192  0.84806   
## sp_ptbBMns534  5.734e-01  8.025e-01   0.715  0.47487   
## sp_ptbBMns535  1.165e+00  8.056e-01   1.446  0.14826   
## sp_ptbBMns536  1.612e+00  8.279e-01   1.947  0.05152 . 
## sp_ptbBMns537  1.271e+00  1.011e+00   1.257  0.20883   
## sp_ptbBMns538  1.718e+00  1.017e+00   1.690  0.09112 . 
## sp_ptbBMns539 -1.008e+00  1.003e+00  -1.005  0.31489   
## sp_ptbBMns540  1.304e+00  9.737e-01   1.339  0.18068   
## sp_ptbBMns541 -6.513e-02  7.696e-01  -0.085  0.93256   
## sp_ptbBMns542 -1.059e+00  7.072e-01  -1.498  0.13414   
## sp_ptbBMns543  2.650e-01  6.359e-01   0.417  0.67694   
## sp_ptbBMns544 -1.705e+00  7.212e-01  -2.364  0.01809 * 
## sp_ptbBMns545 -6.838e-01  8.665e-01  -0.789  0.43003   
## sp_ptbBMns546 -7.905e-01  1.126e+00  -0.702  0.48261   
## sp_ptbBMns547 -1.378e+00  9.923e-01  -1.389  0.16497   
## sp_ptbBMns548 -7.710e-01  9.973e-01  -0.773  0.43948   
## sp_ptbBMns549 -1.865e+00  1.062e+00  -1.757  0.07898 . 
## sp_ptbBMns550 -9.185e-01  9.479e-01  -0.969  0.33254   
## sp_ptbBMns551 -2.664e-01  7.230e-01  -0.368  0.71257   
## sp_ptbBMns552 -3.145e-01  6.704e-01  -0.469  0.63894   
## sp_ptbBMns553  2.668e-01  6.800e-01   0.392  0.69478   
## sp_ptbBMns554 -1.088e+00  7.108e-01  -1.530  0.12592   
## sp_ptbBMns555 -8.039e-02  7.373e-01  -0.109  0.91318   
## sp_ptbBMns556 -1.090e-01  7.574e-01  -0.144  0.88552   
## sp_ptbBMns557 -6.145e-01  7.593e-01  -0.809  0.41831   
## sp_ptbBMns558 -6.226e-01  7.609e-01  -0.818  0.41325   
## sp_ptbBMns559 -8.698e-01  8.036e-01  -1.082  0.27906   
## sp_ptbBMns560 -1.835e+00  9.901e-01  -1.854  0.06380 . 
## sp_ptbBMns561 -1.411e+00  1.126e+00  -1.254  0.21002   
## sp_ptbBMns562 -7.120e-01  1.093e+00  -0.652  0.51471   
## sp_ptbBMns563 -2.494e+00  1.103e+00  -2.261  0.02375 * 
## sp_ptbBMns564 -2.036e+00  1.144e+00  -1.779  0.07520 . 
## sp_ptbBMns565 -1.048e+00  8.401e-01  -1.248  0.21202   
## sp_ptbBMns566 -3.034e-01  9.312e-01  -0.326  0.74453   
## sp_ptbBMns567 -2.010e+00  9.807e-01  -2.050  0.04037 * 
## sp_ptbBMns568 -8.636e-01  9.836e-01  -0.878  0.37992   
## sp_ptbBMns569 -2.665e+00  1.079e+00  -2.470  0.01351 * 
## sp_ptbBMns570 -2.376e+00  1.231e+00  -1.931  0.05354 . 
## sp_ptbBMns571 -1.093e+00  1.148e+00  -0.952  0.34091   
## sp_ptbBMns572 -7.583e-02  1.203e+00  -0.063  0.94974   
## sp_ptbBMns573 -1.847e+00  1.242e+00  -1.487  0.13700   
## sp_ptbBMns574 -1.941e+00  1.273e+00  -1.524  0.12740   
## sp_ptbBMns575 -1.930e+00  2.179e+00  -0.886  0.37583   
## sp_ptbBMns576 -3.890e-01  3.155e+00  -0.123  0.90187   
## sp_ptbBMns577 -1.156e+00  2.827e+00  -0.409  0.68263   
## sp_ptbBMns578 -2.669e+00  2.857e+00  -0.934  0.35010   
## sp_ptbBMns579 -5.529e+00  3.295e+00  -1.678  0.09335 . 
## sp_ptbBMns580 -4.665e+00  2.548e+00  -1.831  0.06714 . 
## sp_ptbBMns581 -2.028e+00  1.200e+00  -1.691  0.09093 . 
## sp_ptbBMns582 -2.046e+00  1.160e+00  -1.763  0.07793 . 
## sp_ptbBMns583 -8.936e-01  9.637e-01  -0.927  0.35380   
## sp_ptbBMns584 -3.209e-01  7.035e-01  -0.456  0.64835   
## sp_ptbBMns585 -1.636e-01  7.235e-01  -0.226  0.82115   
## sp_ptbBMns586 -3.060e-01  6.221e-01  -0.492  0.62279   
## sp_ptbBMns587  1.331e-02  5.364e-01   0.025  0.98020   
## sp_ptbBMns588  5.988e-01  6.864e-01   0.872  0.38300   
## sp_ptbBMns589         NA         NA      NA       NA   
## sp_ptbBMns590         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17448.56) family taken to be 1)
## 
##     Null deviance: 1101.2  on 886  degrees of freedom
## Residual deviance:  974.2  on 793  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3197.1
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17449 
##           Std. Err.:  134101 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3007.088
SA3m10a <- glm.nb(ptbBM ~ cb10.aveT + sp_ptbBMns5,data=week); summary(SA3m10a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb10.aveT + sp_ptbBMns5, data = week, 
##     init.theta = 16664.08935, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4185  -0.8330  -0.1246   0.5577   2.9186  
## 
## Coefficients: (3 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    -1.055e+01  1.213e+01  -0.870   0.3845  
## cb10.aveTv1.l1  3.155e-01  2.555e-01   1.234   0.2170  
## cb10.aveTv1.l2 -3.431e-01  1.858e-01  -1.847   0.0648 .
## cb10.aveTv2.l1  1.016e+00  9.708e-01   1.047   0.2953  
## cb10.aveTv2.l2 -1.039e+00  7.298e-01  -1.424   0.1545  
## cb10.aveTv3.l1  6.342e-01  3.938e-01   1.611   0.1073  
## cb10.aveTv3.l2 -6.740e-02  2.956e-01  -0.228   0.8196  
## sp_ptbBMns51           NA         NA      NA       NA  
## sp_ptbBMns52    2.528e+06  5.368e+06   0.471   0.6377  
## sp_ptbBMns53   -1.550e+00  9.694e+00  -0.160   0.8730  
## sp_ptbBMns54    1.995e+00  1.709e+00   1.167   0.2431  
## sp_ptbBMns55    8.601e-01  1.131e+00   0.761   0.4469  
## sp_ptbBMns56    8.134e-01  8.472e-01   0.960   0.3370  
## sp_ptbBMns57   -8.182e-01  8.393e-01  -0.975   0.3296  
## sp_ptbBMns58    1.384e+00  8.386e-01   1.650   0.0989 .
## sp_ptbBMns59    7.719e-01  7.485e-01   1.031   0.3024  
## sp_ptbBMns510   3.565e-01  8.944e-01   0.399   0.6902  
## sp_ptbBMns511   1.464e-01  7.403e-01   0.198   0.8433  
## sp_ptbBMns512   6.891e-01  7.827e-01   0.880   0.3786  
## sp_ptbBMns513   6.057e-01  7.437e-01   0.814   0.4154  
## sp_ptbBMns514   6.810e-01  8.797e-01   0.774   0.4389  
## sp_ptbBMns515   1.660e+00  9.738e-01   1.704   0.0883 .
## sp_ptbBMns516   4.135e-01  8.275e-01   0.500   0.6172  
## sp_ptbBMns517   9.833e-01  9.645e-01   1.020   0.3080  
## sp_ptbBMns518   1.816e+00  1.039e+00   1.748   0.0804 .
## sp_ptbBMns519  -3.014e-01  1.098e+00  -0.274   0.7837  
## sp_ptbBMns520   1.557e+00  1.109e+00   1.404   0.1604  
## sp_ptbBMns521   1.180e+00  8.661e-01   1.362   0.1732  
## sp_ptbBMns522   1.509e+00  8.502e-01   1.775   0.0759 .
## sp_ptbBMns523  -3.196e-01  8.564e-01  -0.373   0.7090  
## sp_ptbBMns524   1.466e+00  1.028e+00   1.425   0.1542  
## sp_ptbBMns525   1.514e+00  9.922e-01   1.526   0.1270  
## sp_ptbBMns526   1.772e+00  1.132e+00   1.565   0.1175  
## sp_ptbBMns527   1.455e+00  9.400e-01   1.548   0.1217  
## sp_ptbBMns528   1.721e+00  1.173e+00   1.467   0.1423  
## sp_ptbBMns529   1.221e+00  9.595e-01   1.272   0.2033  
## sp_ptbBMns530   1.150e+00  1.169e+00   0.984   0.3250  
## sp_ptbBMns531   1.138e+00  8.168e-01   1.394   0.1634  
## sp_ptbBMns532   1.354e+00  8.999e-01   1.505   0.1324  
## sp_ptbBMns533   8.623e-01  9.035e-01   0.954   0.3399  
## sp_ptbBMns534   1.875e+00  9.930e-01   1.888   0.0590 .
## sp_ptbBMns535   1.961e+00  1.209e+00   1.622   0.1048  
## sp_ptbBMns536   2.752e+00  1.167e+00   2.358   0.0184 *
## sp_ptbBMns537   1.502e+00  1.147e+00   1.310   0.1901  
## sp_ptbBMns538   1.829e+00  1.184e+00   1.544   0.1226  
## sp_ptbBMns539   4.643e-01  1.102e+00   0.421   0.6735  
## sp_ptbBMns540   2.693e+00  1.369e+00   1.967   0.0492 *
## sp_ptbBMns541   1.636e+00  8.821e-01   1.855   0.0636 .
## sp_ptbBMns542   3.551e-01  8.663e-01   0.410   0.6819  
## sp_ptbBMns543   6.761e-01  6.631e-01   1.020   0.3079  
## sp_ptbBMns544  -6.078e-01  7.034e-01  -0.864   0.3876  
## sp_ptbBMns545  -2.292e-01  8.567e-01  -0.268   0.7890  
## sp_ptbBMns546  -2.664e-01  7.244e-01  -0.368   0.7131  
## sp_ptbBMns547   3.913e-01  6.360e-01   0.615   0.5383  
## sp_ptbBMns548   8.092e-01  5.972e-01   1.355   0.1754  
## sp_ptbBMns549   5.210e-01  7.498e-01   0.695   0.4872  
## sp_ptbBMns550   1.154e+00  1.180e+00   0.978   0.3281  
## sp_ptbBMns551   1.325e+00  1.179e+00   1.124   0.2609  
## sp_ptbBMns552   1.438e+00  8.992e-01   1.599   0.1099  
## sp_ptbBMns553   1.512e+00  9.252e-01   1.635   0.1021  
## sp_ptbBMns554   4.473e-01  8.992e-01   0.497   0.6189  
## sp_ptbBMns555   1.472e+00  9.490e-01   1.551   0.1209  
## sp_ptbBMns556   1.352e+00  8.492e-01   1.592   0.1114  
## sp_ptbBMns557   7.890e-01  7.126e-01   1.107   0.2682  
## sp_ptbBMns558   1.046e+00  7.225e-01   1.448   0.1475  
## sp_ptbBMns559   7.627e-01  7.576e-01   1.007   0.3141  
## sp_ptbBMns560  -4.514e-02  8.312e-01  -0.054   0.9567  
## sp_ptbBMns561   3.702e-01  8.292e-01   0.446   0.6553  
## sp_ptbBMns562   1.334e+00  8.022e-01   1.663   0.0963 .
## sp_ptbBMns563   1.823e-01  8.936e-01   0.204   0.8383  
## sp_ptbBMns564   9.337e-01  8.796e-01   1.062   0.2884  
## sp_ptbBMns565   2.783e+00  1.442e+00   1.930   0.0536 .
## sp_ptbBMns566   1.892e+00  8.477e-01   2.232   0.0256 *
## sp_ptbBMns567   4.436e-01  9.724e-01   0.456   0.6482  
## sp_ptbBMns568   1.717e+00  7.957e-01   2.158   0.0310 *
## sp_ptbBMns569   1.493e-01  1.043e+00   0.143   0.8861  
## sp_ptbBMns570   1.343e+00  1.022e+00   1.314   0.1887  
## sp_ptbBMns571   1.248e+00  8.972e-01   1.390   0.1644  
## sp_ptbBMns572   1.680e+00  7.333e-01   2.291   0.0220 *
## sp_ptbBMns573   7.671e-01  6.949e-01   1.104   0.2696  
## sp_ptbBMns574   4.395e-01  5.755e-01   0.764   0.4450  
## sp_ptbBMns575   1.825e-01  8.648e-01   0.211   0.8329  
## sp_ptbBMns576  -1.297e+00  1.044e+00  -1.243   0.2140  
## sp_ptbBMns577  -1.908e-01  9.135e-01  -0.209   0.8345  
## sp_ptbBMns578  -6.138e-01  9.801e-01  -0.626   0.5311  
## sp_ptbBMns579  -1.165e+00  8.489e-01  -1.372   0.1700  
## sp_ptbBMns580  -1.223e+00  1.212e+00  -1.009   0.3131  
## sp_ptbBMns581   4.412e-01  7.560e-01   0.584   0.5594  
## sp_ptbBMns582   5.724e-01  7.262e-01   0.788   0.4306  
## sp_ptbBMns583   1.301e+00  8.398e-01   1.549   0.1213  
## sp_ptbBMns584   1.058e+00  7.546e-01   1.402   0.1609  
## sp_ptbBMns585   9.858e-01  9.598e-01   1.027   0.3044  
## sp_ptbBMns586   9.466e-01  8.005e-01   1.183   0.2370  
## sp_ptbBMns587   1.119e+00  5.918e-01   1.890   0.0587 .
## sp_ptbBMns588   9.123e-01  6.969e-01   1.309   0.1905  
## sp_ptbBMns589          NA         NA      NA       NA  
## sp_ptbBMns590          NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(16664.09) family taken to be 1)
## 
##     Null deviance: 1101.23  on 886  degrees of freedom
## Residual deviance:  977.59  on 793  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3200.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  16664 
##           Std. Err.:  132857 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3010.481
SA3m11a <- glm.nb(ptbBM ~ cb11.maxT + sp_ptbBMns5,data=week); summary(SA3m11a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb11.maxT + sp_ptbBMns5, data = week, 
##     init.theta = 16847.67071, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4238  -0.8216  -0.1175   0.5601   2.9815  
## 
## Coefficients: (3 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    -2.038e+01  1.290e+01  -1.580  0.11412   
## cb11.maxTv1.l1  4.711e-01  2.823e-01   1.669  0.09511 . 
## cb11.maxTv1.l2 -4.667e-02  1.869e-01  -0.250  0.80277   
## cb11.maxTv2.l1  1.865e+00  1.020e+00   1.829  0.06737 . 
## cb11.maxTv2.l2 -7.508e-01  6.681e-01  -1.124  0.26112   
## cb11.maxTv3.l1  9.807e-01  4.262e-01   2.301  0.02138 * 
## cb11.maxTv3.l2 -1.134e-01  2.929e-01  -0.387  0.69856   
## sp_ptbBMns51           NA         NA      NA       NA   
## sp_ptbBMns52    2.615e+06  5.386e+06   0.486  0.62722   
## sp_ptbBMns53   -2.337e+00  9.729e+00  -0.240  0.81013   
## sp_ptbBMns54    1.460e+00  1.695e+00   0.861  0.38900   
## sp_ptbBMns55   -2.540e-01  1.213e+00  -0.209  0.83412   
## sp_ptbBMns56    8.048e-01  8.394e-01   0.959  0.33769   
## sp_ptbBMns57   -1.153e+00  7.585e-01  -1.519  0.12865   
## sp_ptbBMns58    1.421e+00  6.810e-01   2.086  0.03698 * 
## sp_ptbBMns59   -4.214e-02  6.165e-01  -0.068  0.94550   
## sp_ptbBMns510  -9.182e-01  9.809e-01  -0.936  0.34926   
## sp_ptbBMns511  -9.238e-01  8.500e-01  -1.087  0.27712   
## sp_ptbBMns512  -4.254e-01  8.060e-01  -0.528  0.59769   
## sp_ptbBMns513  -2.772e-02  7.876e-01  -0.035  0.97193   
## sp_ptbBMns514  -6.928e-01  8.212e-01  -0.844  0.39885   
## sp_ptbBMns515   5.933e-01  1.026e+00   0.579  0.56288   
## sp_ptbBMns516  -2.096e-01  9.007e-01  -0.233  0.81598   
## sp_ptbBMns517   2.084e-01  7.907e-01   0.264  0.79208   
## sp_ptbBMns518   1.332e+00  8.563e-01   1.555  0.11990   
## sp_ptbBMns519  -9.888e-01  8.767e-01  -1.128  0.25938   
## sp_ptbBMns520   3.632e-01  1.008e+00   0.360  0.71861   
## sp_ptbBMns521   1.674e-01  6.909e-01   0.242  0.80853   
## sp_ptbBMns522   1.008e+00  7.532e-01   1.338  0.18075   
## sp_ptbBMns523  -7.045e-01  7.163e-01  -0.984  0.32533   
## sp_ptbBMns524   2.761e-02  7.656e-01   0.036  0.97124   
## sp_ptbBMns525  -5.736e-01  9.929e-01  -0.578  0.56344   
## sp_ptbBMns526   3.681e-01  8.262e-01   0.445  0.65598   
## sp_ptbBMns527   4.027e-01  7.104e-01   0.567  0.57081   
## sp_ptbBMns528   8.377e-01  7.745e-01   1.082  0.27945   
## sp_ptbBMns529   1.621e-01  7.389e-01   0.219  0.82641   
## sp_ptbBMns530  -5.449e-01  1.007e+00  -0.541  0.58852   
## sp_ptbBMns531   4.044e-01  7.510e-01   0.538  0.59027   
## sp_ptbBMns532   6.507e-01  6.768e-01   0.961  0.33633   
## sp_ptbBMns533  -4.015e-01  7.215e-01  -0.556  0.57789   
## sp_ptbBMns534   6.272e-01  6.805e-01   0.922  0.35669   
## sp_ptbBMns535  -2.485e-01  1.025e+00  -0.243  0.80838   
## sp_ptbBMns536   1.265e+00  7.436e-01   1.701  0.08901 . 
## sp_ptbBMns537   7.391e-01  7.312e-01   1.011  0.31210   
## sp_ptbBMns538   1.325e+00  8.099e-01   1.636  0.10193   
## sp_ptbBMns539  -1.248e-01  7.897e-01  -0.158  0.87442   
## sp_ptbBMns540   7.177e-01  1.101e+00   0.652  0.51428   
## sp_ptbBMns541   1.782e-01  7.203e-01   0.247  0.80460   
## sp_ptbBMns542  -1.664e+00  1.077e+00  -1.546  0.12214   
## sp_ptbBMns543  -7.234e-01  9.826e-01  -0.736  0.46160   
## sp_ptbBMns544  -1.779e+00  8.986e-01  -1.980  0.04772 * 
## sp_ptbBMns545  -2.154e+00  1.247e+00  -1.727  0.08422 . 
## sp_ptbBMns546  -1.171e+00  1.099e+00  -1.066  0.28641   
## sp_ptbBMns547  -6.490e-01  7.319e-01  -0.887  0.37522   
## sp_ptbBMns548   9.081e-01  6.719e-01   1.352  0.17652   
## sp_ptbBMns549  -1.569e-03  8.033e-01  -0.002  0.99844   
## sp_ptbBMns550  -5.132e-01  1.162e+00  -0.441  0.65887   
## sp_ptbBMns551   8.770e-02  9.602e-01   0.091  0.92722   
## sp_ptbBMns552   6.598e-01  7.837e-01   0.842  0.39984   
## sp_ptbBMns553   1.220e+00  7.094e-01   1.720  0.08538 . 
## sp_ptbBMns554   6.393e-01  7.190e-01   0.889  0.37388   
## sp_ptbBMns555   8.968e-02  9.234e-01   0.097  0.92263   
## sp_ptbBMns556   3.033e-01  8.349e-01   0.363  0.71643   
## sp_ptbBMns557  -5.844e-01  7.286e-01  -0.802  0.42252   
## sp_ptbBMns558   3.570e-01  6.693e-01   0.533  0.59380   
## sp_ptbBMns559  -3.114e-02  6.844e-01  -0.045  0.96371   
## sp_ptbBMns560  -9.617e-01  1.009e+00  -0.954  0.34032   
## sp_ptbBMns561   1.643e-01  7.536e-01   0.218  0.82746   
## sp_ptbBMns562   9.832e-01  7.617e-01   1.291  0.19673   
## sp_ptbBMns563   1.736e-01  8.419e-01   0.206  0.83669   
## sp_ptbBMns564   5.285e-01  8.261e-01   0.640  0.52233   
## sp_ptbBMns565   2.316e+00  1.587e+00   1.459  0.14463   
## sp_ptbBMns566   1.841e+00  1.022e+00   1.801  0.07173 . 
## sp_ptbBMns567   1.073e+00  1.084e+00   0.990  0.32234   
## sp_ptbBMns568   2.540e+00  9.707e-01   2.617  0.00887 **
## sp_ptbBMns569   1.281e+00  1.268e+00   1.010  0.31246   
## sp_ptbBMns570   1.402e+00  1.306e+00   1.074  0.28295   
## sp_ptbBMns571   1.372e+00  8.990e-01   1.527  0.12688   
## sp_ptbBMns572   2.209e+00  8.401e-01   2.630  0.00855 **
## sp_ptbBMns573   1.404e+00  7.928e-01   1.771  0.07656 . 
## sp_ptbBMns574   1.216e+00  7.533e-01   1.614  0.10651   
## sp_ptbBMns575   2.326e-02  1.015e+00   0.023  0.98172   
## sp_ptbBMns576  -5.348e-01  6.773e-01  -0.790  0.42981   
## sp_ptbBMns577  -3.553e-01  7.412e-01  -0.479  0.63172   
## sp_ptbBMns578  -2.359e-01  6.824e-01  -0.346  0.72957   
## sp_ptbBMns579  -4.266e-01  6.034e-01  -0.707  0.47960   
## sp_ptbBMns580  -1.110e+00  9.360e-01  -1.186  0.23565   
## sp_ptbBMns581   2.544e-01  7.861e-01   0.324  0.74623   
## sp_ptbBMns582   1.398e-01  7.063e-01   0.198  0.84313   
## sp_ptbBMns583   1.105e+00  9.184e-01   1.204  0.22875   
## sp_ptbBMns584   9.475e-01  7.732e-01   1.225  0.22042   
## sp_ptbBMns585   3.827e-01  1.018e+00   0.376  0.70698   
## sp_ptbBMns586   9.041e-01  8.790e-01   1.029  0.30370   
## sp_ptbBMns587   8.319e-01  6.344e-01   1.311  0.18972   
## sp_ptbBMns588   5.694e-01  7.100e-01   0.802  0.42258   
## sp_ptbBMns589          NA         NA      NA       NA   
## sp_ptbBMns590          NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(16847.67) family taken to be 1)
## 
##     Null deviance: 1101.23  on 886  degrees of freedom
## Residual deviance:  977.15  on 793  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3200
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  16848 
##           Std. Err.:  135055 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3010.041
##to check model diag for univariate models

options(na.action="na.exclude")
library(dplyr) ##make sure lags are dplyr lags

##for SA3m1a avgWindSp ######
scatter.smooth(predict(SA3m1a, type='response'), rstandard(SA3m1a, type='deviance'), col='gray')

SA3m1a.resid<-residuals(SA3m1a, type="deviance")
SA3m1a.pred<-predict(SA3m1a, type="response")
length(SA3m1a.resid); length(SA3m1a.pred)
## [1] 939
## [1] 939
pacf(SA3m1a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1,3-12,15,18 & 29

library(dplyr)
#ensure that the lags are dplyr lags
SA3m1a.ac<-update(SA3m1a,.~.+lag(SA3m1a.resid,1)+lag(SA3m1a.resid,3)+ lag(SA3m1a.resid,4)+
                      lag(SA3m1a.resid,5)+lag(SA3m1a.resid,6)+lag(SA3m1a.resid,7)+ lag(SA3m1a.resid,8)+
                      lag(SA3m1a.resid,9)+lag(SA3m1a.resid,10)+lag(SA3m1a.resid,11)+ lag(SA3m1a.resid,12)+
                      lag(SA3m1a.resid,15)+lag(SA3m1a.resid,18)+lag(SA3m1a.resid,29))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
SA3m1a.resid_ac<-residuals(SA3m1a.ac, type="deviance")
SA3m1a.pred_ac<-predict(SA3m1a.ac, type="response")

pacf(SA3m1a.resid_ac,na.action = na.omit) 

length(SA3m1a.pred_ac)
## [1] 939
length(SA3m1a.resid_ac)
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA3m1a.pred,lwd=1, col="blue")

plot(week$time,SA3m1a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA3m1a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA3m1a.pred_ac,lwd=1, col="blue")

plot(week$time,SA3m1a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA3m1a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose response and slices 
pred.SA3m1a <- crosspred(cb1.avgWindSp, SA3m1a.ac, cen = 4.5, by=0.1,cumul=TRUE)



##for SA3m2a sun ######
summary(SA3m2a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb2.sun + sp_ptbBMns5, data = week, 
##     init.theta = 17573.9797, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3727  -0.8197  -0.1328   0.5694   2.9565  
## 
## Coefficients: (3 not defined because of singularities)
##                 Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    5.466e-01  7.208e+00   0.076  0.93955   
## cb2.sunv1.l1   3.279e-02  1.591e-01   0.206  0.83669   
## cb2.sunv1.l2  -1.493e-01  1.163e-01  -1.284  0.19914   
## cb2.sunv2.l1   2.104e-01  6.288e-01   0.335  0.73785   
## cb2.sunv2.l2   2.844e-01  4.338e-01   0.656  0.51209   
## cb2.sunv3.l1   6.067e-01  2.355e-01   2.576  0.01000 * 
## cb2.sunv3.l2   2.388e-01  1.645e-01   1.452  0.14652   
## sp_ptbBMns51          NA         NA      NA       NA   
## sp_ptbBMns52   2.212e+06  5.346e+06   0.414  0.67907   
## sp_ptbBMns53  -1.541e-01  9.688e+00  -0.016  0.98731   
## sp_ptbBMns54   9.027e-01  1.605e+00   0.562  0.57385   
## sp_ptbBMns55   4.112e-01  9.267e-01   0.444  0.65726   
## sp_ptbBMns56  -7.939e-03  7.519e-01  -0.011  0.99158   
## sp_ptbBMns57  -2.044e+00  7.747e-01  -2.639  0.00833 **
## sp_ptbBMns58   7.074e-01  6.737e-01   1.050  0.29370   
## sp_ptbBMns59  -1.377e-01  7.843e-01  -0.176  0.86059   
## sp_ptbBMns510 -6.452e-01  7.399e-01  -0.872  0.38318   
## sp_ptbBMns511 -7.617e-01  7.663e-01  -0.994  0.32023   
## sp_ptbBMns512 -5.489e-01  7.468e-01  -0.735  0.46239   
## sp_ptbBMns513 -3.688e-01  7.418e-01  -0.497  0.61907   
## sp_ptbBMns514 -3.228e-01  7.175e-01  -0.450  0.65282   
## sp_ptbBMns515  1.081e+00  7.763e-01   1.392  0.16377   
## sp_ptbBMns516 -1.006e-01  7.674e-01  -0.131  0.89571   
## sp_ptbBMns517  7.785e-02  7.510e-01   0.104  0.91744   
## sp_ptbBMns518  5.355e-01  7.658e-01   0.699  0.48438   
## sp_ptbBMns519 -1.444e+00  9.396e-01  -1.537  0.12438   
## sp_ptbBMns520 -6.901e-01  8.207e-01  -0.841  0.40044   
## sp_ptbBMns521 -2.008e-01  7.900e-01  -0.254  0.79937   
## sp_ptbBMns522  1.690e-01  7.562e-01   0.224  0.82311   
## sp_ptbBMns523 -9.989e-01  8.239e-01  -1.212  0.22539   
## sp_ptbBMns524  4.373e-01  7.997e-01   0.547  0.58455   
## sp_ptbBMns525  1.522e+00  8.542e-01   1.782  0.07480 . 
## sp_ptbBMns526  1.085e+00  8.463e-01   1.282  0.19981   
## sp_ptbBMns527  8.456e-01  7.990e-01   1.058  0.28992   
## sp_ptbBMns528  1.188e+00  8.714e-01   1.363  0.17296   
## sp_ptbBMns529  7.675e-01  8.081e-01   0.950  0.34222   
## sp_ptbBMns530 -1.263e-01  8.160e-01  -0.155  0.87696   
## sp_ptbBMns531 -6.384e-02  6.613e-01  -0.097  0.92309   
## sp_ptbBMns532 -2.672e-01  6.477e-01  -0.412  0.67999   
## sp_ptbBMns533 -1.145e+00  6.847e-01  -1.672  0.09444 . 
## sp_ptbBMns534  3.953e-01  6.925e-01   0.571  0.56813   
## sp_ptbBMns535 -6.465e-01  8.014e-01  -0.807  0.41985   
## sp_ptbBMns536  8.034e-01  6.995e-01   1.149  0.25072   
## sp_ptbBMns537 -3.413e-01  6.871e-01  -0.497  0.61937   
## sp_ptbBMns538  3.942e-01  6.580e-01   0.599  0.54906   
## sp_ptbBMns539 -5.521e-01  6.729e-01  -0.820  0.41195   
## sp_ptbBMns540  1.110e+00  8.786e-01   1.263  0.20661   
## sp_ptbBMns541 -1.339e-01  7.262e-01  -0.184  0.85367   
## sp_ptbBMns542 -5.081e-01  7.239e-01  -0.702  0.48276   
## sp_ptbBMns543  2.770e-01  7.407e-01   0.374  0.70846   
## sp_ptbBMns544 -6.001e-01  7.665e-01  -0.783  0.43366   
## sp_ptbBMns545 -1.194e+00  8.621e-01  -1.386  0.16590   
## sp_ptbBMns546 -6.228e-02  7.106e-01  -0.088  0.93016   
## sp_ptbBMns547 -8.362e-01  6.801e-01  -1.230  0.21888   
## sp_ptbBMns548  4.391e-01  6.161e-01   0.713  0.47604   
## sp_ptbBMns549 -2.848e-01  7.340e-01  -0.388  0.69799   
## sp_ptbBMns550  8.935e-01  9.347e-01   0.956  0.33907   
## sp_ptbBMns551  8.199e-01  8.302e-01   0.988  0.32337   
## sp_ptbBMns552  1.049e+00  8.662e-01   1.212  0.22569   
## sp_ptbBMns553  1.459e+00  8.053e-01   1.812  0.07003 . 
## sp_ptbBMns554  8.031e-01  8.269e-01   0.971  0.33145   
## sp_ptbBMns555  1.324e+00  8.233e-01   1.608  0.10776   
## sp_ptbBMns556  1.214e+00  7.321e-01   1.658  0.09733 . 
## sp_ptbBMns557 -3.406e-01  8.187e-01  -0.416  0.67743   
## sp_ptbBMns558 -2.044e-01  7.356e-01  -0.278  0.78113   
## sp_ptbBMns559 -1.811e-01  7.130e-01  -0.254  0.79949   
## sp_ptbBMns560 -9.123e-01  7.533e-01  -1.211  0.22587   
## sp_ptbBMns561 -3.871e-01  7.996e-01  -0.484  0.62836   
## sp_ptbBMns562  1.216e+00  7.331e-01   1.660  0.09701 . 
## sp_ptbBMns563  8.952e-03  8.632e-01   0.010  0.99173   
## sp_ptbBMns564  1.174e+00  8.815e-01   1.332  0.18294   
## sp_ptbBMns565  8.050e-01  8.764e-01   0.918  0.35837   
## sp_ptbBMns566  1.238e+00  7.411e-01   1.670  0.09492 . 
## sp_ptbBMns567 -4.519e-01  7.913e-01  -0.571  0.56796   
## sp_ptbBMns568  1.766e+00  6.697e-01   2.637  0.00836 **
## sp_ptbBMns569  7.331e-01  7.185e-01   1.020  0.30753   
## sp_ptbBMns570  1.288e+00  8.950e-01   1.439  0.15025   
## sp_ptbBMns571  6.955e-01  7.233e-01   0.962  0.33626   
## sp_ptbBMns572  5.884e-01  6.804e-01   0.865  0.38716   
## sp_ptbBMns573  2.847e-01  6.928e-01   0.411  0.68109   
## sp_ptbBMns574 -1.214e-01  6.682e-01  -0.182  0.85583   
## sp_ptbBMns575 -1.218e+00  8.415e-01  -1.447  0.14793   
## sp_ptbBMns576 -1.260e+00  7.272e-01  -1.732  0.08324 . 
## sp_ptbBMns577 -1.630e+00  8.056e-01  -2.024  0.04301 * 
## sp_ptbBMns578 -7.450e-01  8.249e-01  -0.903  0.36647   
## sp_ptbBMns579 -8.901e-01  7.907e-01  -1.126  0.26026   
## sp_ptbBMns580  9.987e-01  7.041e-01   1.418  0.15608   
## sp_ptbBMns581  6.099e-01  6.560e-01   0.930  0.35246   
## sp_ptbBMns582  7.729e-01  7.250e-01   1.066  0.28637   
## sp_ptbBMns583  8.030e-01  6.669e-01   1.204  0.22854   
## sp_ptbBMns584  1.098e+00  7.561e-01   1.452  0.14658   
## sp_ptbBMns585 -1.908e-02  8.283e-01  -0.023  0.98162   
## sp_ptbBMns586  3.675e-01  6.717e-01   0.547  0.58431   
## sp_ptbBMns587  6.609e-01  5.501e-01   1.201  0.22963   
## sp_ptbBMns588  1.401e+00  6.712e-01   2.088  0.03682 * 
## sp_ptbBMns589         NA         NA      NA       NA   
## sp_ptbBMns590         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17573.98) family taken to be 1)
## 
##     Null deviance: 1101.24  on 886  degrees of freedom
## Residual deviance:  972.32  on 793  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3195.2
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17574 
##           Std. Err.:  134180 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3005.203
scatter.smooth(predict(SA3m2a, type='response'), rstandard(SA3m2a, type='deviance'), col='gray')

SA3m2a.resid<-residuals(SA3m2a, type="deviance")
SA3m2a.pred<-predict(SA3m2a, type="response")
length(SA3m2a.resid); length(SA3m2a.pred)
## [1] 939
## [1] 939
pacf(SA3m2a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1,3-12,15 & 18

#ensure that the lags are dplyr lags
SA3m2a.ac<-update(SA3m2a,.~.+lag(SA3m2a.resid,1)+lag(SA3m2a.resid,3)+lag(SA3m2a.resid,4)+
                      lag(SA3m2a.resid,5)+lag(SA3m2a.resid,6)+lag(SA3m2a.resid,7)+lag(SA3m2a.resid,8)+
                      lag(SA3m2a.resid,9)+lag(SA3m2a.resid,10)+lag(SA3m2a.resid,11)+lag(SA3m2a.resid,12)+
                      lag(SA3m2a.resid,15)+lag(SA3m2a.resid,18))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
SA3m2a.resid_ac<-residuals(SA3m2a.ac, type="deviance")
SA3m2a.pred_ac<-predict(SA3m2a.ac, type="response")

pacf(SA3m2a.resid_ac,na.action = na.omit) 

length(SA3m2a.pred_ac); length(SA3m2a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA3m2a.pred,lwd=1, col="blue")

plot(week$time,SA3m2a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA3m2a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA3m2a.pred_ac,lwd=1, col="blue")

plot(week$time,SA3m2a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA3m2a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose response and slices 
pred.SA3m2a <- crosspred(cb2.sun, SA3m2a.ac, cen = 50.7, by=0.1,cumul=TRUE)



##for SA3m3a RF ######
summary(SA3m3a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb3.RF + sp_ptbBMns5, data = week, init.theta = 15595.28843, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3932  -0.8221  -0.1343   0.5622   2.8897  
## 
## Coefficients: (3 not defined because of singularities)
##                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    1.847e+00  2.141e+00   0.863   0.3884  
## cb3.RFv1.l1    8.706e-02  2.229e-01   0.391   0.6961  
## cb3.RFv1.l2    1.256e-01  1.419e-01   0.885   0.3760  
## cb3.RFv2.l1   -1.372e-01  3.107e-01  -0.442   0.6588  
## cb3.RFv2.l2    1.504e-01  2.034e-01   0.739   0.4598  
## cb3.RFv3.l1   -5.048e-02  5.084e-01  -0.099   0.9209  
## cb3.RFv3.l2    7.432e-02  3.526e-01   0.211   0.8331  
## sp_ptbBMns51          NA         NA      NA       NA  
## sp_ptbBMns52   2.303e+06  5.361e+06   0.430   0.6675  
## sp_ptbBMns53  -2.913e+00  9.759e+00  -0.298   0.7653  
## sp_ptbBMns54   1.060e+00  1.609e+00   0.659   0.5102  
## sp_ptbBMns55  -4.793e-01  9.862e-01  -0.486   0.6269  
## sp_ptbBMns56   5.063e-01  7.873e-01   0.643   0.5201  
## sp_ptbBMns57  -1.552e+00  8.352e-01  -1.858   0.0632 .
## sp_ptbBMns58   7.621e-01  6.759e-01   1.128   0.2595  
## sp_ptbBMns59   7.744e-01  8.081e-01   0.958   0.3379  
## sp_ptbBMns510 -1.267e-01  7.456e-01  -0.170   0.8650  
## sp_ptbBMns511  9.749e-02  7.648e-01   0.127   0.8986  
## sp_ptbBMns512  1.376e-01  7.872e-01   0.175   0.8612  
## sp_ptbBMns513  2.145e-01  7.341e-01   0.292   0.7701  
## sp_ptbBMns514  4.553e-01  8.508e-01   0.535   0.5926  
## sp_ptbBMns515  9.638e-01  7.553e-01   1.276   0.2019  
## sp_ptbBMns516 -1.417e-01  7.573e-01  -0.187   0.8516  
## sp_ptbBMns517 -7.015e-02  8.071e-01  -0.087   0.9307  
## sp_ptbBMns518  7.806e-01  7.900e-01   0.988   0.3231  
## sp_ptbBMns519 -1.026e+00  9.774e-01  -1.050   0.2938  
## sp_ptbBMns520  2.553e-01  8.305e-01   0.307   0.7585  
## sp_ptbBMns521  2.482e-01  8.192e-01   0.303   0.7619  
## sp_ptbBMns522  6.761e-01  6.885e-01   0.982   0.3261  
## sp_ptbBMns523 -7.674e-01  8.009e-01  -0.958   0.3380  
## sp_ptbBMns524  4.873e-01  7.673e-01   0.635   0.5254  
## sp_ptbBMns525  5.423e-01  6.345e-01   0.855   0.3927  
## sp_ptbBMns526  5.333e-01  7.360e-01   0.725   0.4687  
## sp_ptbBMns527  2.610e-01  6.860e-01   0.381   0.7036  
## sp_ptbBMns528  2.669e-01  7.288e-01   0.366   0.7142  
## sp_ptbBMns529  4.667e-01  7.230e-01   0.646   0.5186  
## sp_ptbBMns530 -4.013e-01  7.624e-01  -0.526   0.5986  
## sp_ptbBMns531  5.814e-01  6.638e-01   0.876   0.3811  
## sp_ptbBMns532  6.771e-01  7.563e-01   0.895   0.3706  
## sp_ptbBMns533 -4.642e-01  6.570e-01  -0.707   0.4799  
## sp_ptbBMns534  8.015e-01  6.543e-01   1.225   0.2206  
## sp_ptbBMns535  7.315e-02  7.319e-01   0.100   0.9204  
## sp_ptbBMns536  9.969e-01  6.782e-01   1.470   0.1416  
## sp_ptbBMns537  2.986e-01  7.405e-01   0.403   0.6868  
## sp_ptbBMns538  5.245e-01  6.884e-01   0.762   0.4461  
## sp_ptbBMns539 -1.791e-01  7.238e-01  -0.247   0.8046  
## sp_ptbBMns540  6.900e-01  1.022e+00   0.675   0.4996  
## sp_ptbBMns541  1.643e-01  7.149e-01   0.230   0.8183  
## sp_ptbBMns542 -1.034e+00  8.198e-01  -1.261   0.2072  
## sp_ptbBMns543  1.627e-01  7.484e-01   0.217   0.8279  
## sp_ptbBMns544 -3.629e-01  8.775e-01  -0.414   0.6792  
## sp_ptbBMns545  3.725e-01  1.044e+00   0.357   0.7213  
## sp_ptbBMns546  7.102e-01  7.885e-01   0.901   0.3677  
## sp_ptbBMns547  6.216e-01  7.737e-01   0.803   0.4217  
## sp_ptbBMns548  9.988e-01  7.273e-01   1.373   0.1697  
## sp_ptbBMns549  9.101e-01  7.441e-01   1.223   0.2213  
## sp_ptbBMns550 -4.083e-02  8.740e-01  -0.047   0.9627  
## sp_ptbBMns551 -4.631e-01  7.978e-01  -0.580   0.5616  
## sp_ptbBMns552 -2.041e-01  6.354e-01  -0.321   0.7480  
## sp_ptbBMns553  4.695e-01  6.637e-01   0.707   0.4794  
## sp_ptbBMns554  4.446e-03  7.074e-01   0.006   0.9950  
## sp_ptbBMns555  9.562e-01  7.475e-01   1.279   0.2008  
## sp_ptbBMns556  1.237e+00  8.063e-01   1.534   0.1251  
## sp_ptbBMns557  1.856e-01  7.755e-01   0.239   0.8109  
## sp_ptbBMns558  4.637e-01  7.323e-01   0.633   0.5266  
## sp_ptbBMns559  4.951e-01  6.804e-01   0.728   0.4668  
## sp_ptbBMns560 -1.756e-01  7.515e-01  -0.234   0.8152  
## sp_ptbBMns561  6.378e-01  6.420e-01   0.993   0.3205  
## sp_ptbBMns562  7.228e-01  6.668e-01   1.084   0.2784  
## sp_ptbBMns563 -6.946e-01  6.992e-01  -0.993   0.3205  
## sp_ptbBMns564  8.190e-01  7.479e-01   1.095   0.2735  
## sp_ptbBMns565 -2.495e-02  7.457e-01  -0.033   0.9733  
## sp_ptbBMns566  7.215e-01  6.955e-01   1.037   0.2996  
## sp_ptbBMns567 -6.392e-01  8.307e-01  -0.769   0.4416  
## sp_ptbBMns568  8.859e-01  6.168e-01   1.436   0.1509  
## sp_ptbBMns569  1.281e-01  7.461e-01   0.172   0.8637  
## sp_ptbBMns570  7.129e-01  8.445e-01   0.844   0.3986  
## sp_ptbBMns571  1.857e-01  7.798e-01   0.238   0.8117  
## sp_ptbBMns572  8.178e-01  6.616e-01   1.236   0.2164  
## sp_ptbBMns573 -9.975e-03  7.012e-01  -0.014   0.9887  
## sp_ptbBMns574  6.764e-01  6.670e-01   1.014   0.3105  
## sp_ptbBMns575  1.357e-01  9.146e-01   0.148   0.8821  
## sp_ptbBMns576 -3.685e-01  6.712e-01  -0.549   0.5830  
## sp_ptbBMns577  3.210e-01  7.836e-01   0.410   0.6821  
## sp_ptbBMns578  3.797e-01  6.372e-01   0.596   0.5512  
## sp_ptbBMns579  3.907e-01  8.332e-01   0.469   0.6391  
## sp_ptbBMns580  4.818e-01  7.383e-01   0.653   0.5140  
## sp_ptbBMns581  8.058e-01  6.633e-01   1.215   0.2244  
## sp_ptbBMns582  4.439e-01  7.217e-01   0.615   0.5384  
## sp_ptbBMns583  6.840e-01  6.367e-01   1.074   0.2827  
## sp_ptbBMns584  8.207e-01  7.229e-01   1.135   0.2563  
## sp_ptbBMns585 -1.039e-01  8.041e-01  -0.129   0.8972  
## sp_ptbBMns586  4.408e-01  6.461e-01   0.682   0.4951  
## sp_ptbBMns587  2.259e-01  5.833e-01   0.387   0.6986  
## sp_ptbBMns588  4.589e-01  6.659e-01   0.689   0.4907  
## sp_ptbBMns589         NA         NA      NA       NA  
## sp_ptbBMns590         NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(15595.29) family taken to be 1)
## 
##     Null deviance: 1101.22  on 886  degrees of freedom
## Residual deviance:  983.64  on 793  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3206.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  15595 
##           Std. Err.:  130089 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3016.537
scatter.smooth(predict(SA3m3a, type='response'), rstandard(SA3m3a, type='deviance'), col='gray')

SA3m3a.resid<-residuals(SA3m3a, type="deviance")
SA3m3a.pred<-predict(SA3m3a, type="response")
length(SA3m3a.resid); length(SA3m3a.pred)
## [1] 939
## [1] 939
pacf(SA3m3a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1,3-12,15, 18 & 29

#ensure that the lags are dplyr lags
SA3m3a.ac<-update(SA3m3a,.~.+lag(SA3m3a.resid,1)+lag(SA3m3a.resid,3)+lag(SA3m3a.resid,4)+
                      lag(SA3m3a.resid,5)+lag(SA3m3a.resid,6)+lag(SA3m3a.resid,7)+lag(SA3m3a.resid,8)+
                      lag(SA3m3a.resid,9)+lag(SA3m3a.resid,10)+lag(SA3m3a.resid,11)+lag(SA3m3a.resid,12)+
                      lag(SA3m3a.resid,15)+lag(SA3m3a.resid,18)+lag(SA3m3a.resid,29)) 
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
SA3m3a.resid_ac<-residuals(SA3m3a.ac, type="deviance")
SA3m3a.pred_ac<-predict(SA3m3a.ac, type="response")

pacf(SA3m3a.resid_ac,na.action = na.omit) 

length(SA3m3a.pred_ac); length(SA3m3a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA3m3a.pred,lwd=1, col="blue")

plot(week$time,SA3m3a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA3m3a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA3m3a.pred_ac,lwd=1, col="blue")

plot(week$time,SA3m3a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA3m3a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose response and slices now
pred.SA3m3a <- crosspred(cb3.RF, SA3m3a.ac, cen = 44.9, by=0.1,cumul=TRUE)



##for SA3m5a minRH ######
summary(SA3m5a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb5.minRH + sp_ptbBMns5, data = week, 
##     init.theta = 15825.53811, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4178  -0.8148  -0.1139   0.5813   2.9998  
## 
## Coefficients: (3 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     1.414e+01  9.125e+00   1.550  0.12121   
## cb5.minRHv1.l1 -3.329e-01  2.014e-01  -1.654  0.09822 . 
## cb5.minRHv1.l2 -9.099e-03  1.201e-01  -0.076  0.93963   
## cb5.minRHv2.l1 -1.161e+00  7.819e-01  -1.485  0.13743   
## cb5.minRHv2.l2 -3.286e-01  5.247e-01  -0.626  0.53108   
## cb5.minRHv3.l1 -6.686e-01  4.523e-01  -1.478  0.13939   
## cb5.minRHv3.l2 -1.229e-01  2.934e-01  -0.419  0.67518   
## sp_ptbBMns51           NA         NA      NA       NA   
## sp_ptbBMns52    2.227e+06  5.339e+06   0.417  0.67667   
## sp_ptbBMns53   -1.952e+00  9.664e+00  -0.202  0.83996   
## sp_ptbBMns54    8.671e-01  1.617e+00   0.536  0.59184   
## sp_ptbBMns55   -2.462e-01  9.454e-01  -0.260  0.79458   
## sp_ptbBMns56    3.776e-01  8.730e-01   0.433  0.66534   
## sp_ptbBMns57   -2.197e+00  8.272e-01  -2.656  0.00791 **
## sp_ptbBMns58   -2.096e-01  7.209e-01  -0.291  0.77119   
## sp_ptbBMns59   -8.091e-01  8.039e-01  -1.006  0.31421   
## sp_ptbBMns510  -1.143e+00  8.936e-01  -1.279  0.20086   
## sp_ptbBMns511  -1.552e+00  1.051e+00  -1.477  0.13962   
## sp_ptbBMns512  -1.075e+00  8.438e-01  -1.274  0.20255   
## sp_ptbBMns513  -7.352e-01  8.327e-01  -0.883  0.37726   
## sp_ptbBMns514  -9.332e-01  9.105e-01  -1.025  0.30542   
## sp_ptbBMns515   1.000e+00  8.129e-01   1.230  0.21863   
## sp_ptbBMns516  -3.255e-01  7.961e-01  -0.409  0.68260   
## sp_ptbBMns517  -4.119e-01  7.143e-01  -0.577  0.56414   
## sp_ptbBMns518   3.106e-01  6.959e-01   0.446  0.65538   
## sp_ptbBMns519  -1.767e+00  7.707e-01  -2.293  0.02186 * 
## sp_ptbBMns520  -2.331e-02  8.041e-01  -0.029  0.97687   
## sp_ptbBMns521  -8.950e-01  7.965e-01  -1.124  0.26111   
## sp_ptbBMns522  -8.213e-01  1.000e+00  -0.821  0.41148   
## sp_ptbBMns523  -2.865e+00  1.178e+00  -2.432  0.01502 * 
## sp_ptbBMns524  -1.965e+00  1.059e+00  -1.856  0.06344 . 
## sp_ptbBMns525  -1.951e+00  1.358e+00  -1.437  0.15079   
## sp_ptbBMns526  -1.340e+00  1.098e+00  -1.220  0.22249   
## sp_ptbBMns527  -1.014e+00  9.507e-01  -1.067  0.28603   
## sp_ptbBMns528  -5.400e-01  8.572e-01  -0.630  0.52871   
## sp_ptbBMns529  -6.991e-01  8.506e-01  -0.822  0.41113   
## sp_ptbBMns530  -1.033e+00  8.364e-01  -1.235  0.21700   
## sp_ptbBMns531  -3.802e-01  7.927e-01  -0.480  0.63148   
## sp_ptbBMns532  -4.809e-01  7.305e-01  -0.658  0.51035   
## sp_ptbBMns533  -1.364e+00  8.241e-01  -1.655  0.09783 . 
## sp_ptbBMns534  -4.898e-01  7.179e-01  -0.682  0.49509   
## sp_ptbBMns535  -1.190e+00  9.089e-01  -1.309  0.19060   
## sp_ptbBMns536  -4.386e-01  8.215e-01  -0.534  0.59337   
## sp_ptbBMns537  -1.064e+00  8.104e-01  -1.313  0.18926   
## sp_ptbBMns538  -2.890e-01  7.425e-01  -0.389  0.69712   
## sp_ptbBMns539  -1.218e+00  7.792e-01  -1.563  0.11795   
## sp_ptbBMns540   3.989e-01  9.292e-01   0.429  0.66769   
## sp_ptbBMns541  -3.427e-01  7.371e-01  -0.465  0.64193   
## sp_ptbBMns542  -1.668e+00  9.568e-01  -1.743  0.08127 . 
## sp_ptbBMns543  -8.418e-01  9.407e-01  -0.895  0.37088   
## sp_ptbBMns544  -1.592e+00  8.472e-01  -1.879  0.06028 . 
## sp_ptbBMns545  -1.548e+00  1.239e+00  -1.250  0.21135   
## sp_ptbBMns546  -1.195e+00  1.012e+00  -1.181  0.23742   
## sp_ptbBMns547  -4.381e-01  7.003e-01  -0.626  0.53152   
## sp_ptbBMns548   2.059e-01  5.566e-01   0.370  0.71142   
## sp_ptbBMns549  -3.266e-01  6.453e-01  -0.506  0.61273   
## sp_ptbBMns550  -2.425e-01  8.999e-01  -0.269  0.78757   
## sp_ptbBMns551  -5.284e-01  7.463e-01  -0.708  0.47892   
## sp_ptbBMns552  -2.186e-01  6.778e-01  -0.322  0.74710   
## sp_ptbBMns553   6.017e-02  7.031e-01   0.086  0.93181   
## sp_ptbBMns554  -2.981e-01  5.869e-01  -0.508  0.61151   
## sp_ptbBMns555   1.993e-01  8.621e-01   0.231  0.81722   
## sp_ptbBMns556   6.383e-01  7.610e-01   0.839  0.40160   
## sp_ptbBMns557  -1.050e+00  8.360e-01  -1.256  0.20926   
## sp_ptbBMns558  -2.767e-01  6.268e-01  -0.441  0.65886   
## sp_ptbBMns559  -4.447e-01  7.019e-01  -0.633  0.52641   
## sp_ptbBMns560  -6.508e-01  8.602e-01  -0.757  0.44927   
## sp_ptbBMns561  -3.764e-02  9.179e-01  -0.041  0.96730   
## sp_ptbBMns562   7.099e-01  6.727e-01   1.055  0.29125   
## sp_ptbBMns563  -7.556e-01  7.202e-01  -1.049  0.29408   
## sp_ptbBMns564   5.117e-01  7.303e-01   0.701  0.48357   
## sp_ptbBMns565   9.909e-01  1.245e+00   0.796  0.42608   
## sp_ptbBMns566   1.493e+00  8.836e-01   1.689  0.09118 . 
## sp_ptbBMns567   8.977e-03  9.261e-01   0.010  0.99227   
## sp_ptbBMns568   2.039e+00  8.855e-01   2.303  0.02127 * 
## sp_ptbBMns569   1.211e+00  1.061e+00   1.141  0.25396   
## sp_ptbBMns570   1.079e+00  1.091e+00   0.989  0.32256   
## sp_ptbBMns571   1.525e+00  8.927e-01   1.708  0.08767 . 
## sp_ptbBMns572   1.554e+00  8.162e-01   1.904  0.05696 . 
## sp_ptbBMns573   1.139e+00  8.290e-01   1.374  0.16955   
## sp_ptbBMns574   9.574e-01  6.830e-01   1.402  0.16095   
## sp_ptbBMns575   8.485e-01  8.559e-01   0.991  0.32149   
## sp_ptbBMns576   4.891e-01  6.837e-01   0.715  0.47443   
## sp_ptbBMns577   6.335e-01  7.051e-01   0.899  0.36892   
## sp_ptbBMns578   4.844e-01  5.988e-01   0.809  0.41858   
## sp_ptbBMns579   4.633e-01  5.886e-01   0.787  0.43118   
## sp_ptbBMns580   1.226e-01  6.534e-01   0.188  0.85113   
## sp_ptbBMns581   8.279e-01  7.745e-01   1.069  0.28507   
## sp_ptbBMns582   1.979e-01  6.703e-01   0.295  0.76783   
## sp_ptbBMns583   1.039e+00  7.758e-01   1.339  0.18051   
## sp_ptbBMns584   7.137e-01  6.704e-01   1.065  0.28709   
## sp_ptbBMns585   4.546e-01  8.681e-01   0.524  0.60051   
## sp_ptbBMns586   9.236e-01  8.327e-01   1.109  0.26738   
## sp_ptbBMns587   8.453e-01  6.350e-01   1.331  0.18318   
## sp_ptbBMns588   5.890e-01  6.610e-01   0.891  0.37288   
## sp_ptbBMns589          NA         NA      NA       NA   
## sp_ptbBMns590          NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(15825.54) family taken to be 1)
## 
##     Null deviance: 1101.22  on 886  degrees of freedom
## Residual deviance:  981.24  on 793  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3204.1
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  15826 
##           Std. Err.:  130488 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3014.141
scatter.smooth(predict(SA3m5a, type='response'), rstandard(SA3m5a, type='deviance'), col='gray')

SA3m5a.resid<-residuals(SA3m5a, type="deviance")
SA3m5a.pred<-predict(SA3m5a, type="response")
length(SA3m5a.resid); length(SA3m5a.pred)
## [1] 939
## [1] 939
pacf(SA3m5a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1,3-12,15, 18 & 29

#ensure that the lags are dplyr lags
SA3m5a.ac<-update(SA3m5a,.~.+lag(SA3m5a.resid,1)+lag(SA3m5a.resid,3)+lag(SA3m5a.resid,4)+
                      lag(SA3m5a.resid,5)+lag(SA3m5a.resid,6)+lag(SA3m5a.resid,7)+lag(SA3m5a.resid,8)+
                      lag(SA3m5a.resid,9)+lag(SA3m5a.resid,10)+lag(SA3m5a.resid,11)+lag(SA3m5a.resid,12)+
                      lag(SA3m5a.resid,15)+lag(SA3m5a.resid,18)+lag(SA3m5a.resid,29)) 
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(SA3m5a.ac)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb5.minRH + sp_ptbBMns5 + lag(SA3m5a.resid, 
##     1) + lag(SA3m5a.resid, 3) + lag(SA3m5a.resid, 4) + lag(SA3m5a.resid, 
##     5) + lag(SA3m5a.resid, 6) + lag(SA3m5a.resid, 7) + lag(SA3m5a.resid, 
##     8) + lag(SA3m5a.resid, 9) + lag(SA3m5a.resid, 10) + lag(SA3m5a.resid, 
##     11) + lag(SA3m5a.resid, 12) + lag(SA3m5a.resid, 15) + lag(SA3m5a.resid, 
##     18) + lag(SA3m5a.resid, 29), data = week, init.theta = 35404.41833, 
##     link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.42413  -0.72890  -0.08354   0.54791   2.38056  
## 
## Coefficients: (6 not defined because of singularities)
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            1.869e+01  9.295e+00   2.011  0.04431 *  
## cb5.minRHv1.l1        -4.031e-01  2.054e-01  -1.963  0.04964 *  
## cb5.minRHv1.l2         4.324e-02  1.235e-01   0.350  0.72621    
## cb5.minRHv2.l1        -1.413e+00  8.036e-01  -1.758  0.07878 .  
## cb5.minRHv2.l2         1.492e-02  5.404e-01   0.028  0.97798    
## cb5.minRHv3.l1        -4.094e-01  4.749e-01  -0.862  0.38868    
## cb5.minRHv3.l2         1.329e-01  3.074e-01   0.432  0.66562    
## sp_ptbBMns51                  NA         NA      NA       NA    
## sp_ptbBMns52                  NA         NA      NA       NA    
## sp_ptbBMns53                  NA         NA      NA       NA    
## sp_ptbBMns54                  NA         NA      NA       NA    
## sp_ptbBMns55           1.349e+03  1.233e+03   1.094  0.27395    
## sp_ptbBMns56          -7.495e+00  9.434e+00  -0.794  0.42691    
## sp_ptbBMns57          -2.053e+00  1.598e+00  -1.284  0.19898    
## sp_ptbBMns58          -4.434e-01  8.575e-01  -0.517  0.60514    
## sp_ptbBMns59          -1.982e-01  8.225e-01  -0.241  0.80958    
## sp_ptbBMns510         -1.029e+00  9.159e-01  -1.124  0.26112    
## sp_ptbBMns511         -3.773e-01  1.080e+00  -0.349  0.72693    
## sp_ptbBMns512         -9.577e-01  8.651e-01  -1.107  0.26826    
## sp_ptbBMns513          1.080e-01  8.344e-01   0.129  0.89704    
## sp_ptbBMns514         -6.125e-01  9.273e-01  -0.661  0.50891    
## sp_ptbBMns515          1.217e+00  8.251e-01   1.475  0.14012    
## sp_ptbBMns516         -1.907e-01  8.096e-01  -0.236  0.81376    
## sp_ptbBMns517         -7.220e-01  7.148e-01  -1.010  0.31242    
## sp_ptbBMns518          1.399e-01  6.918e-01   0.202  0.83976    
## sp_ptbBMns519         -1.622e+00  7.584e-01  -2.138  0.03249 *  
## sp_ptbBMns520         -3.498e-01  8.206e-01  -0.426  0.66994    
## sp_ptbBMns521         -2.405e-01  8.117e-01  -0.296  0.76706    
## sp_ptbBMns522         -1.082e+00  1.007e+00  -1.074  0.28294    
## sp_ptbBMns523         -3.356e+00  1.190e+00  -2.821  0.00479 ** 
## sp_ptbBMns524         -1.251e+00  1.075e+00  -1.164  0.24452    
## sp_ptbBMns525         -1.646e+00  1.379e+00  -1.194  0.23263    
## sp_ptbBMns526         -2.949e-01  1.135e+00  -0.260  0.79496    
## sp_ptbBMns527         -4.770e-01  9.564e-01  -0.499  0.61801    
## sp_ptbBMns528         -3.377e-01  8.637e-01  -0.391  0.69580    
## sp_ptbBMns529          7.842e-02  8.725e-01   0.090  0.92839    
## sp_ptbBMns530         -1.118e+00  8.203e-01  -1.363  0.17302    
## sp_ptbBMns531          7.627e-02  8.118e-01   0.094  0.92515    
## sp_ptbBMns532         -6.160e-01  7.511e-01  -0.820  0.41215    
## sp_ptbBMns533         -1.251e+00  8.259e-01  -1.514  0.12993    
## sp_ptbBMns534         -6.698e-01  7.283e-01  -0.920  0.35776    
## sp_ptbBMns535         -6.570e-01  9.304e-01  -0.706  0.48005    
## sp_ptbBMns536         -1.315e-01  8.213e-01  -0.160  0.87277    
## sp_ptbBMns537         -6.565e-01  8.261e-01  -0.795  0.42677    
## sp_ptbBMns538          2.594e-01  7.530e-01   0.344  0.73047    
## sp_ptbBMns539         -1.407e+00  7.834e-01  -1.797  0.07241 .  
## sp_ptbBMns540          1.116e+00  9.444e-01   1.182  0.23717    
## sp_ptbBMns541         -4.900e-01  7.345e-01  -0.667  0.50473    
## sp_ptbBMns542         -1.881e+00  9.779e-01  -1.923  0.05443 .  
## sp_ptbBMns543         -1.767e+00  9.475e-01  -1.865  0.06225 .  
## sp_ptbBMns544         -1.702e+00  8.519e-01  -1.998  0.04577 *  
## sp_ptbBMns545         -1.586e+00  1.239e+00  -1.280  0.20065    
## sp_ptbBMns546         -8.967e-01  1.014e+00  -0.885  0.37632    
## sp_ptbBMns547         -9.723e-02  7.196e-01  -0.135  0.89252    
## sp_ptbBMns548          5.098e-02  5.616e-01   0.091  0.92767    
## sp_ptbBMns549         -3.945e-02  6.352e-01  -0.062  0.95048    
## sp_ptbBMns550          2.625e-03  9.171e-01   0.003  0.99772    
## sp_ptbBMns551          6.973e-02  7.487e-01   0.093  0.92580    
## sp_ptbBMns552         -4.365e-01  6.756e-01  -0.646  0.51821    
## sp_ptbBMns553          2.899e-01  7.476e-01   0.388  0.69815    
## sp_ptbBMns554         -3.466e-01  6.050e-01  -0.573  0.56676    
## sp_ptbBMns555          3.209e-01  8.711e-01   0.368  0.71257    
## sp_ptbBMns556          1.866e+00  7.754e-01   2.407  0.01608 *  
## sp_ptbBMns557         -1.540e+00  8.457e-01  -1.821  0.06858 .  
## sp_ptbBMns558          5.013e-01  6.286e-01   0.797  0.42520    
## sp_ptbBMns559         -1.198e+00  7.130e-01  -1.680  0.09288 .  
## sp_ptbBMns560          2.399e-01  8.933e-01   0.268  0.78832    
## sp_ptbBMns561         -6.255e-01  9.269e-01  -0.675  0.49978    
## sp_ptbBMns562          1.541e+00  6.963e-01   2.214  0.02685 *  
## sp_ptbBMns563         -1.040e+00  7.327e-01  -1.420  0.15572    
## sp_ptbBMns564          8.482e-02  7.344e-01   0.115  0.90805    
## sp_ptbBMns565          8.171e-01  1.256e+00   0.650  0.51544    
## sp_ptbBMns566          1.354e+00  8.995e-01   1.505  0.13228    
## sp_ptbBMns567         -4.199e-01  9.370e-01  -0.448  0.65402    
## sp_ptbBMns568          8.925e-01  9.179e-01   0.972  0.33091    
## sp_ptbBMns569          5.278e-01  1.098e+00   0.480  0.63087    
## sp_ptbBMns570         -4.574e-01  1.099e+00  -0.416  0.67738    
## sp_ptbBMns571          1.732e+00  9.047e-01   1.915  0.05555 .  
## sp_ptbBMns572          7.622e-01  8.349e-01   0.913  0.36128    
## sp_ptbBMns573          6.879e-01  8.456e-01   0.813  0.41597    
## sp_ptbBMns574         -6.235e-02  7.003e-01  -0.089  0.92905    
## sp_ptbBMns575          1.491e+00  8.592e-01   1.736  0.08263 .  
## sp_ptbBMns576         -6.590e-01  7.080e-01  -0.931  0.35201    
## sp_ptbBMns577          1.189e+00  7.223e-01   1.646  0.09972 .  
## sp_ptbBMns578         -3.987e-01  6.155e-01  -0.648  0.51719    
## sp_ptbBMns579          1.371e+00  6.087e-01   2.252  0.02433 *  
## sp_ptbBMns580         -9.926e-01  6.664e-01  -1.489  0.13637    
## sp_ptbBMns581          1.653e+00  7.850e-01   2.106  0.03524 *  
## sp_ptbBMns582         -1.153e+00  6.917e-01  -1.667  0.09551 .  
## sp_ptbBMns583          2.083e+00  8.100e-01   2.571  0.01013 *  
## sp_ptbBMns584         -1.740e-01  6.557e-01  -0.265  0.79067    
## sp_ptbBMns585          6.122e-01  9.059e-01   0.676  0.49921    
## sp_ptbBMns586          4.551e-01  8.629e-01   0.527  0.59790    
## sp_ptbBMns587          5.255e-01  6.496e-01   0.809  0.41851    
## sp_ptbBMns588          2.533e-01  6.482e-01   0.391  0.69593    
## sp_ptbBMns589                 NA         NA      NA       NA    
## sp_ptbBMns590                 NA         NA      NA       NA    
## lag(SA3m5a.resid, 1)  -1.835e-01  2.501e-02  -7.334 2.23e-13 ***
## lag(SA3m5a.resid, 3)  -2.168e-01  2.600e-02  -8.339  < 2e-16 ***
## lag(SA3m5a.resid, 4)  -1.975e-01  2.734e-02  -7.226 4.97e-13 ***
## lag(SA3m5a.resid, 5)  -2.064e-01  2.718e-02  -7.595 3.09e-14 ***
## lag(SA3m5a.resid, 6)  -1.860e-01  2.777e-02  -6.698 2.11e-11 ***
## lag(SA3m5a.resid, 7)  -2.039e-01  2.732e-02  -7.463 8.43e-14 ***
## lag(SA3m5a.resid, 8)  -2.170e-01  2.792e-02  -7.770 7.84e-15 ***
## lag(SA3m5a.resid, 9)  -1.589e-01  2.648e-02  -6.003 1.94e-09 ***
## lag(SA3m5a.resid, 10) -1.782e-01  2.630e-02  -6.775 1.25e-11 ***
## lag(SA3m5a.resid, 11) -1.211e-01  2.667e-02  -4.539 5.64e-06 ***
## lag(SA3m5a.resid, 12) -1.118e-01  2.555e-02  -4.375 1.21e-05 ***
## lag(SA3m5a.resid, 15) -6.587e-02  2.477e-02  -2.659  0.00783 ** 
## lag(SA3m5a.resid, 18) -4.248e-02  2.401e-02  -1.769  0.07684 .  
## lag(SA3m5a.resid, 29)  7.129e-03  2.304e-02   0.309  0.75696    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(35404.42) family taken to be 1)
## 
##     Null deviance: 1050.09  on 857  degrees of freedom
## Residual deviance:  766.79  on 753  degrees of freedom
##   (81 observations deleted due to missingness)
## AIC: 2953.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  35404 
##           Std. Err.:  173634 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2741.502
SA3m5a.resid_ac<-residuals(SA3m5a.ac, type="deviance")
SA3m5a.pred_ac<-predict(SA3m5a.ac, type="response")

pacf(SA3m5a.resid_ac,na.action = na.omit) 

length(SA3m5a.pred_ac); length(SA3m5a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA3m5a.pred,lwd=1, col="blue")

plot(week$time,SA3m5a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA3m5a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA3m5a.pred_ac,lwd=1, col="blue")

plot(week$time,SA3m5a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA3m5a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose response and slices
pred.SA3m5a <- crosspred(cb5.minRH, SA3m5a.ac, cen = 63, by=0.1,cumul=TRUE)


##for SA3m9a minT ######
summary(SA3m9a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb9.minT + sp_ptbBMns5, data = week, 
##     init.theta = 17448.55852, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3977  -0.8342  -0.1111   0.5435   2.8324  
## 
## Coefficients: (3 not defined because of singularities)
##                 Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    2.883e-01  8.973e+00   0.032  0.97437   
## cb9.minTv1.l1  2.738e-01  2.171e-01   1.261  0.20724   
## cb9.minTv1.l2 -3.795e-01  1.497e-01  -2.535  0.01123 * 
## cb9.minTv2.l1  1.316e-01  7.587e-01   0.173  0.86226   
## cb9.minTv2.l2 -8.424e-01  5.516e-01  -1.527  0.12675   
## cb9.minTv3.l1  1.779e-01  4.041e-01   0.440  0.65973   
## cb9.minTv3.l2  2.391e-01  3.077e-01   0.777  0.43720   
## sp_ptbBMns51          NA         NA      NA       NA   
## sp_ptbBMns52   2.288e+06  5.352e+06   0.427  0.66906   
## sp_ptbBMns53  -3.215e+00  9.649e+00  -0.333  0.73902   
## sp_ptbBMns54   1.517e-01  1.592e+00   0.095  0.92408   
## sp_ptbBMns55  -1.351e+00  1.013e+00  -1.333  0.18249   
## sp_ptbBMns56  -7.888e-01  8.786e-01  -0.898  0.36928   
## sp_ptbBMns57  -2.564e+00  9.731e-01  -2.634  0.00843 **
## sp_ptbBMns58   2.176e-01  7.092e-01   0.307  0.75901   
## sp_ptbBMns59  -5.288e-01  7.909e-01  -0.669  0.50374   
## sp_ptbBMns510 -9.688e-01  7.792e-01  -1.243  0.21372   
## sp_ptbBMns511 -8.698e-01  8.503e-01  -1.023  0.30632   
## sp_ptbBMns512 -6.818e-01  8.364e-01  -0.815  0.41493   
## sp_ptbBMns513 -1.559e+00  9.759e-01  -1.598  0.11015   
## sp_ptbBMns514 -1.003e+00  8.471e-01  -1.184  0.23656   
## sp_ptbBMns515 -1.378e-01  7.560e-01  -0.182  0.85539   
## sp_ptbBMns516 -1.464e+00  7.654e-01  -1.913  0.05580 . 
## sp_ptbBMns517 -5.405e-01  6.984e-01  -0.774  0.43897   
## sp_ptbBMns518  2.708e-01  6.889e-01   0.393  0.69421   
## sp_ptbBMns519 -1.722e+00  8.219e-01  -2.095  0.03620 * 
## sp_ptbBMns520  8.761e-01  7.094e-01   1.235  0.21687   
## sp_ptbBMns521 -2.945e-01  7.139e-01  -0.413  0.67996   
## sp_ptbBMns522  8.915e-01  7.909e-01   1.127  0.25966   
## sp_ptbBMns523 -2.045e-01  7.899e-01  -0.259  0.79576   
## sp_ptbBMns524  1.445e+00  1.181e+00   1.223  0.22131   
## sp_ptbBMns525  2.467e+00  1.185e+00   2.081  0.03740 * 
## sp_ptbBMns526  2.202e+00  1.740e+00   1.266  0.20551   
## sp_ptbBMns527  9.763e-01  1.538e+00   0.635  0.52570   
## sp_ptbBMns528  5.225e-01  1.636e+00   0.319  0.74948   
## sp_ptbBMns529 -5.243e-01  1.138e+00  -0.461  0.64496   
## sp_ptbBMns530 -2.397e-01  1.058e+00  -0.227  0.82079   
## sp_ptbBMns531 -2.175e-01  7.228e-01  -0.301  0.76345   
## sp_ptbBMns532  4.706e-01  7.048e-01   0.668  0.50429   
## sp_ptbBMns533  1.320e-01  6.889e-01   0.192  0.84806   
## sp_ptbBMns534  5.734e-01  8.025e-01   0.715  0.47487   
## sp_ptbBMns535  1.165e+00  8.056e-01   1.446  0.14826   
## sp_ptbBMns536  1.612e+00  8.279e-01   1.947  0.05152 . 
## sp_ptbBMns537  1.271e+00  1.011e+00   1.257  0.20883   
## sp_ptbBMns538  1.718e+00  1.017e+00   1.690  0.09112 . 
## sp_ptbBMns539 -1.008e+00  1.003e+00  -1.005  0.31489   
## sp_ptbBMns540  1.304e+00  9.737e-01   1.339  0.18068   
## sp_ptbBMns541 -6.513e-02  7.696e-01  -0.085  0.93256   
## sp_ptbBMns542 -1.059e+00  7.072e-01  -1.498  0.13414   
## sp_ptbBMns543  2.650e-01  6.359e-01   0.417  0.67694   
## sp_ptbBMns544 -1.705e+00  7.212e-01  -2.364  0.01809 * 
## sp_ptbBMns545 -6.838e-01  8.665e-01  -0.789  0.43003   
## sp_ptbBMns546 -7.905e-01  1.126e+00  -0.702  0.48261   
## sp_ptbBMns547 -1.378e+00  9.923e-01  -1.389  0.16497   
## sp_ptbBMns548 -7.710e-01  9.973e-01  -0.773  0.43948   
## sp_ptbBMns549 -1.865e+00  1.062e+00  -1.757  0.07898 . 
## sp_ptbBMns550 -9.185e-01  9.479e-01  -0.969  0.33254   
## sp_ptbBMns551 -2.664e-01  7.230e-01  -0.368  0.71257   
## sp_ptbBMns552 -3.145e-01  6.704e-01  -0.469  0.63894   
## sp_ptbBMns553  2.668e-01  6.800e-01   0.392  0.69478   
## sp_ptbBMns554 -1.088e+00  7.108e-01  -1.530  0.12592   
## sp_ptbBMns555 -8.039e-02  7.373e-01  -0.109  0.91318   
## sp_ptbBMns556 -1.090e-01  7.574e-01  -0.144  0.88552   
## sp_ptbBMns557 -6.145e-01  7.593e-01  -0.809  0.41831   
## sp_ptbBMns558 -6.226e-01  7.609e-01  -0.818  0.41325   
## sp_ptbBMns559 -8.698e-01  8.036e-01  -1.082  0.27906   
## sp_ptbBMns560 -1.835e+00  9.901e-01  -1.854  0.06380 . 
## sp_ptbBMns561 -1.411e+00  1.126e+00  -1.254  0.21002   
## sp_ptbBMns562 -7.120e-01  1.093e+00  -0.652  0.51471   
## sp_ptbBMns563 -2.494e+00  1.103e+00  -2.261  0.02375 * 
## sp_ptbBMns564 -2.036e+00  1.144e+00  -1.779  0.07520 . 
## sp_ptbBMns565 -1.048e+00  8.401e-01  -1.248  0.21202   
## sp_ptbBMns566 -3.034e-01  9.312e-01  -0.326  0.74453   
## sp_ptbBMns567 -2.010e+00  9.807e-01  -2.050  0.04037 * 
## sp_ptbBMns568 -8.636e-01  9.836e-01  -0.878  0.37992   
## sp_ptbBMns569 -2.665e+00  1.079e+00  -2.470  0.01351 * 
## sp_ptbBMns570 -2.376e+00  1.231e+00  -1.931  0.05354 . 
## sp_ptbBMns571 -1.093e+00  1.148e+00  -0.952  0.34091   
## sp_ptbBMns572 -7.583e-02  1.203e+00  -0.063  0.94974   
## sp_ptbBMns573 -1.847e+00  1.242e+00  -1.487  0.13700   
## sp_ptbBMns574 -1.941e+00  1.273e+00  -1.524  0.12740   
## sp_ptbBMns575 -1.930e+00  2.179e+00  -0.886  0.37583   
## sp_ptbBMns576 -3.890e-01  3.155e+00  -0.123  0.90187   
## sp_ptbBMns577 -1.156e+00  2.827e+00  -0.409  0.68263   
## sp_ptbBMns578 -2.669e+00  2.857e+00  -0.934  0.35010   
## sp_ptbBMns579 -5.529e+00  3.295e+00  -1.678  0.09335 . 
## sp_ptbBMns580 -4.665e+00  2.548e+00  -1.831  0.06714 . 
## sp_ptbBMns581 -2.028e+00  1.200e+00  -1.691  0.09093 . 
## sp_ptbBMns582 -2.046e+00  1.160e+00  -1.763  0.07793 . 
## sp_ptbBMns583 -8.936e-01  9.637e-01  -0.927  0.35380   
## sp_ptbBMns584 -3.209e-01  7.035e-01  -0.456  0.64835   
## sp_ptbBMns585 -1.636e-01  7.235e-01  -0.226  0.82115   
## sp_ptbBMns586 -3.060e-01  6.221e-01  -0.492  0.62279   
## sp_ptbBMns587  1.331e-02  5.364e-01   0.025  0.98020   
## sp_ptbBMns588  5.988e-01  6.864e-01   0.872  0.38300   
## sp_ptbBMns589         NA         NA      NA       NA   
## sp_ptbBMns590         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(17448.56) family taken to be 1)
## 
##     Null deviance: 1101.2  on 886  degrees of freedom
## Residual deviance:  974.2  on 793  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3197.1
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  17449 
##           Std. Err.:  134101 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -3007.088
scatter.smooth(predict(SA3m9a, type='response'), rstandard(SA3m9a, type='deviance'), col='gray')

SA3m9a.resid<-residuals(SA3m9a, type="deviance")
SA3m9a.pred<-predict(SA3m9a, type="response")
length(SA3m9a.resid); length(SA3m9a.pred)
## [1] 939
## [1] 939
pacf(SA3m9a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1,3-12,15, 18 & 29

#ensure that the lags are dplyr lags
SA3m9a.ac<-update(SA3m9a,.~.+lag(SA3m9a.resid,1)+lag(SA3m9a.resid,3)+lag(SA3m9a.resid,4)+
                      lag(SA3m9a.resid,5)+lag(SA3m9a.resid,6)+lag(SA3m9a.resid,7)+lag(SA3m9a.resid,8)+
                      lag(SA3m9a.resid,9)+lag(SA3m9a.resid,10)+lag(SA3m9a.resid,11)+lag(SA3m9a.resid,12)+
                      lag(SA3m9a.resid,15)+lag(SA3m9a.resid,18)+lag(SA3m9a.resid,29))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(SA3m9a.ac)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb9.minT + sp_ptbBMns5 + lag(SA3m9a.resid, 
##     1) + lag(SA3m9a.resid, 3) + lag(SA3m9a.resid, 4) + lag(SA3m9a.resid, 
##     5) + lag(SA3m9a.resid, 6) + lag(SA3m9a.resid, 7) + lag(SA3m9a.resid, 
##     8) + lag(SA3m9a.resid, 9) + lag(SA3m9a.resid, 10) + lag(SA3m9a.resid, 
##     11) + lag(SA3m9a.resid, 12) + lag(SA3m9a.resid, 15) + lag(SA3m9a.resid, 
##     18) + lag(SA3m9a.resid, 29), data = week, init.theta = 35327.4745, 
##     link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.49377  -0.72605  -0.08221   0.54480   2.50584  
## 
## Coefficients: (6 not defined because of singularities)
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            2.544e+00  9.357e+00   0.272  0.78572    
## cb9.minTv1.l1          5.624e-02  2.254e-01   0.250  0.80296    
## cb9.minTv1.l2         -4.386e-01  1.547e-01  -2.836  0.00457 ** 
## cb9.minTv2.l1          1.180e-01  7.878e-01   0.150  0.88091    
## cb9.minTv2.l2         -1.224e+00  5.644e-01  -2.168  0.03013 *  
## cb9.minTv3.l1          3.035e-01  4.132e-01   0.735  0.46264    
## cb9.minTv3.l2          5.723e-02  3.118e-01   0.184  0.85437    
## sp_ptbBMns51                  NA         NA      NA       NA    
## sp_ptbBMns52                  NA         NA      NA       NA    
## sp_ptbBMns53                  NA         NA      NA       NA    
## sp_ptbBMns54                  NA         NA      NA       NA    
## sp_ptbBMns55           1.360e+03  1.209e+03   1.124  0.26086    
## sp_ptbBMns56          -9.077e+00  9.202e+00  -0.986  0.32392    
## sp_ptbBMns57          -1.931e+00  1.582e+00  -1.221  0.22219    
## sp_ptbBMns58           3.859e-01  9.039e-01   0.427  0.66946    
## sp_ptbBMns59          -3.440e-01  8.002e-01  -0.430  0.66733    
## sp_ptbBMns510         -8.312e-01  7.946e-01  -1.046  0.29556    
## sp_ptbBMns511         -4.159e-01  8.723e-01  -0.477  0.63351    
## sp_ptbBMns512         -9.993e-01  8.566e-01  -1.167  0.24336    
## sp_ptbBMns513         -7.795e-01  9.781e-01  -0.797  0.42545    
## sp_ptbBMns514         -1.036e+00  8.539e-01  -1.214  0.22481    
## sp_ptbBMns515          1.295e-01  7.736e-01   0.167  0.86708    
## sp_ptbBMns516         -1.332e+00  7.759e-01  -1.717  0.08598 .  
## sp_ptbBMns517         -6.204e-01  7.023e-01  -0.883  0.37700    
## sp_ptbBMns518         -2.328e-01  6.768e-01  -0.344  0.73085    
## sp_ptbBMns519         -1.855e+00  8.190e-01  -2.264  0.02355 *  
## sp_ptbBMns520          2.002e-02  7.286e-01   0.027  0.97808    
## sp_ptbBMns521         -7.566e-01  7.237e-01  -1.045  0.29584    
## sp_ptbBMns522          8.784e-02  7.933e-01   0.111  0.91184    
## sp_ptbBMns523         -1.061e+00  8.142e-01  -1.303  0.19272    
## sp_ptbBMns524          1.121e+00  1.205e+00   0.931  0.35203    
## sp_ptbBMns525          1.350e+00  1.207e+00   1.119  0.26301    
## sp_ptbBMns526          9.549e-01  1.815e+00   0.526  0.59879    
## sp_ptbBMns527         -6.080e-01  1.596e+00  -0.381  0.70326    
## sp_ptbBMns528         -1.215e+00  1.694e+00  -0.717  0.47336    
## sp_ptbBMns529         -1.693e+00  1.193e+00  -1.420  0.15574    
## sp_ptbBMns530         -1.554e+00  1.075e+00  -1.445  0.14839    
## sp_ptbBMns531         -1.057e+00  7.218e-01  -1.464  0.14317    
## sp_ptbBMns532         -2.658e-01  7.222e-01  -0.368  0.71280    
## sp_ptbBMns533         -3.987e-01  6.851e-01  -0.582  0.56056    
## sp_ptbBMns534         -5.032e-01  8.289e-01  -0.607  0.54378    
## sp_ptbBMns535          7.632e-01  8.199e-01   0.931  0.35191    
## sp_ptbBMns536          5.805e-01  8.380e-01   0.693  0.48848    
## sp_ptbBMns537          3.872e-01  1.039e+00   0.373  0.70943    
## sp_ptbBMns538          9.466e-01  1.034e+00   0.916  0.35974    
## sp_ptbBMns539         -2.356e+00  1.030e+00  -2.287  0.02221 *  
## sp_ptbBMns540          7.329e-01  9.855e-01   0.744  0.45702    
## sp_ptbBMns541         -9.871e-01  7.775e-01  -1.270  0.20424    
## sp_ptbBMns542         -1.089e+00  7.081e-01  -1.538  0.12407    
## sp_ptbBMns543         -3.246e-01  6.494e-01  -0.500  0.61723    
## sp_ptbBMns544         -1.575e+00  7.272e-01  -2.166  0.03030 *  
## sp_ptbBMns545         -5.912e-01  8.548e-01  -0.692  0.48917    
## sp_ptbBMns546         -4.491e-01  1.141e+00  -0.394  0.69394    
## sp_ptbBMns547         -9.145e-01  1.015e+00  -0.901  0.36742    
## sp_ptbBMns548         -6.121e-01  1.007e+00  -0.608  0.54312    
## sp_ptbBMns549         -1.523e+00  1.064e+00  -1.432  0.15222    
## sp_ptbBMns550         -1.049e+00  9.617e-01  -1.091  0.27541    
## sp_ptbBMns551         -3.494e-01  7.224e-01  -0.484  0.62867    
## sp_ptbBMns552         -9.333e-01  6.674e-01  -1.398  0.16196    
## sp_ptbBMns553         -1.502e-01  7.207e-01  -0.208  0.83495    
## sp_ptbBMns554         -1.154e+00  7.248e-01  -1.592  0.11129    
## sp_ptbBMns555         -4.264e-01  7.418e-01  -0.575  0.56540    
## sp_ptbBMns556          9.670e-01  7.702e-01   1.255  0.20931    
## sp_ptbBMns557         -1.067e+00  7.777e-01  -1.372  0.16998    
## sp_ptbBMns558          2.344e-01  7.701e-01   0.304  0.76086    
## sp_ptbBMns559         -1.459e+00  8.202e-01  -1.779  0.07524 .  
## sp_ptbBMns560         -6.223e-01  1.027e+00  -0.606  0.54458    
## sp_ptbBMns561         -1.675e+00  1.142e+00  -1.466  0.14259    
## sp_ptbBMns562          6.092e-01  1.121e+00   0.544  0.58674    
## sp_ptbBMns563         -2.257e+00  1.120e+00  -2.015  0.04388 *  
## sp_ptbBMns564         -1.951e+00  1.154e+00  -1.690  0.09094 .  
## sp_ptbBMns565         -4.347e-01  8.553e-01  -0.508  0.61129    
## sp_ptbBMns566          6.500e-02  9.427e-01   0.069  0.94503    
## sp_ptbBMns567         -1.440e+00  9.951e-01  -1.447  0.14797    
## sp_ptbBMns568         -6.939e-01  1.000e+00  -0.694  0.48773    
## sp_ptbBMns569         -1.958e+00  1.102e+00  -1.777  0.07557 .  
## sp_ptbBMns570         -2.854e+00  1.243e+00  -2.297  0.02164 *  
## sp_ptbBMns571         -1.019e-01  1.166e+00  -0.087  0.93038    
## sp_ptbBMns572          1.585e-03  1.214e+00   0.001  0.99896    
## sp_ptbBMns573         -1.045e+00  1.263e+00  -0.827  0.40829    
## sp_ptbBMns574         -1.779e+00  1.289e+00  -1.380  0.16764    
## sp_ptbBMns575         -1.193e+00  2.189e+00  -0.545  0.58585    
## sp_ptbBMns576         -2.678e+00  3.217e+00  -0.833  0.40507    
## sp_ptbBMns577         -1.152e+00  2.866e+00  -0.402  0.68782    
## sp_ptbBMns578         -3.828e+00  2.890e+00  -1.325  0.18526    
## sp_ptbBMns579         -4.299e+00  3.351e+00  -1.283  0.19957    
## sp_ptbBMns580         -5.493e+00  2.579e+00  -2.130  0.03317 *  
## sp_ptbBMns581         -6.620e-01  1.228e+00  -0.539  0.58967    
## sp_ptbBMns582         -2.712e+00  1.178e+00  -2.303  0.02126 *  
## sp_ptbBMns583          6.326e-01  1.005e+00   0.629  0.52919    
## sp_ptbBMns584         -1.071e+00  6.953e-01  -1.541  0.12341    
## sp_ptbBMns585         -1.963e-01  7.457e-01  -0.263  0.79239    
## sp_ptbBMns586         -9.698e-01  6.577e-01  -1.475  0.14034    
## sp_ptbBMns587         -1.980e-01  5.363e-01  -0.369  0.71202    
## sp_ptbBMns588          9.771e-02  6.688e-01   0.146  0.88385    
## sp_ptbBMns589                 NA         NA      NA       NA    
## sp_ptbBMns590                 NA         NA      NA       NA    
## lag(SA3m9a.resid, 1)  -1.853e-01  2.519e-02  -7.357 1.88e-13 ***
## lag(SA3m9a.resid, 3)  -2.155e-01  2.611e-02  -8.255  < 2e-16 ***
## lag(SA3m9a.resid, 4)  -1.966e-01  2.761e-02  -7.121 1.07e-12 ***
## lag(SA3m9a.resid, 5)  -2.041e-01  2.733e-02  -7.469 8.11e-14 ***
## lag(SA3m9a.resid, 6)  -1.852e-01  2.805e-02  -6.603 4.04e-11 ***
## lag(SA3m9a.resid, 7)  -2.031e-01  2.768e-02  -7.338 2.17e-13 ***
## lag(SA3m9a.resid, 8)  -2.180e-01  2.832e-02  -7.696 1.40e-14 ***
## lag(SA3m9a.resid, 9)  -1.598e-01  2.691e-02  -5.939 2.87e-09 ***
## lag(SA3m9a.resid, 10) -1.768e-01  2.664e-02  -6.634 3.26e-11 ***
## lag(SA3m9a.resid, 11) -1.214e-01  2.689e-02  -4.514 6.36e-06 ***
## lag(SA3m9a.resid, 12) -1.086e-01  2.562e-02  -4.240 2.23e-05 ***
## lag(SA3m9a.resid, 15) -6.324e-02  2.493e-02  -2.537  0.01117 *  
## lag(SA3m9a.resid, 18) -3.680e-02  2.412e-02  -1.525  0.12719    
## lag(SA3m9a.resid, 29)  1.205e-02  2.299e-02   0.524  0.60025    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(35327.47) family taken to be 1)
## 
##     Null deviance: 1050.09  on 857  degrees of freedom
## Residual deviance:  763.81  on 753  degrees of freedom
##   (81 observations deleted due to missingness)
## AIC: 2950.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  35327 
##           Std. Err.:  170980 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2738.517
SA3m9a.resid_ac<-residuals(SA3m9a.ac, type="deviance")
SA3m9a.pred_ac<-predict(SA3m9a.ac, type="response")

pacf(SA3m9a.resid_ac,na.action = na.omit) 

length(SA3m9a.pred_ac); length(SA3m9a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA3m9a.pred,lwd=1, col="blue")

plot(week$time,SA3m9a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA3m9a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA3m9a.pred_ac,lwd=1, col="blue")

plot(week$time,SA3m9a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA3m9a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose response and slices
pred.SA3m9a <- crosspred(cb9.minT, SA3m9a.ac, cen = 24.0, by=0.1,cumul=TRUE)


###final SA3 model   #####
mod_fullSA3bm<-glm.nb(ptbBM ~ cb3.RF + cb9.minT + cb5.minRH + cb2.sun + cb1.avgWindSp + sp_ptbBMns5, data = week)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(mod_fullSA3bm)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb3.RF + cb9.minT + cb5.minRH + cb2.sun + 
##     cb1.avgWindSp + sp_ptbBMns5, data = week, init.theta = 20835.00492, 
##     link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4281  -0.8020  -0.1077   0.5694   2.8407  
## 
## Coefficients: (3 not defined because of singularities)
##                      Estimate Std. Error z value Pr(>|z|)  
## (Intercept)         6.577e+00  1.728e+01   0.381   0.7035  
## cb3.RFv1.l1         5.399e-02  2.395e-01   0.225   0.8216  
## cb3.RFv1.l2         1.749e-01  1.684e-01   1.038   0.2992  
## cb3.RFv2.l1         4.603e-01  3.774e-01   1.220   0.2226  
## cb3.RFv2.l2         2.271e-01  2.625e-01   0.865   0.3870  
## cb3.RFv3.l1         6.699e-01  6.083e-01   1.101   0.2708  
## cb3.RFv3.l2         1.145e-01  4.142e-01   0.277   0.7821  
## cb9.minTv1.l1       2.693e-01  2.390e-01   1.127   0.2599  
## cb9.minTv1.l2      -2.721e-01  1.786e-01  -1.524   0.1276  
## cb9.minTv2.l1       4.048e-01  8.230e-01   0.492   0.6228  
## cb9.minTv2.l2      -9.606e-01  6.409e-01  -1.499   0.1339  
## cb9.minTv3.l1       3.419e-01  4.576e-01   0.747   0.4549  
## cb9.minTv3.l2       2.276e-01  3.447e-01   0.660   0.5090  
## cb5.minRHv1.l1     -1.692e-01  2.443e-01  -0.693   0.4886  
## cb5.minRHv1.l2      9.114e-02  1.439e-01   0.633   0.5266  
## cb5.minRHv2.l1     -1.329e+00  8.844e-01  -1.502   0.1331  
## cb5.minRHv2.l2     -4.640e-01  5.954e-01  -0.779   0.4358  
## cb5.minRHv3.l1     -1.036e+00  5.772e-01  -1.795   0.0726 .
## cb5.minRHv3.l2     -6.438e-01  4.167e-01  -1.545   0.1223  
## cb2.sunv1.l1       -9.056e-02  1.955e-01  -0.463   0.6431  
## cb2.sunv1.l2       -1.635e-01  1.410e-01  -1.160   0.2462  
## cb2.sunv2.l1       -3.506e-01  7.724e-01  -0.454   0.6499  
## cb2.sunv2.l2        2.984e-01  5.553e-01   0.537   0.5911  
## cb2.sunv3.l1        2.117e-01  2.866e-01   0.738   0.4602  
## cb2.sunv3.l2        3.320e-01  2.008e-01   1.653   0.0984 .
## cb1.avgWindSpv1.l1 -1.839e-01  2.573e-01  -0.715   0.4747  
## cb1.avgWindSpv1.l2  1.133e-01  2.002e-01   0.566   0.5716  
## cb1.avgWindSpv2.l1  1.039e+00  6.144e-01   1.691   0.0909 .
## cb1.avgWindSpv2.l2 -1.332e-01  4.277e-01  -0.311   0.7555  
## cb1.avgWindSpv3.l1  1.160e+00  7.068e-01   1.641   0.1008  
## cb1.avgWindSpv3.l2 -2.063e-01  4.226e-01  -0.488   0.6255  
## sp_ptbBMns51               NA         NA      NA       NA  
## sp_ptbBMns52        2.222e+06  5.439e+06   0.408   0.6829  
## sp_ptbBMns53        1.698e+00  1.180e+01   0.144   0.8856  
## sp_ptbBMns54       -1.616e-01  2.070e+00  -0.078   0.9378  
## sp_ptbBMns55       -2.374e+00  2.124e+00  -1.118   0.2635  
## sp_ptbBMns56       -7.457e-01  1.848e+00  -0.403   0.6866  
## sp_ptbBMns57       -3.899e+00  1.625e+00  -2.400   0.0164 *
## sp_ptbBMns58       -1.094e+00  1.407e+00  -0.778   0.4367  
## sp_ptbBMns59       -1.691e+00  1.703e+00  -0.993   0.3206  
## sp_ptbBMns510      -2.788e+00  1.458e+00  -1.912   0.0559 .
## sp_ptbBMns511      -1.428e+00  1.534e+00  -0.931   0.3520  
## sp_ptbBMns512      -1.328e+00  1.309e+00  -1.014   0.3106  
## sp_ptbBMns513      -2.223e+00  1.366e+00  -1.627   0.1037  
## sp_ptbBMns514      -1.695e+00  1.421e+00  -1.193   0.2330  
## sp_ptbBMns515      -5.434e-01  1.643e+00  -0.331   0.7409  
## sp_ptbBMns516      -7.440e-01  1.430e+00  -0.520   0.6029  
## sp_ptbBMns517      -4.258e-01  1.246e+00  -0.342   0.7325  
## sp_ptbBMns518       4.086e-01  1.157e+00   0.353   0.7241  
## sp_ptbBMns519      -1.083e+00  1.339e+00  -0.809   0.4187  
## sp_ptbBMns520       1.224e-01  1.611e+00   0.076   0.9394  
## sp_ptbBMns521      -4.424e-01  1.454e+00  -0.304   0.7609  
## sp_ptbBMns522       4.016e-02  1.489e+00   0.027   0.9785  
## sp_ptbBMns523      -1.049e+00  1.567e+00  -0.669   0.5034  
## sp_ptbBMns524       1.050e+00  1.909e+00   0.550   0.5823  
## sp_ptbBMns525       1.864e+00  2.274e+00   0.820   0.4124  
## sp_ptbBMns526       1.543e+00  2.568e+00   0.601   0.5480  
## sp_ptbBMns527       4.490e-01  2.331e+00   0.193   0.8473  
## sp_ptbBMns528       4.786e-02  2.329e+00   0.021   0.9836  
## sp_ptbBMns529      -7.829e-01  1.969e+00  -0.398   0.6909  
## sp_ptbBMns530      -6.115e-01  1.893e+00  -0.323   0.7466  
## sp_ptbBMns531      -9.991e-01  1.669e+00  -0.599   0.5493  
## sp_ptbBMns532      -8.925e-01  1.618e+00  -0.552   0.5812  
## sp_ptbBMns533      -1.914e+00  1.636e+00  -1.170   0.2422  
## sp_ptbBMns534      -2.683e-01  1.895e+00  -0.142   0.8874  
## sp_ptbBMns535      -5.335e-01  1.914e+00  -0.279   0.7805  
## sp_ptbBMns536      -2.458e-01  1.790e+00  -0.137   0.8908  
## sp_ptbBMns537      -4.782e-02  1.765e+00  -0.027   0.9784  
## sp_ptbBMns538       5.394e-01  1.667e+00   0.324   0.7462  
## sp_ptbBMns539      -1.601e+00  1.596e+00  -1.003   0.3156  
## sp_ptbBMns540       4.653e-01  1.866e+00   0.249   0.8030  
## sp_ptbBMns541      -9.869e-01  1.352e+00  -0.730   0.4653  
## sp_ptbBMns542      -2.726e+00  1.451e+00  -1.879   0.0602 .
## sp_ptbBMns543      -1.713e+00  1.388e+00  -1.234   0.2173  
## sp_ptbBMns544      -1.800e+00  1.459e+00  -1.233   0.2175  
## sp_ptbBMns545      -2.539e+00  2.073e+00  -1.224   0.2208  
## sp_ptbBMns546      -9.369e-01  2.076e+00  -0.451   0.6517  
## sp_ptbBMns547      -1.987e+00  2.048e+00  -0.970   0.3319  
## sp_ptbBMns548      -1.726e+00  2.050e+00  -0.842   0.3999  
## sp_ptbBMns549      -3.106e+00  2.112e+00  -1.471   0.1414  
## sp_ptbBMns550      -2.052e+00  2.016e+00  -1.018   0.3088  
## sp_ptbBMns551      -5.278e-01  1.806e+00  -0.292   0.7701  
## sp_ptbBMns552      -8.333e-01  1.713e+00  -0.487   0.6266  
## sp_ptbBMns553       1.194e-01  1.642e+00   0.073   0.9420  
## sp_ptbBMns554      -1.330e-01  1.633e+00  -0.081   0.9351  
## sp_ptbBMns555       1.686e-01  1.872e+00   0.090   0.9282  
## sp_ptbBMns556       7.431e-01  1.740e+00   0.427   0.6694  
## sp_ptbBMns557      -1.102e+00  1.827e+00  -0.603   0.5465  
## sp_ptbBMns558      -1.595e+00  1.685e+00  -0.946   0.3439  
## sp_ptbBMns559      -1.061e+00  1.673e+00  -0.634   0.5260  
## sp_ptbBMns560      -2.108e+00  2.095e+00  -1.006   0.3144  
## sp_ptbBMns561      -1.816e+00  2.144e+00  -0.847   0.3969  
## sp_ptbBMns562      -4.488e-01  1.925e+00  -0.233   0.8157  
## sp_ptbBMns563      -2.826e+00  1.943e+00  -1.454   0.1458  
## sp_ptbBMns564      -1.553e+00  2.061e+00  -0.754   0.4510  
## sp_ptbBMns565      -9.271e-01  2.235e+00  -0.415   0.6783  
## sp_ptbBMns566       1.421e+00  2.020e+00   0.704   0.4816  
## sp_ptbBMns567      -6.859e-02  2.020e+00  -0.034   0.9729  
## sp_ptbBMns568       1.130e+00  1.942e+00   0.582   0.5607  
## sp_ptbBMns569       8.240e-01  2.235e+00   0.369   0.7124  
## sp_ptbBMns570      -1.440e+00  2.432e+00  -0.592   0.5537  
## sp_ptbBMns571       6.719e-01  2.336e+00   0.288   0.7736  
## sp_ptbBMns572       1.638e+00  2.167e+00   0.756   0.4497  
## sp_ptbBMns573       1.910e-01  2.029e+00   0.094   0.9250  
## sp_ptbBMns574      -2.560e-02  2.017e+00  -0.013   0.9899  
## sp_ptbBMns575      -3.505e+00  2.902e+00  -1.208   0.2272  
## sp_ptbBMns576      -2.915e+00  3.660e+00  -0.797   0.4257  
## sp_ptbBMns577      -3.023e+00  3.423e+00  -0.883   0.3772  
## sp_ptbBMns578      -5.496e+00  3.377e+00  -1.628   0.1036  
## sp_ptbBMns579      -6.160e+00  3.751e+00  -1.642   0.1005  
## sp_ptbBMns580      -5.154e+00  3.071e+00  -1.678   0.0933 .
## sp_ptbBMns581      -1.784e+00  1.665e+00  -1.072   0.2839  
## sp_ptbBMns582      -1.011e+00  1.623e+00  -0.623   0.5334  
## sp_ptbBMns583      -4.924e-01  1.396e+00  -0.353   0.7242  
## sp_ptbBMns584       2.462e-01  1.140e+00   0.216   0.8290  
## sp_ptbBMns585      -1.180e+00  1.358e+00  -0.869   0.3850  
## sp_ptbBMns586      -2.456e-01  1.046e+00  -0.235   0.8144  
## sp_ptbBMns587      -5.768e-02  8.804e-01  -0.066   0.9478  
## sp_ptbBMns588       4.719e-01  8.572e-01   0.551   0.5819  
## sp_ptbBMns589              NA         NA      NA       NA  
## sp_ptbBMns590              NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(20835) family taken to be 1)
## 
##     Null deviance: 1101.26  on 886  degrees of freedom
## Residual deviance:  951.88  on 769  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3222.7
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  20835 
##           Std. Err.:  140243 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2984.748
pred.fullbm<-predict(mod_fullSA3bm, type="response") #fitted
resid.fullbm<-residuals(mod_fullSA3bm, type="deviance") #residuals deviance

length(pred.fullbm)
## [1] 939
length(week$ptbBM)
## [1] 939
length(resid.fullbm)
## [1] 939
pacf(resid.fullbm,na.action=na.omit) #PACF for residuals, sig lags from 1-12,15 & 29

#ensure that the lags are dplyr lags
mod_fullSA3bm.ac<-update(mod_fullSA3bm,.~.+lag(resid.fullbm,1)+lag(resid.fullbm,2)+lag(resid.fullbm,3)+lag(resid.fullbm,4)+
                             lag(resid.fullbm,5)+lag(resid.fullbm,6)+lag(resid.fullbm,7)+lag(resid.fullbm,8)+lag(resid.fullbm,9)+
                             lag(resid.fullbm,10)+lag(resid.fullbm,11)+lag(resid.fullbm,12)+lag(resid.fullbm,15)+
                             lag(resid.fullbm,29))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(mod_fullSA3bm.ac)##aic=3045
## 
## Call:
## glm.nb(formula = ptbBM ~ cb3.RF + cb9.minT + cb5.minRH + cb2.sun + 
##     cb1.avgWindSp + sp_ptbBMns5 + lag(resid.fullbm, 1) + lag(resid.fullbm, 
##     2) + lag(resid.fullbm, 3) + lag(resid.fullbm, 4) + lag(resid.fullbm, 
##     5) + lag(resid.fullbm, 6) + lag(resid.fullbm, 7) + lag(resid.fullbm, 
##     8) + lag(resid.fullbm, 9) + lag(resid.fullbm, 10) + lag(resid.fullbm, 
##     11) + lag(resid.fullbm, 12) + lag(resid.fullbm, 15) + lag(resid.fullbm, 
##     29), data = week, init.theta = 43871.91116, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.23044  -0.72513  -0.02565   0.47321   2.39163  
## 
## Coefficients: (6 not defined because of singularities)
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             17.46889   18.46301   0.946 0.344069    
## cb3.RFv1.l1              0.08816    0.25511   0.346 0.729664    
## cb3.RFv1.l2              0.16777    0.17701   0.948 0.343250    
## cb3.RFv2.l1              0.30723    0.39968   0.769 0.442068    
## cb3.RFv2.l2              0.26849    0.28330   0.948 0.343259    
## cb3.RFv3.l1              0.60075    0.65490   0.917 0.358981    
## cb3.RFv3.l2              0.00344    0.45452   0.008 0.993962    
## cb9.minTv1.l1            0.13909    0.24590   0.566 0.571635    
## cb9.minTv1.l2           -0.46295    0.18584  -2.491 0.012735 *  
## cb9.minTv2.l1            0.41907    0.87280   0.480 0.631119    
## cb9.minTv2.l2           -1.55386    0.67373  -2.306 0.021091 *  
## cb9.minTv3.l1            0.32611    0.46592   0.700 0.483979    
## cb9.minTv3.l2           -0.18927    0.35368  -0.535 0.592549    
## cb5.minRHv1.l1          -0.34610    0.25957  -1.333 0.182400    
## cb5.minRHv1.l2          -0.02550    0.14826  -0.172 0.863412    
## cb5.minRHv2.l1          -2.25040    0.93869  -2.397 0.016512 *  
## cb5.minRHv2.l2           0.33440    0.61532   0.543 0.586817    
## cb5.minRHv3.l1          -0.46998    0.62402  -0.753 0.451354    
## cb5.minRHv3.l2           0.15834    0.43723   0.362 0.717244    
## cb2.sunv1.l1             0.16906    0.20665   0.818 0.413283    
## cb2.sunv1.l2             0.11932    0.14210   0.840 0.401070    
## cb2.sunv2.l1             0.35507    0.81284   0.437 0.662233    
## cb2.sunv2.l2             1.18782    0.56461   2.104 0.035397 *  
## cb2.sunv3.l1             0.20791    0.30066   0.692 0.489251    
## cb2.sunv3.l2             0.49672    0.20805   2.387 0.016964 *  
## cb1.avgWindSpv1.l1       0.18842    0.26913   0.700 0.483852    
## cb1.avgWindSpv1.l2       0.29159    0.21249   1.372 0.169991    
## cb1.avgWindSpv2.l1       0.27631    0.65716   0.420 0.674142    
## cb1.avgWindSpv2.l2      -0.20709    0.45018  -0.460 0.645502    
## cb1.avgWindSpv3.l1      -0.01671    0.76083  -0.022 0.982481    
## cb1.avgWindSpv3.l2      -0.17066    0.45313  -0.377 0.706448    
## sp_ptbBMns51                  NA         NA      NA       NA    
## sp_ptbBMns52                  NA         NA      NA       NA    
## sp_ptbBMns53                  NA         NA      NA       NA    
## sp_ptbBMns54                  NA         NA      NA       NA    
## sp_ptbBMns55          1161.19604 1270.44727   0.914 0.360714    
## sp_ptbBMns56            -5.34952   10.08358  -0.531 0.595753    
## sp_ptbBMns57            -5.35300    2.24823  -2.381 0.017267 *  
## sp_ptbBMns58            -0.53299    1.55872  -0.342 0.732396    
## sp_ptbBMns59            -1.79468    1.75820  -1.021 0.307375    
## sp_ptbBMns510           -2.69956    1.49152  -1.810 0.070306 .  
## sp_ptbBMns511           -0.17680    1.56179  -0.113 0.909872    
## sp_ptbBMns512           -2.48641    1.33178  -1.867 0.061904 .  
## sp_ptbBMns513            0.03532    1.38679   0.025 0.979681    
## sp_ptbBMns514           -2.22339    1.43445  -1.550 0.121142    
## sp_ptbBMns515            0.16925    1.67419   0.101 0.919477    
## sp_ptbBMns516           -1.96975    1.46322  -1.346 0.178246    
## sp_ptbBMns517           -2.25541    1.27561  -1.768 0.077042 .  
## sp_ptbBMns518            0.16300    1.18119   0.138 0.890243    
## sp_ptbBMns519           -3.48572    1.39993  -2.490 0.012777 *  
## sp_ptbBMns520            0.36707    1.63834   0.224 0.822720    
## sp_ptbBMns521           -2.46318    1.47727  -1.667 0.095436 .  
## sp_ptbBMns522           -0.65153    1.49510  -0.436 0.662996    
## sp_ptbBMns523           -4.24688    1.59743  -2.659 0.007847 ** 
## sp_ptbBMns524            1.90255    1.92557   0.988 0.323132    
## sp_ptbBMns525            0.33431    2.31179   0.145 0.885016    
## sp_ptbBMns526            1.88960    2.64558   0.714 0.475072    
## sp_ptbBMns527           -0.66052    2.37896  -0.278 0.781280    
## sp_ptbBMns528           -0.44098    2.37879  -0.185 0.852930    
## sp_ptbBMns529           -1.94005    2.03328  -0.954 0.340011    
## sp_ptbBMns530           -1.99347    1.91658  -1.040 0.298285    
## sp_ptbBMns531           -1.92628    1.69920  -1.134 0.256946    
## sp_ptbBMns532           -1.42928    1.69272  -0.844 0.398461    
## sp_ptbBMns533           -2.61967    1.69635  -1.544 0.122516    
## sp_ptbBMns534           -2.62907    1.96961  -1.335 0.181935    
## sp_ptbBMns535           -1.28154    1.95084  -0.657 0.511233    
## sp_ptbBMns536           -1.37078    1.83355  -0.748 0.454696    
## sp_ptbBMns537           -0.40718    1.78354  -0.228 0.819416    
## sp_ptbBMns538            0.76582    1.70902   0.448 0.654079    
## sp_ptbBMns539           -3.64513    1.63193  -2.234 0.025508 *  
## sp_ptbBMns540           -0.41709    1.89230  -0.220 0.825550    
## sp_ptbBMns541           -3.41569    1.36133  -2.509 0.012105 *  
## sp_ptbBMns542           -5.16174    1.50848  -3.422 0.000622 ***
## sp_ptbBMns543           -3.45816    1.42035  -2.435 0.014903 *  
## sp_ptbBMns544           -3.14664    1.50840  -2.086 0.036972 *  
## sp_ptbBMns545           -3.69708    2.07753  -1.780 0.075149 .  
## sp_ptbBMns546           -2.40840    2.09586  -1.149 0.250504    
## sp_ptbBMns547           -3.02628    2.09094  -1.447 0.147805    
## sp_ptbBMns548           -3.51121    2.12532  -1.652 0.098517 .  
## sp_ptbBMns549           -3.46961    2.19516  -1.581 0.113976    
## sp_ptbBMns550           -3.95692    2.08698  -1.896 0.057960 .  
## sp_ptbBMns551           -1.67495    1.86957  -0.896 0.370304    
## sp_ptbBMns552           -4.11922    1.76565  -2.333 0.019649 *  
## sp_ptbBMns553           -0.81408    1.70106  -0.479 0.632242    
## sp_ptbBMns554           -1.80953    1.67484  -1.080 0.279956    
## sp_ptbBMns555           -1.14089    1.90409  -0.599 0.549054    
## sp_ptbBMns556            1.21490    1.76902   0.687 0.492231    
## sp_ptbBMns557           -3.80316    1.87675  -2.026 0.042717 *  
## sp_ptbBMns558           -1.48165    1.72544  -0.859 0.390501    
## sp_ptbBMns559           -4.32179    1.74364  -2.479 0.013190 *  
## sp_ptbBMns560           -1.93481    2.12947  -0.909 0.363567    
## sp_ptbBMns561           -5.42952    2.19344  -2.475 0.013311 *  
## sp_ptbBMns562           -0.54875    1.95352  -0.281 0.778785    
## sp_ptbBMns563           -4.36194    1.99244  -2.189 0.028579 *  
## sp_ptbBMns564           -3.68451    2.11409  -1.743 0.081362 .  
## sp_ptbBMns565           -2.16875    2.32132  -0.934 0.350162    
## sp_ptbBMns566           -1.20529    2.06897  -0.583 0.560193    
## sp_ptbBMns567           -3.62285    2.10205  -1.723 0.084801 .  
## sp_ptbBMns568           -2.54397    2.03148  -1.252 0.210470    
## sp_ptbBMns569           -3.09453    2.32968  -1.328 0.184077    
## sp_ptbBMns570           -4.24219    2.52793  -1.678 0.093322 .  
## sp_ptbBMns571           -1.14136    2.38746  -0.478 0.632604    
## sp_ptbBMns572           -2.37032    2.23465  -1.061 0.288819    
## sp_ptbBMns573           -3.13715    2.10320  -1.492 0.135801    
## sp_ptbBMns574           -4.14025    2.09641  -1.975 0.048277 *  
## sp_ptbBMns575           -1.60581    2.95609  -0.543 0.586979    
## sp_ptbBMns576           -5.58735    3.65070  -1.530 0.125897    
## sp_ptbBMns577           -1.44518    3.47928  -0.415 0.677873    
## sp_ptbBMns578           -5.14315    3.41494  -1.506 0.132048    
## sp_ptbBMns579           -3.51096    3.86425  -0.909 0.363574    
## sp_ptbBMns580           -4.33802    3.13780  -1.383 0.166817    
## sp_ptbBMns581            0.07658    1.67062   0.046 0.963437    
## sp_ptbBMns582           -2.57084    1.66221  -1.547 0.121950    
## sp_ptbBMns583            1.56288    1.43354   1.090 0.275616    
## sp_ptbBMns584           -1.33319    1.12709  -1.183 0.236866    
## sp_ptbBMns585           -1.23826    1.39310  -0.889 0.374085    
## sp_ptbBMns586           -1.29666    1.05614  -1.228 0.219550    
## sp_ptbBMns587           -1.30887    0.88884  -1.473 0.140868    
## sp_ptbBMns588           -0.34069    0.82821  -0.411 0.680811    
## sp_ptbBMns589                 NA         NA      NA       NA    
## sp_ptbBMns590                 NA         NA      NA       NA    
## lag(resid.fullbm, 1)    -0.32202    0.02854 -11.284  < 2e-16 ***
## lag(resid.fullbm, 2)    -0.32769    0.03131 -10.467  < 2e-16 ***
## lag(resid.fullbm, 3)    -0.38468    0.03178 -12.104  < 2e-16 ***
## lag(resid.fullbm, 4)    -0.37047    0.03312 -11.186  < 2e-16 ***
## lag(resid.fullbm, 5)    -0.39075    0.03324 -11.754  < 2e-16 ***
## lag(resid.fullbm, 6)    -0.37306    0.03452 -10.808  < 2e-16 ***
## lag(resid.fullbm, 7)    -0.37230    0.03400 -10.949  < 2e-16 ***
## lag(resid.fullbm, 8)    -0.35430    0.03335 -10.625  < 2e-16 ***
## lag(resid.fullbm, 9)    -0.29752    0.03216  -9.250  < 2e-16 ***
## lag(resid.fullbm, 10)   -0.29216    0.03102  -9.418  < 2e-16 ***
## lag(resid.fullbm, 11)   -0.21519    0.03057  -7.039 1.94e-12 ***
## lag(resid.fullbm, 12)   -0.18630    0.02836  -6.569 5.08e-11 ***
## lag(resid.fullbm, 15)   -0.04740    0.02509  -1.889 0.058860 .  
## lag(resid.fullbm, 29)    0.02203    0.02361   0.933 0.350725    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(43871.91) family taken to be 1)
## 
##     Null deviance: 1050.10  on 857  degrees of freedom
## Residual deviance:  640.76  on 729  degrees of freedom
##   (81 observations deleted due to missingness)
## AIC: 2875.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  43872 
##           Std. Err.:  187431 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2615.462
resid.fullbm.ac<-residuals(mod_fullSA3bm.ac, type="deviance")
pred.fullbm.ac<-predict(mod_fullSA3bm.ac, type="response")

pacf(resid.fullbm.ac,na.action = na.omit) 

length(pred.fullbm.ac)
## [1] 939
length(resid.fullbm.ac)
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,pred.fullbm,lwd=1, col="dark blue")

plot(week$time,resid.fullbm)
abline(h=0,lty=2,lwd=2, col="blue")

plot(pred.fullbm, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,pred.fullbm.ac,lwd=1, col="dark blue")

plot(week$time,resid.fullbm.ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(pred.fullbm.ac, week$ptbBM)
abline(coef = c(0,1), col="red")

##checking general model fit plot
plot(mod_fullSA3bm)
## Warning: not plotting observations with leverage one:
##   53

plot(mod_fullSA3bm.ac)

## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced

#1. plotting the dose reponse and slices now for min temperature
SA3predbm.temp <- crosspred(cb9.minT, mod_fullSA3bm.ac,cen = 24.0, by=0.1,cumul=TRUE)

#cumulative effect
plot(SA3predbm.temp, "overall", xlab="Min temperature (?C)",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of min temperature on ptb")

#90th %
plot(SA3predbm.temp,"slices", var=c(24.6),type="p",ci="bars",col=1,pch=19,ylim=c(0.85,1.04),
     xlab="Lag (weeks)",ylab="RR")

##getting est from SA3predbm.temp

#for 5th % - mat
SA3predbm.temp$matRRfit["22.9","lag0"]; SA3predbm.temp$matRRlow["22.9","lag0"]; SA3predbm.temp$matRRhigh["22.9","lag0"]
## [1] 0.8281664
## [1] 0.7049418
## [1] 0.9729307
SA3predbm.temp$matRRfit["22.9","lag13"]; SA3predbm.temp$matRRlow["22.9","lag13"]; SA3predbm.temp$matRRhigh["22.9","lag13"]
## [1] 0.8991408
## [1] 0.7912698
## [1] 1.021717
SA3predbm.temp$matRRfit["22.9","lag26"]; SA3predbm.temp$matRRlow["22.9","lag26"]; SA3predbm.temp$matRRhigh["22.9","lag26"]
## [1] 0.9761978
## [1] 0.8685493
## [1] 1.097188
SA3predbm.temp$matRRfit["22.9","lag39"]; SA3predbm.temp$matRRlow["22.9","lag39"]; SA3predbm.temp$matRRhigh["22.9","lag39"]
## [1] 1.059859
## [1] 0.927104
## [1] 1.211623
SA3predbm.temp$matRRfit["22.9","lag52"]; SA3predbm.temp$matRRlow["22.9","lag52"]; SA3predbm.temp$matRRhigh["22.9","lag52"]
## [1] 1.150689
## [1] 0.9702116
## [1] 1.364739
#for 95th % - mat
SA3predbm.temp$matRRfit["25.1","lag0"]; SA3predbm.temp$matRRlow["25.1","lag0"]; SA3predbm.temp$matRRhigh["25.1","lag0"]
## [1] 0.9879565
## [1] 0.8423467
## [1] 1.158737
SA3predbm.temp$matRRfit["25.1","lag13"]; SA3predbm.temp$matRRlow["25.1","lag13"]; SA3predbm.temp$matRRhigh["25.1","lag13"]
## [1] 1.016819
## [1] 0.892515
## [1] 1.158436
SA3predbm.temp$matRRfit["25.1","lag26"]; SA3predbm.temp$matRRlow["25.1","lag26"]; SA3predbm.temp$matRRhigh["25.1","lag26"]
## [1] 1.046525
## [1] 0.9292033
## [1] 1.17866
SA3predbm.temp$matRRfit["25.1","lag27"]; SA3predbm.temp$matRRlow["25.1","lag27"]; SA3predbm.temp$matRRhigh["25.1","lag27"]
## [1] 1.048846
## [1] 0.9312251
## [1] 1.181323
SA3predbm.temp$matRRfit["25.1","lag28"]; SA3predbm.temp$matRRlow["25.1","lag28"]; SA3predbm.temp$matRRhigh["25.1","lag28"]
## [1] 1.051172
## [1] 0.9331224
## [1] 1.184155
SA3predbm.temp$matRRfit["25.1","lag29"]; SA3predbm.temp$matRRlow["25.1","lag29"]; SA3predbm.temp$matRRhigh["25.1","lag29"]
## [1] 1.053503
## [1] 0.9348951
## [1] 1.187158
SA3predbm.temp$matRRfit["25.1","lag30"]; SA3predbm.temp$matRRlow["25.1","lag30"]; SA3predbm.temp$matRRhigh["25.1","lag30"]
## [1] 1.055839
## [1] 0.9365434
## [1] 1.19033
SA3predbm.temp$matRRfit["25.1","lag31"]; SA3predbm.temp$matRRlow["25.1","lag31"]; SA3predbm.temp$matRRhigh["25.1","lag31"]
## [1] 1.05818
## [1] 0.9380682
## [1] 1.193672
SA3predbm.temp$matRRfit["25.1","lag32"]; SA3predbm.temp$matRRlow["25.1","lag32"]; SA3predbm.temp$matRRhigh["25.1","lag32"]
## [1] 1.060527
## [1] 0.9394705
## [1] 1.197182
SA3predbm.temp$matRRfit["25.1","lag33"]; SA3predbm.temp$matRRlow["25.1","lag33"]; SA3predbm.temp$matRRhigh["25.1","lag33"]
## [1] 1.062878
## [1] 0.9407522
## [1] 1.200859
SA3predbm.temp$matRRfit["25.1","lag34"]; SA3predbm.temp$matRRlow["25.1","lag34"]; SA3predbm.temp$matRRhigh["25.1","lag34"]
## [1] 1.065235
## [1] 0.9419152
## [1] 1.204701
SA3predbm.temp$matRRfit["25.1","lag35"]; SA3predbm.temp$matRRlow["25.1","lag35"]; SA3predbm.temp$matRRhigh["25.1","lag35"]
## [1] 1.067598
## [1] 0.942962
## [1] 1.208707
SA3predbm.temp$matRRfit["25.1","lag36"]; SA3predbm.temp$matRRlow["25.1","lag36"]; SA3predbm.temp$matRRhigh["25.1","lag36"]
## [1] 1.069965
## [1] 0.9438953
## [1] 1.212873
SA3predbm.temp$matRRfit["25.1","lag37"]; SA3predbm.temp$matRRlow["25.1","lag37"]; SA3predbm.temp$matRRhigh["25.1","lag37"]
## [1] 1.072338
## [1] 0.9447181
## [1] 1.217197
SA3predbm.temp$matRRfit["25.1","lag38"]; SA3predbm.temp$matRRlow["25.1","lag38"]; SA3predbm.temp$matRRhigh["25.1","lag38"]
## [1] 1.074716
## [1] 0.9454335
## [1] 1.221676
SA3predbm.temp$matRRfit["25.1","lag39"]; SA3predbm.temp$matRRlow["25.1","lag39"]; SA3predbm.temp$matRRhigh["25.1","lag39"]
## [1] 1.077099
## [1] 0.9460451
## [1] 1.226307
SA3predbm.temp$matRRfit["25.1","lag52"]; SA3predbm.temp$matRRlow["25.1","lag52"]; SA3predbm.temp$matRRhigh["25.1","lag52"]
## [1] 1.108566
## [1] 0.946194
## [1] 1.298801
#2. plotting the dose reponse and slices now for RF
SA3predbm.rf <- crosspred(cb3.RF, mod_fullSA3bm.ac,cen = 44.9, by=0.1,cumul=TRUE)

#cumulative effect of RF
plot(SA3predbm.rf, "overall", xlab="Total precipitation",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of rainfall on ptb")

#3. plotting the dose reponse and slices now for wind
SA3predbm.wind <- crosspred(cb1.avgWindSp, mod_fullSA3bm.ac,cen = 4.5, by=0.1,cumul=TRUE)

#cumulative effect of wind
plot(SA3predbm.wind, "overall", xlab="Av wind speed",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of wind speed on ptb")

#4. plotting the dose reponse and slices now for sun
SA3predbm.sun <- crosspred(cb2.sun, mod_fullSA3bm.ac,cen = 50.7, by=0.1,cumul=TRUE)

#cumulative effect of sun
plot(SA3predbm.sun, "overall", xlab="Total sunshine hours",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of sunshine on ptb")

#5. plotting the dose reponse and slices now for minRH
SA3predbm.minRH <- crosspred(cb5.minRH, mod_fullSA3bm.ac,cen = 63, by=0.1, cumul=TRUE)


#cumulative effect
plot(SA3predbm.minRH, "overall", xlab="Min RH",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of minRH on ptb")

###to make lag plots for full model, ptbBM version, SA3 -----
##order: minT, rf, sun, minRH & avgWindSp

#tiff("fig_lagFullptbBM_SA3_Apr7.tiff", units="in", width=10, height=6, res=400)
par(mfrow=c(5,5),mar=c(2.5,4,2.5,2))

for (i in c(0,13,26,39,52)){
    x = crosspred(cb1.avgWindSp, mod_fullSA3bm.ac, cen=4.5)
    title = paste(c(i,"week lag"),collapse=" ")
    plot(x,lag=i,main=title,ylab="RR (Av wind speed)", xlab="", col=4,cex.lab=0.9,
         ylim=c(0.8,1.3),xaxt = "n")
    axis(1, at= c(3.0,3.6,4.5,6.1,10.2), labels = c("3.0","5th","50th","95th","10.2"),
         cex.axis=0.8)
}

for (i in c(0,13,26,39,52)){
    x = crosspred(cb9.minT, mod_fullSA3bm.ac, cen=24.0)
    plot(x,lag=i,ylab="RR (Min Temp)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.8,1.5),xaxt = "n")
    axis(1, at= c(21.8,22.9,24.0,25.1,26.3), labels = c("21.8","5th","50th","95th","26.3"),
         cex.axis=0.8)
}

for (i in c(0,13,26,39,52)){
    x = crosspred(cb3.RF, mod_fullSA3bm.ac, cen=44.9)
    plot(x,lag=i,ylab="RR (Rainfall)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.8,1.5),xaxt = "n")
    axis(1, at= c(0.0,0.8,44.9,160.7,414.5), labels = c("0.0","5th","50th","95th","414.5"),
         cex.axis=0.8)
}


for (i in c(0,13,26,39,52)){
    x = crosspred(cb2.sun, mod_fullSA3bm.ac, cen=50.7)
    plot(x,lag=i,ylab="RR (Sunshine hours)", xlab="",col=4,cex.lab=0.9,
         ylim=c(0.8,1.5),xaxt = "n")
    axis(1, at= c(11.2,30.8,50.7,66.1,76.0), labels = c("11.2","5th","50th","95th","76.0"),
         cex.axis=0.8)
}

for (i in c(0,13,26,39,52)){
    x = crosspred(cb5.minRH, mod_fullSA3bm.ac, cen=63.0)
    plot(x,lag=i,ylab="RR (Min RH)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.9,1.5),xaxt = "n")
    axis(1, at= c(45.0,53.7,63.0,70.3,80.6), labels = c("45.0","5th","50th","95th","80.6"),
         cex.axis=0.8)
}

dev.off()
## null device 
##           1

Sensitivity analysis 2 - using ptbBM & ns9 for long term trend

sp_ptbBMns9 <-ns(week$time,df=18*9)
options(na.action="na.exclude")
SA4m1a <- glm.nb(ptbBM ~ cb1.avgWindSp + sp_ptbBMns9,data=week); summary(SA4m1a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb1.avgWindSp + sp_ptbBMns9, data = week, 
##     init.theta = 28292.39249, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.94862  -0.76455  -0.08865   0.53435   2.33121  
## 
## Coefficients: (7 not defined because of singularities)
##                      Estimate Std. Error z value Pr(>|z|)   
## (Intercept)        -6.043e+00  7.256e+00  -0.833  0.40497   
## cb1.avgWindSpv1.l1  3.718e-01  3.411e-01   1.090  0.27559   
## cb1.avgWindSpv1.l2  5.683e-01  2.506e-01   2.268  0.02331 * 
## cb1.avgWindSpv2.l1  5.765e-01  7.978e-01   0.723  0.46991   
## cb1.avgWindSpv2.l2  8.887e-01  5.536e-01   1.605  0.10845   
## cb1.avgWindSpv3.l1  1.839e-01  9.443e-01   0.195  0.84556   
## cb1.avgWindSpv3.l2  4.212e-01  5.896e-01   0.714  0.47503   
## sp_ptbBMns91               NA         NA      NA       NA   
## sp_ptbBMns92               NA         NA      NA       NA   
## sp_ptbBMns93               NA         NA      NA       NA   
## sp_ptbBMns94               NA         NA      NA       NA   
## sp_ptbBMns95               NA         NA      NA       NA   
## sp_ptbBMns96       -2.475e+06  1.302e+06  -1.900  0.05737 . 
## sp_ptbBMns97        3.961e+01  1.596e+01   2.482  0.01307 * 
## sp_ptbBMns98       -7.277e+00  2.832e+00  -2.570  0.01017 * 
## sp_ptbBMns99        2.236e+00  2.119e+00   1.055  0.29149   
## sp_ptbBMns910      -1.964e+00  2.063e+00  -0.952  0.34093   
## sp_ptbBMns911      -6.070e-01  2.075e+00  -0.293  0.76990   
## sp_ptbBMns912      -2.467e+00  1.852e+00  -1.332  0.18292   
## sp_ptbBMns913      -3.411e+00  1.863e+00  -1.831  0.06708 . 
## sp_ptbBMns914      -2.710e+00  1.759e+00  -1.541  0.12341   
## sp_ptbBMns915      -1.342e+00  1.688e+00  -0.795  0.42655   
## sp_ptbBMns916      -3.047e+00  1.592e+00  -1.914  0.05560 . 
## sp_ptbBMns917      -1.356e+00  1.857e+00  -0.730  0.46539   
## sp_ptbBMns918      -2.424e+00  1.457e+00  -1.663  0.09629 . 
## sp_ptbBMns919       7.371e-01  1.228e+00   0.600  0.54831   
## sp_ptbBMns920      -8.017e-01  1.070e+00  -0.749  0.45357   
## sp_ptbBMns921      -5.856e-01  1.036e+00  -0.565  0.57189   
## sp_ptbBMns922      -1.299e+00  1.026e+00  -1.267  0.20531   
## sp_ptbBMns923      -4.077e-01  1.011e+00  -0.403  0.68689   
## sp_ptbBMns924      -5.205e-01  1.114e+00  -0.467  0.64038   
## sp_ptbBMns925      -6.758e-01  9.973e-01  -0.678  0.49802   
## sp_ptbBMns926      -1.540e+00  1.174e+00  -1.312  0.18963   
## sp_ptbBMns927       1.171e+00  1.269e+00   0.923  0.35609   
## sp_ptbBMns928       1.334e+00  1.248e+00   1.069  0.28516   
## sp_ptbBMns929      -3.132e-01  1.101e+00  -0.284  0.77614   
## sp_ptbBMns930      -1.638e+00  1.070e+00  -1.530  0.12591   
## sp_ptbBMns931      -1.044e+00  1.135e+00  -0.920  0.35747   
## sp_ptbBMns932      -1.604e+00  1.020e+00  -1.572  0.11584   
## sp_ptbBMns933      -2.564e-03  9.765e-01  -0.003  0.99790   
## sp_ptbBMns934      -1.561e+00  1.062e+00  -1.470  0.14153   
## sp_ptbBMns935      -1.943e+00  1.318e+00  -1.474  0.14041   
## sp_ptbBMns936      -5.825e-01  1.201e+00  -0.485  0.62759   
## sp_ptbBMns937       1.611e+00  1.451e+00   1.110  0.26679   
## sp_ptbBMns938       3.718e-01  1.188e+00   0.313  0.75437   
## sp_ptbBMns939      -8.117e-01  1.043e+00  -0.778  0.43657   
## sp_ptbBMns940      -4.980e-01  1.004e+00  -0.496  0.62001   
## sp_ptbBMns941      -4.081e-01  1.052e+00  -0.388  0.69801   
## sp_ptbBMns942      -2.674e+00  1.176e+00  -2.273  0.02300 * 
## sp_ptbBMns943      -9.525e-01  1.118e+00  -0.852  0.39441   
## sp_ptbBMns944      -1.603e+00  9.400e-01  -1.706  0.08804 . 
## sp_ptbBMns945      -1.036e+00  9.930e-01  -1.043  0.29683   
## sp_ptbBMns946       1.284e+00  9.200e-01   1.396  0.16280   
## sp_ptbBMns947       1.383e+00  9.119e-01   1.516  0.12945   
## sp_ptbBMns948      -4.616e-01  1.110e+00  -0.416  0.67748   
## sp_ptbBMns949       6.073e-01  1.065e+00   0.570  0.56862   
## sp_ptbBMns950      -1.997e-01  1.322e+00  -0.151  0.87998   
## sp_ptbBMns951      -3.504e-01  1.275e+00  -0.275  0.78343   
## sp_ptbBMns952       8.955e-02  1.267e+00   0.071  0.94365   
## sp_ptbBMns953      -6.863e-01  1.520e+00  -0.452  0.65160   
## sp_ptbBMns954      -3.356e+00  1.722e+00  -1.949  0.05129 . 
## sp_ptbBMns955       6.779e-01  1.658e+00   0.409  0.68256   
## sp_ptbBMns956      -3.068e+00  1.844e+00  -1.664  0.09613 . 
## sp_ptbBMns957      -9.855e-02  1.708e+00  -0.058  0.95399   
## sp_ptbBMns958      -1.898e+00  1.762e+00  -1.077  0.28129   
## sp_ptbBMns959      -9.455e-01  1.723e+00  -0.549  0.58318   
## sp_ptbBMns960      -2.340e+00  1.870e+00  -1.251  0.21086   
## sp_ptbBMns961      -1.396e+00  1.931e+00  -0.723  0.46989   
## sp_ptbBMns962      -2.713e+00  2.101e+00  -1.292  0.19645   
## sp_ptbBMns963      -1.242e+00  1.964e+00  -0.633  0.52692   
## sp_ptbBMns964      -2.293e+00  1.941e+00  -1.181  0.23745   
## sp_ptbBMns965      -2.033e+00  1.726e+00  -1.177  0.23903   
## sp_ptbBMns966      -1.315e+00  1.544e+00  -0.852  0.39443   
## sp_ptbBMns967      -2.792e+00  1.446e+00  -1.931  0.05350 . 
## sp_ptbBMns968      -2.274e+00  1.311e+00  -1.734  0.08294 . 
## sp_ptbBMns969      -1.794e+00  1.369e+00  -1.310  0.19029   
## sp_ptbBMns970      -1.696e+00  1.293e+00  -1.312  0.18961   
## sp_ptbBMns971      -1.443e+00  1.218e+00  -1.184  0.23624   
## sp_ptbBMns972      -1.956e-01  1.298e+00  -0.151  0.88021   
## sp_ptbBMns973      -1.088e-01  1.143e+00  -0.095  0.92419   
## sp_ptbBMns974      -3.766e-02  1.174e+00  -0.032  0.97441   
## sp_ptbBMns975      -6.271e-01  1.067e+00  -0.588  0.55677   
## sp_ptbBMns976      -1.730e+00  1.131e+00  -1.530  0.12608   
## sp_ptbBMns977      -1.905e+00  1.254e+00  -1.519  0.12864   
## sp_ptbBMns978      -5.744e-01  1.202e+00  -0.478  0.63287   
## sp_ptbBMns979      -9.128e-01  1.134e+00  -0.805  0.42069   
## sp_ptbBMns980       5.479e-02  1.391e+00   0.039  0.96857   
## sp_ptbBMns981      -1.806e+00  1.543e+00  -1.170  0.24186   
## sp_ptbBMns982       1.633e+00  1.733e+00   0.943  0.34583   
## sp_ptbBMns983      -1.049e+00  1.806e+00  -0.581  0.56149   
## sp_ptbBMns984      -9.944e-02  1.876e+00  -0.053  0.95772   
## sp_ptbBMns985      -1.972e+00  2.063e+00  -0.956  0.33923   
## sp_ptbBMns986      -2.091e+00  2.191e+00  -0.955  0.33980   
## sp_ptbBMns987      -1.228e+00  2.162e+00  -0.568  0.56992   
## sp_ptbBMns988      -3.175e+00  2.376e+00  -1.336  0.18146   
## sp_ptbBMns989      -1.992e+00  2.236e+00  -0.891  0.37292   
## sp_ptbBMns990      -3.257e+00  2.151e+00  -1.514  0.12995   
## sp_ptbBMns991      -2.723e+00  2.145e+00  -1.270  0.20426   
## sp_ptbBMns992      -2.875e+00  2.111e+00  -1.362  0.17329   
## sp_ptbBMns993      -2.144e+00  2.055e+00  -1.044  0.29663   
## sp_ptbBMns994      -4.919e+00  2.023e+00  -2.431  0.01505 * 
## sp_ptbBMns995       3.158e-02  1.887e+00   0.017  0.98665   
## sp_ptbBMns996      -4.116e+00  1.880e+00  -2.189  0.02859 * 
## sp_ptbBMns997      -3.642e-01  1.833e+00  -0.199  0.84246   
## sp_ptbBMns998      -2.726e+00  1.893e+00  -1.440  0.14975   
## sp_ptbBMns999      -1.567e+00  1.877e+00  -0.835  0.40368   
## sp_ptbBMns9100     -1.623e+00  1.965e+00  -0.826  0.40878   
## sp_ptbBMns9101     -9.448e-01  1.815e+00  -0.521  0.60263   
## sp_ptbBMns9102     -1.743e+00  1.876e+00  -0.929  0.35291   
## sp_ptbBMns9103     -1.843e+00  1.862e+00  -0.989  0.32246   
## sp_ptbBMns9104     -2.526e+00  1.978e+00  -1.277  0.20173   
## sp_ptbBMns9105     -1.273e+00  1.886e+00  -0.675  0.49971   
## sp_ptbBMns9106     -2.855e+00  1.994e+00  -1.432  0.15215   
## sp_ptbBMns9107     -2.025e+00  1.895e+00  -1.069  0.28529   
## sp_ptbBMns9108     -1.552e+00  2.105e+00  -0.737  0.46085   
## sp_ptbBMns9109     -2.287e+00  2.175e+00  -1.051  0.29306   
## sp_ptbBMns9110     -2.296e+00  2.142e+00  -1.072  0.28363   
## sp_ptbBMns9111     -1.593e+00  1.958e+00  -0.813  0.41595   
## sp_ptbBMns9112     -2.178e+00  2.008e+00  -1.085  0.27802   
## sp_ptbBMns9113     -2.712e+00  1.894e+00  -1.431  0.15231   
## sp_ptbBMns9114     -2.224e+00  2.033e+00  -1.094  0.27412   
## sp_ptbBMns9115     -3.776e+00  2.011e+00  -1.878  0.06041 . 
## sp_ptbBMns9116     -1.976e+00  2.030e+00  -0.973  0.33032   
## sp_ptbBMns9117     -2.747e+00  1.926e+00  -1.426  0.15374   
## sp_ptbBMns9118     -1.198e+00  2.079e+00  -0.576  0.56456   
## sp_ptbBMns9119     -1.236e+00  2.006e+00  -0.616  0.53787   
## sp_ptbBMns9120     -2.239e+00  2.026e+00  -1.105  0.26899   
## sp_ptbBMns9121     -2.724e+00  1.919e+00  -1.420  0.15570   
## sp_ptbBMns9122     -2.957e+00  1.963e+00  -1.506  0.13197   
## sp_ptbBMns9123     -1.785e+00  1.874e+00  -0.952  0.34095   
## sp_ptbBMns9124     -2.228e+00  1.867e+00  -1.193  0.23268   
## sp_ptbBMns9125     -1.468e+00  1.900e+00  -0.772  0.43994   
## sp_ptbBMns9126     -4.122e+00  2.065e+00  -1.996  0.04593 * 
## sp_ptbBMns9127      1.676e-01  2.082e+00   0.081  0.93584   
## sp_ptbBMns9128     -2.187e+00  2.050e+00  -1.067  0.28597   
## sp_ptbBMns9129     -7.285e-01  2.138e+00  -0.341  0.73331   
## sp_ptbBMns9130     -2.421e+00  1.957e+00  -1.237  0.21614   
## sp_ptbBMns9131     -1.998e+00  1.789e+00  -1.117  0.26415   
## sp_ptbBMns9132     -2.908e+00  1.532e+00  -1.898  0.05776 . 
## sp_ptbBMns9133     -2.790e+00  1.409e+00  -1.981  0.04763 * 
## sp_ptbBMns9134     -2.020e+00  1.273e+00  -1.587  0.11253   
## sp_ptbBMns9135     -2.257e+00  1.216e+00  -1.857  0.06333 . 
## sp_ptbBMns9136      1.495e+00  1.902e+00   0.786  0.43176   
## sp_ptbBMns9137     -1.620e+00  1.561e+00  -1.038  0.29918   
## sp_ptbBMns9138      1.941e+00  1.615e+00   1.202  0.22944   
## sp_ptbBMns9139     -4.833e-01  1.353e+00  -0.357  0.72092   
## sp_ptbBMns9140      6.528e-01  1.446e+00   0.451  0.65171   
## sp_ptbBMns9141     -1.267e+00  1.434e+00  -0.883  0.37698   
## sp_ptbBMns9142     -4.958e-01  1.582e+00  -0.313  0.75391   
## sp_ptbBMns9143     -2.288e+00  1.543e+00  -1.483  0.13815   
## sp_ptbBMns9144     -1.725e+00  1.577e+00  -1.094  0.27400   
## sp_ptbBMns9145      7.012e-01  8.991e-01   0.780  0.43546   
## sp_ptbBMns9146      9.078e-01  7.918e-01   1.146  0.25161   
## sp_ptbBMns9147      6.481e-01  7.805e-01   0.830  0.40635   
## sp_ptbBMns9148     -1.566e+00  8.998e-01  -1.741  0.08173 . 
## sp_ptbBMns9149      6.736e-01  7.428e-01   0.907  0.36452   
## sp_ptbBMns9150      8.586e-01  7.377e-01   1.164  0.24448   
## sp_ptbBMns9151     -5.740e-01  8.871e-01  -0.647  0.51760   
## sp_ptbBMns9152      2.293e+00  7.867e-01   2.915  0.00355 **
## sp_ptbBMns9153     -6.347e-01  9.173e-01  -0.692  0.48897   
## sp_ptbBMns9154      1.077e+00  1.046e+00   1.029  0.30326   
## sp_ptbBMns9155      1.888e+00  8.900e-01   2.122  0.03387 * 
## sp_ptbBMns9156     -4.664e-01  8.432e-01  -0.553  0.58011   
## sp_ptbBMns9157      1.391e+00  6.874e-01   2.023  0.04308 * 
## sp_ptbBMns9158     -3.005e-01  7.726e-01  -0.389  0.69729   
## sp_ptbBMns9159      1.121e+00  5.972e-01   1.878  0.06044 . 
## sp_ptbBMns9160      4.708e-02  8.419e-01   0.056  0.95541   
## sp_ptbBMns9161             NA         NA      NA       NA   
## sp_ptbBMns9162             NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(28292.39) family taken to be 1)
## 
##     Null deviance: 1101.28  on 886  degrees of freedom
## Residual deviance:  877.57  on 725  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3236.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  28292 
##           Std. Err.:  152106 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2910.414
SA4m2a <- glm.nb(ptbBM ~ cb2.sun + sp_ptbBMns9,data=week); summary(SA4m2a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb2.sun + sp_ptbBMns9, data = week, 
##     init.theta = 28424.25298, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.9828  -0.7391  -0.0994   0.5556   2.3919  
## 
## Coefficients: (7 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    -1.125e+01  1.038e+01  -1.084  0.27835   
## cb2.sunv1.l1    2.434e-01  2.307e-01   1.055  0.29129   
## cb2.sunv1.l2    1.060e-01  1.564e-01   0.678  0.49795   
## cb2.sunv2.l1    1.031e+00  9.082e-01   1.135  0.25622   
## cb2.sunv2.l2    1.159e+00  6.101e-01   1.899  0.05755 . 
## cb2.sunv3.l1    4.292e-01  3.567e-01   1.203  0.22887   
## cb2.sunv3.l2    5.088e-01  2.453e-01   2.074  0.03806 * 
## sp_ptbBMns91           NA         NA      NA       NA   
## sp_ptbBMns92           NA         NA      NA       NA   
## sp_ptbBMns93           NA         NA      NA       NA   
## sp_ptbBMns94           NA         NA      NA       NA   
## sp_ptbBMns95           NA         NA      NA       NA   
## sp_ptbBMns96   -2.239e+06  1.296e+06  -1.728  0.08400 . 
## sp_ptbBMns97    3.635e+01  1.582e+01   2.298  0.02158 * 
## sp_ptbBMns98   -6.689e+00  2.596e+00  -2.576  0.00999 **
## sp_ptbBMns99    1.756e+00  1.136e+00   1.545  0.12241   
## sp_ptbBMns910  -2.399e+00  1.078e+00  -2.227  0.02597 * 
## sp_ptbBMns911   1.254e-01  8.729e-01   0.144  0.88578   
## sp_ptbBMns912  -1.196e+00  9.339e-01  -1.281  0.20016   
## sp_ptbBMns913  -2.273e+00  1.130e+00  -2.011  0.04435 * 
## sp_ptbBMns914  -1.407e+00  9.607e-01  -1.465  0.14297   
## sp_ptbBMns915   2.076e-01  8.460e-01   0.245  0.80615   
## sp_ptbBMns916  -2.006e+00  9.510e-01  -2.110  0.03488 * 
## sp_ptbBMns917   2.165e-01  9.396e-01   0.230  0.81774   
## sp_ptbBMns918  -2.726e+00  1.028e+00  -2.651  0.00803 **
## sp_ptbBMns919  -5.791e-01  9.760e-01  -0.593  0.55294   
## sp_ptbBMns920  -1.928e+00  9.922e-01  -1.943  0.05201 . 
## sp_ptbBMns921  -1.184e+00  9.633e-01  -1.229  0.21910   
## sp_ptbBMns922  -1.508e+00  9.485e-01  -1.590  0.11194   
## sp_ptbBMns923  -1.469e+00  9.723e-01  -1.511  0.13073   
## sp_ptbBMns924  -1.260e+00  9.694e-01  -1.299  0.19381   
## sp_ptbBMns925  -1.499e+00  9.466e-01  -1.583  0.11340   
## sp_ptbBMns926  -1.340e+00  9.483e-01  -1.413  0.15771   
## sp_ptbBMns927  -7.217e-01  9.184e-01  -0.786  0.43196   
## sp_ptbBMns928  -9.442e-01  9.482e-01  -0.996  0.31934   
## sp_ptbBMns929  -4.435e-01  8.934e-01  -0.496  0.61960   
## sp_ptbBMns930  -1.686e+00  1.047e+00  -1.611  0.10727   
## sp_ptbBMns931  -3.652e-01  9.047e-01  -0.404  0.68644   
## sp_ptbBMns932  -1.260e+00  9.404e-01  -1.340  0.18017   
## sp_ptbBMns933  -3.668e-01  9.655e-01  -0.380  0.70400   
## sp_ptbBMns934  -1.814e+00  1.111e+00  -1.633  0.10238   
## sp_ptbBMns935  -2.090e+00  1.213e+00  -1.724  0.08475 . 
## sp_ptbBMns936  -2.465e+00  1.179e+00  -2.090  0.03663 * 
## sp_ptbBMns937  -1.588e+00  1.036e+00  -1.534  0.12510   
## sp_ptbBMns938  -1.359e+00  1.014e+00  -1.341  0.18008   
## sp_ptbBMns939  -1.309e+00  9.918e-01  -1.320  0.18678   
## sp_ptbBMns940  -1.325e+00  9.657e-01  -1.372  0.16997   
## sp_ptbBMns941  -9.250e-01  1.022e+00  -0.905  0.36532   
## sp_ptbBMns942  -3.238e+00  1.159e+00  -2.795  0.00520 **
## sp_ptbBMns943  -8.410e-01  1.065e+00  -0.790  0.42962   
## sp_ptbBMns944  -1.474e+00  1.067e+00  -1.382  0.16710   
## sp_ptbBMns945  -8.655e-01  1.046e+00  -0.828  0.40787   
## sp_ptbBMns946  -4.608e-01  1.069e+00  -0.431  0.66646   
## sp_ptbBMns947   1.300e-01  9.917e-01   0.131  0.89569   
## sp_ptbBMns948  -1.161e+00  1.034e+00  -1.122  0.26180   
## sp_ptbBMns949   4.275e-01  1.015e+00   0.421  0.67367   
## sp_ptbBMns950  -5.964e-01  9.662e-01  -0.617  0.53705   
## sp_ptbBMns951  -2.767e-01  1.121e+00  -0.247  0.80496   
## sp_ptbBMns952   3.809e-02  1.021e+00   0.037  0.97023   
## sp_ptbBMns953   3.482e-02  9.616e-01   0.036  0.97111   
## sp_ptbBMns954  -2.932e+00  1.282e+00  -2.288  0.02215 * 
## sp_ptbBMns955   9.048e-01  9.086e-01   0.996  0.31933   
## sp_ptbBMns956  -2.077e+00  9.882e-01  -2.102  0.03555 * 
## sp_ptbBMns957   5.147e-01  7.965e-01   0.646  0.51816   
## sp_ptbBMns958  -7.988e-01  7.988e-01  -1.000  0.31729   
## sp_ptbBMns959  -1.440e-01  8.403e-01  -0.171  0.86390   
## sp_ptbBMns960  -1.660e+00  9.099e-01  -1.825  0.06807 . 
## sp_ptbBMns961  -5.358e-01  9.192e-01  -0.583  0.55996   
## sp_ptbBMns962  -7.944e-01  8.590e-01  -0.925  0.35511   
## sp_ptbBMns963  -1.070e+00  1.033e+00  -1.036  0.30005   
## sp_ptbBMns964  -1.438e+00  1.015e+00  -1.416  0.15665   
## sp_ptbBMns965  -9.726e-01  8.519e-01  -1.142  0.25362   
## sp_ptbBMns966  -1.323e-02  8.888e-01  -0.015  0.98812   
## sp_ptbBMns967  -1.059e+00  8.651e-01  -1.224  0.22094   
## sp_ptbBMns968  -1.670e-01  8.180e-01  -0.204  0.83821   
## sp_ptbBMns969  -4.125e-01  8.371e-01  -0.493  0.62215   
## sp_ptbBMns970  -6.337e-01  8.189e-01  -0.774  0.43896   
## sp_ptbBMns971  -1.243e+00  9.257e-01  -1.342  0.17948   
## sp_ptbBMns972  -5.112e-01  9.588e-01  -0.533  0.59389   
## sp_ptbBMns973  -1.258e+00  1.061e+00  -1.185  0.23608   
## sp_ptbBMns974  -6.282e-01  9.161e-01  -0.686  0.49290   
## sp_ptbBMns975  -8.092e-01  9.000e-01  -0.899  0.36857   
## sp_ptbBMns976  -1.142e+00  9.394e-01  -1.216  0.22415   
## sp_ptbBMns977  -6.875e-01  9.328e-01  -0.737  0.46109   
## sp_ptbBMns978  -6.369e-01  8.952e-01  -0.712  0.47676   
## sp_ptbBMns979  -7.283e-01  9.670e-01  -0.753  0.45136   
## sp_ptbBMns980  -4.043e-01  9.878e-01  -0.409  0.68232   
## sp_ptbBMns981  -3.477e+00  1.116e+00  -3.116  0.00183 **
## sp_ptbBMns982  -1.247e-01  1.106e+00  -0.113  0.91019   
## sp_ptbBMns983  -2.341e+00  9.438e-01  -2.480  0.01314 * 
## sp_ptbBMns984  -2.473e-01  8.781e-01  -0.282  0.77823   
## sp_ptbBMns985  -1.748e+00  8.917e-01  -1.960  0.04996 * 
## sp_ptbBMns986  -8.484e-01  8.022e-01  -1.058  0.29024   
## sp_ptbBMns987  -3.977e-01  8.184e-01  -0.486  0.62705   
## sp_ptbBMns988  -1.223e+00  8.762e-01  -1.395  0.16293   
## sp_ptbBMns989  -1.643e-01  9.096e-01  -0.181  0.85670   
## sp_ptbBMns990  -2.234e+00  1.157e+00  -1.931  0.05353 . 
## sp_ptbBMns991  -6.531e-01  1.155e+00  -0.565  0.57193   
## sp_ptbBMns992  -1.426e+00  1.120e+00  -1.274  0.20261   
## sp_ptbBMns993   6.754e-04  1.098e+00   0.001  0.99951   
## sp_ptbBMns994  -3.031e+00  1.201e+00  -2.524  0.01159 * 
## sp_ptbBMns995   1.553e+00  9.898e-01   1.569  0.11654   
## sp_ptbBMns996  -2.400e+00  1.145e+00  -2.096  0.03609 * 
## sp_ptbBMns997   1.102e+00  8.923e-01   1.235  0.21694   
## sp_ptbBMns998  -1.167e+00  1.087e+00  -1.074  0.28291   
## sp_ptbBMns999  -8.227e-02  9.847e-01  -0.084  0.93342   
## sp_ptbBMns9100 -5.286e-01  9.792e-01  -0.540  0.58929   
## sp_ptbBMns9101 -2.418e-01  9.222e-01  -0.262  0.79319   
## sp_ptbBMns9102 -6.337e-01  9.022e-01  -0.702  0.48245   
## sp_ptbBMns9103 -4.900e-01  9.647e-01  -0.508  0.61150   
## sp_ptbBMns9104 -1.566e+00  1.073e+00  -1.460  0.14440   
## sp_ptbBMns9105 -2.984e-01  9.225e-01  -0.323  0.74632   
## sp_ptbBMns9106 -1.601e+00  9.242e-01  -1.732  0.08329 . 
## sp_ptbBMns9107 -1.122e+00  9.275e-01  -1.210  0.22635   
## sp_ptbBMns9108 -1.060e+00  9.221e-01  -1.150  0.25026   
## sp_ptbBMns9109 -2.078e+00  1.029e+00  -2.019  0.04353 * 
## sp_ptbBMns9110 -1.924e+00  1.036e+00  -1.858  0.06323 . 
## sp_ptbBMns9111 -9.111e-01  9.746e-01  -0.935  0.34985   
## sp_ptbBMns9112 -6.603e-01  9.356e-01  -0.706  0.48031   
## sp_ptbBMns9113 -1.141e+00  9.790e-01  -1.166  0.24371   
## sp_ptbBMns9114 -6.295e-01  1.068e+00  -0.589  0.55565   
## sp_ptbBMns9115 -2.257e+00  1.150e+00  -1.963  0.04961 * 
## sp_ptbBMns9116  8.388e-02  1.106e+00   0.076  0.93956   
## sp_ptbBMns9117 -1.634e+00  1.183e+00  -1.382  0.16702   
## sp_ptbBMns9118 -5.094e-01  9.866e-01  -0.516  0.60562   
## sp_ptbBMns9119 -2.716e-01  9.377e-01  -0.290  0.77204   
## sp_ptbBMns9120 -7.155e-01  9.668e-01  -0.740  0.45928   
## sp_ptbBMns9121 -9.457e-01  9.888e-01  -0.956  0.33886   
## sp_ptbBMns9122 -9.169e-01  9.541e-01  -0.961  0.33652   
## sp_ptbBMns9123  3.078e-01  8.610e-01   0.357  0.72074   
## sp_ptbBMns9124 -2.439e-01  8.824e-01  -0.276  0.78225   
## sp_ptbBMns9125  1.124e+00  8.879e-01   1.266  0.20542   
## sp_ptbBMns9126 -2.761e+00  1.251e+00  -2.208  0.02728 * 
## sp_ptbBMns9127  9.327e-01  9.325e-01   1.000  0.31723   
## sp_ptbBMns9128 -1.399e+00  9.608e-01  -1.456  0.14545   
## sp_ptbBMns9129  2.051e-01  8.646e-01   0.237  0.81245   
## sp_ptbBMns9130 -7.154e-01  8.332e-01  -0.859  0.39052   
## sp_ptbBMns9131 -1.643e-01  8.124e-01  -0.202  0.83974   
## sp_ptbBMns9132 -8.468e-01  8.552e-01  -0.990  0.32205   
## sp_ptbBMns9133 -9.074e-01  8.403e-01  -1.080  0.28023   
## sp_ptbBMns9134 -1.541e-01  8.236e-01  -0.187  0.85160   
## sp_ptbBMns9135 -1.666e+00  1.140e+00  -1.460  0.14418   
## sp_ptbBMns9136  1.136e-01  1.009e+00   0.113  0.91036   
## sp_ptbBMns9137 -2.555e+00  1.060e+00  -2.411  0.01593 * 
## sp_ptbBMns9138 -8.608e-02  1.014e+00  -0.085  0.93237   
## sp_ptbBMns9139 -2.040e+00  1.126e+00  -1.813  0.06991 . 
## sp_ptbBMns9140 -1.018e+00  1.016e+00  -1.002  0.31638   
## sp_ptbBMns9141 -2.089e+00  1.136e+00  -1.839  0.06592 . 
## sp_ptbBMns9142 -8.530e-01  1.143e+00  -0.746  0.45558   
## sp_ptbBMns9143 -1.798e+00  1.098e+00  -1.636  0.10174   
## sp_ptbBMns9144 -9.280e-01  9.054e-01  -1.025  0.30540   
## sp_ptbBMns9145 -3.655e-01  8.980e-01  -0.407  0.68404   
## sp_ptbBMns9146  2.468e-01  8.397e-01   0.294  0.76886   
## sp_ptbBMns9147  2.747e-01  8.572e-01   0.320  0.74859   
## sp_ptbBMns9148 -9.975e-01  9.537e-01  -1.046  0.29559   
## sp_ptbBMns9149  4.079e-01  8.253e-01   0.494  0.62114   
## sp_ptbBMns9150  5.353e-01  8.135e-01   0.658  0.51055   
## sp_ptbBMns9151 -2.074e+00  9.954e-01  -2.084  0.03720 * 
## sp_ptbBMns9152  1.112e+00  9.127e-01   1.218  0.22313   
## sp_ptbBMns9153 -1.555e+00  1.059e+00  -1.467  0.14224   
## sp_ptbBMns9154 -1.293e+00  1.098e+00  -1.177  0.23900   
## sp_ptbBMns9155  4.692e-01  8.283e-01   0.566  0.57106   
## sp_ptbBMns9156 -1.261e+00  9.526e-01  -1.324  0.18545   
## sp_ptbBMns9157  9.371e-01  7.257e-01   1.291  0.19659   
## sp_ptbBMns9158  1.106e-01  8.014e-01   0.138  0.89025   
## sp_ptbBMns9159  1.323e+00  6.384e-01   2.072  0.03825 * 
## sp_ptbBMns9160  3.149e-01  8.500e-01   0.371  0.71100   
## sp_ptbBMns9161         NA         NA      NA       NA   
## sp_ptbBMns9162         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(28424.25) family taken to be 1)
## 
##     Null deviance: 1101.28  on 886  degrees of freedom
## Residual deviance:  880.04  on 725  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3238.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  28424 
##           Std. Err.:  155485 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2912.888
SA4m3a <- glm.nb(ptbBM ~ cb3.RF + sp_ptbBMns9,data=week); summary(SA4m3a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb3.RF + sp_ptbBMns9, data = week, init.theta = 27894.8583, 
##     link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -3.02133  -0.74382  -0.09557   0.54575   2.35117  
## 
## Coefficients: (7 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     2.948e+00  2.934e+00   1.005  0.31501   
## cb3.RFv1.l1     9.686e-02  2.864e-01   0.338  0.73520   
## cb3.RFv1.l2     1.589e-01  2.070e-01   0.768  0.44264   
## cb3.RFv2.l1    -3.992e-01  4.456e-01  -0.896  0.37035   
## cb3.RFv2.l2    -2.651e-01  3.376e-01  -0.785  0.43230   
## cb3.RFv3.l1    -5.042e-01  7.143e-01  -0.706  0.48025   
## cb3.RFv3.l2    -6.828e-01  5.734e-01  -1.191  0.23372   
## sp_ptbBMns91           NA         NA      NA       NA   
## sp_ptbBMns92           NA         NA      NA       NA   
## sp_ptbBMns93           NA         NA      NA       NA   
## sp_ptbBMns94           NA         NA      NA       NA   
## sp_ptbBMns95           NA         NA      NA       NA   
## sp_ptbBMns96   -2.357e+06  1.300e+06  -1.813  0.06986 . 
## sp_ptbBMns97    3.787e+01  1.592e+01   2.379  0.01735 * 
## sp_ptbBMns98   -5.758e+00  2.589e+00  -2.224  0.02612 * 
## sp_ptbBMns99    1.847e+00  1.182e+00   1.563  0.11813   
## sp_ptbBMns910  -2.293e+00  1.148e+00  -1.997  0.04577 * 
## sp_ptbBMns911   2.182e-01  9.607e-01   0.227  0.82028   
## sp_ptbBMns912  -8.498e-01  1.008e+00  -0.843  0.39925   
## sp_ptbBMns913  -1.834e+00  1.213e+00  -1.512  0.13065   
## sp_ptbBMns914  -1.324e+00  1.002e+00  -1.321  0.18642   
## sp_ptbBMns915   5.348e-01  8.999e-01   0.594  0.55232   
## sp_ptbBMns916  -1.118e+00  9.688e-01  -1.154  0.24850   
## sp_ptbBMns917   1.250e+00  9.787e-01   1.277  0.20157   
## sp_ptbBMns918  -1.828e+00  9.907e-01  -1.846  0.06495 . 
## sp_ptbBMns919   3.541e-01  9.572e-01   0.370  0.71143   
## sp_ptbBMns920  -1.023e+00  9.529e-01  -1.073  0.28305   
## sp_ptbBMns921  -4.079e-01  1.050e+00  -0.388  0.69766   
## sp_ptbBMns922  -5.090e-01  9.598e-01  -0.530  0.59591   
## sp_ptbBMns923  -4.322e-01  1.039e+00  -0.416  0.67745   
## sp_ptbBMns924  -4.027e-01  9.151e-01  -0.440  0.65991   
## sp_ptbBMns925  -3.799e-01  1.026e+00  -0.370  0.71120   
## sp_ptbBMns926  -5.069e-01  1.107e+00  -0.458  0.64711   
## sp_ptbBMns927   2.938e-01  9.782e-01   0.300  0.76390   
## sp_ptbBMns928  -5.779e-02  9.901e-01  -0.058  0.95346   
## sp_ptbBMns929   1.678e-01  9.555e-01   0.176  0.86062   
## sp_ptbBMns930  -1.052e+00  1.036e+00  -1.015  0.31019   
## sp_ptbBMns931   2.377e-01  9.884e-01   0.240  0.80996   
## sp_ptbBMns932  -5.926e-01  1.025e+00  -0.578  0.56332   
## sp_ptbBMns933   5.785e-01  9.896e-01   0.585  0.55887   
## sp_ptbBMns934  -6.121e-01  1.136e+00  -0.539  0.59004   
## sp_ptbBMns935  -1.031e+00  1.270e+00  -0.812  0.41688   
## sp_ptbBMns936  -1.505e+00  1.227e+00  -1.226  0.22016   
## sp_ptbBMns937  -4.289e-01  1.073e+00  -0.400  0.68949   
## sp_ptbBMns938  -1.691e-01  1.015e+00  -0.167  0.86762   
## sp_ptbBMns939  -5.811e-01  9.827e-01  -0.591  0.55426   
## sp_ptbBMns940  -1.795e-01  8.988e-01  -0.200  0.84174   
## sp_ptbBMns941   1.227e-01  8.850e-01   0.139  0.88969   
## sp_ptbBMns942  -2.054e+00  1.144e+00  -1.796  0.07251 . 
## sp_ptbBMns943  -4.974e-02  1.014e+00  -0.049  0.96088   
## sp_ptbBMns944  -4.024e-01  1.009e+00  -0.399  0.69004   
## sp_ptbBMns945  -2.114e-01  9.694e-01  -0.218  0.82735   
## sp_ptbBMns946   1.148e-01  7.885e-01   0.146  0.88421   
## sp_ptbBMns947   4.545e-01  8.474e-01   0.536  0.59173   
## sp_ptbBMns948  -7.332e-01  9.364e-01  -0.783  0.43363   
## sp_ptbBMns949   2.993e-01  8.674e-01   0.345  0.73005   
## sp_ptbBMns950  -6.380e-01  8.704e-01  -0.733  0.46356   
## sp_ptbBMns951  -2.096e-01  9.113e-01  -0.230  0.81811   
## sp_ptbBMns952  -3.174e-01  8.653e-01  -0.367  0.71372   
## sp_ptbBMns953   3.667e-01  9.442e-01   0.388  0.69770   
## sp_ptbBMns954  -2.666e+00  1.211e+00  -2.202  0.02769 * 
## sp_ptbBMns955   1.030e+00  9.031e-01   1.141  0.25399   
## sp_ptbBMns956  -1.992e+00  1.029e+00  -1.936  0.05289 . 
## sp_ptbBMns957   9.172e-01  8.668e-01   1.058  0.29001   
## sp_ptbBMns958  -3.320e-01  9.339e-01  -0.356  0.72221   
## sp_ptbBMns959   7.954e-02  9.261e-01   0.086  0.93156   
## sp_ptbBMns960  -6.055e-01  9.197e-01  -0.658  0.51033   
## sp_ptbBMns961   5.414e-01  8.351e-01   0.648  0.51680   
## sp_ptbBMns962  -3.832e-01  9.052e-01  -0.423  0.67209   
## sp_ptbBMns963   6.460e-01  8.941e-01   0.723  0.46994   
## sp_ptbBMns964  -3.667e-01  9.555e-01  -0.384  0.70112   
## sp_ptbBMns965  -1.644e-02  9.169e-01  -0.018  0.98570   
## sp_ptbBMns966   1.025e+00  8.827e-01   1.161  0.24573   
## sp_ptbBMns967  -1.347e-01  9.190e-01  -0.147  0.88350   
## sp_ptbBMns968   8.422e-02  9.397e-01   0.090  0.92859   
## sp_ptbBMns969   2.055e-01  8.579e-01   0.239  0.81072   
## sp_ptbBMns970   7.969e-03  1.026e+00   0.008  0.99381   
## sp_ptbBMns971  -3.617e-01  9.740e-01  -0.371  0.71035   
## sp_ptbBMns972  -1.677e-01  1.481e+00  -0.113  0.90984   
## sp_ptbBMns973  -2.000e-01  1.111e+00  -0.180  0.85711   
## sp_ptbBMns974  -2.422e-02  1.150e+00  -0.021  0.98319   
## sp_ptbBMns975  -2.304e-01  1.029e+00  -0.224  0.82288   
## sp_ptbBMns976  -5.481e-01  1.090e+00  -0.503  0.61508   
## sp_ptbBMns977  -3.042e-01  1.057e+00  -0.288  0.77353   
## sp_ptbBMns978   4.897e-01  1.083e+00   0.452  0.65112   
## sp_ptbBMns979  -9.123e-02  9.662e-01  -0.094  0.92478   
## sp_ptbBMns980   1.521e+00  1.261e+00   1.207  0.22760   
## sp_ptbBMns981  -2.661e+00  1.439e+00  -1.849  0.06441 . 
## sp_ptbBMns982   1.057e+00  1.188e+00   0.890  0.37366   
## sp_ptbBMns983  -1.197e+00  1.176e+00  -1.017  0.30901   
## sp_ptbBMns984   7.683e-01  1.003e+00   0.766  0.44362   
## sp_ptbBMns985  -1.430e-01  9.796e-01  -0.146  0.88392   
## sp_ptbBMns986   3.161e-01  1.056e+00   0.299  0.76474   
## sp_ptbBMns987   1.222e+00  9.325e-01   1.310  0.19007   
## sp_ptbBMns988   1.622e-01  9.192e-01   0.176  0.85992   
## sp_ptbBMns989   1.697e+00  1.135e+00   1.495  0.13495   
## sp_ptbBMns990  -7.799e-01  1.066e+00  -0.731  0.46453   
## sp_ptbBMns991  -1.089e-01  1.182e+00  -0.092  0.92656   
## sp_ptbBMns992  -5.863e-01  1.086e+00  -0.540  0.58914   
## sp_ptbBMns993   6.395e-01  1.040e+00   0.615  0.53861   
## sp_ptbBMns994  -2.090e+00  1.090e+00  -1.917  0.05528 . 
## sp_ptbBMns995   2.146e+00  7.855e-01   2.733  0.00628 **
## sp_ptbBMns996  -1.994e+00  9.217e-01  -2.163  0.03050 * 
## sp_ptbBMns997   1.572e+00  8.663e-01   1.815  0.06951 . 
## sp_ptbBMns998  -8.712e-01  9.340e-01  -0.933  0.35096   
## sp_ptbBMns999   5.508e-01  9.083e-01   0.606  0.54423   
## sp_ptbBMns9100  5.301e-02  9.213e-01   0.058  0.95412   
## sp_ptbBMns9101  8.362e-01  1.015e+00   0.824  0.41003   
## sp_ptbBMns9102  2.306e-02  9.601e-01   0.024  0.98084   
## sp_ptbBMns9103  1.229e-01  9.622e-01   0.128  0.89835   
## sp_ptbBMns9104 -7.700e-01  9.947e-01  -0.774  0.43889   
## sp_ptbBMns9105  6.733e-01  9.290e-01   0.725  0.46855   
## sp_ptbBMns9106 -1.026e+00  8.759e-01  -1.172  0.24124   
## sp_ptbBMns9107 -1.474e-01  9.026e-01  -0.163  0.87024   
## sp_ptbBMns9108  1.231e-01  9.031e-01   0.136  0.89155   
## sp_ptbBMns9109 -1.087e+00  9.526e-01  -1.141  0.25398   
## sp_ptbBMns9110 -5.011e-01  9.454e-01  -0.530  0.59607   
## sp_ptbBMns9111  3.906e-01  7.887e-01   0.495  0.62046   
## sp_ptbBMns9112  1.801e-02  7.899e-01   0.023  0.98181   
## sp_ptbBMns9113 -6.057e-01  8.730e-01  -0.694  0.48779   
## sp_ptbBMns9114  1.171e-01  8.667e-01   0.135  0.89250   
## sp_ptbBMns9115 -1.479e+00  9.867e-01  -1.499  0.13383   
## sp_ptbBMns9116  6.474e-01  8.990e-01   0.720  0.47143   
## sp_ptbBMns9117 -6.790e-01  1.135e+00  -0.598  0.54980   
## sp_ptbBMns9118 -2.411e-01  8.929e-01  -0.270  0.78717   
## sp_ptbBMns9119  2.320e-01  9.023e-01   0.257  0.79712   
## sp_ptbBMns9120 -3.652e-01  9.762e-01  -0.374  0.70832   
## sp_ptbBMns9121 -3.310e-01  1.005e+00  -0.329  0.74193   
## sp_ptbBMns9122 -4.428e-01  9.982e-01  -0.444  0.65732   
## sp_ptbBMns9123  7.278e-01  8.426e-01   0.864  0.38773   
## sp_ptbBMns9124  1.082e-01  8.082e-01   0.134  0.89346   
## sp_ptbBMns9125  1.312e+00  9.685e-01   1.354  0.17560   
## sp_ptbBMns9126 -2.001e+00  1.180e+00  -1.695  0.09008 . 
## sp_ptbBMns9127  1.239e+00  9.767e-01   1.268  0.20473   
## sp_ptbBMns9128 -1.227e+00  1.017e+00  -1.206  0.22791   
## sp_ptbBMns9129  4.688e-01  8.973e-01   0.523  0.60132   
## sp_ptbBMns9130 -4.456e-01  8.369e-01  -0.532  0.59442   
## sp_ptbBMns9131  2.306e-01  8.374e-01   0.275  0.78306   
## sp_ptbBMns9132 -5.815e-01  8.991e-01  -0.647  0.51776   
## sp_ptbBMns9133 -2.212e-01  8.472e-01  -0.261  0.79405   
## sp_ptbBMns9134  2.898e-01  8.919e-01   0.325  0.74523   
## sp_ptbBMns9135 -1.103e+00  1.063e+00  -1.038  0.29921   
## sp_ptbBMns9136  7.587e-01  1.066e+00   0.712  0.47652   
## sp_ptbBMns9137 -2.127e+00  1.063e+00  -2.001  0.04538 * 
## sp_ptbBMns9138  7.072e-01  9.204e-01   0.768  0.44226   
## sp_ptbBMns9139 -7.257e-01  9.152e-01  -0.793  0.42778   
## sp_ptbBMns9140  2.327e-01  9.661e-01   0.241  0.80962   
## sp_ptbBMns9141 -6.055e-01  9.020e-01  -0.671  0.50208   
## sp_ptbBMns9142  7.941e-01  8.757e-01   0.907  0.36453   
## sp_ptbBMns9143 -5.558e-01  1.095e+00  -0.507  0.61187   
## sp_ptbBMns9144 -6.372e-01  1.034e+00  -0.616  0.53772   
## sp_ptbBMns9145 -8.785e-02  8.828e-01  -0.100  0.92073   
## sp_ptbBMns9146  4.012e-01  8.120e-01   0.494  0.62122   
## sp_ptbBMns9147  5.099e-02  8.994e-01   0.057  0.95479   
## sp_ptbBMns9148 -1.021e+00  9.667e-01  -1.056  0.29112   
## sp_ptbBMns9149  5.346e-01  8.010e-01   0.667  0.50450   
## sp_ptbBMns9150  5.459e-01  8.342e-01   0.654  0.51282   
## sp_ptbBMns9151 -1.376e+00  9.235e-01  -1.490  0.13622   
## sp_ptbBMns9152  1.518e+00  9.095e-01   1.669  0.09505 . 
## sp_ptbBMns9153 -1.257e+00  1.129e+00  -1.113  0.26564   
## sp_ptbBMns9154 -5.614e-01  1.014e+00  -0.554  0.57970   
## sp_ptbBMns9155  6.101e-01  8.630e-01   0.707  0.47959   
## sp_ptbBMns9156 -1.200e+00  8.969e-01  -1.338  0.18089   
## sp_ptbBMns9157  9.732e-01  7.682e-01   1.267  0.20519   
## sp_ptbBMns9158 -5.766e-01  8.480e-01  -0.680  0.49657   
## sp_ptbBMns9159  8.594e-01  6.349e-01   1.354  0.17585   
## sp_ptbBMns9160 -1.185e-01  8.126e-01  -0.146  0.88405   
## sp_ptbBMns9161         NA         NA      NA       NA   
## sp_ptbBMns9162         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(27894.86) family taken to be 1)
## 
##     Null deviance: 1101.3  on 886  degrees of freedom
## Residual deviance:  884.4  on 725  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3243.2
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  27895 
##           Std. Err.:  153572 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2917.245
SA4m5a <- glm.nb(ptbBM ~ cb5.minRH + sp_ptbBMns9,data=week); summary(SA4m5a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb5.minRH + sp_ptbBMns9, data = week, 
##     init.theta = 28286.77676, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.86355  -0.72927  -0.08996   0.56738   2.41082  
## 
## Coefficients: (7 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     1.906e+01  1.163e+01   1.639  0.10129   
## cb5.minRHv1.l1 -1.304e-01  2.747e-01  -0.475  0.63498   
## cb5.minRHv1.l2 -2.200e-02  1.886e-01  -0.117  0.90712   
## cb5.minRHv2.l1 -1.762e+00  1.013e+00  -1.739  0.08201 . 
## cb5.minRHv2.l2 -8.531e-01  7.616e-01  -1.120  0.26265   
## cb5.minRHv3.l1 -1.028e+00  6.518e-01  -1.577  0.11477   
## cb5.minRHv3.l2 -6.854e-01  5.151e-01  -1.330  0.18336   
## sp_ptbBMns91           NA         NA      NA       NA   
## sp_ptbBMns92           NA         NA      NA       NA   
## sp_ptbBMns93           NA         NA      NA       NA   
## sp_ptbBMns94           NA         NA      NA       NA   
## sp_ptbBMns95           NA         NA      NA       NA   
## sp_ptbBMns96   -2.263e+06  1.299e+06  -1.742  0.08146 . 
## sp_ptbBMns97    3.683e+01  1.582e+01   2.327  0.01996 * 
## sp_ptbBMns98   -6.531e+00  2.605e+00  -2.507  0.01217 * 
## sp_ptbBMns99    1.621e+00  1.208e+00   1.342  0.17958   
## sp_ptbBMns910  -2.418e+00  1.118e+00  -2.162  0.03062 * 
## sp_ptbBMns911   1.790e-01  1.031e+00   0.174  0.86211   
## sp_ptbBMns912  -1.147e+00  1.039e+00  -1.104  0.26953   
## sp_ptbBMns913  -1.856e+00  1.121e+00  -1.656  0.09782 . 
## sp_ptbBMns914  -1.838e+00  1.137e+00  -1.616  0.10614   
## sp_ptbBMns915   6.812e-02  9.566e-01   0.071  0.94323   
## sp_ptbBMns916  -1.675e+00  9.506e-01  -1.762  0.07807 . 
## sp_ptbBMns917   3.401e-01  1.046e+00   0.325  0.74508   
## sp_ptbBMns918  -2.271e+00  1.201e+00  -1.891  0.05866 . 
## sp_ptbBMns919   1.720e-02  1.303e+00   0.013  0.98947   
## sp_ptbBMns920  -1.662e+00  1.346e+00  -1.235  0.21696   
## sp_ptbBMns921  -9.859e-01  1.436e+00  -0.687  0.49237   
## sp_ptbBMns922  -1.392e+00  1.236e+00  -1.127  0.25987   
## sp_ptbBMns923  -5.537e-01  1.252e+00  -0.442  0.65831   
## sp_ptbBMns924  -6.076e-01  1.163e+00  -0.523  0.60131   
## sp_ptbBMns925  -6.465e-01  1.178e+00  -0.549  0.58327   
## sp_ptbBMns926  -7.508e-01  1.200e+00  -0.625  0.53164   
## sp_ptbBMns927  -2.175e-01  1.183e+00  -0.184  0.85408   
## sp_ptbBMns928  -3.544e-01  1.032e+00  -0.343  0.73127   
## sp_ptbBMns929  -3.508e-01  1.102e+00  -0.318  0.75019   
## sp_ptbBMns930  -1.521e+00  1.037e+00  -1.467  0.14226   
## sp_ptbBMns931  -3.213e-01  9.513e-01  -0.338  0.73559   
## sp_ptbBMns932  -9.824e-01  8.611e-01  -1.141  0.25393   
## sp_ptbBMns933  -4.346e-02  8.577e-01  -0.051  0.95959   
## sp_ptbBMns934  -1.222e+00  9.605e-01  -1.273  0.20315   
## sp_ptbBMns935  -9.898e-01  1.042e+00  -0.950  0.34216   
## sp_ptbBMns936  -2.169e+00  1.147e+00  -1.892  0.05855 . 
## sp_ptbBMns937  -6.879e-01  1.002e+00  -0.687  0.49229   
## sp_ptbBMns938  -4.001e-01  1.034e+00  -0.387  0.69881   
## sp_ptbBMns939  -1.014e+00  1.096e+00  -0.926  0.35450   
## sp_ptbBMns940  -6.083e-01  1.253e+00  -0.485  0.62746   
## sp_ptbBMns941  -5.224e-01  1.429e+00  -0.365  0.71474   
## sp_ptbBMns942  -2.988e+00  1.638e+00  -1.823  0.06825 . 
## sp_ptbBMns943  -7.512e-01  1.436e+00  -0.523  0.60084   
## sp_ptbBMns944  -1.629e+00  1.606e+00  -1.014  0.31039   
## sp_ptbBMns945  -1.604e+00  1.697e+00  -0.945  0.34465   
## sp_ptbBMns946  -1.075e+00  1.817e+00  -0.591  0.55424   
## sp_ptbBMns947  -9.659e-01  1.648e+00  -0.586  0.55787   
## sp_ptbBMns948  -1.653e+00  1.520e+00  -1.087  0.27696   
## sp_ptbBMns949  -3.564e-01  1.274e+00  -0.280  0.77960   
## sp_ptbBMns950  -9.420e-01  1.382e+00  -0.682  0.49535   
## sp_ptbBMns951  -6.569e-01  1.153e+00  -0.570  0.56893   
## sp_ptbBMns952  -7.187e-01  1.130e+00  -0.636  0.52469   
## sp_ptbBMns953  -2.003e-01  1.143e+00  -0.175  0.86094   
## sp_ptbBMns954  -3.393e+00  1.326e+00  -2.560  0.01047 * 
## sp_ptbBMns955   3.670e-01  1.056e+00   0.347  0.72823   
## sp_ptbBMns956  -2.553e+00  1.099e+00  -2.324  0.02014 * 
## sp_ptbBMns957   1.640e-01  9.895e-01   0.166  0.86839   
## sp_ptbBMns958  -1.290e+00  1.050e+00  -1.229  0.21913   
## sp_ptbBMns959  -4.310e-01  1.018e+00  -0.423  0.67195   
## sp_ptbBMns960  -1.451e+00  1.145e+00  -1.268  0.20483   
## sp_ptbBMns961  -4.434e-01  1.007e+00  -0.440  0.65962   
## sp_ptbBMns962  -1.250e+00  9.236e-01  -1.354  0.17586   
## sp_ptbBMns963  -1.914e-01  1.196e+00  -0.160  0.87281   
## sp_ptbBMns964  -1.658e+00  1.251e+00  -1.325  0.18506   
## sp_ptbBMns965  -1.034e+00  1.072e+00  -0.965  0.33477   
## sp_ptbBMns966  -3.991e-01  1.204e+00  -0.332  0.74016   
## sp_ptbBMns967  -1.111e+00  1.122e+00  -0.990  0.32213   
## sp_ptbBMns968  -2.587e-01  1.056e+00  -0.245  0.80645   
## sp_ptbBMns969  -2.235e-01  1.039e+00  -0.215  0.82974   
## sp_ptbBMns970  -4.242e-01  1.022e+00  -0.415  0.67805   
## sp_ptbBMns971  -9.195e-01  1.178e+00  -0.781  0.43493   
## sp_ptbBMns972  -4.197e-01  1.131e+00  -0.371  0.71054   
## sp_ptbBMns973  -8.902e-01  1.276e+00  -0.698  0.48526   
## sp_ptbBMns974  -3.806e-01  1.029e+00  -0.370  0.71147   
## sp_ptbBMns975  -8.280e-01  1.082e+00  -0.766  0.44396   
## sp_ptbBMns976  -1.365e+00  1.109e+00  -1.231  0.21837   
## sp_ptbBMns977  -1.311e+00  1.285e+00  -1.020  0.30766   
## sp_ptbBMns978  -4.455e-01  1.142e+00  -0.390  0.69649   
## sp_ptbBMns979  -1.285e+00  1.193e+00  -1.078  0.28114   
## sp_ptbBMns980   6.618e-02  1.165e+00   0.057  0.95470   
## sp_ptbBMns981  -3.669e+00  1.440e+00  -2.549  0.01080 * 
## sp_ptbBMns982  -2.878e-01  1.557e+00  -0.185  0.85336   
## sp_ptbBMns983  -2.932e+00  1.543e+00  -1.900  0.05738 . 
## sp_ptbBMns984  -6.059e-01  1.183e+00  -0.512  0.60848   
## sp_ptbBMns985  -1.415e+00  1.032e+00  -1.372  0.17013   
## sp_ptbBMns986  -4.478e-01  8.471e-01  -0.529  0.59708   
## sp_ptbBMns987   2.025e-01  7.203e-01   0.281  0.77865   
## sp_ptbBMns988  -5.911e-01  7.728e-01  -0.765  0.44436   
## sp_ptbBMns989   3.798e-01  8.214e-01   0.462  0.64382   
## sp_ptbBMns990  -1.358e+00  1.071e+00  -1.268  0.20482   
## sp_ptbBMns991  -9.822e-01  1.100e+00  -0.893  0.37176   
## sp_ptbBMns992  -1.244e+00  1.096e+00  -1.134  0.25675   
## sp_ptbBMns993  -3.896e-03  9.957e-01  -0.004  0.99688   
## sp_ptbBMns994  -2.976e+00  1.101e+00  -2.703  0.00688 **
## sp_ptbBMns995   1.941e+00  8.847e-01   2.194  0.02821 * 
## sp_ptbBMns996  -2.024e+00  9.568e-01  -2.115  0.03444 * 
## sp_ptbBMns997   1.275e+00  9.183e-01   1.388  0.16499   
## sp_ptbBMns998  -8.197e-01  8.338e-01  -0.983  0.32557   
## sp_ptbBMns999  -1.236e-02  9.248e-01  -0.013  0.98934   
## sp_ptbBMns9100 -2.289e-01  1.087e+00  -0.211  0.83317   
## sp_ptbBMns9101  4.613e-01  1.126e+00   0.410  0.68212   
## sp_ptbBMns9102 -2.225e-01  9.623e-01  -0.231  0.81715   
## sp_ptbBMns9103 -5.088e-01  1.071e+00  -0.475  0.63466   
## sp_ptbBMns9104 -1.203e+00  9.557e-01  -1.259  0.20817   
## sp_ptbBMns9105  1.598e-01  8.993e-01   0.178  0.85894   
## sp_ptbBMns9106 -1.414e+00  8.653e-01  -1.634  0.10231   
## sp_ptbBMns9107 -1.008e+00  9.536e-01  -1.058  0.29027   
## sp_ptbBMns9108 -6.837e-01  1.030e+00  -0.664  0.50669   
## sp_ptbBMns9109 -1.964e+00  1.167e+00  -1.682  0.09251 . 
## sp_ptbBMns9110 -1.402e+00  1.250e+00  -1.121  0.26214   
## sp_ptbBMns9111 -6.531e-01  1.097e+00  -0.595  0.55173   
## sp_ptbBMns9112 -1.731e-01  8.714e-01  -0.199  0.84255   
## sp_ptbBMns9113 -9.763e-01  9.151e-01  -1.067  0.28603   
## sp_ptbBMns9114 -3.351e-01  9.518e-01  -0.352  0.72482   
## sp_ptbBMns9115 -1.755e+00  9.626e-01  -1.823  0.06834 . 
## sp_ptbBMns9116  3.913e-02  9.940e-01   0.039  0.96859   
## sp_ptbBMns9117 -1.076e+00  1.770e+00  -0.608  0.54316   
## sp_ptbBMns9118 -2.628e-01  1.610e+00  -0.163  0.87037   
## sp_ptbBMns9119  6.114e-01  1.422e+00   0.430  0.66726   
## sp_ptbBMns9120  1.230e-01  1.458e+00   0.084  0.93276   
## sp_ptbBMns9121  4.687e-01  1.279e+00   0.366  0.71405   
## sp_ptbBMns9122  4.459e-01  1.271e+00   0.351  0.72580   
## sp_ptbBMns9123  1.926e+00  1.279e+00   1.506  0.13216   
## sp_ptbBMns9124  1.280e+00  1.401e+00   0.913  0.36112   
## sp_ptbBMns9125  2.705e+00  1.551e+00   1.744  0.08120 . 
## sp_ptbBMns9126 -2.027e+00  1.602e+00  -1.265  0.20588   
## sp_ptbBMns9127  1.121e+00  1.366e+00   0.821  0.41164   
## sp_ptbBMns9128 -7.239e-01  1.414e+00  -0.512  0.60864   
## sp_ptbBMns9129  9.896e-01  1.227e+00   0.806  0.42007   
## sp_ptbBMns9130  2.314e-01  1.205e+00   0.192  0.84776   
## sp_ptbBMns9131  1.209e+00  1.131e+00   1.069  0.28486   
## sp_ptbBMns9132  6.909e-01  1.144e+00   0.604  0.54581   
## sp_ptbBMns9133  6.994e-01  1.094e+00   0.639  0.52263   
## sp_ptbBMns9134  1.304e+00  1.058e+00   1.232  0.21795   
## sp_ptbBMns9135 -1.291e+00  9.715e-01  -1.329  0.18399   
## sp_ptbBMns9136  9.430e-01  1.174e+00   0.803  0.42170   
## sp_ptbBMns9137 -1.738e+00  1.065e+00  -1.631  0.10279   
## sp_ptbBMns9138  6.439e-01  9.503e-01   0.678  0.49803   
## sp_ptbBMns9139 -6.649e-01  9.068e-01  -0.733  0.46340   
## sp_ptbBMns9140  4.075e-01  8.531e-01   0.478  0.63291   
## sp_ptbBMns9141 -1.645e-01  7.605e-01  -0.216  0.82877   
## sp_ptbBMns9142  1.213e+00  7.427e-01   1.633  0.10243   
## sp_ptbBMns9143  1.172e-01  7.664e-01   0.153  0.87849   
## sp_ptbBMns9144 -2.523e-01  7.804e-01  -0.323  0.74644   
## sp_ptbBMns9145 -2.263e-01  1.034e+00  -0.219  0.82672   
## sp_ptbBMns9146  1.717e-01  9.100e-01   0.189  0.85033   
## sp_ptbBMns9147 -2.372e-02  1.043e+00  -0.023  0.98185   
## sp_ptbBMns9148 -1.026e+00  1.010e+00  -1.016  0.30977   
## sp_ptbBMns9149  5.527e-01  8.572e-01   0.645  0.51906   
## sp_ptbBMns9150  4.723e-01  1.013e+00   0.466  0.64091   
## sp_ptbBMns9151 -1.703e+00  1.014e+00  -1.679  0.09319 . 
## sp_ptbBMns9152  1.350e+00  9.003e-01   1.499  0.13381   
## sp_ptbBMns9153 -1.157e+00  1.115e+00  -1.038  0.29930   
## sp_ptbBMns9154 -1.236e+00  1.282e+00  -0.964  0.33499   
## sp_ptbBMns9155  4.781e-01  1.024e+00   0.467  0.64055   
## sp_ptbBMns9156 -1.416e+00  1.155e+00  -1.226  0.22017   
## sp_ptbBMns9157  9.910e-01  8.707e-01   1.138  0.25505   
## sp_ptbBMns9158 -5.751e-01  8.481e-01  -0.678  0.49772   
## sp_ptbBMns9159  1.020e+00  6.377e-01   1.599  0.10981   
## sp_ptbBMns9160 -4.082e-03  7.966e-01  -0.005  0.99591   
## sp_ptbBMns9161         NA         NA      NA       NA   
## sp_ptbBMns9162         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(28286.78) family taken to be 1)
## 
##     Null deviance: 1101.28  on 886  degrees of freedom
## Residual deviance:  881.61  on 725  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3240.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  28287 
##           Std. Err.:  154283 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2914.458
SA4m6a <- glm.nb(ptbBM ~ cb6.meanRH + sp_ptbBMns9,data=week); summary(SA4m6a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb6.meanRH + sp_ptbBMns9, data = week, 
##     init.theta = 27875.54668, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.93814  -0.74876  -0.08958   0.54504   2.41956  
## 
## Coefficients: (7 not defined because of singularities)
##                   Estimate Std. Error z value Pr(>|z|)   
## (Intercept)      1.252e+01  1.369e+01   0.915  0.36042   
## cb6.meanRHv1.l1 -3.541e-01  3.190e-01  -1.110  0.26694   
## cb6.meanRHv1.l2 -1.628e-01  2.067e-01  -0.788  0.43087   
## cb6.meanRHv2.l1 -7.772e-01  1.119e+00  -0.695  0.48733   
## cb6.meanRHv2.l2  1.512e-01  7.771e-01   0.195  0.84575   
## cb6.meanRHv3.l1 -1.924e-01  5.080e-01  -0.379  0.70490   
## cb6.meanRHv3.l2  4.056e-02  3.908e-01   0.104  0.91734   
## sp_ptbBMns91            NA         NA      NA       NA   
## sp_ptbBMns92            NA         NA      NA       NA   
## sp_ptbBMns93            NA         NA      NA       NA   
## sp_ptbBMns94            NA         NA      NA       NA   
## sp_ptbBMns95            NA         NA      NA       NA   
## sp_ptbBMns96    -2.213e+06  1.297e+06  -1.705  0.08812 . 
## sp_ptbBMns97     3.636e+01  1.582e+01   2.299  0.02153 * 
## sp_ptbBMns98    -5.881e+00  2.611e+00  -2.252  0.02432 * 
## sp_ptbBMns99     2.093e+00  1.228e+00   1.704  0.08830 . 
## sp_ptbBMns910   -2.130e+00  1.094e+00  -1.948  0.05147 . 
## sp_ptbBMns911    1.450e-01  9.995e-01   0.145  0.88462   
## sp_ptbBMns912   -1.178e+00  1.043e+00  -1.130  0.25835   
## sp_ptbBMns913   -1.762e+00  1.201e+00  -1.468  0.14223   
## sp_ptbBMns914   -8.972e-01  1.109e+00  -0.809  0.41837   
## sp_ptbBMns915    7.033e-01  9.137e-01   0.770  0.44149   
## sp_ptbBMns916   -1.228e+00  9.622e-01  -1.276  0.20182   
## sp_ptbBMns917    8.892e-01  1.173e+00   0.758  0.44845   
## sp_ptbBMns918   -2.111e+00  1.237e+00  -1.707  0.08781 . 
## sp_ptbBMns919    3.547e-01  1.226e+00   0.289  0.77239   
## sp_ptbBMns920   -1.571e+00  1.234e+00  -1.273  0.20292   
## sp_ptbBMns921   -9.359e-01  1.368e+00  -0.684  0.49384   
## sp_ptbBMns922   -1.088e+00  1.189e+00  -0.915  0.36028   
## sp_ptbBMns923   -3.110e-01  1.260e+00  -0.247  0.80512   
## sp_ptbBMns924   -3.745e-01  1.164e+00  -0.322  0.74768   
## sp_ptbBMns925   -7.551e-01  1.220e+00  -0.619  0.53583   
## sp_ptbBMns926   -1.216e+00  1.260e+00  -0.965  0.33430   
## sp_ptbBMns927   -3.036e-01  1.121e+00  -0.271  0.78653   
## sp_ptbBMns928   -2.547e-01  1.091e+00  -0.234  0.81537   
## sp_ptbBMns929   -8.742e-01  1.419e+00  -0.616  0.53788   
## sp_ptbBMns930   -2.219e+00  1.665e+00  -1.333  0.18265   
## sp_ptbBMns931   -1.645e+00  2.144e+00  -0.767  0.44310   
## sp_ptbBMns932   -2.823e+00  2.401e+00  -1.176  0.23974   
## sp_ptbBMns933   -1.948e+00  2.719e+00  -0.717  0.47355   
## sp_ptbBMns934   -3.563e+00  2.850e+00  -1.250  0.21123   
## sp_ptbBMns935   -4.370e+00  3.129e+00  -1.397  0.16251   
## sp_ptbBMns936   -4.820e+00  3.134e+00  -1.538  0.12403   
## sp_ptbBMns937   -3.651e+00  3.183e+00  -1.147  0.25143   
## sp_ptbBMns938   -3.310e+00  3.088e+00  -1.072  0.28364   
## sp_ptbBMns939   -3.704e+00  3.079e+00  -1.203  0.22910   
## sp_ptbBMns940   -3.478e+00  3.099e+00  -1.122  0.26166   
## sp_ptbBMns941   -3.086e+00  3.081e+00  -1.002  0.31650   
## sp_ptbBMns942   -5.315e+00  3.177e+00  -1.673  0.09438 . 
## sp_ptbBMns943   -3.235e+00  3.041e+00  -1.064  0.28738   
## sp_ptbBMns944   -3.797e+00  3.018e+00  -1.258  0.20838   
## sp_ptbBMns945   -3.935e+00  3.185e+00  -1.235  0.21670   
## sp_ptbBMns946   -3.422e+00  3.294e+00  -1.039  0.29882   
## sp_ptbBMns947   -2.919e+00  2.807e+00  -1.040  0.29848   
## sp_ptbBMns948   -3.618e+00  2.591e+00  -1.396  0.16262   
## sp_ptbBMns949   -1.998e+00  2.241e+00  -0.892  0.37265   
## sp_ptbBMns950   -2.786e+00  2.212e+00  -1.259  0.20787   
## sp_ptbBMns951   -1.930e+00  1.779e+00  -1.085  0.27811   
## sp_ptbBMns952   -1.661e+00  1.724e+00  -0.963  0.33550   
## sp_ptbBMns953   -9.372e-01  1.570e+00  -0.597  0.55051   
## sp_ptbBMns954   -3.854e+00  1.591e+00  -2.422  0.01543 * 
## sp_ptbBMns955    7.854e-01  1.309e+00   0.600  0.54849   
## sp_ptbBMns956   -2.679e+00  1.519e+00  -1.764  0.07771 . 
## sp_ptbBMns957    1.502e-01  1.406e+00   0.107  0.91490   
## sp_ptbBMns958   -1.458e+00  1.645e+00  -0.886  0.37540   
## sp_ptbBMns959   -5.602e-01  1.550e+00  -0.361  0.71778   
## sp_ptbBMns960   -1.865e+00  1.753e+00  -1.064  0.28747   
## sp_ptbBMns961   -7.584e-01  1.680e+00  -0.451  0.65177   
## sp_ptbBMns962   -1.918e+00  1.566e+00  -1.225  0.22071   
## sp_ptbBMns963   -1.146e+00  1.759e+00  -0.652  0.51471   
## sp_ptbBMns964   -2.344e+00  1.612e+00  -1.454  0.14595   
## sp_ptbBMns965   -1.402e+00  1.400e+00  -1.002  0.31654   
## sp_ptbBMns966   -5.787e-01  1.397e+00  -0.414  0.67860   
## sp_ptbBMns967   -1.277e+00  1.315e+00  -0.971  0.33138   
## sp_ptbBMns968   -5.567e-01  1.218e+00  -0.457  0.64762   
## sp_ptbBMns969   -2.973e-01  1.210e+00  -0.246  0.80592   
## sp_ptbBMns970   -3.208e-01  1.088e+00  -0.295  0.76804   
## sp_ptbBMns971   -1.294e+00  1.163e+00  -1.113  0.26574   
## sp_ptbBMns972   -3.571e-01  1.082e+00  -0.330  0.74134   
## sp_ptbBMns973   -8.442e-01  1.214e+00  -0.695  0.48694   
## sp_ptbBMns974   -6.459e-01  1.071e+00  -0.603  0.54651   
## sp_ptbBMns975   -8.564e-01  1.176e+00  -0.728  0.46648   
## sp_ptbBMns976   -1.558e+00  1.249e+00  -1.248  0.21219   
## sp_ptbBMns977   -1.325e+00  1.462e+00  -0.906  0.36485   
## sp_ptbBMns978   -6.592e-01  1.357e+00  -0.486  0.62701   
## sp_ptbBMns979   -1.235e+00  1.385e+00  -0.892  0.37263   
## sp_ptbBMns980   -9.238e-01  1.385e+00  -0.667  0.50466   
## sp_ptbBMns981   -3.684e+00  1.626e+00  -2.265  0.02352 * 
## sp_ptbBMns982   -4.111e-01  1.784e+00  -0.230  0.81774   
## sp_ptbBMns983   -3.021e+00  1.806e+00  -1.673  0.09438 . 
## sp_ptbBMns984   -4.812e-01  1.403e+00  -0.343  0.73162   
## sp_ptbBMns985   -1.463e+00  1.240e+00  -1.180  0.23815   
## sp_ptbBMns986   -5.003e-01  1.143e+00  -0.438  0.66156   
## sp_ptbBMns987    4.184e-01  9.426e-01   0.444  0.65711   
## sp_ptbBMns988   -4.014e-01  1.019e+00  -0.394  0.69353   
## sp_ptbBMns989    2.220e-01  9.963e-01   0.223  0.82369   
## sp_ptbBMns990   -8.531e-01  1.180e+00  -0.723  0.46964   
## sp_ptbBMns991   -6.964e-01  1.178e+00  -0.591  0.55452   
## sp_ptbBMns992   -8.602e-01  1.151e+00  -0.748  0.45469   
## sp_ptbBMns993    3.584e-01  1.017e+00   0.353  0.72440   
## sp_ptbBMns994   -2.676e+00  1.083e+00  -2.471  0.01349 * 
## sp_ptbBMns995    2.366e+00  9.048e-01   2.615  0.00893 **
## sp_ptbBMns996   -1.860e+00  9.507e-01  -1.956  0.05045 . 
## sp_ptbBMns997    1.881e+00  9.300e-01   2.022  0.04315 * 
## sp_ptbBMns998   -1.114e+00  8.219e-01  -1.356  0.17524   
## sp_ptbBMns999    2.517e-01  9.393e-01   0.268  0.78873   
## sp_ptbBMns9100  -2.771e-01  1.038e+00  -0.267  0.78948   
## sp_ptbBMns9101  -2.750e-02  1.137e+00  -0.024  0.98071   
## sp_ptbBMns9102  -3.673e-01  9.686e-01  -0.379  0.70456   
## sp_ptbBMns9103  -6.746e-01  1.115e+00  -0.605  0.54517   
## sp_ptbBMns9104  -7.127e-01  1.017e+00  -0.701  0.48353   
## sp_ptbBMns9105   7.172e-01  1.017e+00   0.705  0.48077   
## sp_ptbBMns9106  -9.523e-01  9.004e-01  -1.058  0.29023   
## sp_ptbBMns9107  -4.663e-01  1.054e+00  -0.442  0.65828   
## sp_ptbBMns9108  -3.728e-01  9.891e-01  -0.377  0.70627   
## sp_ptbBMns9109  -1.501e+00  1.243e+00  -1.208  0.22710   
## sp_ptbBMns9110  -1.568e+00  1.251e+00  -1.253  0.21004   
## sp_ptbBMns9111  -1.147e-01  1.160e+00  -0.099  0.92130   
## sp_ptbBMns9112  -1.085e-01  9.879e-01  -0.110  0.91256   
## sp_ptbBMns9113  -3.742e-01  1.065e+00  -0.351  0.72524   
## sp_ptbBMns9114   7.011e-01  1.102e+00   0.636  0.52450   
## sp_ptbBMns9115  -1.101e+00  1.171e+00  -0.940  0.34716   
## sp_ptbBMns9116   6.968e-01  1.071e+00   0.651  0.51534   
## sp_ptbBMns9117  -4.735e-01  1.532e+00  -0.309  0.75729   
## sp_ptbBMns9118  -6.186e-02  1.223e+00  -0.051  0.95967   
## sp_ptbBMns9119   3.420e-01  1.114e+00   0.307  0.75893   
## sp_ptbBMns9120  -6.475e-01  1.049e+00  -0.617  0.53720   
## sp_ptbBMns9121  -4.144e-01  9.526e-01  -0.435  0.66351   
## sp_ptbBMns9122  -5.444e-01  9.173e-01  -0.594  0.55282   
## sp_ptbBMns9123   6.436e-01  8.834e-01   0.729  0.46629   
## sp_ptbBMns9124  -1.197e-02  9.934e-01  -0.012  0.99038   
## sp_ptbBMns9125   5.858e-01  9.530e-01   0.615  0.53877   
## sp_ptbBMns9126  -1.957e+00  1.573e+00  -1.244  0.21346   
## sp_ptbBMns9127   1.213e+00  1.035e+00   1.172  0.24111   
## sp_ptbBMns9128  -8.794e-01  1.124e+00  -0.782  0.43404   
## sp_ptbBMns9129   9.237e-01  9.356e-01   0.987  0.32348   
## sp_ptbBMns9130   6.320e-02  8.701e-01   0.073  0.94209   
## sp_ptbBMns9131   6.565e-01  8.432e-01   0.779  0.43622   
## sp_ptbBMns9132   1.803e-01  8.804e-01   0.205  0.83776   
## sp_ptbBMns9133  -4.621e-02  8.676e-01  -0.053  0.95753   
## sp_ptbBMns9134   4.265e-01  9.194e-01   0.464  0.64272   
## sp_ptbBMns9135  -6.532e-01  1.058e+00  -0.617  0.53697   
## sp_ptbBMns9136   1.031e+00  8.430e-01   1.223  0.22122   
## sp_ptbBMns9137  -1.808e+00  9.046e-01  -1.998  0.04568 * 
## sp_ptbBMns9138   7.300e-01  7.848e-01   0.930  0.35233   
## sp_ptbBMns9139  -3.154e-01  8.306e-01  -0.380  0.70415   
## sp_ptbBMns9140   6.652e-01  8.004e-01   0.831  0.40595   
## sp_ptbBMns9141  -1.316e-01  7.816e-01  -0.168  0.86625   
## sp_ptbBMns9142   7.672e-01  7.073e-01   1.085  0.27806   
## sp_ptbBMns9143  -3.382e-01  9.642e-01  -0.351  0.72575   
## sp_ptbBMns9144  -4.450e-01  9.611e-01  -0.463  0.64333   
## sp_ptbBMns9145  -4.496e-01  1.054e+00  -0.426  0.66981   
## sp_ptbBMns9146   1.827e-01  9.166e-01   0.199  0.84206   
## sp_ptbBMns9147  -3.607e-01  9.542e-01  -0.378  0.70546   
## sp_ptbBMns9148  -1.187e+00  9.883e-01  -1.201  0.22977   
## sp_ptbBMns9149   5.437e-01  8.922e-01   0.609  0.54228   
## sp_ptbBMns9150   8.996e-01  9.702e-01   0.927  0.35379   
## sp_ptbBMns9151  -1.251e+00  1.038e+00  -1.205  0.22809   
## sp_ptbBMns9152   1.870e+00  1.069e+00   1.749  0.08025 . 
## sp_ptbBMns9153  -1.001e+00  1.209e+00  -0.828  0.40760   
## sp_ptbBMns9154  -6.780e-02  1.272e+00  -0.053  0.95748   
## sp_ptbBMns9155   1.126e+00  9.882e-01   1.139  0.25469   
## sp_ptbBMns9156  -8.397e-01  1.060e+00  -0.792  0.42808   
## sp_ptbBMns9157   1.307e+00  8.122e-01   1.609  0.10751   
## sp_ptbBMns9158   5.340e-02  8.442e-01   0.063  0.94956   
## sp_ptbBMns9159   1.276e+00  6.438e-01   1.982  0.04743 * 
## sp_ptbBMns9160  -9.053e-02  8.142e-01  -0.111  0.91147   
## sp_ptbBMns9161          NA         NA      NA       NA   
## sp_ptbBMns9162          NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(27875.55) family taken to be 1)
## 
##     Null deviance: 1101.28  on 886  degrees of freedom
## Residual deviance:  883.99  on 725  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3242.8
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  27876 
##           Std. Err.:  153212 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2916.84
SA4m7a <- glm.nb(ptbBM ~ cb7.maxRH + sp_ptbBMns9,data=week); summary(SA4m7a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb7.maxRH + sp_ptbBMns9, data = week, 
##     init.theta = 27886.35075, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.9041  -0.7561  -0.1015   0.5410   2.4180  
## 
## Coefficients: (7 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)     6.696e+00  1.368e+01   0.489   0.6246  
## cb7.maxRHv1.l1 -2.148e-01  3.364e-01  -0.639   0.5231  
## cb7.maxRHv1.l2 -2.479e-01  2.386e-01  -1.039   0.2989  
## cb7.maxRHv2.l1 -3.312e-01  1.075e+00  -0.308   0.7580  
## cb7.maxRHv2.l2 -1.444e-01  7.948e-01  -0.182   0.8558  
## cb7.maxRHv3.l1 -4.526e-02  3.117e-01  -0.145   0.8846  
## cb7.maxRHv3.l2  1.268e-01  2.315e-01   0.548   0.5837  
## sp_ptbBMns91           NA         NA      NA       NA  
## sp_ptbBMns92           NA         NA      NA       NA  
## sp_ptbBMns93           NA         NA      NA       NA  
## sp_ptbBMns94           NA         NA      NA       NA  
## sp_ptbBMns95           NA         NA      NA       NA  
## sp_ptbBMns96   -2.232e+06  1.300e+06  -1.716   0.0861 .
## sp_ptbBMns97    3.799e+01  1.605e+01   2.367   0.0179 *
## sp_ptbBMns98   -4.952e+00  2.782e+00  -1.780   0.0750 .
## sp_ptbBMns99    3.098e+00  1.466e+00   2.113   0.0346 *
## sp_ptbBMns910  -1.234e+00  1.354e+00  -0.911   0.3624  
## sp_ptbBMns911   1.152e+00  1.144e+00   1.007   0.3140  
## sp_ptbBMns912  -2.816e-01  1.097e+00  -0.257   0.7974  
## sp_ptbBMns913  -1.465e+00  1.201e+00  -1.220   0.2224  
## sp_ptbBMns914  -8.440e-01  9.661e-01  -0.874   0.3823  
## sp_ptbBMns915   4.280e-01  8.195e-01   0.522   0.6015  
## sp_ptbBMns916  -1.276e+00  8.011e-01  -1.592   0.1113  
## sp_ptbBMns917   1.977e+00  1.054e+00   1.875   0.0608 .
## sp_ptbBMns918  -1.030e+00  9.691e-01  -1.063   0.2879  
## sp_ptbBMns919   1.088e+00  8.424e-01   1.292   0.1965  
## sp_ptbBMns920  -8.186e-01  8.619e-01  -0.950   0.3422  
## sp_ptbBMns921   1.274e-01  8.563e-01   0.149   0.8817  
## sp_ptbBMns922  -5.121e-01  8.883e-01  -0.576   0.5643  
## sp_ptbBMns923  -6.505e-01  8.683e-01  -0.749   0.4538  
## sp_ptbBMns924  -8.745e-01  9.172e-01  -0.953   0.3404  
## sp_ptbBMns925  -7.010e-01  8.341e-01  -0.840   0.4007  
## sp_ptbBMns926   2.088e-01  1.333e+00   0.157   0.8755  
## sp_ptbBMns927   9.375e-01  9.136e-01   1.026   0.3048  
## sp_ptbBMns928   4.964e-01  8.242e-01   0.602   0.5470  
## sp_ptbBMns929   4.441e-01  9.451e-01   0.470   0.6384  
## sp_ptbBMns930  -1.272e+00  9.913e-01  -1.283   0.1995  
## sp_ptbBMns931   2.204e-01  8.768e-01   0.251   0.8015  
## sp_ptbBMns932  -1.406e+00  1.039e+00  -1.352   0.1762  
## sp_ptbBMns933   1.844e-01  1.213e+00   0.152   0.8791  
## sp_ptbBMns934  -1.165e+00  1.286e+00  -0.906   0.3651  
## sp_ptbBMns935   5.152e-02  1.725e+00   0.030   0.9762  
## sp_ptbBMns936  -6.230e-01  1.468e+00  -0.424   0.6714  
## sp_ptbBMns937  -2.158e-01  2.033e+00  -0.106   0.9155  
## sp_ptbBMns938  -1.215e-01  2.576e+00  -0.047   0.9624  
## sp_ptbBMns939  -1.365e+00  3.048e+00  -0.448   0.6544  
## sp_ptbBMns940  -1.751e+00  3.941e+00  -0.444   0.6568  
## sp_ptbBMns941  -2.580e+00  4.983e+00  -0.518   0.6047  
## sp_ptbBMns942  -4.931e+00  5.816e+00  -0.848   0.3966  
## sp_ptbBMns943  -3.559e+00  6.549e+00  -0.543   0.5869  
## sp_ptbBMns944  -3.968e+00  6.988e+00  -0.568   0.5701  
## sp_ptbBMns945  -4.288e+00  7.994e+00  -0.536   0.5917  
## sp_ptbBMns946  -3.764e+00  7.793e+00  -0.483   0.6291  
## sp_ptbBMns947  -3.546e+00  6.802e+00  -0.521   0.6022  
## sp_ptbBMns948  -4.788e+00  6.530e+00  -0.733   0.4634  
## sp_ptbBMns949  -3.229e+00  5.890e+00  -0.548   0.5835  
## sp_ptbBMns950  -3.833e+00  5.171e+00  -0.741   0.4586  
## sp_ptbBMns951  -2.977e+00  4.244e+00  -0.702   0.4830  
## sp_ptbBMns952  -2.379e+00  3.661e+00  -0.650   0.5157  
## sp_ptbBMns953  -1.276e+00  3.121e+00  -0.409   0.6826  
## sp_ptbBMns954  -3.683e+00  2.601e+00  -1.416   0.1568  
## sp_ptbBMns955   1.411e+00  2.211e+00   0.638   0.5232  
## sp_ptbBMns956  -2.014e+00  2.479e+00  -0.812   0.4166  
## sp_ptbBMns957   4.975e-01  2.569e+00   0.194   0.8465  
## sp_ptbBMns958  -9.569e-01  2.779e+00  -0.344   0.7306  
## sp_ptbBMns959  -3.114e-01  2.824e+00  -0.110   0.9122  
## sp_ptbBMns960  -1.595e+00  3.039e+00  -0.525   0.5998  
## sp_ptbBMns961  -5.046e-01  3.237e+00  -0.156   0.8761  
## sp_ptbBMns962  -1.983e+00  2.974e+00  -0.667   0.5049  
## sp_ptbBMns963  -1.173e+00  2.953e+00  -0.397   0.6913  
## sp_ptbBMns964  -2.218e+00  2.629e+00  -0.844   0.3987  
## sp_ptbBMns965  -1.598e+00  2.334e+00  -0.685   0.4935  
## sp_ptbBMns966  -6.048e-01  2.204e+00  -0.274   0.7838  
## sp_ptbBMns967  -1.470e+00  2.047e+00  -0.718   0.4726  
## sp_ptbBMns968  -6.269e-01  1.814e+00  -0.346   0.7296  
## sp_ptbBMns969  -1.950e-01  1.660e+00  -0.117   0.9065  
## sp_ptbBMns970   2.434e-01  1.511e+00   0.161   0.8720  
## sp_ptbBMns971  -3.012e-01  1.531e+00  -0.197   0.8441  
## sp_ptbBMns972   4.900e-01  1.368e+00   0.358   0.7203  
## sp_ptbBMns973   3.412e-01  1.437e+00   0.237   0.8123  
## sp_ptbBMns974   4.015e-01  1.405e+00   0.286   0.7750  
## sp_ptbBMns975   4.485e-01  1.423e+00   0.315   0.7526  
## sp_ptbBMns976  -1.855e-01  1.554e+00  -0.119   0.9050  
## sp_ptbBMns977   1.934e-01  1.733e+00   0.112   0.9111  
## sp_ptbBMns978   4.792e-01  1.866e+00   0.257   0.7973  
## sp_ptbBMns979  -2.711e-01  1.765e+00  -0.154   0.8780  
## sp_ptbBMns980   1.253e-01  1.878e+00   0.067   0.9468  
## sp_ptbBMns981  -2.568e+00  1.957e+00  -1.312   0.1895  
## sp_ptbBMns982   7.778e-01  2.232e+00   0.348   0.7275  
## sp_ptbBMns983  -2.056e+00  2.208e+00  -0.931   0.3518  
## sp_ptbBMns984   1.589e-01  1.969e+00   0.081   0.9357  
## sp_ptbBMns985  -9.751e-01  1.810e+00  -0.539   0.5901  
## sp_ptbBMns986  -3.521e-02  1.674e+00  -0.021   0.9832  
## sp_ptbBMns987   1.005e+00  1.436e+00   0.700   0.4842  
## sp_ptbBMns988  -2.363e-02  1.466e+00  -0.016   0.9871  
## sp_ptbBMns989   1.014e+00  1.305e+00   0.778   0.4368  
## sp_ptbBMns990  -1.410e-01  1.347e+00  -0.105   0.9166  
## sp_ptbBMns991   2.605e-01  1.346e+00   0.194   0.8465  
## sp_ptbBMns992  -6.572e-02  1.293e+00  -0.051   0.9595  
## sp_ptbBMns993   9.402e-01  1.262e+00   0.745   0.4563  
## sp_ptbBMns994  -2.217e+00  1.294e+00  -1.713   0.0866 .
## sp_ptbBMns995   2.711e+00  1.194e+00   2.271   0.0231 *
## sp_ptbBMns996  -1.627e+00  1.291e+00  -1.260   0.2077  
## sp_ptbBMns997   1.754e+00  1.198e+00   1.464   0.1431  
## sp_ptbBMns998  -7.065e-01  1.216e+00  -0.581   0.5612  
## sp_ptbBMns999   9.125e-01  1.204e+00   0.758   0.4485  
## sp_ptbBMns9100  6.898e-01  1.117e+00   0.617   0.5369  
## sp_ptbBMns9101  1.064e+00  1.260e+00   0.844   0.3985  
## sp_ptbBMns9102  4.448e-01  1.104e+00   0.403   0.6870  
## sp_ptbBMns9103  4.057e-01  1.186e+00   0.342   0.7322  
## sp_ptbBMns9104 -2.158e-02  1.223e+00  -0.018   0.9859  
## sp_ptbBMns9105  1.084e+00  1.279e+00   0.847   0.3968  
## sp_ptbBMns9106 -6.696e-01  1.114e+00  -0.601   0.5476  
## sp_ptbBMns9107 -2.649e-02  1.117e+00  -0.024   0.9811  
## sp_ptbBMns9108  1.778e-01  1.136e+00   0.157   0.8756  
## sp_ptbBMns9109 -6.104e-01  1.472e+00  -0.415   0.6784  
## sp_ptbBMns9110 -6.935e-01  1.474e+00  -0.470   0.6381  
## sp_ptbBMns9111  4.391e-01  1.362e+00   0.322   0.7471  
## sp_ptbBMns9112  3.965e-01  1.293e+00   0.307   0.7592  
## sp_ptbBMns9113 -1.610e-02  1.385e+00  -0.012   0.9907  
## sp_ptbBMns9114  5.676e-01  1.335e+00   0.425   0.6708  
## sp_ptbBMns9115 -9.371e-01  1.476e+00  -0.635   0.5255  
## sp_ptbBMns9116  1.469e+00  1.248e+00   1.177   0.2392  
## sp_ptbBMns9117  3.690e-01  1.254e+00   0.294   0.7685  
## sp_ptbBMns9118  7.712e-01  1.061e+00   0.727   0.4675  
## sp_ptbBMns9119  1.012e+00  1.016e+00   0.996   0.3192  
## sp_ptbBMns9120 -1.242e-01  9.879e-01  -0.126   0.8999  
## sp_ptbBMns9121 -3.186e-01  1.029e+00  -0.310   0.7568  
## sp_ptbBMns9122 -7.057e-01  9.578e-01  -0.737   0.4612  
## sp_ptbBMns9123  2.039e-01  9.519e-01   0.214   0.8304  
## sp_ptbBMns9124 -7.572e-01  8.689e-01  -0.871   0.3835  
## sp_ptbBMns9125  7.855e-01  8.895e-01   0.883   0.3772  
## sp_ptbBMns9126 -1.313e+00  1.289e+00  -1.019   0.3081  
## sp_ptbBMns9127  1.716e+00  1.021e+00   1.681   0.0928 .
## sp_ptbBMns9128 -4.157e-01  9.267e-01  -0.449   0.6538  
## sp_ptbBMns9129  1.045e+00  8.293e-01   1.260   0.2077  
## sp_ptbBMns9130  8.966e-02  7.737e-01   0.116   0.9078  
## sp_ptbBMns9131  7.053e-01  7.154e-01   0.986   0.3242  
## sp_ptbBMns9132 -3.648e-01  9.222e-01  -0.396   0.6924  
## sp_ptbBMns9133 -1.207e-01  7.242e-01  -0.167   0.8676  
## sp_ptbBMns9134  8.033e-01  7.615e-01   1.055   0.2915  
## sp_ptbBMns9135 -6.018e-02  1.040e+00  -0.058   0.9539  
## sp_ptbBMns9136  1.604e+00  9.782e-01   1.640   0.1010  
## sp_ptbBMns9137 -1.467e+00  1.209e+00  -1.214   0.2247  
## sp_ptbBMns9138  8.599e-01  1.139e+00   0.755   0.4502  
## sp_ptbBMns9139 -6.148e-01  9.979e-01  -0.616   0.5378  
## sp_ptbBMns9140  4.364e-01  1.092e+00   0.399   0.6895  
## sp_ptbBMns9141 -1.110e+00  1.144e+00  -0.971   0.3315  
## sp_ptbBMns9142  1.454e-01  1.099e+00   0.132   0.8948  
## sp_ptbBMns9143  8.548e-02  1.412e+00   0.061   0.9517  
## sp_ptbBMns9144 -5.755e-01  1.320e+00  -0.436   0.6629  
## sp_ptbBMns9145  4.277e-01  1.082e+00   0.395   0.6925  
## sp_ptbBMns9146  8.917e-01  8.709e-01   1.024   0.3059  
## sp_ptbBMns9147  2.178e-02  9.749e-01   0.022   0.9822  
## sp_ptbBMns9148 -1.125e+00  9.477e-01  -1.187   0.2352  
## sp_ptbBMns9149  5.405e-01  8.171e-01   0.661   0.5083  
## sp_ptbBMns9150  4.633e-01  9.968e-01   0.465   0.6421  
## sp_ptbBMns9151 -1.844e+00  1.109e+00  -1.663   0.0963 .
## sp_ptbBMns9152  1.989e+00  1.249e+00   1.593   0.1112  
## sp_ptbBMns9153 -1.179e+00  1.366e+00  -0.863   0.3879  
## sp_ptbBMns9154 -1.572e-01  1.157e+00  -0.136   0.8919  
## sp_ptbBMns9155  6.778e-01  9.785e-01   0.693   0.4884  
## sp_ptbBMns9156 -9.260e-01  9.508e-01  -0.974   0.3301  
## sp_ptbBMns9157  8.472e-01  8.521e-01   0.994   0.3201  
## sp_ptbBMns9158 -9.384e-01  9.784e-01  -0.959   0.3375  
## sp_ptbBMns9159  4.392e-01  7.925e-01   0.554   0.5795  
## sp_ptbBMns9160 -6.427e-01  8.922e-01  -0.720   0.4714  
## sp_ptbBMns9161         NA         NA      NA       NA  
## sp_ptbBMns9162         NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(27886.35) family taken to be 1)
## 
##     Null deviance: 1101.28  on 886  degrees of freedom
## Residual deviance:  883.23  on 725  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3242.1
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  27886 
##           Std. Err.:  152640 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2916.077
SA4m8a <- glm.nb(ptbBM ~ cb8.AH + sp_ptbBMns9,data=week); summary(SA4m8a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb8.AH + sp_ptbBMns9, data = week, init.theta = 28001.63863, 
##     link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.99660  -0.75613  -0.08612   0.56152   2.36426  
## 
## Coefficients: (7 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    -8.747e+00  1.519e+01  -0.576   0.5647  
## cb8.AHv1.l1     9.691e-02  3.623e-01   0.267   0.7891  
## cb8.AHv1.l2    -2.454e-01  2.437e-01  -1.007   0.3139  
## cb8.AHv2.l1     1.030e+00  1.224e+00   0.841   0.4001  
## cb8.AHv2.l2    -2.564e-01  8.148e-01  -0.315   0.7530  
## cb8.AHv3.l1     7.993e-01  6.343e-01   1.260   0.2077  
## cb8.AHv3.l2     5.329e-01  4.419e-01   1.206   0.2279  
## sp_ptbBMns91           NA         NA      NA       NA  
## sp_ptbBMns92           NA         NA      NA       NA  
## sp_ptbBMns93           NA         NA      NA       NA  
## sp_ptbBMns94           NA         NA      NA       NA  
## sp_ptbBMns95           NA         NA      NA       NA  
## sp_ptbBMns96   -2.303e+06  1.301e+06  -1.771   0.0765 .
## sp_ptbBMns97    3.936e+01  1.613e+01   2.440   0.0147 *
## sp_ptbBMns98   -4.760e+00  3.019e+00  -1.577   0.1148  
## sp_ptbBMns99    3.903e+00  2.032e+00   1.920   0.0548 .
## sp_ptbBMns910  -4.925e-01  2.008e+00  -0.245   0.8062  
## sp_ptbBMns911   2.479e+00  1.733e+00   1.430   0.1526  
## sp_ptbBMns912   1.317e+00  1.860e+00   0.708   0.4787  
## sp_ptbBMns913   2.293e-01  1.765e+00   0.130   0.8966  
## sp_ptbBMns914   8.642e-01  1.867e+00   0.463   0.6435  
## sp_ptbBMns915   2.120e+00  1.705e+00   1.244   0.2137  
## sp_ptbBMns916   4.225e-01  1.771e+00   0.239   0.8115  
## sp_ptbBMns917   2.359e+00  1.487e+00   1.586   0.1127  
## sp_ptbBMns918  -4.648e-01  1.591e+00  -0.292   0.7701  
## sp_ptbBMns919   1.408e+00  1.660e+00   0.848   0.3962  
## sp_ptbBMns920   1.956e-01  1.625e+00   0.120   0.9042  
## sp_ptbBMns921   1.695e+00  1.690e+00   1.003   0.3159  
## sp_ptbBMns922   6.964e-01  1.778e+00   0.392   0.6953  
## sp_ptbBMns923   9.806e-01  1.649e+00   0.595   0.5521  
## sp_ptbBMns924   8.461e-01  1.718e+00   0.493   0.6223  
## sp_ptbBMns925   4.349e-01  1.659e+00   0.262   0.7932  
## sp_ptbBMns926   4.005e-01  1.770e+00   0.226   0.8210  
## sp_ptbBMns927   1.438e+00  1.945e+00   0.739   0.4599  
## sp_ptbBMns928   1.335e+00  2.039e+00   0.655   0.5126  
## sp_ptbBMns929   1.645e+00  2.437e+00   0.675   0.4997  
## sp_ptbBMns930   1.872e+00  2.867e+00   0.653   0.5139  
## sp_ptbBMns931   3.780e+00  3.384e+00   1.117   0.2640  
## sp_ptbBMns932   2.924e+00  3.714e+00   0.787   0.4311  
## sp_ptbBMns933   5.130e+00  4.680e+00   1.096   0.2730  
## sp_ptbBMns934   2.905e+00  4.368e+00   0.665   0.5061  
## sp_ptbBMns935   2.449e+00  4.781e+00   0.512   0.6085  
## sp_ptbBMns936   2.220e+00  4.917e+00   0.451   0.6517  
## sp_ptbBMns937   2.776e+00  4.571e+00   0.607   0.5437  
## sp_ptbBMns938   2.809e+00  4.547e+00   0.618   0.5367  
## sp_ptbBMns939   1.632e+00  4.479e+00   0.364   0.7157  
## sp_ptbBMns940   2.513e+00  4.410e+00   0.570   0.5688  
## sp_ptbBMns941   2.630e+00  4.216e+00   0.624   0.5327  
## sp_ptbBMns942   1.029e+00  4.221e+00   0.244   0.8073  
## sp_ptbBMns943   2.950e+00  4.273e+00   0.690   0.4900  
## sp_ptbBMns944   2.953e+00  4.685e+00   0.630   0.5285  
## sp_ptbBMns945   3.202e+00  4.641e+00   0.690   0.4902  
## sp_ptbBMns946   3.576e+00  4.875e+00   0.734   0.4632  
## sp_ptbBMns947   3.114e+00  4.368e+00   0.713   0.4759  
## sp_ptbBMns948   1.389e+00  4.435e+00   0.313   0.7541  
## sp_ptbBMns949   2.401e+00  3.874e+00   0.620   0.5355  
## sp_ptbBMns950   1.301e+00  3.916e+00   0.332   0.7397  
## sp_ptbBMns951   1.441e+00  3.553e+00   0.406   0.6851  
## sp_ptbBMns952   1.378e+00  3.428e+00   0.402   0.6876  
## sp_ptbBMns953   1.882e+00  2.937e+00   0.641   0.5217  
## sp_ptbBMns954  -9.199e-01  2.941e+00  -0.313   0.7544  
## sp_ptbBMns955   3.145e+00  2.779e+00   1.132   0.2577  
## sp_ptbBMns956  -3.930e-02  2.869e+00  -0.014   0.9891  
## sp_ptbBMns957   2.387e+00  2.718e+00   0.878   0.3799  
## sp_ptbBMns958   1.384e+00  2.892e+00   0.479   0.6322  
## sp_ptbBMns959   2.187e+00  2.997e+00   0.730   0.4655  
## sp_ptbBMns960   1.387e+00  2.997e+00   0.463   0.6436  
## sp_ptbBMns961   2.832e+00  3.222e+00   0.879   0.3795  
## sp_ptbBMns962   1.594e+00  3.219e+00   0.495   0.6205  
## sp_ptbBMns963   2.700e+00  3.236e+00   0.835   0.4040  
## sp_ptbBMns964   1.587e+00  3.173e+00   0.500   0.6169  
## sp_ptbBMns965   1.650e+00  3.146e+00   0.524   0.6000  
## sp_ptbBMns966   2.247e+00  3.257e+00   0.690   0.4903  
## sp_ptbBMns967   9.746e-01  3.276e+00   0.298   0.7661  
## sp_ptbBMns968   1.603e+00  3.063e+00   0.523   0.6007  
## sp_ptbBMns969   1.562e+00  3.101e+00   0.504   0.6145  
## sp_ptbBMns970   1.461e+00  2.762e+00   0.529   0.5968  
## sp_ptbBMns971   8.980e-01  2.734e+00   0.328   0.7426  
## sp_ptbBMns972   1.672e+00  2.627e+00   0.636   0.5245  
## sp_ptbBMns973   1.497e+00  2.503e+00   0.598   0.5498  
## sp_ptbBMns974   1.672e+00  2.363e+00   0.707   0.4793  
## sp_ptbBMns975   1.493e+00  2.284e+00   0.654   0.5134  
## sp_ptbBMns976   8.605e-01  2.298e+00   0.375   0.7080  
## sp_ptbBMns977   1.275e+00  2.264e+00   0.563   0.5733  
## sp_ptbBMns978   1.645e+00  2.191e+00   0.751   0.4529  
## sp_ptbBMns979   1.336e+00  2.209e+00   0.605   0.5454  
## sp_ptbBMns980   1.912e+00  2.215e+00   0.863   0.3879  
## sp_ptbBMns981  -5.765e-01  2.267e+00  -0.254   0.7993  
## sp_ptbBMns982   2.977e+00  2.038e+00   1.460   0.1442  
## sp_ptbBMns983   6.154e-01  1.872e+00   0.329   0.7423  
## sp_ptbBMns984   2.502e+00  1.659e+00   1.508   0.1315  
## sp_ptbBMns985   9.040e-01  1.431e+00   0.632   0.5275  
## sp_ptbBMns986   1.345e+00  1.229e+00   1.094   0.2738  
## sp_ptbBMns987   1.670e+00  1.108e+00   1.507   0.1319  
## sp_ptbBMns988   5.525e-01  1.183e+00   0.467   0.6404  
## sp_ptbBMns989   1.142e+00  1.253e+00   0.911   0.3624  
## sp_ptbBMns990  -2.997e-01  1.486e+00  -0.202   0.8401  
## sp_ptbBMns991  -4.538e-01  1.783e+00  -0.254   0.7992  
## sp_ptbBMns992  -7.468e-01  1.842e+00  -0.405   0.6852  
## sp_ptbBMns993   2.336e+00  2.220e+00   1.052   0.2928  
## sp_ptbBMns994  -1.158e+00  2.169e+00  -0.534   0.5933  
## sp_ptbBMns995   3.821e+00  2.155e+00   1.773   0.0762 .
## sp_ptbBMns996  -4.896e-01  2.231e+00  -0.219   0.8263  
## sp_ptbBMns997   3.078e+00  2.070e+00   1.487   0.1370  
## sp_ptbBMns998   4.780e-01  1.959e+00   0.244   0.8072  
## sp_ptbBMns999   1.886e+00  1.865e+00   1.011   0.3121  
## sp_ptbBMns9100  1.649e+00  1.714e+00   0.962   0.3361  
## sp_ptbBMns9101  2.071e+00  1.704e+00   1.215   0.2242  
## sp_ptbBMns9102  1.607e+00  1.713e+00   0.938   0.3482  
## sp_ptbBMns9103  1.954e+00  1.828e+00   1.069   0.2852  
## sp_ptbBMns9104  8.801e-01  1.790e+00   0.492   0.6230  
## sp_ptbBMns9105  2.439e+00  1.868e+00   1.306   0.1915  
## sp_ptbBMns9106  7.867e-01  1.847e+00   0.426   0.6702  
## sp_ptbBMns9107  1.840e+00  1.830e+00   1.006   0.3146  
## sp_ptbBMns9108  1.926e+00  1.809e+00   1.065   0.2869  
## sp_ptbBMns9109  9.071e-01  1.776e+00   0.511   0.6094  
## sp_ptbBMns9110  1.252e+00  1.533e+00   0.816   0.4143  
## sp_ptbBMns9111  2.191e+00  1.494e+00   1.467   0.1425  
## sp_ptbBMns9112  1.686e+00  1.353e+00   1.246   0.2127  
## sp_ptbBMns9113  8.672e-01  1.355e+00   0.640   0.5223  
## sp_ptbBMns9114  1.217e+00  1.388e+00   0.877   0.3806  
## sp_ptbBMns9115 -4.629e-01  1.483e+00  -0.312   0.7549  
## sp_ptbBMns9116  1.434e+00  1.231e+00   1.165   0.2439  
## sp_ptbBMns9117  4.731e-01  1.431e+00   0.331   0.7410  
## sp_ptbBMns9118  7.402e-01  1.502e+00   0.493   0.6222  
## sp_ptbBMns9119  1.560e+00  1.440e+00   1.084   0.2785  
## sp_ptbBMns9120  1.442e+00  1.492e+00   0.966   0.3339  
## sp_ptbBMns9121  8.910e-01  1.425e+00   0.625   0.5319  
## sp_ptbBMns9122  5.105e-01  1.247e+00   0.409   0.6822  
## sp_ptbBMns9123  1.192e+00  1.133e+00   1.052   0.2929  
## sp_ptbBMns9124  4.644e-01  1.022e+00   0.455   0.6494  
## sp_ptbBMns9125  1.299e+00  1.103e+00   1.178   0.2390  
## sp_ptbBMns9126 -1.601e+00  1.134e+00  -1.412   0.1579  
## sp_ptbBMns9127  1.377e+00  1.088e+00   1.265   0.2058  
## sp_ptbBMns9128 -8.014e-01  1.034e+00  -0.775   0.4382  
## sp_ptbBMns9129  2.092e+00  1.153e+00   1.814   0.0697 .
## sp_ptbBMns9130  1.083e+00  9.915e-01   1.092   0.2749  
## sp_ptbBMns9131  1.447e+00  9.052e-01   1.598   0.1100  
## sp_ptbBMns9132  5.461e-01  8.390e-01   0.651   0.5151  
## sp_ptbBMns9133  3.689e-01  7.832e-01   0.471   0.6376  
## sp_ptbBMns9134  1.366e+00  8.384e-01   1.629   0.1033  
## sp_ptbBMns9135 -3.114e-01  9.809e-01  -0.317   0.7509  
## sp_ptbBMns9136  9.253e-01  1.001e+00   0.924   0.3555  
## sp_ptbBMns9137 -2.305e+00  1.785e+00  -1.291   0.1968  
## sp_ptbBMns9138  1.378e-02  2.510e+00   0.005   0.9956  
## sp_ptbBMns9139 -1.654e+00  1.905e+00  -0.868   0.3852  
## sp_ptbBMns9140 -1.702e+00  2.258e+00  -0.754   0.4510  
## sp_ptbBMns9141 -3.324e+00  2.092e+00  -1.588   0.1122  
## sp_ptbBMns9142 -3.192e+00  2.412e+00  -1.323   0.1858  
## sp_ptbBMns9143 -3.687e+00  2.100e+00  -1.756   0.0791 .
## sp_ptbBMns9144 -3.368e+00  1.805e+00  -1.866   0.0620 .
## sp_ptbBMns9145 -3.170e+00  1.943e+00  -1.632   0.1028  
## sp_ptbBMns9146 -1.565e+00  1.349e+00  -1.160   0.2460  
## sp_ptbBMns9147  1.717e+00  1.141e+00   1.505   0.1324  
## sp_ptbBMns9148 -5.137e-01  9.033e-01  -0.569   0.5696  
## sp_ptbBMns9149  1.837e+00  9.945e-01   1.847   0.0647 .
## sp_ptbBMns9150  9.461e-01  7.984e-01   1.185   0.2360  
## sp_ptbBMns9151 -1.159e+00  9.038e-01  -1.282   0.1997  
## sp_ptbBMns9152  2.036e+00  8.063e-01   2.525   0.0116 *
## sp_ptbBMns9153 -1.305e+00  9.304e-01  -1.402   0.1609  
## sp_ptbBMns9154 -7.181e-01  9.497e-01  -0.756   0.4495  
## sp_ptbBMns9155  2.998e-01  8.625e-01   0.348   0.7282  
## sp_ptbBMns9156  9.591e-02  1.004e+00   0.096   0.9239  
## sp_ptbBMns9157  1.441e+00  6.841e-01   2.106   0.0352 *
## sp_ptbBMns9158 -4.762e-02  7.430e-01  -0.064   0.9489  
## sp_ptbBMns9159  1.119e+00  6.208e-01   1.803   0.0714 .
## sp_ptbBMns9160 -4.896e-01  7.995e-01  -0.612   0.5402  
## sp_ptbBMns9161         NA         NA      NA       NA  
## sp_ptbBMns9162         NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(28001.64) family taken to be 1)
## 
##     Null deviance: 1101.28  on 886  degrees of freedom
## Residual deviance:  881.54  on 725  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3240.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  28002 
##           Std. Err.:  153309 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2914.388
SA4m9a <- glm.nb(ptbBM ~ cb9.minT + sp_ptbBMns9,data=week); summary(SA4m9a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb9.minT + sp_ptbBMns9, data = week, 
##     init.theta = 28208.16849, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.98149  -0.77078  -0.08243   0.55014   2.45043  
## 
## Coefficients: (7 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    -6.116e+00  1.206e+01  -0.507  0.61211   
## cb9.minTv1.l1   1.228e-01  2.879e-01   0.427  0.66970   
## cb9.minTv1.l2  -7.056e-02  2.212e-01  -0.319  0.74969   
## cb9.minTv2.l1   8.990e-01  1.042e+00   0.863  0.38819   
## cb9.minTv2.l2  -1.813e-01  7.883e-01  -0.230  0.81810   
## cb9.minTv3.l1   7.360e-01  6.067e-01   1.213  0.22505   
## cb9.minTv3.l2   6.745e-01  4.245e-01   1.589  0.11211   
## sp_ptbBMns91           NA         NA      NA       NA   
## sp_ptbBMns92           NA         NA      NA       NA   
## sp_ptbBMns93           NA         NA      NA       NA   
## sp_ptbBMns94           NA         NA      NA       NA   
## sp_ptbBMns95           NA         NA      NA       NA   
## sp_ptbBMns96   -2.221e+06  1.297e+06  -1.712  0.08683 . 
## sp_ptbBMns97    3.667e+01  1.588e+01   2.308  0.02098 * 
## sp_ptbBMns98   -6.176e+00  2.604e+00  -2.372  0.01770 * 
## sp_ptbBMns99    1.821e+00  1.230e+00   1.480  0.13889   
## sp_ptbBMns910  -2.398e+00  1.224e+00  -1.959  0.05014 . 
## sp_ptbBMns911   3.001e-01  1.087e+00   0.276  0.78239   
## sp_ptbBMns912  -5.570e-01  1.164e+00  -0.479  0.63214   
## sp_ptbBMns913  -1.816e+00  1.420e+00  -1.278  0.20117   
## sp_ptbBMns914  -1.018e+00  1.144e+00  -0.890  0.37361   
## sp_ptbBMns915   4.164e-01  9.768e-01   0.426  0.66992   
## sp_ptbBMns916  -1.581e+00  1.038e+00  -1.523  0.12774   
## sp_ptbBMns917   4.578e-01  9.727e-01   0.471  0.63792   
## sp_ptbBMns918  -2.196e+00  1.108e+00  -1.981  0.04755 * 
## sp_ptbBMns919   2.720e-01  1.029e+00   0.264  0.79147   
## sp_ptbBMns920  -1.210e+00  1.064e+00  -1.137  0.25557   
## sp_ptbBMns921   1.558e-01  1.298e+00   0.120  0.90444   
## sp_ptbBMns922  -6.069e-01  1.109e+00  -0.547  0.58408   
## sp_ptbBMns923  -4.708e-01  1.237e+00  -0.381  0.70343   
## sp_ptbBMns924  -1.044e+00  1.166e+00  -0.896  0.37029   
## sp_ptbBMns925  -1.491e+00  1.269e+00  -1.174  0.24020   
## sp_ptbBMns926  -1.898e+00  1.161e+00  -1.635  0.10207   
## sp_ptbBMns927  -7.602e-01  1.131e+00  -0.672  0.50137   
## sp_ptbBMns928  -7.848e-01  9.480e-01  -0.828  0.40776   
## sp_ptbBMns929  -1.132e+00  1.068e+00  -1.059  0.28942   
## sp_ptbBMns930  -6.714e-01  1.079e+00  -0.622  0.53369   
## sp_ptbBMns931  -6.953e-03  9.434e-01  -0.007  0.99412   
## sp_ptbBMns932  -9.202e-01  8.492e-01  -1.084  0.27853   
## sp_ptbBMns933   7.944e-02  8.590e-01   0.092  0.92632   
## sp_ptbBMns934  -1.319e+00  9.606e-01  -1.374  0.16958   
## sp_ptbBMns935  -2.182e+00  1.197e+00  -1.823  0.06826 . 
## sp_ptbBMns936  -1.005e+00  1.138e+00  -0.883  0.37714   
## sp_ptbBMns937  -2.450e-01  8.848e-01  -0.277  0.78184   
## sp_ptbBMns938   4.370e-01  7.871e-01   0.555  0.57873   
## sp_ptbBMns939   9.309e-02  9.989e-01   0.093  0.92575   
## sp_ptbBMns940   4.986e-01  9.513e-01   0.524  0.60018   
## sp_ptbBMns941   4.877e-01  9.803e-01   0.497  0.61884   
## sp_ptbBMns942  -1.373e+00  1.242e+00  -1.105  0.26899   
## sp_ptbBMns943   2.138e-01  1.114e+00   0.192  0.84784   
## sp_ptbBMns944   3.524e-01  1.601e+00   0.220  0.82585   
## sp_ptbBMns945   2.121e-01  1.548e+00   0.137  0.89097   
## sp_ptbBMns946   1.555e+00  1.741e+00   0.894  0.37156   
## sp_ptbBMns947   1.745e+00  1.877e+00   0.930  0.35257   
## sp_ptbBMns948   9.474e-01  2.298e+00   0.412  0.68011   
## sp_ptbBMns949   1.997e+00  2.059e+00   0.970  0.33208   
## sp_ptbBMns950   7.548e-01  2.151e+00   0.351  0.72565   
## sp_ptbBMns951   9.072e-01  1.965e+00   0.462  0.64435   
## sp_ptbBMns952   6.559e-01  2.032e+00   0.323  0.74684   
## sp_ptbBMns953   9.378e-01  1.542e+00   0.608  0.54300   
## sp_ptbBMns954  -2.008e+00  1.488e+00  -1.350  0.17712   
## sp_ptbBMns955   1.637e+00  1.320e+00   1.241  0.21479   
## sp_ptbBMns956  -1.607e+00  1.185e+00  -1.356  0.17515   
## sp_ptbBMns957   9.999e-01  8.692e-01   1.150  0.24999   
## sp_ptbBMns958  -3.226e-01  8.655e-01  -0.373  0.70938   
## sp_ptbBMns959   4.903e-01  9.790e-01   0.501  0.61652   
## sp_ptbBMns960  -6.143e-01  8.926e-01  -0.688  0.49127   
## sp_ptbBMns961   5.691e-01  9.357e-01   0.608  0.54308   
## sp_ptbBMns962  -5.308e-01  1.025e+00  -0.518  0.60445   
## sp_ptbBMns963   1.071e+00  9.216e-01   1.162  0.24510   
## sp_ptbBMns964   1.630e-01  1.078e+00   0.151  0.87987   
## sp_ptbBMns965   3.014e-01  1.059e+00   0.285  0.77594   
## sp_ptbBMns966   1.496e+00  1.072e+00   1.395  0.16291   
## sp_ptbBMns967   2.613e-01  1.313e+00   0.199  0.84221   
## sp_ptbBMns968   8.579e-01  1.281e+00   0.670  0.50298   
## sp_ptbBMns969   7.239e-01  1.331e+00   0.544  0.58656   
## sp_ptbBMns970   3.697e-01  1.261e+00   0.293  0.76941   
## sp_ptbBMns971  -5.093e-01  1.291e+00  -0.395  0.69318   
## sp_ptbBMns972   6.460e-01  1.271e+00   0.508  0.61136   
## sp_ptbBMns973   3.225e-01  1.176e+00   0.274  0.78400   
## sp_ptbBMns974   5.431e-01  1.009e+00   0.538  0.59037   
## sp_ptbBMns975   7.678e-01  1.073e+00   0.716  0.47420   
## sp_ptbBMns976  -3.606e-01  9.639e-01  -0.374  0.70837   
## sp_ptbBMns977   1.916e-02  9.017e-01   0.021  0.98304   
## sp_ptbBMns978   9.441e-02  8.362e-01   0.113  0.91010   
## sp_ptbBMns979  -4.815e-01  8.446e-01  -0.570  0.56864   
## sp_ptbBMns980   1.305e-01  9.566e-01   0.136  0.89148   
## sp_ptbBMns981  -2.499e+00  1.045e+00  -2.391  0.01681 * 
## sp_ptbBMns982   1.168e+00  1.290e+00   0.905  0.36528   
## sp_ptbBMns983  -1.725e+00  1.395e+00  -1.237  0.21622   
## sp_ptbBMns984   1.176e+00  1.570e+00   0.749  0.45371   
## sp_ptbBMns985  -9.352e-01  1.426e+00  -0.656  0.51210   
## sp_ptbBMns986  -8.435e-01  1.381e+00  -0.611  0.54123   
## sp_ptbBMns987  -5.982e-01  1.349e+00  -0.444  0.65740   
## sp_ptbBMns988  -2.235e+00  1.428e+00  -1.564  0.11771   
## sp_ptbBMns989  -1.803e+00  1.352e+00  -1.334  0.18224   
## sp_ptbBMns990  -3.641e+00  1.542e+00  -2.362  0.01820 * 
## sp_ptbBMns991  -1.970e+00  1.151e+00  -1.712  0.08698 . 
## sp_ptbBMns992  -2.120e+00  1.081e+00  -1.961  0.04988 * 
## sp_ptbBMns993   5.083e-01  9.271e-01   0.548  0.58355   
## sp_ptbBMns994  -2.599e+00  1.049e+00  -2.478  0.01322 * 
## sp_ptbBMns995   2.309e+00  8.449e-01   2.733  0.00627 **
## sp_ptbBMns996  -1.987e+00  9.634e-01  -2.062  0.03917 * 
## sp_ptbBMns997   1.738e+00  9.027e-01   1.926  0.05413 . 
## sp_ptbBMns998  -1.001e+00  9.224e-01  -1.085  0.27793   
## sp_ptbBMns999   2.519e-01  8.924e-01   0.282  0.77774   
## sp_ptbBMns9100 -8.762e-02  9.798e-01  -0.089  0.92875   
## sp_ptbBMns9101  6.719e-02  9.709e-01   0.069  0.94483   
## sp_ptbBMns9102  1.102e-01  1.077e+00   0.102  0.91847   
## sp_ptbBMns9103  1.534e-01  1.004e+00   0.153  0.87856   
## sp_ptbBMns9104 -7.642e-01  1.007e+00  -0.759  0.44795   
## sp_ptbBMns9105  3.336e-01  1.032e+00   0.323  0.74636   
## sp_ptbBMns9106 -1.223e+00  1.032e+00  -1.185  0.23594   
## sp_ptbBMns9107 -5.118e-01  1.129e+00  -0.453  0.65021   
## sp_ptbBMns9108 -2.886e-01  1.158e+00  -0.249  0.80315   
## sp_ptbBMns9109 -1.160e+00  1.429e+00  -0.812  0.41684   
## sp_ptbBMns9110 -1.641e+00  1.491e+00  -1.100  0.27130   
## sp_ptbBMns9111  6.404e-01  1.515e+00   0.423  0.67247   
## sp_ptbBMns9112 -6.971e-02  1.538e+00  -0.045  0.96384   
## sp_ptbBMns9113 -1.308e+00  1.452e+00  -0.900  0.36791   
## sp_ptbBMns9114 -1.140e+00  1.502e+00  -0.759  0.44800   
## sp_ptbBMns9115 -3.139e+00  1.524e+00  -2.060  0.03942 * 
## sp_ptbBMns9116 -1.629e+00  1.560e+00  -1.044  0.29646   
## sp_ptbBMns9117 -2.156e+00  1.307e+00  -1.650  0.09899 . 
## sp_ptbBMns9118 -1.275e+00  1.089e+00  -1.171  0.24172   
## sp_ptbBMns9119  3.570e-02  1.162e+00   0.031  0.97550   
## sp_ptbBMns9120 -3.056e-01  1.288e+00  -0.237  0.81240   
## sp_ptbBMns9121  1.853e-01  1.365e+00   0.136  0.89206   
## sp_ptbBMns9122 -8.597e-01  1.373e+00  -0.626  0.53135   
## sp_ptbBMns9123 -6.787e-02  1.281e+00  -0.053  0.95774   
## sp_ptbBMns9124 -1.156e+00  1.338e+00  -0.864  0.38763   
## sp_ptbBMns9125 -5.926e-01  1.486e+00  -0.399  0.69015   
## sp_ptbBMns9126 -3.942e+00  1.539e+00  -2.561  0.01044 * 
## sp_ptbBMns9127 -1.201e+00  1.599e+00  -0.751  0.45253   
## sp_ptbBMns9128 -2.153e+00  1.548e+00  -1.391  0.16416   
## sp_ptbBMns9129  6.038e-01  1.552e+00   0.389  0.69734   
## sp_ptbBMns9130 -1.323e-01  1.832e+00  -0.072  0.94243   
## sp_ptbBMns9131 -3.575e-02  1.585e+00  -0.023  0.98201   
## sp_ptbBMns9132 -1.122e+00  1.752e+00  -0.640  0.52196   
## sp_ptbBMns9133 -1.742e+00  1.729e+00  -1.007  0.31387   
## sp_ptbBMns9134 -1.064e+00  1.800e+00  -0.591  0.55454   
## sp_ptbBMns9135 -2.712e+00  2.427e+00  -1.117  0.26386   
## sp_ptbBMns9136 -1.678e+00  3.415e+00  -0.491  0.62320   
## sp_ptbBMns9137 -3.883e+00  4.172e+00  -0.931  0.35197   
## sp_ptbBMns9138 -1.559e+00  4.844e+00  -0.322  0.74752   
## sp_ptbBMns9139 -3.329e+00  4.094e+00  -0.813  0.41604   
## sp_ptbBMns9140 -3.860e+00  4.495e+00  -0.859  0.39048   
## sp_ptbBMns9141 -6.182e+00  4.163e+00  -1.485  0.13755   
## sp_ptbBMns9142 -6.819e+00  4.278e+00  -1.594  0.11101   
## sp_ptbBMns9143 -8.999e+00  4.473e+00  -2.012  0.04425 * 
## sp_ptbBMns9144 -8.630e+00  4.023e+00  -2.145  0.03193 * 
## sp_ptbBMns9145 -6.349e+00  3.039e+00  -2.089  0.03667 * 
## sp_ptbBMns9146 -3.794e+00  2.131e+00  -1.780  0.07505 . 
## sp_ptbBMns9147 -1.382e+00  1.666e+00  -0.830  0.40667   
## sp_ptbBMns9148 -2.846e+00  1.553e+00  -1.833  0.06681 . 
## sp_ptbBMns9149 -2.840e-01  1.546e+00  -0.184  0.85422   
## sp_ptbBMns9150 -5.188e-01  1.267e+00  -0.409  0.68220   
## sp_ptbBMns9151 -2.734e+00  1.252e+00  -2.184  0.02898 * 
## sp_ptbBMns9152  5.867e-01  9.581e-01   0.612  0.54027   
## sp_ptbBMns9153 -2.225e+00  1.013e+00  -2.196  0.02806 * 
## sp_ptbBMns9154 -1.415e+00  9.996e-01  -1.416  0.15691   
## sp_ptbBMns9155 -2.294e-01  8.320e-01  -0.276  0.78274   
## sp_ptbBMns9156 -8.082e-01  8.680e-01  -0.931  0.35182   
## sp_ptbBMns9157  9.973e-01  6.755e-01   1.476  0.13983   
## sp_ptbBMns9158  1.821e-01  8.491e-01   0.215  0.83015   
## sp_ptbBMns9159  1.327e+00  6.846e-01   1.938  0.05267 . 
## sp_ptbBMns9160  1.173e-01  8.374e-01   0.140  0.88858   
## sp_ptbBMns9161         NA         NA      NA       NA   
## sp_ptbBMns9162         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(28208.17) family taken to be 1)
## 
##     Null deviance: 1101.28  on 886  degrees of freedom
## Residual deviance:  878.09  on 725  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3236.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  28208 
##           Std. Err.:  152517 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2910.936
SA4m10a <- glm.nb(ptbBM ~ cb10.aveT + sp_ptbBMns9,data=week); summary(SA4m10a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb10.aveT + sp_ptbBMns9, data = week, 
##     init.theta = 28500.36361, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.99255  -0.74665  -0.08032   0.58198   2.36139  
## 
## Coefficients: (7 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    -3.889e+01  1.913e+01  -2.033 0.042057 *  
## cb10.aveTv1.l1  5.244e-01  3.954e-01   1.326 0.184765    
## cb10.aveTv1.l2  5.368e-02  3.013e-01   0.178 0.858587    
## cb10.aveTv2.l1  3.462e+00  1.520e+00   2.278 0.022728 *  
## cb10.aveTv2.l2  2.650e-01  1.155e+00   0.230 0.818439    
## cb10.aveTv3.l1  1.517e+00  6.074e-01   2.498 0.012485 *  
## cb10.aveTv3.l2  3.278e-01  4.305e-01   0.762 0.446318    
## sp_ptbBMns91           NA         NA      NA       NA    
## sp_ptbBMns92           NA         NA      NA       NA    
## sp_ptbBMns93           NA         NA      NA       NA    
## sp_ptbBMns94           NA         NA      NA       NA    
## sp_ptbBMns95           NA         NA      NA       NA    
## sp_ptbBMns96   -2.271e+06  1.295e+06  -1.754 0.079421 .  
## sp_ptbBMns97    3.887e+01  1.588e+01   2.447 0.014394 *  
## sp_ptbBMns98   -5.148e+00  2.647e+00  -1.945 0.051742 .  
## sp_ptbBMns99    2.887e+00  1.457e+00   1.982 0.047478 *  
## sp_ptbBMns910  -1.242e+00  1.405e+00  -0.885 0.376415    
## sp_ptbBMns911   1.295e+00  1.058e+00   1.224 0.220919    
## sp_ptbBMns912   1.409e-01  1.116e+00   0.126 0.899510    
## sp_ptbBMns913  -8.068e-01  1.157e+00  -0.697 0.485704    
## sp_ptbBMns914   2.169e-01  1.217e+00   0.178 0.858490    
## sp_ptbBMns915   1.739e+00  1.028e+00   1.691 0.090867 .  
## sp_ptbBMns916  -1.594e-01  1.069e+00  -0.149 0.881422    
## sp_ptbBMns917   1.831e+00  9.974e-01   1.836 0.066417 .  
## sp_ptbBMns918  -7.545e-01  1.168e+00  -0.646 0.518461    
## sp_ptbBMns919   1.330e+00  1.230e+00   1.081 0.279555    
## sp_ptbBMns920  -1.597e-01  1.133e+00  -0.141 0.887946    
## sp_ptbBMns921   3.078e-01  9.899e-01   0.311 0.755879    
## sp_ptbBMns922   2.972e-01  1.094e+00   0.272 0.785905    
## sp_ptbBMns923   3.954e-01  1.032e+00   0.383 0.701536    
## sp_ptbBMns924   6.640e-01  1.035e+00   0.642 0.521013    
## sp_ptbBMns925   4.019e-01  1.085e+00   0.370 0.711125    
## sp_ptbBMns926   1.962e-01  1.202e+00   0.163 0.870340    
## sp_ptbBMns927   4.994e-01  1.193e+00   0.419 0.675541    
## sp_ptbBMns928   2.800e-01  1.262e+00   0.222 0.824372    
## sp_ptbBMns929   3.958e-01  1.120e+00   0.354 0.723696    
## sp_ptbBMns930  -7.959e-02  1.200e+00  -0.066 0.947137    
## sp_ptbBMns931   9.873e-01  1.216e+00   0.812 0.416921    
## sp_ptbBMns932   3.931e-01  1.307e+00   0.301 0.763585    
## sp_ptbBMns933   1.275e+00  1.366e+00   0.933 0.350794    
## sp_ptbBMns934  -5.193e-02  1.339e+00  -0.039 0.969062    
## sp_ptbBMns935  -2.892e-01  1.498e+00  -0.193 0.846877    
## sp_ptbBMns936  -5.878e-01  1.557e+00  -0.377 0.705839    
## sp_ptbBMns937   7.267e-01  1.403e+00   0.518 0.604496    
## sp_ptbBMns938   1.050e+00  1.169e+00   0.898 0.369094    
## sp_ptbBMns939   7.601e-01  1.138e+00   0.668 0.504254    
## sp_ptbBMns940   1.100e+00  1.136e+00   0.968 0.332877    
## sp_ptbBMns941   1.560e+00  1.110e+00   1.405 0.160008    
## sp_ptbBMns942  -9.048e-01  1.280e+00  -0.707 0.479613    
## sp_ptbBMns943   8.905e-01  1.210e+00   0.736 0.461702    
## sp_ptbBMns944   7.236e-01  1.324e+00   0.547 0.584634    
## sp_ptbBMns945   7.155e-01  1.435e+00   0.499 0.618001    
## sp_ptbBMns946   8.766e-01  1.373e+00   0.639 0.523103    
## sp_ptbBMns947   1.304e+00  1.331e+00   0.980 0.327033    
## sp_ptbBMns948   4.976e-01  1.474e+00   0.338 0.735636    
## sp_ptbBMns949   1.902e+00  1.295e+00   1.469 0.141809    
## sp_ptbBMns950   7.490e-01  1.296e+00   0.578 0.563352    
## sp_ptbBMns951   9.581e-01  1.461e+00   0.656 0.511979    
## sp_ptbBMns952   1.290e+00  1.358e+00   0.950 0.341973    
## sp_ptbBMns953   1.319e+00  1.309e+00   1.008 0.313628    
## sp_ptbBMns954  -1.666e+00  1.610e+00  -1.035 0.300799    
## sp_ptbBMns955   2.239e+00  1.397e+00   1.603 0.108984    
## sp_ptbBMns956  -6.529e-01  1.269e+00  -0.515 0.606858    
## sp_ptbBMns957   2.182e+00  1.129e+00   1.933 0.053191 .  
## sp_ptbBMns958   7.955e-01  1.132e+00   0.703 0.482347    
## sp_ptbBMns959   1.649e+00  1.256e+00   1.313 0.189254    
## sp_ptbBMns960   4.127e-01  1.213e+00   0.340 0.733598    
## sp_ptbBMns961   1.619e+00  1.310e+00   1.236 0.216471    
## sp_ptbBMns962   7.419e-01  1.385e+00   0.535 0.592316    
## sp_ptbBMns963   1.817e+00  1.343e+00   1.353 0.176115    
## sp_ptbBMns964   1.490e+00  1.786e+00   0.834 0.404220    
## sp_ptbBMns965   1.562e+00  1.538e+00   1.015 0.309968    
## sp_ptbBMns966   2.739e+00  1.512e+00   1.811 0.070197 .  
## sp_ptbBMns967   1.311e+00  1.538e+00   0.852 0.394275    
## sp_ptbBMns968   1.810e+00  1.541e+00   1.174 0.240272    
## sp_ptbBMns969   1.972e+00  1.565e+00   1.260 0.207628    
## sp_ptbBMns970   1.438e+00  1.533e+00   0.938 0.348025    
## sp_ptbBMns971   5.274e-01  1.521e+00   0.347 0.728786    
## sp_ptbBMns972   1.938e+00  1.631e+00   1.188 0.234731    
## sp_ptbBMns973   6.103e-01  1.665e+00   0.367 0.713907    
## sp_ptbBMns974   1.353e+00  1.346e+00   1.005 0.314787    
## sp_ptbBMns975   4.962e-01  1.195e+00   0.415 0.678048    
## sp_ptbBMns976   1.268e-02  1.104e+00   0.011 0.990841    
## sp_ptbBMns977  -1.426e-01  1.054e+00  -0.135 0.892348    
## sp_ptbBMns978   1.601e-01  9.151e-01   0.175 0.861091    
## sp_ptbBMns979  -4.825e-01  8.715e-01  -0.554 0.579831    
## sp_ptbBMns980   2.957e-01  9.630e-01   0.307 0.758816    
## sp_ptbBMns981  -2.550e+00  1.113e+00  -2.291 0.021980 *  
## sp_ptbBMns982   5.948e-01  1.003e+00   0.593 0.553031    
## sp_ptbBMns983  -1.926e+00  1.128e+00  -1.708 0.087645 .  
## sp_ptbBMns984   1.147e+00  8.230e-01   1.394 0.163414    
## sp_ptbBMns985  -4.233e-02  8.450e-01  -0.050 0.960042    
## sp_ptbBMns986   7.922e-01  8.466e-01   0.936 0.349377    
## sp_ptbBMns987   1.554e+00  8.227e-01   1.888 0.058960 .  
## sp_ptbBMns988   3.881e-01  8.962e-01   0.433 0.665009    
## sp_ptbBMns989   1.128e+00  1.077e+00   1.048 0.294855    
## sp_ptbBMns990  -2.806e-01  1.333e+00  -0.210 0.833342    
## sp_ptbBMns991   9.233e-02  1.578e+00   0.058 0.953351    
## sp_ptbBMns992  -8.200e-02  1.539e+00  -0.053 0.957512    
## sp_ptbBMns993   1.919e+00  1.451e+00   1.323 0.185903    
## sp_ptbBMns994  -1.300e+00  1.400e+00  -0.929 0.353146    
## sp_ptbBMns995   3.927e+00  1.177e+00   3.338 0.000844 ***
## sp_ptbBMns996  -4.783e-01  1.300e+00  -0.368 0.712997    
## sp_ptbBMns997   3.150e+00  1.223e+00   2.576 0.009988 ** 
## sp_ptbBMns998   5.843e-01  1.250e+00   0.468 0.640065    
## sp_ptbBMns999   1.359e+00  1.134e+00   1.198 0.230816    
## sp_ptbBMns9100  7.645e-01  1.204e+00   0.635 0.525470    
## sp_ptbBMns9101  1.251e+00  1.368e+00   0.914 0.360512    
## sp_ptbBMns9102  5.847e-01  9.877e-01   0.592 0.553857    
## sp_ptbBMns9103  8.794e-01  1.052e+00   0.836 0.403242    
## sp_ptbBMns9104  1.380e-01  1.001e+00   0.138 0.890375    
## sp_ptbBMns9105  1.535e+00  9.334e-01   1.644 0.100132    
## sp_ptbBMns9106 -1.195e-01  1.034e+00  -0.116 0.907989    
## sp_ptbBMns9107  4.692e-01  1.027e+00   0.457 0.647858    
## sp_ptbBMns9108  5.461e-01  1.054e+00   0.518 0.604423    
## sp_ptbBMns9109 -3.178e-01  1.191e+00  -0.267 0.789660    
## sp_ptbBMns9110 -1.421e-01  1.147e+00  -0.124 0.901388    
## sp_ptbBMns9111  1.626e+00  1.143e+00   1.422 0.154969    
## sp_ptbBMns9112  1.047e+00  1.040e+00   1.007 0.314122    
## sp_ptbBMns9113  6.614e-01  1.240e+00   0.533 0.593862    
## sp_ptbBMns9114  9.460e-01  1.178e+00   0.803 0.421807    
## sp_ptbBMns9115 -1.518e-01  1.321e+00  -0.115 0.908513    
## sp_ptbBMns9116  6.110e-01  1.368e+00   0.447 0.655219    
## sp_ptbBMns9117  1.920e+00  1.893e+00   1.014 0.310521    
## sp_ptbBMns9118  1.846e+00  1.666e+00   1.108 0.267910    
## sp_ptbBMns9119  2.393e+00  1.418e+00   1.688 0.091449 .  
## sp_ptbBMns9120  1.098e+00  1.234e+00   0.889 0.373791    
## sp_ptbBMns9121  2.025e+00  1.337e+00   1.515 0.129872    
## sp_ptbBMns9122  1.321e+00  1.207e+00   1.095 0.273699    
## sp_ptbBMns9123  2.919e+00  1.290e+00   2.263 0.023629 *  
## sp_ptbBMns9124  1.613e+00  1.134e+00   1.422 0.155072    
## sp_ptbBMns9125  3.396e+00  1.617e+00   2.100 0.035757 *  
## sp_ptbBMns9126 -8.980e-01  1.333e+00  -0.674 0.500570    
## sp_ptbBMns9127  1.928e+00  1.255e+00   1.536 0.124599    
## sp_ptbBMns9128 -1.523e-02  1.213e+00  -0.013 0.989979    
## sp_ptbBMns9129  2.401e+00  1.185e+00   2.026 0.042800 *  
## sp_ptbBMns9130  7.839e-01  9.140e-01   0.858 0.391076    
## sp_ptbBMns9131  1.938e+00  9.181e-01   2.111 0.034797 *  
## sp_ptbBMns9132  1.035e+00  8.591e-01   1.205 0.228188    
## sp_ptbBMns9133  9.508e-01  8.449e-01   1.125 0.260432    
## sp_ptbBMns9134  1.297e+00  7.851e-01   1.652 0.098576 .  
## sp_ptbBMns9135 -8.043e-01  8.279e-01  -0.971 0.331311    
## sp_ptbBMns9136  1.636e+00  1.016e+00   1.611 0.107145    
## sp_ptbBMns9137 -2.529e+00  1.115e+00  -2.268 0.023355 *  
## sp_ptbBMns9138 -6.895e-01  1.406e+00  -0.491 0.623723    
## sp_ptbBMns9139 -1.061e+00  1.084e+00  -0.979 0.327377    
## sp_ptbBMns9140 -1.118e+00  1.402e+00  -0.797 0.425257    
## sp_ptbBMns9141 -1.805e+00  1.175e+00  -1.537 0.124328    
## sp_ptbBMns9142 -1.156e+00  1.241e+00  -0.931 0.351841    
## sp_ptbBMns9143 -2.122e+00  1.351e+00  -1.571 0.116126    
## sp_ptbBMns9144 -1.972e+00  1.222e+00  -1.614 0.106560    
## sp_ptbBMns9145 -2.506e+00  1.704e+00  -1.471 0.141402    
## sp_ptbBMns9146 -7.122e-01  1.198e+00  -0.595 0.552000    
## sp_ptbBMns9147  1.084e+00  1.072e+00   1.011 0.311841    
## sp_ptbBMns9148 -6.529e-01  1.044e+00  -0.626 0.531617    
## sp_ptbBMns9149  1.851e+00  1.147e+00   1.614 0.106571    
## sp_ptbBMns9150  1.656e+00  1.115e+00   1.485 0.137528    
## sp_ptbBMns9151 -3.497e-01  1.180e+00  -0.296 0.766966    
## sp_ptbBMns9152  2.738e+00  1.040e+00   2.632 0.008495 ** 
## sp_ptbBMns9153 -2.790e-01  1.224e+00  -0.228 0.819745    
## sp_ptbBMns9154  4.921e-01  1.270e+00   0.388 0.698382    
## sp_ptbBMns9155  1.885e+00  1.095e+00   1.722 0.085075 .  
## sp_ptbBMns9156  1.256e-01  1.025e+00   0.123 0.902493    
## sp_ptbBMns9157  1.960e+00  8.117e-01   2.415 0.015730 *  
## sp_ptbBMns9158  3.293e-01  8.882e-01   0.371 0.710780    
## sp_ptbBMns9159  1.381e+00  6.386e-01   2.162 0.030588 *  
## sp_ptbBMns9160 -2.466e-02  8.037e-01  -0.031 0.975520    
## sp_ptbBMns9161         NA         NA      NA       NA    
## sp_ptbBMns9162         NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(28500.36) family taken to be 1)
## 
##     Null deviance: 1101.3  on 886  degrees of freedom
## Residual deviance:  879.1  on 725  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3237.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  28500 
##           Std. Err.:  156423 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2911.944
SA4m11a <- glm.nb(ptbBM ~ cb11.maxT + sp_ptbBMns9,data=week); summary(SA4m11a)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
## 
## Call:
## glm.nb(formula = ptbBM ~ cb11.maxT + sp_ptbBMns9, data = week, 
##     init.theta = 28744.36734, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.98154  -0.72377  -0.09618   0.58025   2.36288  
## 
## Coefficients: (7 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    -4.741e+01  1.962e+01  -2.417  0.01565 * 
## cb11.maxTv1.l1  8.208e-01  4.422e-01   1.856  0.06342 . 
## cb11.maxTv1.l2  1.779e-01  3.263e-01   0.545  0.58566   
## cb11.maxTv2.l1  4.004e+00  1.528e+00   2.620  0.00879 **
## cb11.maxTv2.l2  3.753e-01  1.131e+00   0.332  0.74007   
## cb11.maxTv3.l1  1.533e+00  5.799e-01   2.643  0.00821 **
## cb11.maxTv3.l2  2.700e-01  4.221e-01   0.640  0.52245   
## sp_ptbBMns91           NA         NA      NA       NA   
## sp_ptbBMns92           NA         NA      NA       NA   
## sp_ptbBMns93           NA         NA      NA       NA   
## sp_ptbBMns94           NA         NA      NA       NA   
## sp_ptbBMns95           NA         NA      NA       NA   
## sp_ptbBMns96   -2.123e+06  1.297e+06  -1.637  0.10171   
## sp_ptbBMns97    3.700e+01  1.577e+01   2.346  0.01896 * 
## sp_ptbBMns98   -5.584e+00  2.615e+00  -2.135  0.03277 * 
## sp_ptbBMns99    2.365e+00  1.660e+00   1.425  0.15428   
## sp_ptbBMns910  -1.943e+00  1.620e+00  -1.199  0.23049   
## sp_ptbBMns911   7.827e-01  1.188e+00   0.659  0.51008   
## sp_ptbBMns912  -1.683e-01  1.081e+00  -0.156  0.87628   
## sp_ptbBMns913  -1.186e+00  1.094e+00  -1.084  0.27845   
## sp_ptbBMns914  -2.196e-01  1.045e+00  -0.210  0.83355   
## sp_ptbBMns915   1.517e+00  8.332e-01   1.820  0.06874 . 
## sp_ptbBMns916  -2.923e-01  8.078e-01  -0.362  0.71752   
## sp_ptbBMns917   1.457e+00  7.972e-01   1.828  0.06751 . 
## sp_ptbBMns918  -2.161e+00  1.207e+00  -1.791  0.07327 . 
## sp_ptbBMns919   1.291e-01  1.348e+00   0.096  0.92369   
## sp_ptbBMns920  -1.447e+00  1.256e+00  -1.152  0.24931   
## sp_ptbBMns921  -7.857e-01  1.169e+00  -0.672  0.50171   
## sp_ptbBMns922  -8.841e-01  1.124e+00  -0.787  0.43143   
## sp_ptbBMns923  -4.054e-01  1.112e+00  -0.365  0.71542   
## sp_ptbBMns924  -2.442e-01  1.062e+00  -0.230  0.81803   
## sp_ptbBMns925  -5.734e-01  1.134e+00  -0.505  0.61324   
## sp_ptbBMns926  -8.553e-01  1.141e+00  -0.750  0.45339   
## sp_ptbBMns927  -1.239e-01  1.416e+00  -0.088  0.93026   
## sp_ptbBMns928  -2.024e-01  1.420e+00  -0.143  0.88668   
## sp_ptbBMns929  -3.416e-01  1.457e+00  -0.234  0.81468   
## sp_ptbBMns930  -9.792e-01  1.193e+00  -0.821  0.41184   
## sp_ptbBMns931   3.729e-02  1.155e+00   0.032  0.97425   
## sp_ptbBMns932  -2.340e-01  1.044e+00  -0.224  0.82270   
## sp_ptbBMns933   5.727e-01  1.100e+00   0.521  0.60258   
## sp_ptbBMns934  -5.260e-01  1.075e+00  -0.489  0.62455   
## sp_ptbBMns935  -6.250e-01  1.255e+00  -0.498  0.61840   
## sp_ptbBMns936  -1.393e+00  1.414e+00  -0.985  0.32459   
## sp_ptbBMns937  -4.295e-01  1.269e+00  -0.339  0.73496   
## sp_ptbBMns938   3.258e-02  1.077e+00   0.030  0.97588   
## sp_ptbBMns939  -2.653e-01  9.228e-01  -0.287  0.77375   
## sp_ptbBMns940   5.811e-01  9.936e-01   0.585  0.55865   
## sp_ptbBMns941   5.927e-01  8.825e-01   0.672  0.50179   
## sp_ptbBMns942  -1.427e+00  1.115e+00  -1.281  0.20036   
## sp_ptbBMns943   2.375e-01  9.468e-01   0.251  0.80194   
## sp_ptbBMns944  -2.956e-01  1.001e+00  -0.295  0.76772   
## sp_ptbBMns945  -1.073e+00  1.389e+00  -0.772  0.43992   
## sp_ptbBMns946  -5.170e-01  1.376e+00  -0.376  0.70702   
## sp_ptbBMns947  -1.066e-01  1.156e+00  -0.092  0.92656   
## sp_ptbBMns948  -7.881e-01  1.182e+00  -0.667  0.50496   
## sp_ptbBMns949   3.873e-01  9.692e-01   0.400  0.68947   
## sp_ptbBMns950  -1.674e-01  9.367e-01  -0.179  0.85815   
## sp_ptbBMns951  -1.508e-01  1.052e+00  -0.143  0.88595   
## sp_ptbBMns952   1.827e-01  9.100e-01   0.201  0.84092   
## sp_ptbBMns953   3.535e-01  1.018e+00   0.347  0.72853   
## sp_ptbBMns954  -2.534e+00  1.441e+00  -1.759  0.07863 . 
## sp_ptbBMns955   1.225e+00  1.338e+00   0.915  0.36004   
## sp_ptbBMns956  -1.541e+00  1.128e+00  -1.366  0.17189   
## sp_ptbBMns957   1.135e+00  9.918e-01   1.145  0.25229   
## sp_ptbBMns958  -7.206e-03  9.944e-01  -0.007  0.99422   
## sp_ptbBMns959   5.229e-01  9.296e-01   0.562  0.57379   
## sp_ptbBMns960  -4.073e-01  9.766e-01  -0.417  0.67666   
## sp_ptbBMns961   3.710e-01  1.023e+00   0.363  0.71677   
## sp_ptbBMns962  -1.119e-01  9.840e-01  -0.114  0.90945   
## sp_ptbBMns963   4.230e-01  1.130e+00   0.374  0.70813   
## sp_ptbBMns964  -3.027e-01  1.608e+00  -0.188  0.85071   
## sp_ptbBMns965   1.650e-01  1.123e+00   0.147  0.88314   
## sp_ptbBMns966   1.259e+00  1.047e+00   1.202  0.22937   
## sp_ptbBMns967   1.291e-01  9.658e-01   0.134  0.89364   
## sp_ptbBMns968   1.180e+00  1.052e+00   1.122  0.26196   
## sp_ptbBMns969   1.129e+00  9.672e-01   1.167  0.24308   
## sp_ptbBMns970   9.378e-01  1.079e+00   0.869  0.38460   
## sp_ptbBMns971  -9.640e-02  1.148e+00  -0.084  0.93305   
## sp_ptbBMns972   1.125e+00  1.306e+00   0.862  0.38889   
## sp_ptbBMns973  -5.143e-01  1.500e+00  -0.343  0.73167   
## sp_ptbBMns974   4.624e-01  1.127e+00   0.410  0.68147   
## sp_ptbBMns975  -5.315e-01  1.126e+00  -0.472  0.63675   
## sp_ptbBMns976  -1.170e+00  1.156e+00  -1.012  0.31145   
## sp_ptbBMns977  -1.606e+00  1.434e+00  -1.120  0.26266   
## sp_ptbBMns978  -9.981e-01  1.221e+00  -0.817  0.41365   
## sp_ptbBMns979  -1.752e+00  1.196e+00  -1.464  0.14308   
## sp_ptbBMns980  -9.335e-01  1.175e+00  -0.795  0.42685   
## sp_ptbBMns981  -4.386e+00  1.505e+00  -2.914  0.00356 **
## sp_ptbBMns982  -1.020e+00  1.514e+00  -0.674  0.50046   
## sp_ptbBMns983  -3.453e+00  1.600e+00  -2.159  0.03087 * 
## sp_ptbBMns984  -5.790e-01  1.121e+00  -0.517  0.60536   
## sp_ptbBMns985  -1.391e+00  1.061e+00  -1.310  0.19008   
## sp_ptbBMns986  -2.935e-02  9.635e-01  -0.030  0.97570   
## sp_ptbBMns987   8.764e-01  9.155e-01   0.957  0.33840   
## sp_ptbBMns988   2.256e-01  9.838e-01   0.229  0.81863   
## sp_ptbBMns989   5.414e-01  1.089e+00   0.497  0.61924   
## sp_ptbBMns990  -5.729e-01  1.478e+00  -0.388  0.69820   
## sp_ptbBMns991  -1.549e-01  1.607e+00  -0.096  0.92322   
## sp_ptbBMns992  -7.687e-01  1.493e+00  -0.515  0.60677   
## sp_ptbBMns993   1.261e+00  1.330e+00   0.948  0.34298   
## sp_ptbBMns994  -1.887e+00  1.248e+00  -1.512  0.13066   
## sp_ptbBMns995   3.080e+00  9.403e-01   3.276  0.00105 **
## sp_ptbBMns996  -9.238e-01  1.004e+00  -0.920  0.35750   
## sp_ptbBMns997   2.466e+00  9.016e-01   2.735  0.00624 **
## sp_ptbBMns998   1.403e-01  9.811e-01   0.143  0.88632   
## sp_ptbBMns999   4.654e-01  9.826e-01   0.474  0.63579   
## sp_ptbBMns9100 -3.230e-01  1.202e+00  -0.269  0.78811   
## sp_ptbBMns9101  3.482e-01  1.341e+00   0.260  0.79513   
## sp_ptbBMns9102 -3.046e-01  1.051e+00  -0.290  0.77189   
## sp_ptbBMns9103 -2.494e-01  1.067e+00  -0.234  0.81510   
## sp_ptbBMns9104 -8.009e-01  9.865e-01  -0.812  0.41685   
## sp_ptbBMns9105  5.946e-01  8.930e-01   0.666  0.50550   
## sp_ptbBMns9106 -1.057e+00  9.234e-01  -1.145  0.25224   
## sp_ptbBMns9107 -5.149e-01  9.822e-01  -0.524  0.60014   
## sp_ptbBMns9108 -4.025e-01  1.241e+00  -0.324  0.74561   
## sp_ptbBMns9109 -1.574e+00  1.394e+00  -1.130  0.25857   
## sp_ptbBMns9110 -1.228e+00  1.287e+00  -0.954  0.34005   
## sp_ptbBMns9111  3.066e-01  9.973e-01   0.307  0.75852   
## sp_ptbBMns9112  7.737e-02  9.228e-01   0.084  0.93318   
## sp_ptbBMns9113 -1.791e-01  1.107e+00  -0.162  0.87147   
## sp_ptbBMns9114  2.864e-01  1.041e+00   0.275  0.78327   
## sp_ptbBMns9115 -6.369e-01  1.158e+00  -0.550  0.58230   
## sp_ptbBMns9116 -1.309e-01  1.272e+00  -0.103  0.91806   
## sp_ptbBMns9117  1.950e+00  2.113e+00   0.923  0.35592   
## sp_ptbBMns9118  1.919e+00  2.094e+00   0.916  0.35943   
## sp_ptbBMns9119  2.545e+00  1.783e+00   1.428  0.15334   
## sp_ptbBMns9120  1.780e+00  1.657e+00   1.074  0.28270   
## sp_ptbBMns9121  2.468e+00  1.496e+00   1.650  0.09902 . 
## sp_ptbBMns9122  1.942e+00  1.438e+00   1.350  0.17695   
## sp_ptbBMns9123  3.735e+00  1.554e+00   2.403  0.01627 * 
## sp_ptbBMns9124  2.342e+00  1.436e+00   1.631  0.10292   
## sp_ptbBMns9125  4.463e+00  1.964e+00   2.273  0.02304 * 
## sp_ptbBMns9126 -2.074e-01  1.645e+00  -0.126  0.89966   
## sp_ptbBMns9127  2.175e+00  1.788e+00   1.216  0.22398   
## sp_ptbBMns9128  6.745e-01  1.455e+00   0.464  0.64299   
## sp_ptbBMns9129  2.382e+00  1.280e+00   1.861  0.06270 . 
## sp_ptbBMns9130  1.838e+00  1.136e+00   1.618  0.10556   
## sp_ptbBMns9131  2.664e+00  1.129e+00   2.361  0.01825 * 
## sp_ptbBMns9132  2.139e+00  1.097e+00   1.951  0.05111 . 
## sp_ptbBMns9133  1.805e+00  1.021e+00   1.767  0.07723 . 
## sp_ptbBMns9134  2.596e+00  1.114e+00   2.330  0.01978 * 
## sp_ptbBMns9135 -4.862e-01  9.535e-01  -0.510  0.61014   
## sp_ptbBMns9136  1.150e+00  1.348e+00   0.853  0.39347   
## sp_ptbBMns9137 -1.897e+00  1.141e+00  -1.662  0.09651 . 
## sp_ptbBMns9138  5.237e-01  9.476e-01   0.553  0.58054   
## sp_ptbBMns9139 -7.132e-01  9.609e-01  -0.742  0.45795   
## sp_ptbBMns9140 -2.289e-01  1.072e+00  -0.213  0.83095   
## sp_ptbBMns9141 -9.342e-01  8.720e-01  -1.071  0.28401   
## sp_ptbBMns9142  1.699e-01  8.460e-01   0.201  0.84084   
## sp_ptbBMns9143 -1.127e+00  9.143e-01  -1.232  0.21783   
## sp_ptbBMns9144 -1.326e+00  9.767e-01  -1.358  0.17454   
## sp_ptbBMns9145 -1.369e+00  1.388e+00  -0.986  0.32417   
## sp_ptbBMns9146 -5.664e-01  1.203e+00  -0.471  0.63764   
## sp_ptbBMns9147 -2.003e-01  1.050e+00  -0.191  0.84874   
## sp_ptbBMns9148 -1.413e+00  1.120e+00  -1.261  0.20714   
## sp_ptbBMns9149  6.642e-01  1.023e+00   0.649  0.51637   
## sp_ptbBMns9150  7.631e-01  1.137e+00   0.671  0.50226   
## sp_ptbBMns9151 -1.388e+00  1.142e+00  -1.215  0.22432   
## sp_ptbBMns9152  1.851e+00  1.020e+00   1.814  0.06960 . 
## sp_ptbBMns9153 -8.127e-01  1.249e+00  -0.651  0.51513   
## sp_ptbBMns9154 -2.238e-01  1.450e+00  -0.154  0.87735   
## sp_ptbBMns9155  1.094e+00  1.258e+00   0.870  0.38456   
## sp_ptbBMns9156 -5.989e-01  1.103e+00  -0.543  0.58700   
## sp_ptbBMns9157  1.436e+00  9.340e-01   1.537  0.12427   
## sp_ptbBMns9158 -2.205e-01  9.078e-01  -0.243  0.80807   
## sp_ptbBMns9159  1.126e+00  6.600e-01   1.706  0.08798 . 
## sp_ptbBMns9160 -9.001e-02  8.106e-01  -0.111  0.91158   
## sp_ptbBMns9161         NA         NA      NA       NA   
## sp_ptbBMns9162         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(28744.37) family taken to be 1)
## 
##     Null deviance: 1101.28  on 886  degrees of freedom
## Residual deviance:  877.91  on 725  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3236.8
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  28744 
##           Std. Err.:  157749 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2910.759
##to check model diag for univariate models

options(na.action="na.exclude")
library(dplyr) ##make sure lags are dplyr lags

##for SA4m1a avgWindSp ######
scatter.smooth(predict(SA4m1a, type='response'), rstandard(SA4m1a, type='deviance'), col='gray')

SA4m1a.resid<-residuals(SA4m1a, type="deviance")
SA4m1a.pred<-predict(SA4m1a, type="response")
length(SA4m1a.resid); length(SA4m1a.pred)
## [1] 939
## [1] 939
pacf(SA4m1a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-8,10,13,14,18,25

library(dplyr)
#ensure that the lags are dplyr lags
SA4m1a.ac<-update(SA4m1a,.~.+lag(SA4m1a.resid,1)+lag(SA4m1a.resid,2)+lag(SA4m1a.resid,3)+ lag(SA4m1a.resid,4)+
                      lag(SA4m1a.resid,5)+lag(SA4m1a.resid,6)+lag(SA4m1a.resid,7)+ lag(SA4m1a.resid,8)+
                      lag(SA4m1a.resid,10)+lag(SA4m1a.resid,13)+lag(SA4m1a.resid,14)+ lag(SA4m1a.resid,18)+
                      lag(SA4m1a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
SA4m1a.resid_ac<-residuals(SA4m1a.ac, type="deviance")
SA4m1a.pred_ac<-predict(SA4m1a.ac, type="response")

pacf(SA4m1a.resid_ac,na.action = na.omit) 

length(SA4m1a.pred_ac)
## [1] 939
length(SA4m1a.resid_ac)
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA4m1a.pred,lwd=1, col="blue")

plot(week$time,SA4m1a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA4m1a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA4m1a.pred_ac,lwd=1, col="blue")

plot(week$time,SA4m1a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA4m1a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose response and slices 
pred.SA4m1a <- crosspred(cb1.avgWindSp, SA4m1a.ac, cen = 4.5, by=0.1,cumul=TRUE)


##for SA4m2a sun ######
summary(SA4m2a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb2.sun + sp_ptbBMns9, data = week, 
##     init.theta = 28424.25298, link = log)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.9828  -0.7391  -0.0994   0.5556   2.3919  
## 
## Coefficients: (7 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    -1.125e+01  1.038e+01  -1.084  0.27835   
## cb2.sunv1.l1    2.434e-01  2.307e-01   1.055  0.29129   
## cb2.sunv1.l2    1.060e-01  1.564e-01   0.678  0.49795   
## cb2.sunv2.l1    1.031e+00  9.082e-01   1.135  0.25622   
## cb2.sunv2.l2    1.159e+00  6.101e-01   1.899  0.05755 . 
## cb2.sunv3.l1    4.292e-01  3.567e-01   1.203  0.22887   
## cb2.sunv3.l2    5.088e-01  2.453e-01   2.074  0.03806 * 
## sp_ptbBMns91           NA         NA      NA       NA   
## sp_ptbBMns92           NA         NA      NA       NA   
## sp_ptbBMns93           NA         NA      NA       NA   
## sp_ptbBMns94           NA         NA      NA       NA   
## sp_ptbBMns95           NA         NA      NA       NA   
## sp_ptbBMns96   -2.239e+06  1.296e+06  -1.728  0.08400 . 
## sp_ptbBMns97    3.635e+01  1.582e+01   2.298  0.02158 * 
## sp_ptbBMns98   -6.689e+00  2.596e+00  -2.576  0.00999 **
## sp_ptbBMns99    1.756e+00  1.136e+00   1.545  0.12241   
## sp_ptbBMns910  -2.399e+00  1.078e+00  -2.227  0.02597 * 
## sp_ptbBMns911   1.254e-01  8.729e-01   0.144  0.88578   
## sp_ptbBMns912  -1.196e+00  9.339e-01  -1.281  0.20016   
## sp_ptbBMns913  -2.273e+00  1.130e+00  -2.011  0.04435 * 
## sp_ptbBMns914  -1.407e+00  9.607e-01  -1.465  0.14297   
## sp_ptbBMns915   2.076e-01  8.460e-01   0.245  0.80615   
## sp_ptbBMns916  -2.006e+00  9.510e-01  -2.110  0.03488 * 
## sp_ptbBMns917   2.165e-01  9.396e-01   0.230  0.81774   
## sp_ptbBMns918  -2.726e+00  1.028e+00  -2.651  0.00803 **
## sp_ptbBMns919  -5.791e-01  9.760e-01  -0.593  0.55294   
## sp_ptbBMns920  -1.928e+00  9.922e-01  -1.943  0.05201 . 
## sp_ptbBMns921  -1.184e+00  9.633e-01  -1.229  0.21910   
## sp_ptbBMns922  -1.508e+00  9.485e-01  -1.590  0.11194   
## sp_ptbBMns923  -1.469e+00  9.723e-01  -1.511  0.13073   
## sp_ptbBMns924  -1.260e+00  9.694e-01  -1.299  0.19381   
## sp_ptbBMns925  -1.499e+00  9.466e-01  -1.583  0.11340   
## sp_ptbBMns926  -1.340e+00  9.483e-01  -1.413  0.15771   
## sp_ptbBMns927  -7.217e-01  9.184e-01  -0.786  0.43196   
## sp_ptbBMns928  -9.442e-01  9.482e-01  -0.996  0.31934   
## sp_ptbBMns929  -4.435e-01  8.934e-01  -0.496  0.61960   
## sp_ptbBMns930  -1.686e+00  1.047e+00  -1.611  0.10727   
## sp_ptbBMns931  -3.652e-01  9.047e-01  -0.404  0.68644   
## sp_ptbBMns932  -1.260e+00  9.404e-01  -1.340  0.18017   
## sp_ptbBMns933  -3.668e-01  9.655e-01  -0.380  0.70400   
## sp_ptbBMns934  -1.814e+00  1.111e+00  -1.633  0.10238   
## sp_ptbBMns935  -2.090e+00  1.213e+00  -1.724  0.08475 . 
## sp_ptbBMns936  -2.465e+00  1.179e+00  -2.090  0.03663 * 
## sp_ptbBMns937  -1.588e+00  1.036e+00  -1.534  0.12510   
## sp_ptbBMns938  -1.359e+00  1.014e+00  -1.341  0.18008   
## sp_ptbBMns939  -1.309e+00  9.918e-01  -1.320  0.18678   
## sp_ptbBMns940  -1.325e+00  9.657e-01  -1.372  0.16997   
## sp_ptbBMns941  -9.250e-01  1.022e+00  -0.905  0.36532   
## sp_ptbBMns942  -3.238e+00  1.159e+00  -2.795  0.00520 **
## sp_ptbBMns943  -8.410e-01  1.065e+00  -0.790  0.42962   
## sp_ptbBMns944  -1.474e+00  1.067e+00  -1.382  0.16710   
## sp_ptbBMns945  -8.655e-01  1.046e+00  -0.828  0.40787   
## sp_ptbBMns946  -4.608e-01  1.069e+00  -0.431  0.66646   
## sp_ptbBMns947   1.300e-01  9.917e-01   0.131  0.89569   
## sp_ptbBMns948  -1.161e+00  1.034e+00  -1.122  0.26180   
## sp_ptbBMns949   4.275e-01  1.015e+00   0.421  0.67367   
## sp_ptbBMns950  -5.964e-01  9.662e-01  -0.617  0.53705   
## sp_ptbBMns951  -2.767e-01  1.121e+00  -0.247  0.80496   
## sp_ptbBMns952   3.809e-02  1.021e+00   0.037  0.97023   
## sp_ptbBMns953   3.482e-02  9.616e-01   0.036  0.97111   
## sp_ptbBMns954  -2.932e+00  1.282e+00  -2.288  0.02215 * 
## sp_ptbBMns955   9.048e-01  9.086e-01   0.996  0.31933   
## sp_ptbBMns956  -2.077e+00  9.882e-01  -2.102  0.03555 * 
## sp_ptbBMns957   5.147e-01  7.965e-01   0.646  0.51816   
## sp_ptbBMns958  -7.988e-01  7.988e-01  -1.000  0.31729   
## sp_ptbBMns959  -1.440e-01  8.403e-01  -0.171  0.86390   
## sp_ptbBMns960  -1.660e+00  9.099e-01  -1.825  0.06807 . 
## sp_ptbBMns961  -5.358e-01  9.192e-01  -0.583  0.55996   
## sp_ptbBMns962  -7.944e-01  8.590e-01  -0.925  0.35511   
## sp_ptbBMns963  -1.070e+00  1.033e+00  -1.036  0.30005   
## sp_ptbBMns964  -1.438e+00  1.015e+00  -1.416  0.15665   
## sp_ptbBMns965  -9.726e-01  8.519e-01  -1.142  0.25362   
## sp_ptbBMns966  -1.323e-02  8.888e-01  -0.015  0.98812   
## sp_ptbBMns967  -1.059e+00  8.651e-01  -1.224  0.22094   
## sp_ptbBMns968  -1.670e-01  8.180e-01  -0.204  0.83821   
## sp_ptbBMns969  -4.125e-01  8.371e-01  -0.493  0.62215   
## sp_ptbBMns970  -6.337e-01  8.189e-01  -0.774  0.43896   
## sp_ptbBMns971  -1.243e+00  9.257e-01  -1.342  0.17948   
## sp_ptbBMns972  -5.112e-01  9.588e-01  -0.533  0.59389   
## sp_ptbBMns973  -1.258e+00  1.061e+00  -1.185  0.23608   
## sp_ptbBMns974  -6.282e-01  9.161e-01  -0.686  0.49290   
## sp_ptbBMns975  -8.092e-01  9.000e-01  -0.899  0.36857   
## sp_ptbBMns976  -1.142e+00  9.394e-01  -1.216  0.22415   
## sp_ptbBMns977  -6.875e-01  9.328e-01  -0.737  0.46109   
## sp_ptbBMns978  -6.369e-01  8.952e-01  -0.712  0.47676   
## sp_ptbBMns979  -7.283e-01  9.670e-01  -0.753  0.45136   
## sp_ptbBMns980  -4.043e-01  9.878e-01  -0.409  0.68232   
## sp_ptbBMns981  -3.477e+00  1.116e+00  -3.116  0.00183 **
## sp_ptbBMns982  -1.247e-01  1.106e+00  -0.113  0.91019   
## sp_ptbBMns983  -2.341e+00  9.438e-01  -2.480  0.01314 * 
## sp_ptbBMns984  -2.473e-01  8.781e-01  -0.282  0.77823   
## sp_ptbBMns985  -1.748e+00  8.917e-01  -1.960  0.04996 * 
## sp_ptbBMns986  -8.484e-01  8.022e-01  -1.058  0.29024   
## sp_ptbBMns987  -3.977e-01  8.184e-01  -0.486  0.62705   
## sp_ptbBMns988  -1.223e+00  8.762e-01  -1.395  0.16293   
## sp_ptbBMns989  -1.643e-01  9.096e-01  -0.181  0.85670   
## sp_ptbBMns990  -2.234e+00  1.157e+00  -1.931  0.05353 . 
## sp_ptbBMns991  -6.531e-01  1.155e+00  -0.565  0.57193   
## sp_ptbBMns992  -1.426e+00  1.120e+00  -1.274  0.20261   
## sp_ptbBMns993   6.754e-04  1.098e+00   0.001  0.99951   
## sp_ptbBMns994  -3.031e+00  1.201e+00  -2.524  0.01159 * 
## sp_ptbBMns995   1.553e+00  9.898e-01   1.569  0.11654   
## sp_ptbBMns996  -2.400e+00  1.145e+00  -2.096  0.03609 * 
## sp_ptbBMns997   1.102e+00  8.923e-01   1.235  0.21694   
## sp_ptbBMns998  -1.167e+00  1.087e+00  -1.074  0.28291   
## sp_ptbBMns999  -8.227e-02  9.847e-01  -0.084  0.93342   
## sp_ptbBMns9100 -5.286e-01  9.792e-01  -0.540  0.58929   
## sp_ptbBMns9101 -2.418e-01  9.222e-01  -0.262  0.79319   
## sp_ptbBMns9102 -6.337e-01  9.022e-01  -0.702  0.48245   
## sp_ptbBMns9103 -4.900e-01  9.647e-01  -0.508  0.61150   
## sp_ptbBMns9104 -1.566e+00  1.073e+00  -1.460  0.14440   
## sp_ptbBMns9105 -2.984e-01  9.225e-01  -0.323  0.74632   
## sp_ptbBMns9106 -1.601e+00  9.242e-01  -1.732  0.08329 . 
## sp_ptbBMns9107 -1.122e+00  9.275e-01  -1.210  0.22635   
## sp_ptbBMns9108 -1.060e+00  9.221e-01  -1.150  0.25026   
## sp_ptbBMns9109 -2.078e+00  1.029e+00  -2.019  0.04353 * 
## sp_ptbBMns9110 -1.924e+00  1.036e+00  -1.858  0.06323 . 
## sp_ptbBMns9111 -9.111e-01  9.746e-01  -0.935  0.34985   
## sp_ptbBMns9112 -6.603e-01  9.356e-01  -0.706  0.48031   
## sp_ptbBMns9113 -1.141e+00  9.790e-01  -1.166  0.24371   
## sp_ptbBMns9114 -6.295e-01  1.068e+00  -0.589  0.55565   
## sp_ptbBMns9115 -2.257e+00  1.150e+00  -1.963  0.04961 * 
## sp_ptbBMns9116  8.388e-02  1.106e+00   0.076  0.93956   
## sp_ptbBMns9117 -1.634e+00  1.183e+00  -1.382  0.16702   
## sp_ptbBMns9118 -5.094e-01  9.866e-01  -0.516  0.60562   
## sp_ptbBMns9119 -2.716e-01  9.377e-01  -0.290  0.77204   
## sp_ptbBMns9120 -7.155e-01  9.668e-01  -0.740  0.45928   
## sp_ptbBMns9121 -9.457e-01  9.888e-01  -0.956  0.33886   
## sp_ptbBMns9122 -9.169e-01  9.541e-01  -0.961  0.33652   
## sp_ptbBMns9123  3.078e-01  8.610e-01   0.357  0.72074   
## sp_ptbBMns9124 -2.439e-01  8.824e-01  -0.276  0.78225   
## sp_ptbBMns9125  1.124e+00  8.879e-01   1.266  0.20542   
## sp_ptbBMns9126 -2.761e+00  1.251e+00  -2.208  0.02728 * 
## sp_ptbBMns9127  9.327e-01  9.325e-01   1.000  0.31723   
## sp_ptbBMns9128 -1.399e+00  9.608e-01  -1.456  0.14545   
## sp_ptbBMns9129  2.051e-01  8.646e-01   0.237  0.81245   
## sp_ptbBMns9130 -7.154e-01  8.332e-01  -0.859  0.39052   
## sp_ptbBMns9131 -1.643e-01  8.124e-01  -0.202  0.83974   
## sp_ptbBMns9132 -8.468e-01  8.552e-01  -0.990  0.32205   
## sp_ptbBMns9133 -9.074e-01  8.403e-01  -1.080  0.28023   
## sp_ptbBMns9134 -1.541e-01  8.236e-01  -0.187  0.85160   
## sp_ptbBMns9135 -1.666e+00  1.140e+00  -1.460  0.14418   
## sp_ptbBMns9136  1.136e-01  1.009e+00   0.113  0.91036   
## sp_ptbBMns9137 -2.555e+00  1.060e+00  -2.411  0.01593 * 
## sp_ptbBMns9138 -8.608e-02  1.014e+00  -0.085  0.93237   
## sp_ptbBMns9139 -2.040e+00  1.126e+00  -1.813  0.06991 . 
## sp_ptbBMns9140 -1.018e+00  1.016e+00  -1.002  0.31638   
## sp_ptbBMns9141 -2.089e+00  1.136e+00  -1.839  0.06592 . 
## sp_ptbBMns9142 -8.530e-01  1.143e+00  -0.746  0.45558   
## sp_ptbBMns9143 -1.798e+00  1.098e+00  -1.636  0.10174   
## sp_ptbBMns9144 -9.280e-01  9.054e-01  -1.025  0.30540   
## sp_ptbBMns9145 -3.655e-01  8.980e-01  -0.407  0.68404   
## sp_ptbBMns9146  2.468e-01  8.397e-01   0.294  0.76886   
## sp_ptbBMns9147  2.747e-01  8.572e-01   0.320  0.74859   
## sp_ptbBMns9148 -9.975e-01  9.537e-01  -1.046  0.29559   
## sp_ptbBMns9149  4.079e-01  8.253e-01   0.494  0.62114   
## sp_ptbBMns9150  5.353e-01  8.135e-01   0.658  0.51055   
## sp_ptbBMns9151 -2.074e+00  9.954e-01  -2.084  0.03720 * 
## sp_ptbBMns9152  1.112e+00  9.127e-01   1.218  0.22313   
## sp_ptbBMns9153 -1.555e+00  1.059e+00  -1.467  0.14224   
## sp_ptbBMns9154 -1.293e+00  1.098e+00  -1.177  0.23900   
## sp_ptbBMns9155  4.692e-01  8.283e-01   0.566  0.57106   
## sp_ptbBMns9156 -1.261e+00  9.526e-01  -1.324  0.18545   
## sp_ptbBMns9157  9.371e-01  7.257e-01   1.291  0.19659   
## sp_ptbBMns9158  1.106e-01  8.014e-01   0.138  0.89025   
## sp_ptbBMns9159  1.323e+00  6.384e-01   2.072  0.03825 * 
## sp_ptbBMns9160  3.149e-01  8.500e-01   0.371  0.71100   
## sp_ptbBMns9161         NA         NA      NA       NA   
## sp_ptbBMns9162         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(28424.25) family taken to be 1)
## 
##     Null deviance: 1101.28  on 886  degrees of freedom
## Residual deviance:  880.04  on 725  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3238.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  28424 
##           Std. Err.:  155485 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2912.888
scatter.smooth(predict(SA4m2a, type='response'), rstandard(SA4m2a, type='deviance'), col='gray')

SA4m2a.resid<-residuals(SA4m2a, type="deviance")
SA4m2a.pred<-predict(SA4m2a, type="response")
length(SA4m2a.resid); length(SA4m2a.pred)
## [1] 939
## [1] 939
pacf(SA4m2a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-8,10,13,14,18,25

SA4m2a.ac<-update(SA4m2a,.~.+lag(SA4m2a.resid,1)+lag(SA4m2a.resid,2)+lag(SA4m2a.resid,3)+lag(SA4m2a.resid,4)+
                      lag(SA4m2a.resid,5)+lag(SA4m2a.resid,6)+lag(SA4m2a.resid,7)+lag(SA4m2a.resid,8)+
                      lag(SA4m2a.resid,10)+lag(SA4m2a.resid,13)+lag(SA4m2a.resid,14)+lag(SA4m2a.resid,18)+
                      lag(SA4m2a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
SA4m2a.resid_ac<-residuals(SA4m2a.ac, type="deviance")
SA4m2a.pred_ac<-predict(SA4m2a.ac, type="response")

pacf(SA4m2a.resid_ac,na.action = na.omit) 

length(SA4m2a.pred_ac); length(SA4m2a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA4m2a.pred,lwd=1, col="blue")

plot(week$time,SA4m2a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA4m2a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA4m2a.pred_ac,lwd=1, col="blue")

plot(week$time,SA4m2a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA4m2a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose response and slices 
pred.SA4m2a <- crosspred(cb2.sun, SA4m2a.ac, cen = 50.7, by=0.1,cumul=TRUE)


##for SA4m3a RF ######
summary(SA4m3a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb3.RF + sp_ptbBMns9, data = week, init.theta = 27894.8583, 
##     link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -3.02133  -0.74382  -0.09557   0.54575   2.35117  
## 
## Coefficients: (7 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     2.948e+00  2.934e+00   1.005  0.31501   
## cb3.RFv1.l1     9.686e-02  2.864e-01   0.338  0.73520   
## cb3.RFv1.l2     1.589e-01  2.070e-01   0.768  0.44264   
## cb3.RFv2.l1    -3.992e-01  4.456e-01  -0.896  0.37035   
## cb3.RFv2.l2    -2.651e-01  3.376e-01  -0.785  0.43230   
## cb3.RFv3.l1    -5.042e-01  7.143e-01  -0.706  0.48025   
## cb3.RFv3.l2    -6.828e-01  5.734e-01  -1.191  0.23372   
## sp_ptbBMns91           NA         NA      NA       NA   
## sp_ptbBMns92           NA         NA      NA       NA   
## sp_ptbBMns93           NA         NA      NA       NA   
## sp_ptbBMns94           NA         NA      NA       NA   
## sp_ptbBMns95           NA         NA      NA       NA   
## sp_ptbBMns96   -2.357e+06  1.300e+06  -1.813  0.06986 . 
## sp_ptbBMns97    3.787e+01  1.592e+01   2.379  0.01735 * 
## sp_ptbBMns98   -5.758e+00  2.589e+00  -2.224  0.02612 * 
## sp_ptbBMns99    1.847e+00  1.182e+00   1.563  0.11813   
## sp_ptbBMns910  -2.293e+00  1.148e+00  -1.997  0.04577 * 
## sp_ptbBMns911   2.182e-01  9.607e-01   0.227  0.82028   
## sp_ptbBMns912  -8.498e-01  1.008e+00  -0.843  0.39925   
## sp_ptbBMns913  -1.834e+00  1.213e+00  -1.512  0.13065   
## sp_ptbBMns914  -1.324e+00  1.002e+00  -1.321  0.18642   
## sp_ptbBMns915   5.348e-01  8.999e-01   0.594  0.55232   
## sp_ptbBMns916  -1.118e+00  9.688e-01  -1.154  0.24850   
## sp_ptbBMns917   1.250e+00  9.787e-01   1.277  0.20157   
## sp_ptbBMns918  -1.828e+00  9.907e-01  -1.846  0.06495 . 
## sp_ptbBMns919   3.541e-01  9.572e-01   0.370  0.71143   
## sp_ptbBMns920  -1.023e+00  9.529e-01  -1.073  0.28305   
## sp_ptbBMns921  -4.079e-01  1.050e+00  -0.388  0.69766   
## sp_ptbBMns922  -5.090e-01  9.598e-01  -0.530  0.59591   
## sp_ptbBMns923  -4.322e-01  1.039e+00  -0.416  0.67745   
## sp_ptbBMns924  -4.027e-01  9.151e-01  -0.440  0.65991   
## sp_ptbBMns925  -3.799e-01  1.026e+00  -0.370  0.71120   
## sp_ptbBMns926  -5.069e-01  1.107e+00  -0.458  0.64711   
## sp_ptbBMns927   2.938e-01  9.782e-01   0.300  0.76390   
## sp_ptbBMns928  -5.779e-02  9.901e-01  -0.058  0.95346   
## sp_ptbBMns929   1.678e-01  9.555e-01   0.176  0.86062   
## sp_ptbBMns930  -1.052e+00  1.036e+00  -1.015  0.31019   
## sp_ptbBMns931   2.377e-01  9.884e-01   0.240  0.80996   
## sp_ptbBMns932  -5.926e-01  1.025e+00  -0.578  0.56332   
## sp_ptbBMns933   5.785e-01  9.896e-01   0.585  0.55887   
## sp_ptbBMns934  -6.121e-01  1.136e+00  -0.539  0.59004   
## sp_ptbBMns935  -1.031e+00  1.270e+00  -0.812  0.41688   
## sp_ptbBMns936  -1.505e+00  1.227e+00  -1.226  0.22016   
## sp_ptbBMns937  -4.289e-01  1.073e+00  -0.400  0.68949   
## sp_ptbBMns938  -1.691e-01  1.015e+00  -0.167  0.86762   
## sp_ptbBMns939  -5.811e-01  9.827e-01  -0.591  0.55426   
## sp_ptbBMns940  -1.795e-01  8.988e-01  -0.200  0.84174   
## sp_ptbBMns941   1.227e-01  8.850e-01   0.139  0.88969   
## sp_ptbBMns942  -2.054e+00  1.144e+00  -1.796  0.07251 . 
## sp_ptbBMns943  -4.974e-02  1.014e+00  -0.049  0.96088   
## sp_ptbBMns944  -4.024e-01  1.009e+00  -0.399  0.69004   
## sp_ptbBMns945  -2.114e-01  9.694e-01  -0.218  0.82735   
## sp_ptbBMns946   1.148e-01  7.885e-01   0.146  0.88421   
## sp_ptbBMns947   4.545e-01  8.474e-01   0.536  0.59173   
## sp_ptbBMns948  -7.332e-01  9.364e-01  -0.783  0.43363   
## sp_ptbBMns949   2.993e-01  8.674e-01   0.345  0.73005   
## sp_ptbBMns950  -6.380e-01  8.704e-01  -0.733  0.46356   
## sp_ptbBMns951  -2.096e-01  9.113e-01  -0.230  0.81811   
## sp_ptbBMns952  -3.174e-01  8.653e-01  -0.367  0.71372   
## sp_ptbBMns953   3.667e-01  9.442e-01   0.388  0.69770   
## sp_ptbBMns954  -2.666e+00  1.211e+00  -2.202  0.02769 * 
## sp_ptbBMns955   1.030e+00  9.031e-01   1.141  0.25399   
## sp_ptbBMns956  -1.992e+00  1.029e+00  -1.936  0.05289 . 
## sp_ptbBMns957   9.172e-01  8.668e-01   1.058  0.29001   
## sp_ptbBMns958  -3.320e-01  9.339e-01  -0.356  0.72221   
## sp_ptbBMns959   7.954e-02  9.261e-01   0.086  0.93156   
## sp_ptbBMns960  -6.055e-01  9.197e-01  -0.658  0.51033   
## sp_ptbBMns961   5.414e-01  8.351e-01   0.648  0.51680   
## sp_ptbBMns962  -3.832e-01  9.052e-01  -0.423  0.67209   
## sp_ptbBMns963   6.460e-01  8.941e-01   0.723  0.46994   
## sp_ptbBMns964  -3.667e-01  9.555e-01  -0.384  0.70112   
## sp_ptbBMns965  -1.644e-02  9.169e-01  -0.018  0.98570   
## sp_ptbBMns966   1.025e+00  8.827e-01   1.161  0.24573   
## sp_ptbBMns967  -1.347e-01  9.190e-01  -0.147  0.88350   
## sp_ptbBMns968   8.422e-02  9.397e-01   0.090  0.92859   
## sp_ptbBMns969   2.055e-01  8.579e-01   0.239  0.81072   
## sp_ptbBMns970   7.969e-03  1.026e+00   0.008  0.99381   
## sp_ptbBMns971  -3.617e-01  9.740e-01  -0.371  0.71035   
## sp_ptbBMns972  -1.677e-01  1.481e+00  -0.113  0.90984   
## sp_ptbBMns973  -2.000e-01  1.111e+00  -0.180  0.85711   
## sp_ptbBMns974  -2.422e-02  1.150e+00  -0.021  0.98319   
## sp_ptbBMns975  -2.304e-01  1.029e+00  -0.224  0.82288   
## sp_ptbBMns976  -5.481e-01  1.090e+00  -0.503  0.61508   
## sp_ptbBMns977  -3.042e-01  1.057e+00  -0.288  0.77353   
## sp_ptbBMns978   4.897e-01  1.083e+00   0.452  0.65112   
## sp_ptbBMns979  -9.123e-02  9.662e-01  -0.094  0.92478   
## sp_ptbBMns980   1.521e+00  1.261e+00   1.207  0.22760   
## sp_ptbBMns981  -2.661e+00  1.439e+00  -1.849  0.06441 . 
## sp_ptbBMns982   1.057e+00  1.188e+00   0.890  0.37366   
## sp_ptbBMns983  -1.197e+00  1.176e+00  -1.017  0.30901   
## sp_ptbBMns984   7.683e-01  1.003e+00   0.766  0.44362   
## sp_ptbBMns985  -1.430e-01  9.796e-01  -0.146  0.88392   
## sp_ptbBMns986   3.161e-01  1.056e+00   0.299  0.76474   
## sp_ptbBMns987   1.222e+00  9.325e-01   1.310  0.19007   
## sp_ptbBMns988   1.622e-01  9.192e-01   0.176  0.85992   
## sp_ptbBMns989   1.697e+00  1.135e+00   1.495  0.13495   
## sp_ptbBMns990  -7.799e-01  1.066e+00  -0.731  0.46453   
## sp_ptbBMns991  -1.089e-01  1.182e+00  -0.092  0.92656   
## sp_ptbBMns992  -5.863e-01  1.086e+00  -0.540  0.58914   
## sp_ptbBMns993   6.395e-01  1.040e+00   0.615  0.53861   
## sp_ptbBMns994  -2.090e+00  1.090e+00  -1.917  0.05528 . 
## sp_ptbBMns995   2.146e+00  7.855e-01   2.733  0.00628 **
## sp_ptbBMns996  -1.994e+00  9.217e-01  -2.163  0.03050 * 
## sp_ptbBMns997   1.572e+00  8.663e-01   1.815  0.06951 . 
## sp_ptbBMns998  -8.712e-01  9.340e-01  -0.933  0.35096   
## sp_ptbBMns999   5.508e-01  9.083e-01   0.606  0.54423   
## sp_ptbBMns9100  5.301e-02  9.213e-01   0.058  0.95412   
## sp_ptbBMns9101  8.362e-01  1.015e+00   0.824  0.41003   
## sp_ptbBMns9102  2.306e-02  9.601e-01   0.024  0.98084   
## sp_ptbBMns9103  1.229e-01  9.622e-01   0.128  0.89835   
## sp_ptbBMns9104 -7.700e-01  9.947e-01  -0.774  0.43889   
## sp_ptbBMns9105  6.733e-01  9.290e-01   0.725  0.46855   
## sp_ptbBMns9106 -1.026e+00  8.759e-01  -1.172  0.24124   
## sp_ptbBMns9107 -1.474e-01  9.026e-01  -0.163  0.87024   
## sp_ptbBMns9108  1.231e-01  9.031e-01   0.136  0.89155   
## sp_ptbBMns9109 -1.087e+00  9.526e-01  -1.141  0.25398   
## sp_ptbBMns9110 -5.011e-01  9.454e-01  -0.530  0.59607   
## sp_ptbBMns9111  3.906e-01  7.887e-01   0.495  0.62046   
## sp_ptbBMns9112  1.801e-02  7.899e-01   0.023  0.98181   
## sp_ptbBMns9113 -6.057e-01  8.730e-01  -0.694  0.48779   
## sp_ptbBMns9114  1.171e-01  8.667e-01   0.135  0.89250   
## sp_ptbBMns9115 -1.479e+00  9.867e-01  -1.499  0.13383   
## sp_ptbBMns9116  6.474e-01  8.990e-01   0.720  0.47143   
## sp_ptbBMns9117 -6.790e-01  1.135e+00  -0.598  0.54980   
## sp_ptbBMns9118 -2.411e-01  8.929e-01  -0.270  0.78717   
## sp_ptbBMns9119  2.320e-01  9.023e-01   0.257  0.79712   
## sp_ptbBMns9120 -3.652e-01  9.762e-01  -0.374  0.70832   
## sp_ptbBMns9121 -3.310e-01  1.005e+00  -0.329  0.74193   
## sp_ptbBMns9122 -4.428e-01  9.982e-01  -0.444  0.65732   
## sp_ptbBMns9123  7.278e-01  8.426e-01   0.864  0.38773   
## sp_ptbBMns9124  1.082e-01  8.082e-01   0.134  0.89346   
## sp_ptbBMns9125  1.312e+00  9.685e-01   1.354  0.17560   
## sp_ptbBMns9126 -2.001e+00  1.180e+00  -1.695  0.09008 . 
## sp_ptbBMns9127  1.239e+00  9.767e-01   1.268  0.20473   
## sp_ptbBMns9128 -1.227e+00  1.017e+00  -1.206  0.22791   
## sp_ptbBMns9129  4.688e-01  8.973e-01   0.523  0.60132   
## sp_ptbBMns9130 -4.456e-01  8.369e-01  -0.532  0.59442   
## sp_ptbBMns9131  2.306e-01  8.374e-01   0.275  0.78306   
## sp_ptbBMns9132 -5.815e-01  8.991e-01  -0.647  0.51776   
## sp_ptbBMns9133 -2.212e-01  8.472e-01  -0.261  0.79405   
## sp_ptbBMns9134  2.898e-01  8.919e-01   0.325  0.74523   
## sp_ptbBMns9135 -1.103e+00  1.063e+00  -1.038  0.29921   
## sp_ptbBMns9136  7.587e-01  1.066e+00   0.712  0.47652   
## sp_ptbBMns9137 -2.127e+00  1.063e+00  -2.001  0.04538 * 
## sp_ptbBMns9138  7.072e-01  9.204e-01   0.768  0.44226   
## sp_ptbBMns9139 -7.257e-01  9.152e-01  -0.793  0.42778   
## sp_ptbBMns9140  2.327e-01  9.661e-01   0.241  0.80962   
## sp_ptbBMns9141 -6.055e-01  9.020e-01  -0.671  0.50208   
## sp_ptbBMns9142  7.941e-01  8.757e-01   0.907  0.36453   
## sp_ptbBMns9143 -5.558e-01  1.095e+00  -0.507  0.61187   
## sp_ptbBMns9144 -6.372e-01  1.034e+00  -0.616  0.53772   
## sp_ptbBMns9145 -8.785e-02  8.828e-01  -0.100  0.92073   
## sp_ptbBMns9146  4.012e-01  8.120e-01   0.494  0.62122   
## sp_ptbBMns9147  5.099e-02  8.994e-01   0.057  0.95479   
## sp_ptbBMns9148 -1.021e+00  9.667e-01  -1.056  0.29112   
## sp_ptbBMns9149  5.346e-01  8.010e-01   0.667  0.50450   
## sp_ptbBMns9150  5.459e-01  8.342e-01   0.654  0.51282   
## sp_ptbBMns9151 -1.376e+00  9.235e-01  -1.490  0.13622   
## sp_ptbBMns9152  1.518e+00  9.095e-01   1.669  0.09505 . 
## sp_ptbBMns9153 -1.257e+00  1.129e+00  -1.113  0.26564   
## sp_ptbBMns9154 -5.614e-01  1.014e+00  -0.554  0.57970   
## sp_ptbBMns9155  6.101e-01  8.630e-01   0.707  0.47959   
## sp_ptbBMns9156 -1.200e+00  8.969e-01  -1.338  0.18089   
## sp_ptbBMns9157  9.732e-01  7.682e-01   1.267  0.20519   
## sp_ptbBMns9158 -5.766e-01  8.480e-01  -0.680  0.49657   
## sp_ptbBMns9159  8.594e-01  6.349e-01   1.354  0.17585   
## sp_ptbBMns9160 -1.185e-01  8.126e-01  -0.146  0.88405   
## sp_ptbBMns9161         NA         NA      NA       NA   
## sp_ptbBMns9162         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(27894.86) family taken to be 1)
## 
##     Null deviance: 1101.3  on 886  degrees of freedom
## Residual deviance:  884.4  on 725  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3243.2
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  27895 
##           Std. Err.:  153572 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2917.245
scatter.smooth(predict(SA4m3a, type='response'), rstandard(SA4m3a, type='deviance'), col='gray')

SA4m3a.resid<-residuals(SA4m3a, type="deviance")
SA4m3a.pred<-predict(SA4m3a, type="response")
length(SA4m3a.resid); length(SA4m3a.pred)
## [1] 939
## [1] 939
pacf(SA4m3a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-8,10,13,14,18,25

SA4m3a.ac<-update(SA4m3a,.~.+lag(SA4m3a.resid,1)+lag(SA4m3a.resid,2)+lag(SA4m3a.resid,3)+lag(SA4m3a.resid,4)+
                      lag(SA4m3a.resid,5)+lag(SA4m3a.resid,6)+lag(SA4m3a.resid,7)+lag(SA4m3a.resid,8)+
                      lag(SA4m3a.resid,10)+lag(SA4m3a.resid,13)+lag(SA4m3a.resid,14)+lag(SA4m3a.resid,18)+
                      lag(SA4m3a.resid,25)) 
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
SA4m3a.resid_ac<-residuals(SA4m3a.ac, type="deviance")
SA4m3a.pred_ac<-predict(SA4m3a.ac, type="response")

pacf(SA4m3a.resid_ac,na.action = na.omit) 

length(SA4m3a.pred_ac); length(SA4m3a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA4m3a.pred,lwd=1, col="blue")

plot(week$time,SA4m3a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA4m3a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA4m3a.pred_ac,lwd=1, col="blue")

plot(week$time,SA4m3a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA4m3a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

##for SA4m5a minRH ######
summary(SA4m5a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb5.minRH + sp_ptbBMns9, data = week, 
##     init.theta = 28286.77676, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.86355  -0.72927  -0.08996   0.56738   2.41082  
## 
## Coefficients: (7 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     1.906e+01  1.163e+01   1.639  0.10129   
## cb5.minRHv1.l1 -1.304e-01  2.747e-01  -0.475  0.63498   
## cb5.minRHv1.l2 -2.200e-02  1.886e-01  -0.117  0.90712   
## cb5.minRHv2.l1 -1.762e+00  1.013e+00  -1.739  0.08201 . 
## cb5.minRHv2.l2 -8.531e-01  7.616e-01  -1.120  0.26265   
## cb5.minRHv3.l1 -1.028e+00  6.518e-01  -1.577  0.11477   
## cb5.minRHv3.l2 -6.854e-01  5.151e-01  -1.330  0.18336   
## sp_ptbBMns91           NA         NA      NA       NA   
## sp_ptbBMns92           NA         NA      NA       NA   
## sp_ptbBMns93           NA         NA      NA       NA   
## sp_ptbBMns94           NA         NA      NA       NA   
## sp_ptbBMns95           NA         NA      NA       NA   
## sp_ptbBMns96   -2.263e+06  1.299e+06  -1.742  0.08146 . 
## sp_ptbBMns97    3.683e+01  1.582e+01   2.327  0.01996 * 
## sp_ptbBMns98   -6.531e+00  2.605e+00  -2.507  0.01217 * 
## sp_ptbBMns99    1.621e+00  1.208e+00   1.342  0.17958   
## sp_ptbBMns910  -2.418e+00  1.118e+00  -2.162  0.03062 * 
## sp_ptbBMns911   1.790e-01  1.031e+00   0.174  0.86211   
## sp_ptbBMns912  -1.147e+00  1.039e+00  -1.104  0.26953   
## sp_ptbBMns913  -1.856e+00  1.121e+00  -1.656  0.09782 . 
## sp_ptbBMns914  -1.838e+00  1.137e+00  -1.616  0.10614   
## sp_ptbBMns915   6.812e-02  9.566e-01   0.071  0.94323   
## sp_ptbBMns916  -1.675e+00  9.506e-01  -1.762  0.07807 . 
## sp_ptbBMns917   3.401e-01  1.046e+00   0.325  0.74508   
## sp_ptbBMns918  -2.271e+00  1.201e+00  -1.891  0.05866 . 
## sp_ptbBMns919   1.720e-02  1.303e+00   0.013  0.98947   
## sp_ptbBMns920  -1.662e+00  1.346e+00  -1.235  0.21696   
## sp_ptbBMns921  -9.859e-01  1.436e+00  -0.687  0.49237   
## sp_ptbBMns922  -1.392e+00  1.236e+00  -1.127  0.25987   
## sp_ptbBMns923  -5.537e-01  1.252e+00  -0.442  0.65831   
## sp_ptbBMns924  -6.076e-01  1.163e+00  -0.523  0.60131   
## sp_ptbBMns925  -6.465e-01  1.178e+00  -0.549  0.58327   
## sp_ptbBMns926  -7.508e-01  1.200e+00  -0.625  0.53164   
## sp_ptbBMns927  -2.175e-01  1.183e+00  -0.184  0.85408   
## sp_ptbBMns928  -3.544e-01  1.032e+00  -0.343  0.73127   
## sp_ptbBMns929  -3.508e-01  1.102e+00  -0.318  0.75019   
## sp_ptbBMns930  -1.521e+00  1.037e+00  -1.467  0.14226   
## sp_ptbBMns931  -3.213e-01  9.513e-01  -0.338  0.73559   
## sp_ptbBMns932  -9.824e-01  8.611e-01  -1.141  0.25393   
## sp_ptbBMns933  -4.346e-02  8.577e-01  -0.051  0.95959   
## sp_ptbBMns934  -1.222e+00  9.605e-01  -1.273  0.20315   
## sp_ptbBMns935  -9.898e-01  1.042e+00  -0.950  0.34216   
## sp_ptbBMns936  -2.169e+00  1.147e+00  -1.892  0.05855 . 
## sp_ptbBMns937  -6.879e-01  1.002e+00  -0.687  0.49229   
## sp_ptbBMns938  -4.001e-01  1.034e+00  -0.387  0.69881   
## sp_ptbBMns939  -1.014e+00  1.096e+00  -0.926  0.35450   
## sp_ptbBMns940  -6.083e-01  1.253e+00  -0.485  0.62746   
## sp_ptbBMns941  -5.224e-01  1.429e+00  -0.365  0.71474   
## sp_ptbBMns942  -2.988e+00  1.638e+00  -1.823  0.06825 . 
## sp_ptbBMns943  -7.512e-01  1.436e+00  -0.523  0.60084   
## sp_ptbBMns944  -1.629e+00  1.606e+00  -1.014  0.31039   
## sp_ptbBMns945  -1.604e+00  1.697e+00  -0.945  0.34465   
## sp_ptbBMns946  -1.075e+00  1.817e+00  -0.591  0.55424   
## sp_ptbBMns947  -9.659e-01  1.648e+00  -0.586  0.55787   
## sp_ptbBMns948  -1.653e+00  1.520e+00  -1.087  0.27696   
## sp_ptbBMns949  -3.564e-01  1.274e+00  -0.280  0.77960   
## sp_ptbBMns950  -9.420e-01  1.382e+00  -0.682  0.49535   
## sp_ptbBMns951  -6.569e-01  1.153e+00  -0.570  0.56893   
## sp_ptbBMns952  -7.187e-01  1.130e+00  -0.636  0.52469   
## sp_ptbBMns953  -2.003e-01  1.143e+00  -0.175  0.86094   
## sp_ptbBMns954  -3.393e+00  1.326e+00  -2.560  0.01047 * 
## sp_ptbBMns955   3.670e-01  1.056e+00   0.347  0.72823   
## sp_ptbBMns956  -2.553e+00  1.099e+00  -2.324  0.02014 * 
## sp_ptbBMns957   1.640e-01  9.895e-01   0.166  0.86839   
## sp_ptbBMns958  -1.290e+00  1.050e+00  -1.229  0.21913   
## sp_ptbBMns959  -4.310e-01  1.018e+00  -0.423  0.67195   
## sp_ptbBMns960  -1.451e+00  1.145e+00  -1.268  0.20483   
## sp_ptbBMns961  -4.434e-01  1.007e+00  -0.440  0.65962   
## sp_ptbBMns962  -1.250e+00  9.236e-01  -1.354  0.17586   
## sp_ptbBMns963  -1.914e-01  1.196e+00  -0.160  0.87281   
## sp_ptbBMns964  -1.658e+00  1.251e+00  -1.325  0.18506   
## sp_ptbBMns965  -1.034e+00  1.072e+00  -0.965  0.33477   
## sp_ptbBMns966  -3.991e-01  1.204e+00  -0.332  0.74016   
## sp_ptbBMns967  -1.111e+00  1.122e+00  -0.990  0.32213   
## sp_ptbBMns968  -2.587e-01  1.056e+00  -0.245  0.80645   
## sp_ptbBMns969  -2.235e-01  1.039e+00  -0.215  0.82974   
## sp_ptbBMns970  -4.242e-01  1.022e+00  -0.415  0.67805   
## sp_ptbBMns971  -9.195e-01  1.178e+00  -0.781  0.43493   
## sp_ptbBMns972  -4.197e-01  1.131e+00  -0.371  0.71054   
## sp_ptbBMns973  -8.902e-01  1.276e+00  -0.698  0.48526   
## sp_ptbBMns974  -3.806e-01  1.029e+00  -0.370  0.71147   
## sp_ptbBMns975  -8.280e-01  1.082e+00  -0.766  0.44396   
## sp_ptbBMns976  -1.365e+00  1.109e+00  -1.231  0.21837   
## sp_ptbBMns977  -1.311e+00  1.285e+00  -1.020  0.30766   
## sp_ptbBMns978  -4.455e-01  1.142e+00  -0.390  0.69649   
## sp_ptbBMns979  -1.285e+00  1.193e+00  -1.078  0.28114   
## sp_ptbBMns980   6.618e-02  1.165e+00   0.057  0.95470   
## sp_ptbBMns981  -3.669e+00  1.440e+00  -2.549  0.01080 * 
## sp_ptbBMns982  -2.878e-01  1.557e+00  -0.185  0.85336   
## sp_ptbBMns983  -2.932e+00  1.543e+00  -1.900  0.05738 . 
## sp_ptbBMns984  -6.059e-01  1.183e+00  -0.512  0.60848   
## sp_ptbBMns985  -1.415e+00  1.032e+00  -1.372  0.17013   
## sp_ptbBMns986  -4.478e-01  8.471e-01  -0.529  0.59708   
## sp_ptbBMns987   2.025e-01  7.203e-01   0.281  0.77865   
## sp_ptbBMns988  -5.911e-01  7.728e-01  -0.765  0.44436   
## sp_ptbBMns989   3.798e-01  8.214e-01   0.462  0.64382   
## sp_ptbBMns990  -1.358e+00  1.071e+00  -1.268  0.20482   
## sp_ptbBMns991  -9.822e-01  1.100e+00  -0.893  0.37176   
## sp_ptbBMns992  -1.244e+00  1.096e+00  -1.134  0.25675   
## sp_ptbBMns993  -3.896e-03  9.957e-01  -0.004  0.99688   
## sp_ptbBMns994  -2.976e+00  1.101e+00  -2.703  0.00688 **
## sp_ptbBMns995   1.941e+00  8.847e-01   2.194  0.02821 * 
## sp_ptbBMns996  -2.024e+00  9.568e-01  -2.115  0.03444 * 
## sp_ptbBMns997   1.275e+00  9.183e-01   1.388  0.16499   
## sp_ptbBMns998  -8.197e-01  8.338e-01  -0.983  0.32557   
## sp_ptbBMns999  -1.236e-02  9.248e-01  -0.013  0.98934   
## sp_ptbBMns9100 -2.289e-01  1.087e+00  -0.211  0.83317   
## sp_ptbBMns9101  4.613e-01  1.126e+00   0.410  0.68212   
## sp_ptbBMns9102 -2.225e-01  9.623e-01  -0.231  0.81715   
## sp_ptbBMns9103 -5.088e-01  1.071e+00  -0.475  0.63466   
## sp_ptbBMns9104 -1.203e+00  9.557e-01  -1.259  0.20817   
## sp_ptbBMns9105  1.598e-01  8.993e-01   0.178  0.85894   
## sp_ptbBMns9106 -1.414e+00  8.653e-01  -1.634  0.10231   
## sp_ptbBMns9107 -1.008e+00  9.536e-01  -1.058  0.29027   
## sp_ptbBMns9108 -6.837e-01  1.030e+00  -0.664  0.50669   
## sp_ptbBMns9109 -1.964e+00  1.167e+00  -1.682  0.09251 . 
## sp_ptbBMns9110 -1.402e+00  1.250e+00  -1.121  0.26214   
## sp_ptbBMns9111 -6.531e-01  1.097e+00  -0.595  0.55173   
## sp_ptbBMns9112 -1.731e-01  8.714e-01  -0.199  0.84255   
## sp_ptbBMns9113 -9.763e-01  9.151e-01  -1.067  0.28603   
## sp_ptbBMns9114 -3.351e-01  9.518e-01  -0.352  0.72482   
## sp_ptbBMns9115 -1.755e+00  9.626e-01  -1.823  0.06834 . 
## sp_ptbBMns9116  3.913e-02  9.940e-01   0.039  0.96859   
## sp_ptbBMns9117 -1.076e+00  1.770e+00  -0.608  0.54316   
## sp_ptbBMns9118 -2.628e-01  1.610e+00  -0.163  0.87037   
## sp_ptbBMns9119  6.114e-01  1.422e+00   0.430  0.66726   
## sp_ptbBMns9120  1.230e-01  1.458e+00   0.084  0.93276   
## sp_ptbBMns9121  4.687e-01  1.279e+00   0.366  0.71405   
## sp_ptbBMns9122  4.459e-01  1.271e+00   0.351  0.72580   
## sp_ptbBMns9123  1.926e+00  1.279e+00   1.506  0.13216   
## sp_ptbBMns9124  1.280e+00  1.401e+00   0.913  0.36112   
## sp_ptbBMns9125  2.705e+00  1.551e+00   1.744  0.08120 . 
## sp_ptbBMns9126 -2.027e+00  1.602e+00  -1.265  0.20588   
## sp_ptbBMns9127  1.121e+00  1.366e+00   0.821  0.41164   
## sp_ptbBMns9128 -7.239e-01  1.414e+00  -0.512  0.60864   
## sp_ptbBMns9129  9.896e-01  1.227e+00   0.806  0.42007   
## sp_ptbBMns9130  2.314e-01  1.205e+00   0.192  0.84776   
## sp_ptbBMns9131  1.209e+00  1.131e+00   1.069  0.28486   
## sp_ptbBMns9132  6.909e-01  1.144e+00   0.604  0.54581   
## sp_ptbBMns9133  6.994e-01  1.094e+00   0.639  0.52263   
## sp_ptbBMns9134  1.304e+00  1.058e+00   1.232  0.21795   
## sp_ptbBMns9135 -1.291e+00  9.715e-01  -1.329  0.18399   
## sp_ptbBMns9136  9.430e-01  1.174e+00   0.803  0.42170   
## sp_ptbBMns9137 -1.738e+00  1.065e+00  -1.631  0.10279   
## sp_ptbBMns9138  6.439e-01  9.503e-01   0.678  0.49803   
## sp_ptbBMns9139 -6.649e-01  9.068e-01  -0.733  0.46340   
## sp_ptbBMns9140  4.075e-01  8.531e-01   0.478  0.63291   
## sp_ptbBMns9141 -1.645e-01  7.605e-01  -0.216  0.82877   
## sp_ptbBMns9142  1.213e+00  7.427e-01   1.633  0.10243   
## sp_ptbBMns9143  1.172e-01  7.664e-01   0.153  0.87849   
## sp_ptbBMns9144 -2.523e-01  7.804e-01  -0.323  0.74644   
## sp_ptbBMns9145 -2.263e-01  1.034e+00  -0.219  0.82672   
## sp_ptbBMns9146  1.717e-01  9.100e-01   0.189  0.85033   
## sp_ptbBMns9147 -2.372e-02  1.043e+00  -0.023  0.98185   
## sp_ptbBMns9148 -1.026e+00  1.010e+00  -1.016  0.30977   
## sp_ptbBMns9149  5.527e-01  8.572e-01   0.645  0.51906   
## sp_ptbBMns9150  4.723e-01  1.013e+00   0.466  0.64091   
## sp_ptbBMns9151 -1.703e+00  1.014e+00  -1.679  0.09319 . 
## sp_ptbBMns9152  1.350e+00  9.003e-01   1.499  0.13381   
## sp_ptbBMns9153 -1.157e+00  1.115e+00  -1.038  0.29930   
## sp_ptbBMns9154 -1.236e+00  1.282e+00  -0.964  0.33499   
## sp_ptbBMns9155  4.781e-01  1.024e+00   0.467  0.64055   
## sp_ptbBMns9156 -1.416e+00  1.155e+00  -1.226  0.22017   
## sp_ptbBMns9157  9.910e-01  8.707e-01   1.138  0.25505   
## sp_ptbBMns9158 -5.751e-01  8.481e-01  -0.678  0.49772   
## sp_ptbBMns9159  1.020e+00  6.377e-01   1.599  0.10981   
## sp_ptbBMns9160 -4.082e-03  7.966e-01  -0.005  0.99591   
## sp_ptbBMns9161         NA         NA      NA       NA   
## sp_ptbBMns9162         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(28286.78) family taken to be 1)
## 
##     Null deviance: 1101.28  on 886  degrees of freedom
## Residual deviance:  881.61  on 725  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3240.5
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  28287 
##           Std. Err.:  154283 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2914.458
scatter.smooth(predict(SA4m5a, type='response'), rstandard(SA4m5a, type='deviance'), col='gray')

SA4m5a.resid<-residuals(SA4m5a, type="deviance")
SA4m5a.pred<-predict(SA4m5a, type="response")
length(SA4m5a.resid); length(SA4m5a.pred)
## [1] 939
## [1] 939
pacf(SA4m5a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-8,10,13,14,18,25

#ensure that the lags are dplyr lags
SA4m5a.ac<-update(SA4m5a,.~.+lag(SA4m5a.resid,1)+lag(SA4m5a.resid,2)+lag(SA4m5a.resid,3)+lag(SA4m5a.resid,4)+
                      lag(SA4m5a.resid,5)+lag(SA4m5a.resid,6)+lag(SA4m5a.resid,7)+lag(SA4m5a.resid,8)+
                      lag(SA4m5a.resid,10)+lag(SA4m5a.resid,13)+lag(SA4m5a.resid,14)+lag(SA4m5a.resid,18)+
                      lag(SA4m5a.resid,25)) 
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(SA4m5a.ac)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb5.minRH + sp_ptbBMns9 + lag(SA4m5a.resid, 
##     1) + lag(SA4m5a.resid, 2) + lag(SA4m5a.resid, 3) + lag(SA4m5a.resid, 
##     4) + lag(SA4m5a.resid, 5) + lag(SA4m5a.resid, 6) + lag(SA4m5a.resid, 
##     7) + lag(SA4m5a.resid, 8) + lag(SA4m5a.resid, 10) + lag(SA4m5a.resid, 
##     13) + lag(SA4m5a.resid, 14) + lag(SA4m5a.resid, 18) + lag(SA4m5a.resid, 
##     25), data = week, init.theta = 49737.72241, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.89419  -0.61565  -0.04401   0.40764   2.49940  
## 
## Coefficients: (12 not defined because of singularities)
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            28.722885  12.302623   2.335 0.019559 *  
## cb5.minRHv1.l1          0.075485   0.287055   0.263 0.792578    
## cb5.minRHv1.l2         -0.105766   0.197923  -0.534 0.593078    
## cb5.minRHv2.l1         -2.857385   1.077417  -2.652 0.008000 ** 
## cb5.minRHv2.l2         -1.186519   0.799728  -1.484 0.137901    
## cb5.minRHv3.l1         -1.484263   0.700165  -2.120 0.034016 *  
## cb5.minRHv3.l2         -0.661764   0.537405  -1.231 0.218171    
## sp_ptbBMns91                  NA         NA      NA       NA    
## sp_ptbBMns92                  NA         NA      NA       NA    
## sp_ptbBMns93                  NA         NA      NA       NA    
## sp_ptbBMns94                  NA         NA      NA       NA    
## sp_ptbBMns95                  NA         NA      NA       NA    
## sp_ptbBMns96                  NA         NA      NA       NA    
## sp_ptbBMns97                  NA         NA      NA       NA    
## sp_ptbBMns98                  NA         NA      NA       NA    
## sp_ptbBMns99                  NA         NA      NA       NA    
## sp_ptbBMns910                 NA         NA      NA       NA    
## sp_ptbBMns911         -14.769767  38.296836  -0.386 0.699744    
## sp_ptbBMns912          -0.786733   4.231540  -0.186 0.852506    
## sp_ptbBMns913          -0.322188   1.993877  -0.162 0.871630    
## sp_ptbBMns914          -4.157518   1.258595  -3.303 0.000956 ***
## sp_ptbBMns915           1.571253   1.032416   1.522 0.128029    
## sp_ptbBMns916          -1.492452   1.035814  -1.441 0.149627    
## sp_ptbBMns917           1.307842   1.088748   1.201 0.229660    
## sp_ptbBMns918          -2.023702   1.220827  -1.658 0.097388 .  
## sp_ptbBMns919           1.956830   1.389484   1.408 0.159038    
## sp_ptbBMns920          -0.029634   1.407442  -0.021 0.983202    
## sp_ptbBMns921          -0.396038   1.479597  -0.268 0.788957    
## sp_ptbBMns922          -0.868449   1.373831  -0.632 0.527297    
## sp_ptbBMns923           0.977139   1.322896   0.739 0.460128    
## sp_ptbBMns924           0.007398   1.214611   0.006 0.995140    
## sp_ptbBMns925           2.277832   1.192688   1.910 0.056155 .  
## sp_ptbBMns926          -3.112317   1.338355  -2.325 0.020046 *  
## sp_ptbBMns927           2.517539   1.275621   1.974 0.048430 *  
## sp_ptbBMns928          -2.192973   1.083261  -2.024 0.042927 *  
## sp_ptbBMns929           1.029059   1.159167   0.888 0.374671    
## sp_ptbBMns930          -2.877498   1.024951  -2.807 0.004994 ** 
## sp_ptbBMns931          -0.634328   1.026144  -0.618 0.536466    
## sp_ptbBMns932          -0.863960   0.924219  -0.935 0.349891    
## sp_ptbBMns933          -1.484996   0.918487  -1.617 0.105925    
## sp_ptbBMns934           0.129344   1.065203   0.121 0.903353    
## sp_ptbBMns935          -3.300930   1.009053  -3.271 0.001070 ** 
## sp_ptbBMns936          -1.752033   1.216532  -1.440 0.149814    
## sp_ptbBMns937          -1.803400   1.034398  -1.743 0.081259 .  
## sp_ptbBMns938           1.230119   1.068927   1.151 0.249816    
## sp_ptbBMns939          -0.689609   1.158609  -0.595 0.551707    
## sp_ptbBMns940           0.858483   1.305828   0.657 0.510908    
## sp_ptbBMns941           0.337184   1.461956   0.231 0.817595    
## sp_ptbBMns942          -1.408007   1.681675  -0.837 0.402444    
## sp_ptbBMns943           0.150037   1.509929   0.099 0.920847    
## sp_ptbBMns944           0.515330   1.677914   0.307 0.758748    
## sp_ptbBMns945          -0.933315   1.752548  -0.533 0.594347    
## sp_ptbBMns946           0.429524   1.912986   0.225 0.822344    
## sp_ptbBMns947           1.131613   1.722291   0.657 0.511156    
## sp_ptbBMns948          -1.915894   1.603625  -1.195 0.232194    
## sp_ptbBMns949           1.217189   1.358521   0.896 0.370271    
## sp_ptbBMns950           0.075912   1.420790   0.053 0.957390    
## sp_ptbBMns951           0.920428   1.249095   0.737 0.461198    
## sp_ptbBMns952          -0.917011   1.194127  -0.768 0.442526    
## sp_ptbBMns953           1.129165   1.181083   0.956 0.339051    
## sp_ptbBMns954          -4.022570   1.481181  -2.716 0.006612 ** 
## sp_ptbBMns955           0.813817   1.106580   0.735 0.462075    
## sp_ptbBMns956          -2.692936   1.104544  -2.438 0.014767 *  
## sp_ptbBMns957           0.323664   1.014453   0.319 0.749687    
## sp_ptbBMns958          -1.610053   1.105428  -1.456 0.145255    
## sp_ptbBMns959           0.719855   1.132679   0.636 0.525081    
## sp_ptbBMns960          -2.114112   1.184200  -1.785 0.074218 .  
## sp_ptbBMns961           1.336266   1.042883   1.281 0.200081    
## sp_ptbBMns962          -2.569698   0.959315  -2.679 0.007391 ** 
## sp_ptbBMns963           1.534712   1.261559   1.217 0.223787    
## sp_ptbBMns964          -1.138986   1.282548  -0.888 0.374506    
## sp_ptbBMns965          -0.429663   1.110430  -0.387 0.698805    
## sp_ptbBMns966          -0.071822   1.273016  -0.056 0.955008    
## sp_ptbBMns967           0.908321   1.182195   0.768 0.442289    
## sp_ptbBMns968          -0.314221   1.093858  -0.287 0.773914    
## sp_ptbBMns969           2.506180   1.075126   2.331 0.019750 *  
## sp_ptbBMns970          -0.547037   1.034935  -0.529 0.597103    
## sp_ptbBMns971           0.205907   1.282910   0.161 0.872487    
## sp_ptbBMns972          -0.601332   1.190097  -0.505 0.613362    
## sp_ptbBMns973           0.815597   1.312468   0.621 0.534322    
## sp_ptbBMns974          -0.448114   1.050541  -0.427 0.669704    
## sp_ptbBMns975          -0.254257   1.087279  -0.234 0.815104    
## sp_ptbBMns976          -1.040326   1.203242  -0.865 0.387257    
## sp_ptbBMns977          -0.992738   1.354306  -0.733 0.463544    
## sp_ptbBMns978          -0.586706   1.145590  -0.512 0.608551    
## sp_ptbBMns979          -0.805393   1.233837  -0.653 0.513914    
## sp_ptbBMns980           0.053490   1.219183   0.044 0.965005    
## sp_ptbBMns981          -2.046169   1.495464  -1.368 0.171234    
## sp_ptbBMns982          -0.615771   1.622969  -0.379 0.704383    
## sp_ptbBMns983          -1.477080   1.602371  -0.922 0.356628    
## sp_ptbBMns984          -1.606234   1.197363  -1.341 0.179766    
## sp_ptbBMns985          -0.154162   1.090801  -0.141 0.887610    
## sp_ptbBMns986          -0.526693   0.896742  -0.587 0.556975    
## sp_ptbBMns987           0.107464   0.802819   0.134 0.893515    
## sp_ptbBMns988          -0.362137   0.779376  -0.465 0.642182    
## sp_ptbBMns989           0.906695   0.833853   1.087 0.276879    
## sp_ptbBMns990          -1.367997   1.135590  -1.205 0.228335    
## sp_ptbBMns991          -0.440617   1.180246  -0.373 0.708906    
## sp_ptbBMns992          -1.582069   1.116738  -1.417 0.156574    
## sp_ptbBMns993          -0.109816   1.060339  -0.104 0.917513    
## sp_ptbBMns994          -2.124036   1.018789  -2.085 0.037082 *  
## sp_ptbBMns995           2.180255   0.944213   2.309 0.020940 *  
## sp_ptbBMns996          -1.244995   1.125238  -1.106 0.268541    
## sp_ptbBMns997           0.446782   0.982866   0.455 0.649418    
## sp_ptbBMns998           1.285885   0.914995   1.405 0.159918    
## sp_ptbBMns999          -2.076746   0.966596  -2.149 0.031673 *  
## sp_ptbBMns9100          2.602312   1.122159   2.319 0.020394 *  
## sp_ptbBMns9101          0.075044   1.190730   0.063 0.949748    
## sp_ptbBMns9102          2.257253   1.005397   2.245 0.024759 *  
## sp_ptbBMns9103         -1.358007   1.161180  -1.170 0.242200    
## sp_ptbBMns9104          0.072476   1.027744   0.071 0.943780    
## sp_ptbBMns9105         -0.767994   0.940294  -0.817 0.414066    
## sp_ptbBMns9106          0.854957   0.879915   0.972 0.331232    
## sp_ptbBMns9107         -4.627037   1.016929  -4.550 5.36e-06 ***
## sp_ptbBMns9108          1.607451   1.091189   1.473 0.140719    
## sp_ptbBMns9109         -3.789151   1.172010  -3.233 0.001225 ** 
## sp_ptbBMns9110         -1.809785   1.358419  -1.332 0.182770    
## sp_ptbBMns9111         -1.259706   1.165740  -1.081 0.279872    
## sp_ptbBMns9112         -0.453857   0.897407  -0.506 0.613037    
## sp_ptbBMns9113         -0.535347   0.984523  -0.544 0.586604    
## sp_ptbBMns9114         -2.133275   0.968700  -2.202 0.027651 *  
## sp_ptbBMns9115         -2.100321   0.991121  -2.119 0.034079 *  
## sp_ptbBMns9116         -2.131461   1.011988  -2.106 0.035186 *  
## sp_ptbBMns9117         -0.295285   1.809736  -0.163 0.870389    
## sp_ptbBMns9118         -0.137970   1.715337  -0.080 0.935893    
## sp_ptbBMns9119          1.250875   1.484265   0.843 0.399364    
## sp_ptbBMns9120          0.495603   1.528224   0.324 0.745711    
## sp_ptbBMns9121          1.124502   1.311599   0.857 0.391250    
## sp_ptbBMns9122         -1.528356   1.359132  -1.125 0.260797    
## sp_ptbBMns9123          2.925830   1.294060   2.261 0.023761 *  
## sp_ptbBMns9124         -0.424598   1.546215  -0.275 0.783620    
## sp_ptbBMns9125          1.999795   1.602810   1.248 0.212148    
## sp_ptbBMns9126         -4.879673   1.652017  -2.954 0.003139 ** 
## sp_ptbBMns9127          1.439142   1.425717   1.009 0.312775    
## sp_ptbBMns9128         -2.413323   1.452268  -1.662 0.096561 .  
## sp_ptbBMns9129          1.805976   1.310680   1.378 0.168236    
## sp_ptbBMns9130         -0.770726   1.230522  -0.626 0.531091    
## sp_ptbBMns9131          0.530325   1.224646   0.433 0.664983    
## sp_ptbBMns9132          0.058158   1.236027   0.047 0.962471    
## sp_ptbBMns9133         -1.090184   1.133755  -0.962 0.336266    
## sp_ptbBMns9134          0.475375   1.072035   0.443 0.657453    
## sp_ptbBMns9135         -1.015606   1.058487  -0.959 0.337313    
## sp_ptbBMns9136          0.294566   1.207844   0.244 0.807325    
## sp_ptbBMns9137         -2.991454   1.192595  -2.508 0.012129 *  
## sp_ptbBMns9138         -0.330843   1.024038  -0.323 0.746637    
## sp_ptbBMns9139         -0.803634   0.937320  -0.857 0.391238    
## sp_ptbBMns9140          0.624924   0.868789   0.719 0.471953    
## sp_ptbBMns9141          0.368163   0.769533   0.478 0.632348    
## sp_ptbBMns9142          1.294684   0.793520   1.632 0.102770    
## sp_ptbBMns9143          1.317326   0.792522   1.662 0.096474 .  
## sp_ptbBMns9144         -1.814026   0.779015  -2.329 0.019880 *  
## sp_ptbBMns9145          0.783542   1.060342   0.739 0.459936    
## sp_ptbBMns9146         -1.319689   0.939053  -1.405 0.159920    
## sp_ptbBMns9147          0.371851   1.072666   0.347 0.728847    
## sp_ptbBMns9148         -2.325171   1.128955  -2.060 0.039439 *  
## sp_ptbBMns9149          0.773930   0.900411   0.860 0.390049    
## sp_ptbBMns9150         -0.266130   1.040138  -0.256 0.798059    
## sp_ptbBMns9151         -1.997875   1.056352  -1.891 0.058585 .  
## sp_ptbBMns9152          0.188689   0.933402   0.202 0.839798    
## sp_ptbBMns9153         -0.317538   1.160630  -0.274 0.784399    
## sp_ptbBMns9154         -3.942883   1.333287  -2.957 0.003104 ** 
## sp_ptbBMns9155          0.065459   1.079525   0.061 0.951649    
## sp_ptbBMns9156         -2.445956   1.234173  -1.982 0.047495 *  
## sp_ptbBMns9157          0.461075   0.890471   0.518 0.604606    
## sp_ptbBMns9158         -0.814359   0.871169  -0.935 0.349898    
## sp_ptbBMns9159          1.111883   0.636554   1.747 0.080685 .  
## sp_ptbBMns9160          0.672346   0.852091   0.789 0.430080    
## sp_ptbBMns9161                NA         NA      NA       NA    
## sp_ptbBMns9162                NA         NA      NA       NA    
## lag(SA4m5a.resid, 1)   -0.551954   0.034137 -16.169  < 2e-16 ***
## lag(SA4m5a.resid, 2)   -0.619133   0.040644 -15.233  < 2e-16 ***
## lag(SA4m5a.resid, 3)   -0.710911   0.044748 -15.887  < 2e-16 ***
## lag(SA4m5a.resid, 4)   -0.673674   0.047430 -14.203  < 2e-16 ***
## lag(SA4m5a.resid, 5)   -0.609605   0.046769 -13.034  < 2e-16 ***
## lag(SA4m5a.resid, 6)   -0.480079   0.043619 -11.006  < 2e-16 ***
## lag(SA4m5a.resid, 7)   -0.342502   0.038079  -8.994  < 2e-16 ***
## lag(SA4m5a.resid, 8)   -0.212727   0.032213  -6.604 4.01e-11 ***
## lag(SA4m5a.resid, 10)  -0.018939   0.026314  -0.720 0.471692    
## lag(SA4m5a.resid, 13)   0.069382   0.026861   2.583 0.009794 ** 
## lag(SA4m5a.resid, 14)   0.061922   0.026584   2.329 0.019842 *  
## lag(SA4m5a.resid, 18)  -0.062049   0.024993  -2.483 0.013040 *  
## lag(SA4m5a.resid, 25)  -0.025852   0.025121  -1.029 0.303421    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(49737.72) family taken to be 1)
## 
##     Null deviance: 1055.03  on 861  degrees of freedom
## Residual deviance:  469.66  on 692  degrees of freedom
##   (77 observations deleted due to missingness)
## AIC: 2793.6
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  49738 
##           Std. Err.:  185210 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2451.582
SA4m5a.resid_ac<-residuals(SA4m5a.ac, type="deviance")
SA4m5a.pred_ac<-predict(SA4m5a.ac, type="response")

pacf(SA4m5a.resid_ac,na.action = na.omit) 

length(SA4m5a.pred_ac); length(SA4m5a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA4m5a.pred,lwd=1, col="blue")

plot(week$time,SA4m5a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA4m5a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA4m5a.pred_ac,lwd=1, col="blue")

plot(week$time,SA4m5a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA4m5a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose reponse and slices
pred.SA4m5a <- crosspred(cb5.minRH, SA4m5a.ac, cen = 63, by=0.1,cumul=TRUE)



##for SA4m9a minT ######
summary(SA4m9a)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb9.minT + sp_ptbBMns9, data = week, 
##     init.theta = 28208.16849, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.98149  -0.77078  -0.08243   0.55014   2.45043  
## 
## Coefficients: (7 not defined because of singularities)
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)    -6.116e+00  1.206e+01  -0.507  0.61211   
## cb9.minTv1.l1   1.228e-01  2.879e-01   0.427  0.66970   
## cb9.minTv1.l2  -7.056e-02  2.212e-01  -0.319  0.74969   
## cb9.minTv2.l1   8.990e-01  1.042e+00   0.863  0.38819   
## cb9.minTv2.l2  -1.813e-01  7.883e-01  -0.230  0.81810   
## cb9.minTv3.l1   7.360e-01  6.067e-01   1.213  0.22505   
## cb9.minTv3.l2   6.745e-01  4.245e-01   1.589  0.11211   
## sp_ptbBMns91           NA         NA      NA       NA   
## sp_ptbBMns92           NA         NA      NA       NA   
## sp_ptbBMns93           NA         NA      NA       NA   
## sp_ptbBMns94           NA         NA      NA       NA   
## sp_ptbBMns95           NA         NA      NA       NA   
## sp_ptbBMns96   -2.221e+06  1.297e+06  -1.712  0.08683 . 
## sp_ptbBMns97    3.667e+01  1.588e+01   2.308  0.02098 * 
## sp_ptbBMns98   -6.176e+00  2.604e+00  -2.372  0.01770 * 
## sp_ptbBMns99    1.821e+00  1.230e+00   1.480  0.13889   
## sp_ptbBMns910  -2.398e+00  1.224e+00  -1.959  0.05014 . 
## sp_ptbBMns911   3.001e-01  1.087e+00   0.276  0.78239   
## sp_ptbBMns912  -5.570e-01  1.164e+00  -0.479  0.63214   
## sp_ptbBMns913  -1.816e+00  1.420e+00  -1.278  0.20117   
## sp_ptbBMns914  -1.018e+00  1.144e+00  -0.890  0.37361   
## sp_ptbBMns915   4.164e-01  9.768e-01   0.426  0.66992   
## sp_ptbBMns916  -1.581e+00  1.038e+00  -1.523  0.12774   
## sp_ptbBMns917   4.578e-01  9.727e-01   0.471  0.63792   
## sp_ptbBMns918  -2.196e+00  1.108e+00  -1.981  0.04755 * 
## sp_ptbBMns919   2.720e-01  1.029e+00   0.264  0.79147   
## sp_ptbBMns920  -1.210e+00  1.064e+00  -1.137  0.25557   
## sp_ptbBMns921   1.558e-01  1.298e+00   0.120  0.90444   
## sp_ptbBMns922  -6.069e-01  1.109e+00  -0.547  0.58408   
## sp_ptbBMns923  -4.708e-01  1.237e+00  -0.381  0.70343   
## sp_ptbBMns924  -1.044e+00  1.166e+00  -0.896  0.37029   
## sp_ptbBMns925  -1.491e+00  1.269e+00  -1.174  0.24020   
## sp_ptbBMns926  -1.898e+00  1.161e+00  -1.635  0.10207   
## sp_ptbBMns927  -7.602e-01  1.131e+00  -0.672  0.50137   
## sp_ptbBMns928  -7.848e-01  9.480e-01  -0.828  0.40776   
## sp_ptbBMns929  -1.132e+00  1.068e+00  -1.059  0.28942   
## sp_ptbBMns930  -6.714e-01  1.079e+00  -0.622  0.53369   
## sp_ptbBMns931  -6.953e-03  9.434e-01  -0.007  0.99412   
## sp_ptbBMns932  -9.202e-01  8.492e-01  -1.084  0.27853   
## sp_ptbBMns933   7.944e-02  8.590e-01   0.092  0.92632   
## sp_ptbBMns934  -1.319e+00  9.606e-01  -1.374  0.16958   
## sp_ptbBMns935  -2.182e+00  1.197e+00  -1.823  0.06826 . 
## sp_ptbBMns936  -1.005e+00  1.138e+00  -0.883  0.37714   
## sp_ptbBMns937  -2.450e-01  8.848e-01  -0.277  0.78184   
## sp_ptbBMns938   4.370e-01  7.871e-01   0.555  0.57873   
## sp_ptbBMns939   9.309e-02  9.989e-01   0.093  0.92575   
## sp_ptbBMns940   4.986e-01  9.513e-01   0.524  0.60018   
## sp_ptbBMns941   4.877e-01  9.803e-01   0.497  0.61884   
## sp_ptbBMns942  -1.373e+00  1.242e+00  -1.105  0.26899   
## sp_ptbBMns943   2.138e-01  1.114e+00   0.192  0.84784   
## sp_ptbBMns944   3.524e-01  1.601e+00   0.220  0.82585   
## sp_ptbBMns945   2.121e-01  1.548e+00   0.137  0.89097   
## sp_ptbBMns946   1.555e+00  1.741e+00   0.894  0.37156   
## sp_ptbBMns947   1.745e+00  1.877e+00   0.930  0.35257   
## sp_ptbBMns948   9.474e-01  2.298e+00   0.412  0.68011   
## sp_ptbBMns949   1.997e+00  2.059e+00   0.970  0.33208   
## sp_ptbBMns950   7.548e-01  2.151e+00   0.351  0.72565   
## sp_ptbBMns951   9.072e-01  1.965e+00   0.462  0.64435   
## sp_ptbBMns952   6.559e-01  2.032e+00   0.323  0.74684   
## sp_ptbBMns953   9.378e-01  1.542e+00   0.608  0.54300   
## sp_ptbBMns954  -2.008e+00  1.488e+00  -1.350  0.17712   
## sp_ptbBMns955   1.637e+00  1.320e+00   1.241  0.21479   
## sp_ptbBMns956  -1.607e+00  1.185e+00  -1.356  0.17515   
## sp_ptbBMns957   9.999e-01  8.692e-01   1.150  0.24999   
## sp_ptbBMns958  -3.226e-01  8.655e-01  -0.373  0.70938   
## sp_ptbBMns959   4.903e-01  9.790e-01   0.501  0.61652   
## sp_ptbBMns960  -6.143e-01  8.926e-01  -0.688  0.49127   
## sp_ptbBMns961   5.691e-01  9.357e-01   0.608  0.54308   
## sp_ptbBMns962  -5.308e-01  1.025e+00  -0.518  0.60445   
## sp_ptbBMns963   1.071e+00  9.216e-01   1.162  0.24510   
## sp_ptbBMns964   1.630e-01  1.078e+00   0.151  0.87987   
## sp_ptbBMns965   3.014e-01  1.059e+00   0.285  0.77594   
## sp_ptbBMns966   1.496e+00  1.072e+00   1.395  0.16291   
## sp_ptbBMns967   2.613e-01  1.313e+00   0.199  0.84221   
## sp_ptbBMns968   8.579e-01  1.281e+00   0.670  0.50298   
## sp_ptbBMns969   7.239e-01  1.331e+00   0.544  0.58656   
## sp_ptbBMns970   3.697e-01  1.261e+00   0.293  0.76941   
## sp_ptbBMns971  -5.093e-01  1.291e+00  -0.395  0.69318   
## sp_ptbBMns972   6.460e-01  1.271e+00   0.508  0.61136   
## sp_ptbBMns973   3.225e-01  1.176e+00   0.274  0.78400   
## sp_ptbBMns974   5.431e-01  1.009e+00   0.538  0.59037   
## sp_ptbBMns975   7.678e-01  1.073e+00   0.716  0.47420   
## sp_ptbBMns976  -3.606e-01  9.639e-01  -0.374  0.70837   
## sp_ptbBMns977   1.916e-02  9.017e-01   0.021  0.98304   
## sp_ptbBMns978   9.441e-02  8.362e-01   0.113  0.91010   
## sp_ptbBMns979  -4.815e-01  8.446e-01  -0.570  0.56864   
## sp_ptbBMns980   1.305e-01  9.566e-01   0.136  0.89148   
## sp_ptbBMns981  -2.499e+00  1.045e+00  -2.391  0.01681 * 
## sp_ptbBMns982   1.168e+00  1.290e+00   0.905  0.36528   
## sp_ptbBMns983  -1.725e+00  1.395e+00  -1.237  0.21622   
## sp_ptbBMns984   1.176e+00  1.570e+00   0.749  0.45371   
## sp_ptbBMns985  -9.352e-01  1.426e+00  -0.656  0.51210   
## sp_ptbBMns986  -8.435e-01  1.381e+00  -0.611  0.54123   
## sp_ptbBMns987  -5.982e-01  1.349e+00  -0.444  0.65740   
## sp_ptbBMns988  -2.235e+00  1.428e+00  -1.564  0.11771   
## sp_ptbBMns989  -1.803e+00  1.352e+00  -1.334  0.18224   
## sp_ptbBMns990  -3.641e+00  1.542e+00  -2.362  0.01820 * 
## sp_ptbBMns991  -1.970e+00  1.151e+00  -1.712  0.08698 . 
## sp_ptbBMns992  -2.120e+00  1.081e+00  -1.961  0.04988 * 
## sp_ptbBMns993   5.083e-01  9.271e-01   0.548  0.58355   
## sp_ptbBMns994  -2.599e+00  1.049e+00  -2.478  0.01322 * 
## sp_ptbBMns995   2.309e+00  8.449e-01   2.733  0.00627 **
## sp_ptbBMns996  -1.987e+00  9.634e-01  -2.062  0.03917 * 
## sp_ptbBMns997   1.738e+00  9.027e-01   1.926  0.05413 . 
## sp_ptbBMns998  -1.001e+00  9.224e-01  -1.085  0.27793   
## sp_ptbBMns999   2.519e-01  8.924e-01   0.282  0.77774   
## sp_ptbBMns9100 -8.762e-02  9.798e-01  -0.089  0.92875   
## sp_ptbBMns9101  6.719e-02  9.709e-01   0.069  0.94483   
## sp_ptbBMns9102  1.102e-01  1.077e+00   0.102  0.91847   
## sp_ptbBMns9103  1.534e-01  1.004e+00   0.153  0.87856   
## sp_ptbBMns9104 -7.642e-01  1.007e+00  -0.759  0.44795   
## sp_ptbBMns9105  3.336e-01  1.032e+00   0.323  0.74636   
## sp_ptbBMns9106 -1.223e+00  1.032e+00  -1.185  0.23594   
## sp_ptbBMns9107 -5.118e-01  1.129e+00  -0.453  0.65021   
## sp_ptbBMns9108 -2.886e-01  1.158e+00  -0.249  0.80315   
## sp_ptbBMns9109 -1.160e+00  1.429e+00  -0.812  0.41684   
## sp_ptbBMns9110 -1.641e+00  1.491e+00  -1.100  0.27130   
## sp_ptbBMns9111  6.404e-01  1.515e+00   0.423  0.67247   
## sp_ptbBMns9112 -6.971e-02  1.538e+00  -0.045  0.96384   
## sp_ptbBMns9113 -1.308e+00  1.452e+00  -0.900  0.36791   
## sp_ptbBMns9114 -1.140e+00  1.502e+00  -0.759  0.44800   
## sp_ptbBMns9115 -3.139e+00  1.524e+00  -2.060  0.03942 * 
## sp_ptbBMns9116 -1.629e+00  1.560e+00  -1.044  0.29646   
## sp_ptbBMns9117 -2.156e+00  1.307e+00  -1.650  0.09899 . 
## sp_ptbBMns9118 -1.275e+00  1.089e+00  -1.171  0.24172   
## sp_ptbBMns9119  3.570e-02  1.162e+00   0.031  0.97550   
## sp_ptbBMns9120 -3.056e-01  1.288e+00  -0.237  0.81240   
## sp_ptbBMns9121  1.853e-01  1.365e+00   0.136  0.89206   
## sp_ptbBMns9122 -8.597e-01  1.373e+00  -0.626  0.53135   
## sp_ptbBMns9123 -6.787e-02  1.281e+00  -0.053  0.95774   
## sp_ptbBMns9124 -1.156e+00  1.338e+00  -0.864  0.38763   
## sp_ptbBMns9125 -5.926e-01  1.486e+00  -0.399  0.69015   
## sp_ptbBMns9126 -3.942e+00  1.539e+00  -2.561  0.01044 * 
## sp_ptbBMns9127 -1.201e+00  1.599e+00  -0.751  0.45253   
## sp_ptbBMns9128 -2.153e+00  1.548e+00  -1.391  0.16416   
## sp_ptbBMns9129  6.038e-01  1.552e+00   0.389  0.69734   
## sp_ptbBMns9130 -1.323e-01  1.832e+00  -0.072  0.94243   
## sp_ptbBMns9131 -3.575e-02  1.585e+00  -0.023  0.98201   
## sp_ptbBMns9132 -1.122e+00  1.752e+00  -0.640  0.52196   
## sp_ptbBMns9133 -1.742e+00  1.729e+00  -1.007  0.31387   
## sp_ptbBMns9134 -1.064e+00  1.800e+00  -0.591  0.55454   
## sp_ptbBMns9135 -2.712e+00  2.427e+00  -1.117  0.26386   
## sp_ptbBMns9136 -1.678e+00  3.415e+00  -0.491  0.62320   
## sp_ptbBMns9137 -3.883e+00  4.172e+00  -0.931  0.35197   
## sp_ptbBMns9138 -1.559e+00  4.844e+00  -0.322  0.74752   
## sp_ptbBMns9139 -3.329e+00  4.094e+00  -0.813  0.41604   
## sp_ptbBMns9140 -3.860e+00  4.495e+00  -0.859  0.39048   
## sp_ptbBMns9141 -6.182e+00  4.163e+00  -1.485  0.13755   
## sp_ptbBMns9142 -6.819e+00  4.278e+00  -1.594  0.11101   
## sp_ptbBMns9143 -8.999e+00  4.473e+00  -2.012  0.04425 * 
## sp_ptbBMns9144 -8.630e+00  4.023e+00  -2.145  0.03193 * 
## sp_ptbBMns9145 -6.349e+00  3.039e+00  -2.089  0.03667 * 
## sp_ptbBMns9146 -3.794e+00  2.131e+00  -1.780  0.07505 . 
## sp_ptbBMns9147 -1.382e+00  1.666e+00  -0.830  0.40667   
## sp_ptbBMns9148 -2.846e+00  1.553e+00  -1.833  0.06681 . 
## sp_ptbBMns9149 -2.840e-01  1.546e+00  -0.184  0.85422   
## sp_ptbBMns9150 -5.188e-01  1.267e+00  -0.409  0.68220   
## sp_ptbBMns9151 -2.734e+00  1.252e+00  -2.184  0.02898 * 
## sp_ptbBMns9152  5.867e-01  9.581e-01   0.612  0.54027   
## sp_ptbBMns9153 -2.225e+00  1.013e+00  -2.196  0.02806 * 
## sp_ptbBMns9154 -1.415e+00  9.996e-01  -1.416  0.15691   
## sp_ptbBMns9155 -2.294e-01  8.320e-01  -0.276  0.78274   
## sp_ptbBMns9156 -8.082e-01  8.680e-01  -0.931  0.35182   
## sp_ptbBMns9157  9.973e-01  6.755e-01   1.476  0.13983   
## sp_ptbBMns9158  1.821e-01  8.491e-01   0.215  0.83015   
## sp_ptbBMns9159  1.327e+00  6.846e-01   1.938  0.05267 . 
## sp_ptbBMns9160  1.173e-01  8.374e-01   0.140  0.88858   
## sp_ptbBMns9161         NA         NA      NA       NA   
## sp_ptbBMns9162         NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(28208.17) family taken to be 1)
## 
##     Null deviance: 1101.28  on 886  degrees of freedom
## Residual deviance:  878.09  on 725  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3236.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  28208 
##           Std. Err.:  152517 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2910.936
scatter.smooth(predict(SA4m9a, type='response'), rstandard(SA4m9a, type='deviance'), col='gray')

SA4m9a.resid<-residuals(SA4m9a, type="deviance")
SA4m9a.pred<-predict(SA4m9a, type="response")
length(SA4m9a.resid); length(SA4m9a.pred)
## [1] 939
## [1] 939
pacf(SA4m9a.resid,na.action=na.omit) #PACF for residuals, sig lags from 1-8,10,13,14,18,25

#ensure that the lags are dplyr lags
SA4m9a.ac<-update(SA4m9a,.~.+lag(SA4m9a.resid,1)+lag(SA4m9a.resid,2)+lag(SA4m9a.resid,3)+lag(SA4m9a.resid,4)+
                      lag(SA4m9a.resid,5)+lag(SA4m9a.resid,6)+lag(SA4m9a.resid,7)+lag(SA4m9a.resid,8)+
                      lag(SA4m9a.resid,10)+lag(SA4m9a.resid,13)+lag(SA4m9a.resid,14)+lag(SA4m9a.resid,18)+
                      lag(SA4m9a.resid,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(SA4m9a.ac)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb9.minT + sp_ptbBMns9 + lag(SA4m9a.resid, 
##     1) + lag(SA4m9a.resid, 2) + lag(SA4m9a.resid, 3) + lag(SA4m9a.resid, 
##     4) + lag(SA4m9a.resid, 5) + lag(SA4m9a.resid, 6) + lag(SA4m9a.resid, 
##     7) + lag(SA4m9a.resid, 8) + lag(SA4m9a.resid, 10) + lag(SA4m9a.resid, 
##     13) + lag(SA4m9a.resid, 14) + lag(SA4m9a.resid, 18) + lag(SA4m9a.resid, 
##     25), data = week, init.theta = 50176.13618, link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.89417  -0.59043  -0.04314   0.40785   2.49068  
## 
## Coefficients: (12 not defined because of singularities)
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -18.965817  12.708556  -1.492 0.135603    
## cb9.minTv1.l1           0.042698   0.298851   0.143 0.886389    
## cb9.minTv1.l2          -0.288251   0.229299  -1.257 0.208719    
## cb9.minTv2.l1           1.905932   1.092643   1.744 0.081101 .  
## cb9.minTv2.l2          -0.044162   0.818657  -0.054 0.956979    
## cb9.minTv3.l1           0.860358   0.615733   1.397 0.162326    
## cb9.minTv3.l2           0.911255   0.442281   2.060 0.039365 *  
## sp_ptbBMns91                  NA         NA      NA       NA    
## sp_ptbBMns92                  NA         NA      NA       NA    
## sp_ptbBMns93                  NA         NA      NA       NA    
## sp_ptbBMns94                  NA         NA      NA       NA    
## sp_ptbBMns95                  NA         NA      NA       NA    
## sp_ptbBMns96                  NA         NA      NA       NA    
## sp_ptbBMns97                  NA         NA      NA       NA    
## sp_ptbBMns98                  NA         NA      NA       NA    
## sp_ptbBMns99                  NA         NA      NA       NA    
## sp_ptbBMns910                 NA         NA      NA       NA    
## sp_ptbBMns911         -12.139619  38.451934  -0.316 0.752223    
## sp_ptbBMns912          -0.095244   4.272465  -0.022 0.982215    
## sp_ptbBMns913           0.142751   2.146700   0.066 0.946982    
## sp_ptbBMns914          -3.003779   1.264652  -2.375 0.017540 *  
## sp_ptbBMns915           1.954110   1.038886   1.881 0.059976 .  
## sp_ptbBMns916          -1.348720   1.125038  -1.199 0.230597    
## sp_ptbBMns917           1.316965   1.003265   1.313 0.189291    
## sp_ptbBMns918          -2.188746   1.107357  -1.977 0.048093 *  
## sp_ptbBMns919           1.862703   1.087029   1.714 0.086607 .  
## sp_ptbBMns920          -0.532542   1.112303  -0.479 0.632100    
## sp_ptbBMns921           0.544167   1.307031   0.416 0.677162    
## sp_ptbBMns922          -0.916649   1.187585  -0.772 0.440198    
## sp_ptbBMns923           0.237666   1.286771   0.185 0.853465    
## sp_ptbBMns924          -1.127065   1.184429  -0.952 0.341316    
## sp_ptbBMns925           1.166552   1.284726   0.908 0.363870    
## sp_ptbBMns926          -3.694087   1.263925  -2.923 0.003470 ** 
## sp_ptbBMns927           2.117403   1.214657   1.743 0.081297 .  
## sp_ptbBMns928          -1.960419   0.969161  -2.023 0.043094 *  
## sp_ptbBMns929           0.852930   1.119696   0.762 0.446208    
## sp_ptbBMns930          -1.567511   1.060637  -1.478 0.139436    
## sp_ptbBMns931           1.054600   1.018302   1.036 0.300367    
## sp_ptbBMns932          -1.050034   0.897846  -1.170 0.242201    
## sp_ptbBMns933          -0.102382   0.905134  -0.113 0.909942    
## sp_ptbBMns934           0.128282   1.059257   0.121 0.903608    
## sp_ptbBMns935          -3.476481   1.178678  -2.949 0.003183 ** 
## sp_ptbBMns936          -0.507711   1.196145  -0.424 0.671233    
## sp_ptbBMns937          -1.183904   0.882711  -1.341 0.179851    
## sp_ptbBMns938           0.931726   0.792605   1.176 0.239785    
## sp_ptbBMns939          -1.026507   1.060667  -0.968 0.333148    
## sp_ptbBMns940          -0.331469   0.988090  -0.335 0.737275    
## sp_ptbBMns941           0.135412   0.974829   0.139 0.889522    
## sp_ptbBMns942          -1.604744   1.256092  -1.278 0.201401    
## sp_ptbBMns943           0.253156   1.177200   0.215 0.829729    
## sp_ptbBMns944           1.334617   1.634664   0.816 0.414244    
## sp_ptbBMns945           0.545096   1.605266   0.340 0.734183    
## sp_ptbBMns946           1.512614   1.783403   0.848 0.396348    
## sp_ptbBMns947           3.092383   1.968043   1.571 0.116113    
## sp_ptbBMns948          -0.379744   2.415499  -0.157 0.875078    
## sp_ptbBMns949           2.466945   2.161419   1.141 0.253722    
## sp_ptbBMns950           0.280503   2.221561   0.126 0.899523    
## sp_ptbBMns951           1.264298   2.053637   0.616 0.538133    
## sp_ptbBMns952          -0.648296   2.134739  -0.304 0.761365    
## sp_ptbBMns953           0.960630   1.589996   0.604 0.545730    
## sp_ptbBMns954          -3.419690   1.622771  -2.107 0.035090 *  
## sp_ptbBMns955           1.153917   1.370019   0.842 0.399641    
## sp_ptbBMns956          -2.657094   1.178899  -2.254 0.024204 *  
## sp_ptbBMns957           0.286405   0.876754   0.327 0.743921    
## sp_ptbBMns958          -1.514465   0.926053  -1.635 0.101966    
## sp_ptbBMns959          -0.059577   1.066805  -0.056 0.955465    
## sp_ptbBMns960          -1.991878   0.919092  -2.167 0.030218 *  
## sp_ptbBMns961           0.542858   0.954292   0.569 0.569452    
## sp_ptbBMns962          -2.499885   1.047187  -2.387 0.016975 *  
## sp_ptbBMns963           0.639583   0.943612   0.678 0.497897    
## sp_ptbBMns964           0.001834   1.103583   0.002 0.998674    
## sp_ptbBMns965          -0.503167   1.070545  -0.470 0.638348    
## sp_ptbBMns966           0.704757   1.135823   0.620 0.534941    
## sp_ptbBMns967           0.377396   1.369631   0.276 0.782897    
## sp_ptbBMns968          -0.861183   1.320640  -0.652 0.514340    
## sp_ptbBMns969           1.444518   1.357815   1.064 0.287394    
## sp_ptbBMns970          -1.621899   1.267203  -1.280 0.200578    
## sp_ptbBMns971          -0.887922   1.350725  -0.657 0.510945    
## sp_ptbBMns972          -0.987549   1.322830  -0.747 0.455339    
## sp_ptbBMns973           0.433134   1.198431   0.361 0.717787    
## sp_ptbBMns974          -0.771728   1.016786  -0.759 0.447860    
## sp_ptbBMns975           0.089725   1.073516   0.084 0.933390    
## sp_ptbBMns976          -0.830278   1.017195  -0.816 0.414361    
## sp_ptbBMns977          -0.305876   0.949635  -0.322 0.747378    
## sp_ptbBMns978          -0.556447   0.804544  -0.692 0.489169    
## sp_ptbBMns979          -0.642455   0.881464  -0.729 0.466094    
## sp_ptbBMns980           0.148225   0.980678   0.151 0.879861    
## sp_ptbBMns981          -1.522755   1.084676  -1.404 0.160355    
## sp_ptbBMns982           2.006476   1.329212   1.510 0.131165    
## sp_ptbBMns983           0.764143   1.422705   0.537 0.591195    
## sp_ptbBMns984           1.658282   1.599535   1.037 0.299863    
## sp_ptbBMns985           1.324173   1.459628   0.907 0.364302    
## sp_ptbBMns986           0.451127   1.428831   0.316 0.752206    
## sp_ptbBMns987           0.485149   1.396997   0.347 0.728381    
## sp_ptbBMns988          -0.681164   1.454214  -0.468 0.639494    
## sp_ptbBMns989          -0.531261   1.359753  -0.391 0.696016    
## sp_ptbBMns990          -2.815512   1.614774  -1.744 0.081230 .  
## sp_ptbBMns991          -1.025986   1.208953  -0.849 0.396073    
## sp_ptbBMns992          -2.207810   1.091183  -2.023 0.043040 *  
## sp_ptbBMns993          -0.434673   0.981833  -0.443 0.657972    
## sp_ptbBMns994          -2.547986   0.954278  -2.670 0.007584 ** 
## sp_ptbBMns995           1.139960   0.891821   1.278 0.201166    
## sp_ptbBMns996          -2.639737   1.096995  -2.406 0.016113 *  
## sp_ptbBMns997          -0.292164   0.966719  -0.302 0.762482    
## sp_ptbBMns998           0.108307   0.964658   0.112 0.910606    
## sp_ptbBMns999          -2.540814   0.902000  -2.817 0.004849 ** 
## sp_ptbBMns9100          2.085444   1.002867   2.079 0.037573 *  
## sp_ptbBMns9101         -0.571993   1.000249  -0.572 0.567423    
## sp_ptbBMns9102          2.343383   1.103835   2.123 0.033758 *  
## sp_ptbBMns9103         -0.913958   1.083503  -0.844 0.398937    
## sp_ptbBMns9104          0.233789   1.063532   0.220 0.826009    
## sp_ptbBMns9105         -0.713628   1.063137  -0.671 0.502063    
## sp_ptbBMns9106          1.510566   1.050858   1.437 0.150587    
## sp_ptbBMns9107         -4.216047   1.188696  -3.547 0.000390 ***
## sp_ptbBMns9108          2.922010   1.217595   2.400 0.016403 *  
## sp_ptbBMns9109         -2.121077   1.421578  -1.492 0.135684    
## sp_ptbBMns9110          0.740314   1.581911   0.468 0.639794    
## sp_ptbBMns9111          1.601086   1.559169   1.027 0.304475    
## sp_ptbBMns9112          1.799927   1.578597   1.140 0.254200    
## sp_ptbBMns9113          0.921874   1.521454   0.606 0.544570    
## sp_ptbBMns9114         -0.750635   1.543590  -0.486 0.626760    
## sp_ptbBMns9115         -1.347845   1.567854  -0.860 0.389968    
## sp_ptbBMns9116         -2.004590   1.587654  -1.263 0.206729    
## sp_ptbBMns9117          0.381224   1.317644   0.289 0.772335    
## sp_ptbBMns9118         -0.653738   1.140032  -0.573 0.566348    
## sp_ptbBMns9119          2.482485   1.209847   2.052 0.040179 *  
## sp_ptbBMns9120          0.747926   1.337580   0.559 0.576050    
## sp_ptbBMns9121          2.407968   1.376327   1.750 0.080194 .  
## sp_ptbBMns9122         -1.590661   1.440266  -1.104 0.269410    
## sp_ptbBMns9123          3.216113   1.334470   2.410 0.015951 *  
## sp_ptbBMns9124         -1.020322   1.437827  -0.710 0.477935    
## sp_ptbBMns9125          1.049062   1.590923   0.659 0.509636    
## sp_ptbBMns9126         -5.324582   1.566639  -3.399 0.000677 ***
## sp_ptbBMns9127          2.065843   1.650372   1.252 0.210663    
## sp_ptbBMns9128         -1.966180   1.576272  -1.247 0.212265    
## sp_ptbBMns9129          4.317141   1.596894   2.703 0.006862 ** 
## sp_ptbBMns9130          1.263012   1.894213   0.667 0.504917    
## sp_ptbBMns9131          1.947628   1.642833   1.186 0.235808    
## sp_ptbBMns9132          0.924659   1.853327   0.499 0.617837    
## sp_ptbBMns9133         -0.899619   1.765313  -0.510 0.610326    
## sp_ptbBMns9134          0.730431   1.848765   0.395 0.692775    
## sp_ptbBMns9135          0.450162   2.488523   0.181 0.856450    
## sp_ptbBMns9136          1.481120   3.466953   0.427 0.669226    
## sp_ptbBMns9137         -1.976795   4.094256  -0.483 0.629222    
## sp_ptbBMns9138          1.870856   4.903506   0.382 0.702807    
## sp_ptbBMns9139         -0.411540   4.120826  -0.100 0.920449    
## sp_ptbBMns9140         -0.134206   4.523789  -0.030 0.976333    
## sp_ptbBMns9141         -4.116837   4.203150  -0.979 0.327350    
## sp_ptbBMns9142         -5.180346   4.324920  -1.198 0.230999    
## sp_ptbBMns9143         -7.707475   4.568402  -1.687 0.091579 .  
## sp_ptbBMns9144         -9.155379   4.097944  -2.234 0.025474 *  
## sp_ptbBMns9145         -5.937373   3.131043  -1.896 0.057921 .  
## sp_ptbBMns9146         -3.749743   2.177761  -1.722 0.085100 .  
## sp_ptbBMns9147          0.902221   1.681791   0.536 0.591638    
## sp_ptbBMns9148         -2.081104   1.662726  -1.252 0.210708    
## sp_ptbBMns9149          1.735947   1.605857   1.081 0.279693    
## sp_ptbBMns9150          1.199533   1.289328   0.930 0.352187    
## sp_ptbBMns9151         -0.408581   1.293483  -0.316 0.752096    
## sp_ptbBMns9152          0.816103   0.984190   0.829 0.406984    
## sp_ptbBMns9153         -0.077527   1.049670  -0.074 0.941123    
## sp_ptbBMns9154         -3.002558   0.996590  -3.013 0.002588 ** 
## sp_ptbBMns9155          0.335386   0.885869   0.379 0.704988    
## sp_ptbBMns9156         -1.641902   0.891910  -1.841 0.065639 .  
## sp_ptbBMns9157          0.804385   0.669970   1.201 0.229895    
## sp_ptbBMns9158          0.076465   0.861543   0.089 0.929278    
## sp_ptbBMns9159          0.534181   0.685612   0.779 0.435903    
## sp_ptbBMns9160          1.123958   0.897474   1.252 0.210440    
## sp_ptbBMns9161                NA         NA      NA       NA    
## sp_ptbBMns9162                NA         NA      NA       NA    
## lag(SA4m9a.resid, 1)   -0.553774   0.034096 -16.242  < 2e-16 ***
## lag(SA4m9a.resid, 2)   -0.619100   0.040761 -15.189  < 2e-16 ***
## lag(SA4m9a.resid, 3)   -0.719466   0.045209 -15.914  < 2e-16 ***
## lag(SA4m9a.resid, 4)   -0.682643   0.047927 -14.243  < 2e-16 ***
## lag(SA4m9a.resid, 5)   -0.609254   0.046681 -13.051  < 2e-16 ***
## lag(SA4m9a.resid, 6)   -0.475135   0.043667 -10.881  < 2e-16 ***
## lag(SA4m9a.resid, 7)   -0.340978   0.038294  -8.904  < 2e-16 ***
## lag(SA4m9a.resid, 8)   -0.213168   0.032166  -6.627 3.42e-11 ***
## lag(SA4m9a.resid, 10)  -0.019507   0.026333  -0.741 0.458832    
## lag(SA4m9a.resid, 13)   0.065844   0.026789   2.458 0.013977 *  
## lag(SA4m9a.resid, 14)   0.053737   0.026590   2.021 0.043287 *  
## lag(SA4m9a.resid, 18)  -0.055298   0.025182  -2.196 0.028097 *  
## lag(SA4m9a.resid, 25)  -0.026175   0.025086  -1.043 0.296756    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(50176.14) family taken to be 1)
## 
##     Null deviance: 1055.03  on 861  degrees of freedom
## Residual deviance:  468.22  on 692  degrees of freedom
##   (77 observations deleted due to missingness)
## AIC: 2792.1
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  50176 
##           Std. Err.:  188217 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2450.144
SA4m9a.resid_ac<-residuals(SA4m9a.ac, type="deviance")
SA4m9a.pred_ac<-predict(SA4m9a.ac, type="response")

pacf(SA4m9a.resid_ac,na.action = na.omit) 

length(SA4m9a.pred_ac); length(SA4m9a.resid_ac)
## [1] 939
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA4m9a.pred,lwd=1, col="blue")

plot(week$time,SA4m9a.resid)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA4m9a.pred, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,SA4m9a.pred_ac,lwd=1, col="blue")

plot(week$time,SA4m9a.resid_ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(SA4m9a.pred_ac, week$ptbBM)
abline(coef = c(0,1), col="red")

#plotting the dose response and slices
pred.SA4m9a <- crosspred(cb9.minT, SA4m9a.ac, cen = 24.0, by=0.1,cumul=TRUE)




###final SA #4 model   #####
mod_fullSA4bm<-glm.nb(ptbBM ~ cb3.RF + cb9.minT + cb5.minRH + cb2.sun + cb1.avgWindSp + sp_ptbBMns9, data = week)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(mod_fullSA4bm)
## 
## Call:
## glm.nb(formula = ptbBM ~ cb3.RF + cb9.minT + cb5.minRH + cb2.sun + 
##     cb1.avgWindSp + sp_ptbBMns9, data = week, init.theta = 30471.03757, 
##     link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.84821  -0.76844  -0.08142   0.57790   2.24418  
## 
## Coefficients: (7 not defined because of singularities)
##                      Estimate Std. Error z value Pr(>|z|)   
## (Intercept)        -3.296e+00  2.277e+01  -0.145  0.88492   
## cb3.RFv1.l1        -1.526e-01  3.231e-01  -0.472  0.63685   
## cb3.RFv1.l2         2.368e-01  2.426e-01   0.976  0.32902   
## cb3.RFv2.l1        -5.855e-02  5.217e-01  -0.112  0.91065   
## cb3.RFv2.l2         4.336e-03  3.970e-01   0.011  0.99128   
## cb3.RFv3.l1         1.188e-01  8.125e-01   0.146  0.88373   
## cb3.RFv3.l2        -4.948e-01  6.404e-01  -0.773  0.43975   
## cb9.minTv1.l1      -1.073e-01  3.231e-01  -0.332  0.73989   
## cb9.minTv1.l2      -1.151e-01  2.549e-01  -0.452  0.65162   
## cb9.minTv2.l1       3.301e-01  1.109e+00   0.298  0.76590   
## cb9.minTv2.l2      -3.867e-01  8.821e-01  -0.438  0.66111   
## cb9.minTv3.l1       6.390e-01  6.557e-01   0.975  0.32978   
## cb9.minTv3.l2       7.947e-01  4.764e-01   1.668  0.09525 . 
## cb5.minRHv1.l1      1.693e-01  3.328e-01   0.509  0.61101   
## cb5.minRHv1.l2      8.210e-02  2.197e-01   0.374  0.70871   
## cb5.minRHv2.l1     -1.611e+00  1.103e+00  -1.460  0.14424   
## cb5.minRHv2.l2     -7.693e-02  8.404e-01  -0.092  0.92706   
## cb5.minRHv3.l1     -9.266e-01  7.715e-01  -1.201  0.22973   
## cb5.minRHv3.l2     -3.750e-01  6.183e-01  -0.607  0.54416   
## cb2.sunv1.l1        1.395e-01  2.631e-01   0.530  0.59596   
## cb2.sunv1.l2        8.456e-03  1.849e-01   0.046  0.96353   
## cb2.sunv2.l1        1.194e+00  1.046e+00   1.142  0.25355   
## cb2.sunv2.l2        1.158e+00  7.252e-01   1.596  0.11044   
## cb2.sunv3.l1        4.705e-01  4.074e-01   1.155  0.24810   
## cb2.sunv3.l2        6.325e-01  2.769e-01   2.284  0.02236 * 
## cb1.avgWindSpv1.l1  3.798e-01  3.614e-01   1.051  0.29335   
## cb1.avgWindSpv1.l2  6.282e-01  2.638e-01   2.381  0.01727 * 
## cb1.avgWindSpv2.l1  6.302e-01  8.362e-01   0.754  0.45105   
## cb1.avgWindSpv2.l2  6.530e-01  6.004e-01   1.088  0.27670   
## cb1.avgWindSpv3.l1  1.164e-01  1.000e+00   0.116  0.90738   
## cb1.avgWindSpv3.l2 -1.082e-01  6.439e-01  -0.168  0.86650   
## sp_ptbBMns91               NA         NA      NA       NA   
## sp_ptbBMns92               NA         NA      NA       NA   
## sp_ptbBMns93               NA         NA      NA       NA   
## sp_ptbBMns94               NA         NA      NA       NA   
## sp_ptbBMns95               NA         NA      NA       NA   
## sp_ptbBMns96       -2.607e+06  1.318e+06  -1.979  0.04787 * 
## sp_ptbBMns97        4.081e+01  1.621e+01   2.517  0.01183 * 
## sp_ptbBMns98       -9.407e+00  3.112e+00  -3.023  0.00251 **
## sp_ptbBMns99       -4.761e-01  2.611e+00  -0.182  0.85532   
## sp_ptbBMns910      -4.725e+00  2.684e+00  -1.760  0.07838 . 
## sp_ptbBMns911      -2.241e+00  2.599e+00  -0.862  0.38854   
## sp_ptbBMns912      -2.697e+00  2.311e+00  -1.167  0.24309   
## sp_ptbBMns913      -4.508e+00  2.324e+00  -1.940  0.05238 . 
## sp_ptbBMns914      -3.318e+00  2.131e+00  -1.557  0.11941   
## sp_ptbBMns915      -1.550e+00  2.055e+00  -0.754  0.45074   
## sp_ptbBMns916      -4.129e+00  1.993e+00  -2.072  0.03828 * 
## sp_ptbBMns917      -1.512e+00  2.291e+00  -0.660  0.50935   
## sp_ptbBMns918      -4.185e+00  1.977e+00  -2.117  0.03425 * 
## sp_ptbBMns919      -1.410e+00  1.945e+00  -0.725  0.46850   
## sp_ptbBMns920      -1.282e+00  1.836e+00  -0.698  0.48499   
## sp_ptbBMns921      -2.880e-01  2.032e+00  -0.142  0.88728   
## sp_ptbBMns922      -1.834e+00  1.747e+00  -1.050  0.29384   
## sp_ptbBMns923      -7.884e-01  1.813e+00  -0.435  0.66374   
## sp_ptbBMns924      -1.505e+00  1.735e+00  -0.867  0.38576   
## sp_ptbBMns925      -2.328e+00  1.779e+00  -1.309  0.19061   
## sp_ptbBMns926      -3.133e+00  1.843e+00  -1.700  0.08913 . 
## sp_ptbBMns927      -1.087e+00  2.003e+00  -0.543  0.58727   
## sp_ptbBMns928      -2.283e+00  2.004e+00  -1.139  0.25452   
## sp_ptbBMns929      -2.910e+00  1.861e+00  -1.564  0.11792   
## sp_ptbBMns930      -2.785e+00  1.798e+00  -1.549  0.12135   
## sp_ptbBMns931      -2.857e+00  1.659e+00  -1.722  0.08501 . 
## sp_ptbBMns932      -2.949e+00  1.445e+00  -2.040  0.04132 * 
## sp_ptbBMns933      -1.799e+00  1.476e+00  -1.219  0.22273   
## sp_ptbBMns934      -3.365e+00  1.617e+00  -2.080  0.03749 * 
## sp_ptbBMns935      -4.536e+00  1.857e+00  -2.443  0.01456 * 
## sp_ptbBMns936      -2.562e+00  1.801e+00  -1.422  0.15489   
## sp_ptbBMns937      -1.352e+00  2.013e+00  -0.672  0.50165   
## sp_ptbBMns938      -1.889e+00  1.782e+00  -1.060  0.28923   
## sp_ptbBMns939      -1.968e+00  1.870e+00  -1.052  0.29270   
## sp_ptbBMns940      -1.861e+00  1.841e+00  -1.011  0.31212   
## sp_ptbBMns941      -2.441e+00  1.984e+00  -1.230  0.21866   
## sp_ptbBMns942      -3.518e+00  2.143e+00  -1.642  0.10062   
## sp_ptbBMns943      -1.427e+00  2.036e+00  -0.701  0.48355   
## sp_ptbBMns944      -1.660e+00  2.500e+00  -0.664  0.50665   
## sp_ptbBMns945      -5.579e-01  2.492e+00  -0.224  0.82289   
## sp_ptbBMns946       1.588e+00  2.806e+00   0.566  0.57141   
## sp_ptbBMns947       1.311e+00  2.804e+00   0.467  0.64019   
## sp_ptbBMns948      -9.557e-01  3.079e+00  -0.310  0.75624   
## sp_ptbBMns949      -6.422e-01  2.809e+00  -0.229  0.81914   
## sp_ptbBMns950      -1.111e+00  2.979e+00  -0.373  0.70934   
## sp_ptbBMns951      -2.009e+00  2.766e+00  -0.726  0.46765   
## sp_ptbBMns952      -1.483e+00  2.812e+00  -0.527  0.59797   
## sp_ptbBMns953      -2.175e+00  2.518e+00  -0.864  0.38781   
## sp_ptbBMns954      -4.587e+00  2.494e+00  -1.839  0.06588 . 
## sp_ptbBMns955      -7.911e-01  2.290e+00  -0.345  0.72978   
## sp_ptbBMns956      -4.476e+00  2.381e+00  -1.880  0.06011 . 
## sp_ptbBMns957      -7.836e-01  2.123e+00  -0.369  0.71211   
## sp_ptbBMns958      -2.941e+00  2.189e+00  -1.344  0.17903   
## sp_ptbBMns959      -2.207e+00  2.181e+00  -1.012  0.31155   
## sp_ptbBMns960      -3.449e+00  2.268e+00  -1.521  0.12827   
## sp_ptbBMns961      -2.784e+00  2.313e+00  -1.204  0.22871   
## sp_ptbBMns962      -3.475e+00  2.438e+00  -1.425  0.15405   
## sp_ptbBMns963      -2.666e+00  2.501e+00  -1.066  0.28645   
## sp_ptbBMns964      -3.202e+00  2.489e+00  -1.286  0.19832   
## sp_ptbBMns965      -3.153e+00  2.207e+00  -1.429  0.15298   
## sp_ptbBMns966      -2.085e+00  2.261e+00  -0.922  0.35636   
## sp_ptbBMns967      -3.432e+00  2.229e+00  -1.539  0.12370   
## sp_ptbBMns968      -2.118e+00  2.087e+00  -1.015  0.31021   
## sp_ptbBMns969      -2.244e+00  2.118e+00  -1.060  0.28923   
## sp_ptbBMns970      -1.818e+00  1.988e+00  -0.914  0.36057   
## sp_ptbBMns971      -1.554e+00  1.971e+00  -0.789  0.43029   
## sp_ptbBMns972      -1.955e+00  2.332e+00  -0.838  0.40185   
## sp_ptbBMns973      -1.829e+00  2.127e+00  -0.860  0.38977   
## sp_ptbBMns974      -1.330e+00  1.964e+00  -0.677  0.49836   
## sp_ptbBMns975      -1.689e+00  1.855e+00  -0.910  0.36258   
## sp_ptbBMns976      -3.066e+00  1.767e+00  -1.735  0.08269 . 
## sp_ptbBMns977      -3.148e+00  1.913e+00  -1.646  0.09982 . 
## sp_ptbBMns978      -1.719e+00  1.822e+00  -0.944  0.34541   
## sp_ptbBMns979      -2.029e+00  1.776e+00  -1.143  0.25324   
## sp_ptbBMns980      -4.471e-01  2.115e+00  -0.211  0.83259   
## sp_ptbBMns981      -4.447e+00  2.288e+00  -1.943  0.05197 . 
## sp_ptbBMns982      -1.022e+00  2.720e+00  -0.376  0.70707   
## sp_ptbBMns983      -3.070e+00  2.772e+00  -1.107  0.26808   
## sp_ptbBMns984      -7.179e-01  2.889e+00  -0.248  0.80375   
## sp_ptbBMns985      -3.352e+00  2.832e+00  -1.184  0.23646   
## sp_ptbBMns986      -3.731e+00  2.876e+00  -1.297  0.19457   
## sp_ptbBMns987      -3.404e+00  2.791e+00  -1.220  0.22253   
## sp_ptbBMns988      -5.656e+00  2.971e+00  -1.904  0.05692 . 
## sp_ptbBMns989      -4.229e+00  2.913e+00  -1.452  0.14659   
## sp_ptbBMns990      -8.505e+00  2.855e+00  -2.979  0.00289 **
## sp_ptbBMns991      -5.170e+00  2.710e+00  -1.908  0.05641 . 
## sp_ptbBMns992      -5.355e+00  2.547e+00  -2.103  0.03549 * 
## sp_ptbBMns993      -2.310e+00  2.363e+00  -0.977  0.32838   
## sp_ptbBMns994      -5.370e+00  2.386e+00  -2.251  0.02441 * 
## sp_ptbBMns995      -5.531e-01  2.220e+00  -0.249  0.80321   
## sp_ptbBMns996      -4.336e+00  2.235e+00  -1.940  0.05239 . 
## sp_ptbBMns997      -2.721e-01  2.239e+00  -0.122  0.90329   
## sp_ptbBMns998      -2.522e+00  2.261e+00  -1.115  0.26465   
## sp_ptbBMns999      -2.125e+00  2.337e+00  -0.909  0.36327   
## sp_ptbBMns9100     -2.159e+00  2.550e+00  -0.846  0.39730   
## sp_ptbBMns9101     -1.914e+00  2.446e+00  -0.782  0.43398   
## sp_ptbBMns9102     -2.132e+00  2.496e+00  -0.854  0.39298   
## sp_ptbBMns9103     -2.728e+00  2.433e+00  -1.122  0.26206   
## sp_ptbBMns9104     -4.218e+00  2.548e+00  -1.655  0.09788 . 
## sp_ptbBMns9105     -3.481e+00  2.410e+00  -1.444  0.14864   
## sp_ptbBMns9106     -4.828e+00  2.372e+00  -2.036  0.04179 * 
## sp_ptbBMns9107     -3.614e+00  2.361e+00  -1.531  0.12586   
## sp_ptbBMns9108     -3.663e+00  2.621e+00  -1.397  0.16227   
## sp_ptbBMns9109     -4.746e+00  2.860e+00  -1.659  0.09707 . 
## sp_ptbBMns9110     -5.442e+00  2.955e+00  -1.842  0.06552 . 
## sp_ptbBMns9111     -3.618e+00  2.844e+00  -1.272  0.20331   
## sp_ptbBMns9112     -3.503e+00  2.765e+00  -1.267  0.20526   
## sp_ptbBMns9113     -4.843e+00  2.634e+00  -1.839  0.06591 . 
## sp_ptbBMns9114     -4.993e+00  2.781e+00  -1.795  0.07260 . 
## sp_ptbBMns9115     -7.199e+00  2.746e+00  -2.621  0.00876 **
## sp_ptbBMns9116     -5.326e+00  2.886e+00  -1.845  0.06500 . 
## sp_ptbBMns9117     -5.769e+00  2.888e+00  -1.998  0.04575 * 
## sp_ptbBMns9118     -4.099e+00  2.951e+00  -1.389  0.16482   
## sp_ptbBMns9119     -2.362e+00  2.785e+00  -0.848  0.39638   
## sp_ptbBMns9120     -2.275e+00  2.893e+00  -0.787  0.43157   
## sp_ptbBMns9121     -1.895e+00  2.704e+00  -0.701  0.48338   
## sp_ptbBMns9122     -3.191e+00  2.797e+00  -1.141  0.25381   
## sp_ptbBMns9123     -1.619e+00  2.736e+00  -0.592  0.55400   
## sp_ptbBMns9124     -2.966e+00  2.844e+00  -1.043  0.29702   
## sp_ptbBMns9125     -1.214e+00  3.040e+00  -0.399  0.68978   
## sp_ptbBMns9126     -6.804e+00  3.172e+00  -2.145  0.03195 * 
## sp_ptbBMns9127     -3.985e+00  3.243e+00  -1.229  0.21921   
## sp_ptbBMns9128     -5.199e+00  3.262e+00  -1.594  0.11104   
## sp_ptbBMns9129     -1.852e+00  3.212e+00  -0.577  0.56413   
## sp_ptbBMns9130     -3.431e+00  3.177e+00  -1.080  0.28021   
## sp_ptbBMns9131     -3.524e+00  2.850e+00  -1.237  0.21621   
## sp_ptbBMns9132     -4.968e+00  2.843e+00  -1.747  0.08057 . 
## sp_ptbBMns9133     -5.264e+00  2.697e+00  -1.951  0.05100 . 
## sp_ptbBMns9134     -3.982e+00  2.667e+00  -1.493  0.13543   
## sp_ptbBMns9135     -5.507e+00  3.192e+00  -1.725  0.08449 . 
## sp_ptbBMns9136     -4.394e+00  4.297e+00  -1.023  0.30651   
## sp_ptbBMns9137     -5.360e+00  4.725e+00  -1.135  0.25658   
## sp_ptbBMns9138     -2.379e+00  5.385e+00  -0.442  0.65871   
## sp_ptbBMns9139     -4.822e+00  4.569e+00  -1.055  0.29128   
## sp_ptbBMns9140     -5.513e+00  5.026e+00  -1.097  0.27269   
## sp_ptbBMns9141     -9.182e+00  4.738e+00  -1.938  0.05261 . 
## sp_ptbBMns9142     -9.504e+00  4.961e+00  -1.916  0.05538 . 
## sp_ptbBMns9143     -1.295e+01  5.168e+00  -2.506  0.01220 * 
## sp_ptbBMns9144     -1.076e+01  4.612e+00  -2.332  0.01968 * 
## sp_ptbBMns9145     -7.512e+00  3.759e+00  -1.998  0.04568 * 
## sp_ptbBMns9146     -4.764e+00  2.728e+00  -1.747  0.08072 . 
## sp_ptbBMns9147     -2.760e-01  2.217e+00  -0.125  0.90092   
## sp_ptbBMns9148     -4.058e+00  2.106e+00  -1.927  0.05396 . 
## sp_ptbBMns9149     -1.006e-01  1.936e+00  -0.052  0.95856   
## sp_ptbBMns9150     -1.046e+00  1.767e+00  -0.592  0.55366   
## sp_ptbBMns9151     -2.844e+00  1.654e+00  -1.719  0.08556 . 
## sp_ptbBMns9152      4.884e-01  1.473e+00   0.332  0.74018   
## sp_ptbBMns9153     -2.468e+00  1.560e+00  -1.582  0.11364   
## sp_ptbBMns9154     -1.870e+00  1.734e+00  -1.079  0.28072   
## sp_ptbBMns9155     -6.397e-01  1.427e+00  -0.448  0.65397   
## sp_ptbBMns9156     -1.179e+00  1.449e+00  -0.814  0.41586   
## sp_ptbBMns9157      5.553e-01  1.062e+00   0.523  0.60110   
## sp_ptbBMns9158     -4.888e-01  1.190e+00  -0.411  0.68132   
## sp_ptbBMns9159      1.231e+00  8.676e-01   1.419  0.15588   
## sp_ptbBMns9160      1.066e+00  9.675e-01   1.102  0.27060   
## sp_ptbBMns9161             NA         NA      NA       NA   
## sp_ptbBMns9162             NA         NA      NA       NA   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(30471.04) family taken to be 1)
## 
##     Null deviance: 1101.29  on 886  degrees of freedom
## Residual deviance:  855.84  on 701  degrees of freedom
##   (52 observations deleted due to missingness)
## AIC: 3262.7
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  30471 
##           Std. Err.:  155130 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2888.682
pred.fullbm<-predict(mod_fullSA4bm, type="response") #fitted
resid.fullbm<-residuals(mod_fullSA4bm, type="deviance") #residuals deviance

length(pred.fullbm)
## [1] 939
length(week$ptbBM)
## [1] 939
length(resid.fullbm)
## [1] 939
pacf(resid.fullbm,na.action=na.omit) #PACF for residuals, sig lags from 1-8, 13,14,18,25

#ensure that the lags are dplyr lags
mod_fullSA4bm.ac<-update(mod_fullSA4bm,.~.+lag(resid.fullbm,1)+lag(resid.fullbm,2)+lag(resid.fullbm,3)+lag(resid.fullbm,4)+
                             lag(resid.fullbm,5)+lag(resid.fullbm,6)+lag(resid.fullbm,7)+lag(resid.fullbm,8)+
                             lag(resid.fullbm,13)+lag(resid.fullbm,14)+lag(resid.fullbm,18)+lag(resid.fullbm,25))
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
summary(mod_fullSA4bm.ac)##aic=3045
## 
## Call:
## glm.nb(formula = ptbBM ~ cb3.RF + cb9.minT + cb5.minRH + cb2.sun + 
##     cb1.avgWindSp + sp_ptbBMns9 + lag(resid.fullbm, 1) + lag(resid.fullbm, 
##     2) + lag(resid.fullbm, 3) + lag(resid.fullbm, 4) + lag(resid.fullbm, 
##     5) + lag(resid.fullbm, 6) + lag(resid.fullbm, 7) + lag(resid.fullbm, 
##     8) + lag(resid.fullbm, 13) + lag(resid.fullbm, 14) + lag(resid.fullbm, 
##     18) + lag(resid.fullbm, 25), data = week, init.theta = 50488.68859, 
##     link = log)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.87885  -0.57786  -0.05941   0.38893   2.46344  
## 
## Coefficients: (12 not defined because of singularities)
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)           -11.30911   24.25267  -0.466  0.64100    
## cb3.RFv1.l1            -0.19657    0.34504  -0.570  0.56887    
## cb3.RFv1.l2             0.05467    0.25616   0.213  0.83100    
## cb3.RFv2.l1            -0.73378    0.55307  -1.327  0.18460    
## cb3.RFv2.l2             0.11113    0.42444   0.262  0.79345    
## cb3.RFv3.l1            -0.17843    0.87425  -0.204  0.83827    
## cb3.RFv3.l2            -0.32989    0.68874  -0.479  0.63196    
## cb9.minTv1.l1          -0.29060    0.33158  -0.876  0.38080    
## cb9.minTv1.l2          -0.57532    0.26733  -2.152  0.03139 *  
## cb9.minTv2.l1           1.27847    1.16764   1.095  0.27355    
## cb9.minTv2.l2          -0.87078    0.91203  -0.955  0.33969    
## cb9.minTv3.l1           0.50584    0.66996   0.755  0.45023    
## cb9.minTv3.l2           0.67780    0.49253   1.376  0.16877    
## cb5.minRHv1.l1          0.52249    0.34845   1.499  0.13375    
## cb5.minRHv1.l2         -0.04863    0.22828  -0.213  0.83131    
## cb5.minRHv2.l1         -1.80463    1.15231  -1.566  0.11733    
## cb5.minRHv2.l2         -0.49089    0.88486  -0.555  0.57905    
## cb5.minRHv3.l1         -0.74076    0.82397  -0.899  0.36864    
## cb5.minRHv3.l2         -0.18071    0.64912  -0.278  0.78072    
## cb2.sunv1.l1            0.54159    0.27529   1.967  0.04914 *  
## cb2.sunv1.l2            0.28949    0.19252   1.504  0.13266    
## cb2.sunv2.l1            0.80684    1.09366   0.738  0.46067    
## cb2.sunv2.l2            2.30718    0.76628   3.011  0.00260 ** 
## cb2.sunv3.l1            0.12663    0.42498   0.298  0.76573    
## cb2.sunv3.l2            0.74208    0.29074   2.552  0.01070 *  
## cb1.avgWindSpv1.l1      0.15709    0.37948   0.414  0.67890    
## cb1.avgWindSpv1.l2      0.22463    0.27885   0.806  0.42049    
## cb1.avgWindSpv2.l1      0.51731    0.90357   0.573  0.56697    
## cb1.avgWindSpv2.l2      0.82739    0.63857   1.296  0.19508    
## cb1.avgWindSpv3.l1     -0.34728    1.06604  -0.326  0.74460    
## cb1.avgWindSpv3.l2      0.61802    0.70050   0.882  0.37764    
## sp_ptbBMns91                 NA         NA      NA       NA    
## sp_ptbBMns92                 NA         NA      NA       NA    
## sp_ptbBMns93                 NA         NA      NA       NA    
## sp_ptbBMns94                 NA         NA      NA       NA    
## sp_ptbBMns95                 NA         NA      NA       NA    
## sp_ptbBMns96                 NA         NA      NA       NA    
## sp_ptbBMns97                 NA         NA      NA       NA    
## sp_ptbBMns98                 NA         NA      NA       NA    
## sp_ptbBMns99                 NA         NA      NA       NA    
## sp_ptbBMns910                NA         NA      NA       NA    
## sp_ptbBMns911         -25.88834   39.36677  -0.658  0.51078    
## sp_ptbBMns912          -1.38911    4.82719  -0.288  0.77352    
## sp_ptbBMns913          -1.53181    2.94289  -0.521  0.60271    
## sp_ptbBMns914          -5.15615    2.28658  -2.255  0.02414 *  
## sp_ptbBMns915           1.41004    2.17290   0.649  0.51639    
## sp_ptbBMns916          -3.12455    2.11279  -1.479  0.13917    
## sp_ptbBMns917           0.18464    2.37296   0.078  0.93798    
## sp_ptbBMns918          -3.20268    2.06694  -1.549  0.12127    
## sp_ptbBMns919           1.34182    2.07511   0.647  0.51787    
## sp_ptbBMns920           0.72385    1.93050   0.375  0.70770    
## sp_ptbBMns921          -0.19245    2.05945  -0.093  0.92555    
## sp_ptbBMns922          -0.99414    1.88363  -0.528  0.59765    
## sp_ptbBMns923           0.89099    1.88457   0.473  0.63637    
## sp_ptbBMns924          -0.22997    1.79461  -0.128  0.89803    
## sp_ptbBMns925           2.38502    1.83017   1.303  0.19252    
## sp_ptbBMns926          -3.37216    1.96718  -1.714  0.08649 .  
## sp_ptbBMns927           4.05608    2.12429   1.909  0.05621 .  
## sp_ptbBMns928          -2.44548    2.11645  -1.155  0.24790    
## sp_ptbBMns929          -0.30415    1.91919  -0.158  0.87408    
## sp_ptbBMns930          -2.82499    1.86108  -1.518  0.12903    
## sp_ptbBMns931          -1.44310    1.75619  -0.822  0.41123    
## sp_ptbBMns932          -2.02485    1.54447  -1.311  0.18985    
## sp_ptbBMns933          -1.77945    1.56034  -1.140  0.25411    
## sp_ptbBMns934          -1.59591    1.79546  -0.889  0.37408    
## sp_ptbBMns935          -5.97247    1.90548  -3.134  0.00172 ** 
## sp_ptbBMns936          -3.04624    1.93354  -1.575  0.11515    
## sp_ptbBMns937          -3.45029    2.13229  -1.618  0.10564    
## sp_ptbBMns938          -2.14586    1.86191  -1.153  0.24911    
## sp_ptbBMns939          -3.78757    2.00337  -1.891  0.05868 .  
## sp_ptbBMns940          -2.40141    1.88326  -1.275  0.20226    
## sp_ptbBMns941          -1.58734    2.03302  -0.781  0.43493    
## sp_ptbBMns942          -2.70463    2.20448  -1.227  0.21987    
## sp_ptbBMns943           0.07429    2.12836   0.035  0.97215    
## sp_ptbBMns944           1.99915    2.61371   0.765  0.44435    
## sp_ptbBMns945           3.51296    2.61464   1.344  0.17909    
## sp_ptbBMns946           3.46808    2.92089   1.187  0.23509    
## sp_ptbBMns947           4.55365    2.93881   1.549  0.12127    
## sp_ptbBMns948          -1.29763    3.23033  -0.402  0.68790    
## sp_ptbBMns949           0.13708    2.94343   0.047  0.96285    
## sp_ptbBMns950          -0.69009    3.11114  -0.222  0.82446    
## sp_ptbBMns951          -1.23703    2.90208  -0.426  0.66992    
## sp_ptbBMns952          -2.64770    2.97435  -0.890  0.37337    
## sp_ptbBMns953          -2.37066    2.64713  -0.896  0.37049    
## sp_ptbBMns954          -6.79978    2.68799  -2.530  0.01142 *  
## sp_ptbBMns955          -1.89444    2.43374  -0.778  0.43633    
## sp_ptbBMns956          -5.26916    2.45836  -2.143  0.03208 *  
## sp_ptbBMns957          -1.85322    2.23215  -0.830  0.40640    
## sp_ptbBMns958          -2.28562    2.30896  -0.990  0.32223    
## sp_ptbBMns959          -1.37009    2.31096  -0.593  0.55327    
## sp_ptbBMns960          -1.94185    2.34829  -0.827  0.40828    
## sp_ptbBMns961          -0.99603    2.41207  -0.413  0.67965    
## sp_ptbBMns962          -2.48945    2.53609  -0.982  0.32629    
## sp_ptbBMns963          -0.87463    2.59403  -0.337  0.73599    
## sp_ptbBMns964          -0.26013    2.56326  -0.101  0.91917    
## sp_ptbBMns965          -1.85369    2.29725  -0.807  0.41971    
## sp_ptbBMns966           0.26930    2.36072   0.114  0.90918    
## sp_ptbBMns967          -0.87315    2.30516  -0.379  0.70485    
## sp_ptbBMns968          -0.16227    2.14151  -0.076  0.93960    
## sp_ptbBMns969           0.88286    2.18005   0.405  0.68550    
## sp_ptbBMns970          -1.96867    2.05423  -0.958  0.33789    
## sp_ptbBMns971          -1.58899    2.07558  -0.766  0.44394    
## sp_ptbBMns972          -2.51003    2.45676  -1.022  0.30693    
## sp_ptbBMns973          -2.21711    2.21398  -1.001  0.31663    
## sp_ptbBMns974          -2.54224    2.05670  -1.236  0.21643    
## sp_ptbBMns975          -3.22945    1.91892  -1.683  0.09238 .  
## sp_ptbBMns976          -2.45461    1.83661  -1.336  0.18139    
## sp_ptbBMns977          -3.04596    1.99093  -1.530  0.12604    
## sp_ptbBMns978          -0.89191    1.87629  -0.475  0.63453    
## sp_ptbBMns979          -1.41829    1.84070  -0.771  0.44099    
## sp_ptbBMns980           0.32315    2.16592   0.149  0.88140    
## sp_ptbBMns981          -3.58307    2.42266  -1.479  0.13914    
## sp_ptbBMns982           1.37888    2.84341   0.485  0.62772    
## sp_ptbBMns983           0.41311    2.86582   0.144  0.88538    
## sp_ptbBMns984           0.69384    2.99407   0.232  0.81674    
## sp_ptbBMns985           0.26943    2.92717   0.092  0.92666    
## sp_ptbBMns986          -0.24565    2.99560  -0.082  0.93465    
## sp_ptbBMns987          -0.25978    2.89055  -0.090  0.92839    
## sp_ptbBMns988          -1.12369    3.07379  -0.366  0.71469    
## sp_ptbBMns989          -0.71857    3.01330  -0.238  0.81152    
## sp_ptbBMns990          -4.64914    2.98929  -1.555  0.11988    
## sp_ptbBMns991          -1.76414    2.87745  -0.613  0.53982    
## sp_ptbBMns992          -4.02263    2.66836  -1.508  0.13168    
## sp_ptbBMns993          -1.34984    2.49271  -0.542  0.58815    
## sp_ptbBMns994          -4.20685    2.45993  -1.710  0.08724 .  
## sp_ptbBMns995          -0.57718    2.35282  -0.245  0.80621    
## sp_ptbBMns996          -3.27371    2.41084  -1.358  0.17449    
## sp_ptbBMns997          -0.41506    2.36458  -0.176  0.86066    
## sp_ptbBMns998           0.36007    2.38298   0.151  0.87990    
## sp_ptbBMns999          -2.83749    2.43837  -1.164  0.24455    
## sp_ptbBMns9100          2.58145    2.67259   0.966  0.33409    
## sp_ptbBMns9101         -0.74238    2.55687  -0.290  0.77155    
## sp_ptbBMns9102          2.12281    2.61123   0.813  0.41625    
## sp_ptbBMns9103         -1.31676    2.56554  -0.513  0.60778    
## sp_ptbBMns9104         -0.88385    2.66541  -0.332  0.74019    
## sp_ptbBMns9105         -1.67034    2.53930  -0.658  0.51067    
## sp_ptbBMns9106         -0.96597    2.47159  -0.391  0.69592    
## sp_ptbBMns9107         -6.02795    2.49701  -2.414  0.01578 *  
## sp_ptbBMns9108          1.38217    2.73095   0.506  0.61278    
## sp_ptbBMns9109         -4.37762    2.97591  -1.471  0.14129    
## sp_ptbBMns9110         -1.28424    3.10874  -0.413  0.67953    
## sp_ptbBMns9111         -1.58145    2.98407  -0.530  0.59614    
## sp_ptbBMns9112         -0.08749    2.88955  -0.030  0.97585    
## sp_ptbBMns9113         -1.19256    2.77744  -0.429  0.66765    
## sp_ptbBMns9114         -2.35909    2.92240  -0.807  0.41952    
## sp_ptbBMns9115         -3.91280    2.89528  -1.351  0.17655    
## sp_ptbBMns9116         -3.71012    3.01593  -1.230  0.21863    
## sp_ptbBMns9117         -2.90729    3.01075  -0.966  0.33423    
## sp_ptbBMns9118         -2.15619    3.13201  -0.688  0.49118    
## sp_ptbBMns9119         -0.79814    2.92438  -0.273  0.78491    
## sp_ptbBMns9120         -0.52277    3.02438  -0.173  0.86277    
## sp_ptbBMns9121          0.01152    2.80056   0.004  0.99672    
## sp_ptbBMns9122         -3.62220    2.91210  -1.244  0.21356    
## sp_ptbBMns9123          1.17451    2.82997   0.415  0.67812    
## sp_ptbBMns9124         -2.79335    3.00663  -0.929  0.35286    
## sp_ptbBMns9125          0.11572    3.14172   0.037  0.97062    
## sp_ptbBMns9126         -7.00045    3.32945  -2.103  0.03550 *  
## sp_ptbBMns9127         -0.42268    3.40170  -0.124  0.90111    
## sp_ptbBMns9128         -4.76249    3.42555  -1.390  0.16444    
## sp_ptbBMns9129          0.86368    3.37709   0.256  0.79815    
## sp_ptbBMns9130         -2.25365    3.32440  -0.678  0.49783    
## sp_ptbBMns9131         -1.93381    2.97601  -0.650  0.51582    
## sp_ptbBMns9132         -2.91995    3.00334  -0.972  0.33093    
## sp_ptbBMns9133         -3.87005    2.82092  -1.372  0.17009    
## sp_ptbBMns9134         -1.52709    2.78258  -0.549  0.58314    
## sp_ptbBMns9135         -0.64545    3.33329  -0.194  0.84646    
## sp_ptbBMns9136          1.42384    4.41467   0.323  0.74705    
## sp_ptbBMns9137         -1.63010    4.76207  -0.342  0.73212    
## sp_ptbBMns9138          3.16711    5.45648   0.580  0.56162    
## sp_ptbBMns9139         -0.35729    4.69197  -0.076  0.93930    
## sp_ptbBMns9140          0.14774    5.11863   0.029  0.97697    
## sp_ptbBMns9141         -4.40838    4.86617  -0.906  0.36498    
## sp_ptbBMns9142         -4.76877    5.08893  -0.937  0.34871    
## sp_ptbBMns9143         -8.21111    5.34364  -1.537  0.12439    
## sp_ptbBMns9144         -9.53755    4.76568  -2.001  0.04536 *  
## sp_ptbBMns9145         -4.25725    3.87764  -1.098  0.27225    
## sp_ptbBMns9146         -2.69858    2.83153  -0.953  0.34057    
## sp_ptbBMns9147          3.50833    2.26014   1.552  0.12060    
## sp_ptbBMns9148         -2.00347    2.23616  -0.896  0.37028    
## sp_ptbBMns9149          2.45105    2.01888   1.214  0.22472    
## sp_ptbBMns9150          1.19139    1.82961   0.651  0.51494    
## sp_ptbBMns9151         -1.26496    1.76500  -0.717  0.47356    
## sp_ptbBMns9152          0.32641    1.53419   0.213  0.83151    
## sp_ptbBMns9153         -1.10440    1.64609  -0.671  0.50227    
## sp_ptbBMns9154         -4.31727    1.80780  -2.388  0.01693 *  
## sp_ptbBMns9155         -1.27737    1.51884  -0.841  0.40034    
## sp_ptbBMns9156         -3.33878    1.52993  -2.182  0.02909 *  
## sp_ptbBMns9157         -0.23522    1.09726  -0.214  0.83026    
## sp_ptbBMns9158         -2.52750    1.24235  -2.034  0.04191 *  
## sp_ptbBMns9159          0.60996    0.89605   0.681  0.49605    
## sp_ptbBMns9160          1.74632    1.02537   1.703  0.08855 .  
## sp_ptbBMns9161               NA         NA      NA       NA    
## sp_ptbBMns9162               NA         NA      NA       NA    
## lag(resid.fullbm, 1)   -0.60653    0.03628 -16.716  < 2e-16 ***
## lag(resid.fullbm, 2)   -0.69059    0.04390 -15.732  < 2e-16 ***
## lag(resid.fullbm, 3)   -0.79537    0.04931 -16.131  < 2e-16 ***
## lag(resid.fullbm, 4)   -0.75173    0.05184 -14.502  < 2e-16 ***
## lag(resid.fullbm, 5)   -0.67727    0.05157 -13.134  < 2e-16 ***
## lag(resid.fullbm, 6)   -0.53833    0.04780 -11.262  < 2e-16 ***
## lag(resid.fullbm, 7)   -0.36910    0.04112  -8.975  < 2e-16 ***
## lag(resid.fullbm, 8)   -0.21896    0.03357  -6.523 6.88e-11 ***
## lag(resid.fullbm, 13)   0.07035    0.02767   2.542  0.01101 *  
## lag(resid.fullbm, 14)   0.06899    0.02775   2.486  0.01291 *  
## lag(resid.fullbm, 18)  -0.05227    0.02569  -2.034  0.04193 *  
## lag(resid.fullbm, 25)  -0.01877    0.02618  -0.717  0.47343    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(50488.69) family taken to be 1)
## 
##     Null deviance: 1055.03  on 861  degrees of freedom
## Residual deviance:  433.23  on 669  degrees of freedom
##   (77 observations deleted due to missingness)
## AIC: 2803.1
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  50489 
##           Std. Err.:  182860 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -2415.147
resid.fullbm.ac<-residuals(mod_fullSA4bm.ac, type="deviance")
pred.fullbm.ac<-predict(mod_fullSA4bm.ac, type="response")

pacf(resid.fullbm.ac,na.action = na.omit) 

length(pred.fullbm.ac)
## [1] 939
length(resid.fullbm.ac)
## [1] 939
##plot b4 ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,pred.fullbm,lwd=1, col="dark blue")

plot(week$time,resid.fullbm)
abline(h=0,lty=2,lwd=2, col="blue")

plot(pred.fullbm, week$ptbBM)
abline(coef = c(0,1), col="red")

##plot after ac
plot(week$time, week$ptbBM,type="l")
lines(week$time,pred.fullbm.ac,lwd=1, col="dark blue")

plot(week$time,resid.fullbm.ac)
abline(h=0,lty=2,lwd=2, col="blue")

plot(pred.fullbm.ac, week$ptbBM)
abline(coef = c(0,1), col="red")

##checking general model fit plot
plot(mod_fullSA4bm)
## Warning: not plotting observations with leverage one:
##   53

plot(mod_fullSA4bm.ac)

#1. plotting the dose response and slices now for min temperature
SA4predbm.temp <- crosspred(cb9.minT, mod_fullSA4bm.ac,cen = 24.0, by=0.1,cumul=TRUE)

#cumulative effect 
plot(SA4predbm.temp, "overall", xlab="Min temperature (?C)",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of min temperature on ptb")

##getting est from SA4predbm.temp

#for 5th % - mat
SA4predbm.temp$matRRfit["22.9","lag0"]; SA4predbm.temp$matRRlow["22.9","lag0"]; SA4predbm.temp$matRRhigh["22.9","lag0"]
## [1] 0.8821777
## [1] 0.7071471
## [1] 1.100531
SA4predbm.temp$matRRfit["22.9","lag13"]; SA4predbm.temp$matRRlow["22.9","lag13"]; SA4predbm.temp$matRRhigh["22.9","lag13"]
## [1] 0.965487
## [1] 0.812605
## [1] 1.147132
SA4predbm.temp$matRRfit["22.9","lag26"]; SA4predbm.temp$matRRlow["22.9","lag26"]; SA4predbm.temp$matRRhigh["22.9","lag26"]
## [1] 1.056664
## [1] 0.9030783
## [1] 1.236369
SA4predbm.temp$matRRfit["22.9","lag39"]; SA4predbm.temp$matRRlow["22.9","lag39"]; SA4predbm.temp$matRRhigh["22.9","lag39"]
## [1] 1.156451
## [1] 0.9623363
## [1] 1.38972
SA4predbm.temp$matRRfit["22.9","lag52"]; SA4predbm.temp$matRRlow["22.9","lag52"]; SA4predbm.temp$matRRhigh["22.9","lag52"]
## [1] 1.265661
## [1] 0.9968521
## [1] 1.606957
#for 95th % - mat
SA4predbm.temp$matRRfit["25.1","lag0"]; SA4predbm.temp$matRRlow["25.1","lag0"]; SA4predbm.temp$matRRhigh["25.1","lag0"]
## [1] 0.7973803
## [1] 0.6293517
## [1] 1.01027
SA4predbm.temp$matRRfit["25.1","lag13"]; SA4predbm.temp$matRRlow["25.1","lag13"]; SA4predbm.temp$matRRhigh["25.1","lag13"]
## [1] 0.8796897
## [1] 0.7298826
## [1] 1.060244
SA4predbm.temp$matRRfit["25.1","lag26"]; SA4predbm.temp$matRRlow["25.1","lag26"]; SA4predbm.temp$matRRhigh["25.1","lag26"]
## [1] 0.9704954
## [1] 0.821256
## [1] 1.146855
SA4predbm.temp$matRRfit["25.1","lag27"]; SA4predbm.temp$matRRlow["25.1","lag27"]; SA4predbm.temp$matRRhigh["25.1","lag27"]
## [1] 0.977857
## [1] 0.8273596
## [1] 1.15573
SA4predbm.temp$matRRfit["25.1","lag28"]; SA4predbm.temp$matRRlow["25.1","lag28"]; SA4predbm.temp$matRRhigh["25.1","lag28"]
## [1] 0.9852744
## [1] 0.8332998
## [1] 1.164966
SA4predbm.temp$matRRfit["25.1","lag29"]; SA4predbm.temp$matRRlow["25.1","lag29"]; SA4predbm.temp$matRRhigh["25.1","lag29"]
## [1] 0.992748
## [1] 0.8390741
## [1] 1.174567
SA4predbm.temp$matRRfit["25.1","lag30"]; SA4predbm.temp$matRRlow["25.1","lag30"]; SA4predbm.temp$matRRhigh["25.1","lag30"]
## [1] 1.000278
## [1] 0.8446808
## [1] 1.184538
SA4predbm.temp$matRRfit["25.1","lag31"]; SA4predbm.temp$matRRlow["25.1","lag31"]; SA4predbm.temp$matRRhigh["25.1","lag31"]
## [1] 1.007866
## [1] 0.8501193
## [1] 1.194884
SA4predbm.temp$matRRfit["25.1","lag32"]; SA4predbm.temp$matRRlow["25.1","lag32"]; SA4predbm.temp$matRRhigh["25.1","lag32"]
## [1] 1.015511
## [1] 0.8553901
## [1] 1.205605
SA4predbm.temp$matRRfit["25.1","lag33"]; SA4predbm.temp$matRRlow["25.1","lag33"]; SA4predbm.temp$matRRhigh["25.1","lag33"]
## [1] 1.023214
## [1] 0.8604944
## [1] 1.216704
SA4predbm.temp$matRRfit["25.1","lag34"]; SA4predbm.temp$matRRlow["25.1","lag34"]; SA4predbm.temp$matRRhigh["25.1","lag34"]
## [1] 1.030975
## [1] 0.8654344
## [1] 1.228181
SA4predbm.temp$matRRfit["25.1","lag35"]; SA4predbm.temp$matRRlow["25.1","lag35"]; SA4predbm.temp$matRRhigh["25.1","lag35"]
## [1] 1.038796
## [1] 0.8702131
## [1] 1.240037
SA4predbm.temp$matRRfit["25.1","lag36"]; SA4predbm.temp$matRRlow["25.1","lag36"]; SA4predbm.temp$matRRhigh["25.1","lag36"]
## [1] 1.046675
## [1] 0.8748339
## [1] 1.252271
SA4predbm.temp$matRRfit["25.1","lag37"]; SA4predbm.temp$matRRlow["25.1","lag37"]; SA4predbm.temp$matRRhigh["25.1","lag37"]
## [1] 1.054615
## [1] 0.879301
## [1] 1.264882
SA4predbm.temp$matRRfit["25.1","lag38"]; SA4predbm.temp$matRRlow["25.1","lag38"]; SA4predbm.temp$matRRhigh["25.1","lag38"]
## [1] 1.062614
## [1] 0.883619
## [1] 1.277869
SA4predbm.temp$matRRfit["25.1","lag39"]; SA4predbm.temp$matRRlow["25.1","lag39"]; SA4predbm.temp$matRRhigh["25.1","lag39"]
## [1] 1.070675
## [1] 0.8877928
## [1] 1.291229
SA4predbm.temp$matRRfit["25.1","lag52"]; SA4predbm.temp$matRRlow["25.1","lag52"]; SA4predbm.temp$matRRhigh["25.1","lag52"]
## [1] 1.181195
## [1] 0.9313749
## [1] 1.498023
#2. plotting the dose reponse and slices now for RF
SA4predbm.rf <- crosspred(cb3.RF, mod_fullSA4bm.ac,cen = 44.9, by=0.1,cumul=TRUE)

#cumulative effect of RF
plot(SA4predbm.rf, "overall", xlab="Total precipitation",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of rainfall on ptb")

#10mm lower than median rf
plot(SA4predbm.rf,var=c(34.9),type="p",ci="bars",col=1,pch=19,ylim=c(0.9,1.1), 
     xlab="Lag (weeks)",ylab="RR")

#90th %
plot(SA4predbm.rf,"slices", var=c(135),type="p",ci="bars",col=1,pch=19,ylim=c(0.85,1.04),
     xlab="Lag (weeks)",ylab="RR")

#3. plotting the dose reponse and slices now for wind
SA4predbm.wind <- crosspred(cb1.avgWindSp, mod_fullSA4bm.ac,cen = 4.5, by=0.1,cumul=TRUE)

#cumulative effect of wind
plot(SA4predbm.wind, "overall", xlab="Av wind speed",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of wind speed on ptb")

#0.5 unit lower than median 
plot(SA4predbm.wind,var=c(4),type="p",ci="bars",col=1,pch=19,ylim=c(0.9,1.1), 
     xlab="Lag (weeks)",ylab="RR")

#90th %
plot(SA4predbm.wind,var=c(5.5),type="p",ci="bars",col=1,pch=19,ylim=c(0.9,1.1), 
     xlab="Lag (weeks)",ylab="RR")

#4. plotting the dose reponse and slices now for sun
SA4predbm.sun <- crosspred(cb2.sun, mod_fullSA4bm.ac,cen = 50.7, by=0.1,cumul=TRUE)

#cumulative effect of sun
plot(SA4predbm.sun, "overall", xlab="Total sunshine hours",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of sunshine on ptb")

#10 units lower than median 
plot(SA4predbm.sun,var=c(40),type="p",ci="bars",col=1,pch=19,ylim=c(0.9,1.1), 
     xlab="Lag (weeks)",ylab="RR")

#90th %
plot(SA4predbm.sun,var=c(70),type="p",ci="bars",col=1,pch=19,ylim=c(0.9,1.1), 
     xlab="Lag (weeks)",ylab="RR")

#5. plotting the dose reponse and slices now for minRH
SA4predbm.minRH <- crosspred(cb5.minRH, mod_fullSA4bm.ac,cen = 63, by=0.1, cumul=TRUE)


#cumulative effect
plot(SA4predbm.minRH, "overall", xlab="Min RH",col=4, lwd=2, ylab="RR", ci.arg=list(density=40,lwd=1, col=8),
     main="Cumulative effect of minRH on ptb")

#1 units lower than median 
plot(SA4predbm.minRH,var=c(62),type="p",ci="bars",col=1,pch=19,ylim=c(0.9,1.1), 
     xlab="Lag (weeks)",ylab="RR")

#1 units higher than median 
plot(SA4predbm.minRH,var=c(64),type="p",ci="bars",col=1,pch=19,ylim=c(0.9,1.1), 
     xlab="Lag (weeks)",ylab="RR")

###to make lag plots for full model, ptbBM version, SA4 -----
##order: minT, rf, sun, minRH & avgWindSp

#tiff("fig_lagFullptbBM_SA4_Apr10.tiff", units="in", width=10, height=6, res=400)
par(mfrow=c(5,5),mar=c(2.5,4,2.5,2))

#axis(1, at= c(3,3.7,4.5,5.4,10.2)

for (i in c(0,13,26,39,52)){
    x = crosspred(cb1.avgWindSp, mod_fullSA4bm.ac, cen=4.5)
    title = paste(c(i,"week lag"),collapse=" ")
    plot(x,lag=i,main=title,ylab="RR (Av wind speed)", xlab="", col=4,cex.lab=0.9,
         ylim=c(0.8,1.3),xaxt = "n")
    axis(1, at= c(3.0,3.6,4.5,6.1,10.2), labels = c("3.0","5th","50th","95th","10.2"),
         cex.axis=0.8)
}

for (i in c(0,13,26,39,52)){
    x = crosspred(cb9.minT, mod_fullSA4bm.ac, cen=24.0)
    plot(x,lag=i,ylab="RR (Min Temp)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.8,1.5),xaxt = "n")
    axis(1, at= c(21.8,22.9,24.0,25.1,26.3), labels = c("21.8","5th","50th","95th","26.3"),
         cex.axis=0.8)
}

for (i in c(0,13,26,39,52)){
    x = crosspred(cb3.RF, mod_fullSA4bm.ac, cen=44.9)
    plot(x,lag=i,ylab="RR (Rainfall)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.8,1.5),xaxt = "n")
    axis(1, at= c(0.0,0.8,44.9,160.7,414.5), labels = c("0.0","5th","50th","95th","414.5"),
         cex.axis=0.8)
}


for (i in c(0,13,26,39,52)){
    x = crosspred(cb2.sun, mod_fullSA4bm.ac, cen=50.7)
    plot(x,lag=i,ylab="RR (Sunshine hours)", xlab="",col=4,cex.lab=0.9,
         ylim=c(0.6,1.5),xaxt = "n")
    axis(1, at= c(11.2,30.8,50.7,66.1,76.0), labels = c("11.2","5th","50th","95th","76.0"),
         cex.axis=0.8)
}

for (i in c(0,13,26,39,52)){
    x = crosspred(cb5.minRH, mod_fullSA4bm.ac, cen=63.0)
    plot(x,lag=i,ylab="RR (Min RH)",xlab="", col=4,cex.lab=0.9,
         ylim=c(0.6,1.5),xaxt = "n")
    axis(1, at= c(45.0,53.7,63.0,70.3,80.6), labels = c("45.0","5th","50th","95th","80.6"),
         cex.axis=0.8)
}

dev.off()
## null device 
##           1