Se replican cinco grÔficas y se pone el código adjunto de cada una de ellas.
setwd("C:/Programacion en R/1. INF. PARA ECONOMISTAS/SISECO-EJ9")
library(tidyverse)
library(data.table)
library(ggrepel)
library(ggthemes)
library(maps)
library(gganimate)
library(GGally)
library(gifski)
library(transformr)
elections <- fread("Elections.csv")
View(elections)
cces <- fread("Congreso.csv")
View(cces)
cel <- fread("CEL.csv")
View(cel)
elections %>%
filter(congress == 115) %>%
mutate(Conjunto = ifelse(majority == 1, "Majority", "Minority")) %>%
ggplot(aes(Conjunto, les)) +
geom_boxplot() +
labs(x="Majority or Minority",
y="Legislative Effectiveness",
title = "LES in the 115th Congress")
Semestre <- c(1,2,3,4,5,6,
1,2,3,4,5,6,
1,2,3,4,5,6)
Estudiante <- c("Carol", "Carol","Carol",
"Carol", "Carol","Carol",
"David", "David","David",
"David", "David","David",
"Diana", "Diana","Diana",
"Diana", "Diana","Diana")
runif(18, min=80, max=100)
Grado <- c(82.34141, 83.73772, 81.65542,
94.02424, 81.62462, 86.47438,
85.93032, 99.18622, 93.60905,
87.45710, 94.56546, 82.37123,
86.70199, 87.07580, 97.28708,
93.32994, 80.36158, 90.79674)
DataFrame <- data.frame(Semestre, Estudiante, Grado)
View(DataFrame)
DataFrame %>%
ggplot(aes(Semestre, Grado, color=Estudiante)) +
geom_line() +
facet_grid(. ~ Estudiante) +
theme(legend.position = "none") +
labs(x="Semestre",
y="Grado",
title = "Student Grades by Semester")
elections %>%
mutate(Genre =ifelse(female == 1, "Female", "Male")) %>%
ggplot(aes(x = year ,fill=Genre))+
geom_bar(position = "fill")+
scale_y_continuous(labels = scales::percent)+
scale_fill_manual(values=c("#FF6A6A", "#009ACD"))+
ggthemes::theme_fivethirtyeight()+
labs(title = "Women Participation")
library(sf)
library(rnaturalearth)
library(rnaturalearthdata)
library(rgeos)
s_america <- ne_countries(scale="medium",continent='south america',returnclass="sf")
mapa_mundo = map_data("world")
Mapa_LTA = mapa_mundo %>%
filter(region %in% c("Argentina", "Bolivia", "Brazil", "Uruguay","Chile",
"Colombia" , "Ecuador", "Guyana", "Peru" ,"Paraguay",
"Suriname", "Venezuela","Falkland Islands"))
View(Mapa_LTA)
data_inventada <- data.frame(
region = unique(Mapa_LTA$region),
pop_est =unique(s_america$pop_est))
data_unificada <- Mapa_LTA %>%
left_join(data_inventada, by="region")
ggplot(data_unificada, aes(x = long, y = lat, group=group, fill=pop_est))+
geom_polygon(color="black")+
scale_fill_distiller(palette=10)
Category<-c("Alpha","Beta","Zeta")
City<-c("Hong Kong","London","Nairobi")
my_dat<-expand_grid(Category,City)
set.seed(84684)
my_dat$Value<-sample(1:10,9,replace=T)
View(my_dat)
ggplot(my_dat, aes(x=Category, y=Value, fill=City)) +
geom_bar(stat="identity", position="stack")+
transition_states(City)+
enter_fade()+
exit_shrink()+
ease_aes('sine-in-out')