Image by Gordon Johnson from Pixabay
Download flag.csv and flag.names to your working directory. Make sure to set your working directory appropriately!
Let’s look at some information about this file. Open flag.names in RStudio by double clicking it in the files pane in bottom left. Read through this file.
Who is the donor of this data?
Richard S. Forsyth
8 Grosvenor Avenue
Mapperley Park
Nottingham NG3 5DX
0602-621676 Is there any missing data?
No missing values. library(readr)
flag_df <- read_csv("~/Data101/Project2a/project2a files/flag.csv")
## New names:
## * `` -> ...1
## Rows: 194 Columns: 31
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (4): name, mainhue, topleft, botright
## dbl (27): ...1, landmass, zone, area, population, language, religion, bars, ...
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
is.data.frame(flag_df)
## [1] TRUE
head(flag_df)
## # A tibble: 6 x 31
## ...1 name landmass zone area population language religion bars stripes
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 Afghani~ 5 1 648 16 10 2 0 3
## 2 2 Albania 3 1 29 3 6 6 0 0
## 3 3 Algeria 4 1 2388 20 8 2 2 0
## 4 4 America~ 6 3 0 0 1 1 0 0
## 5 5 Andorra 3 1 0 0 6 0 3 0
## 6 6 Angola 4 2 1247 7 10 5 0 2
## # ... with 21 more variables: colours <dbl>, red <dbl>, green <dbl>,
## # blue <dbl>, gold <dbl>, white <dbl>, black <dbl>, orange <dbl>,
## # mainhue <chr>, circles <dbl>, crosses <dbl>, saltires <dbl>,
## # quarters <dbl>, sunstars <dbl>, crescent <dbl>, triangle <dbl>, icon <dbl>,
## # animate <dbl>, text <dbl>, topleft <chr>, botright <chr>
tail(flag_df)
## # A tibble: 6 x 31
## ...1 name landmass zone area population language religion bars stripes
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 189 Vietnam 5 1 333 60 10 6 0 0
## 2 190 Western~ 6 3 3 0 1 1 0 0
## 3 191 Yugosla~ 3 1 256 22 6 6 0 3
## 4 192 Zaire 4 2 905 28 10 5 0 0
## 5 193 Zambia 4 2 753 6 10 5 3 0
## 6 194 Zimbabwe 4 2 391 8 10 5 0 7
## # ... with 21 more variables: colours <dbl>, red <dbl>, green <dbl>,
## # blue <dbl>, gold <dbl>, white <dbl>, black <dbl>, orange <dbl>,
## # mainhue <chr>, circles <dbl>, crosses <dbl>, saltires <dbl>,
## # quarters <dbl>, sunstars <dbl>, crescent <dbl>, triangle <dbl>, icon <dbl>,
## # animate <dbl>, text <dbl>, topleft <chr>, botright <chr>
summary(flag_df)
## ...1 name landmass zone
## Min. : 1.00 Length:194 Min. :1.000 Min. :1.000
## 1st Qu.: 49.25 Class :character 1st Qu.:3.000 1st Qu.:1.000
## Median : 97.50 Mode :character Median :4.000 Median :2.000
## Mean : 97.50 Mean :3.572 Mean :2.211
## 3rd Qu.:145.75 3rd Qu.:5.000 3rd Qu.:4.000
## Max. :194.00 Max. :6.000 Max. :4.000
## area population language religion
## Min. : 0.0 Min. : 0.00 Min. : 1.00 Min. :0.000
## 1st Qu.: 9.0 1st Qu.: 0.00 1st Qu.: 2.00 1st Qu.:1.000
## Median : 111.0 Median : 4.00 Median : 6.00 Median :1.000
## Mean : 700.0 Mean : 23.27 Mean : 5.34 Mean :2.191
## 3rd Qu.: 471.2 3rd Qu.: 14.00 3rd Qu.: 9.00 3rd Qu.:4.000
## Max. :22402.0 Max. :1008.00 Max. :10.00 Max. :7.000
## bars stripes colours red
## Min. :0.0000 Min. : 0.000 Min. :1.000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.: 0.000 1st Qu.:3.000 1st Qu.:1.0000
## Median :0.0000 Median : 0.000 Median :3.000 Median :1.0000
## Mean :0.4536 Mean : 1.552 Mean :3.464 Mean :0.7887
## 3rd Qu.:0.0000 3rd Qu.: 3.000 3rd Qu.:4.000 3rd Qu.:1.0000
## Max. :5.0000 Max. :14.000 Max. :8.000 Max. :1.0000
## green blue gold white
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:1.0000
## Median :0.0000 Median :1.0000 Median :0.0000 Median :1.0000
## Mean :0.4691 Mean :0.5103 Mean :0.4691 Mean :0.7526
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000
## black orange mainhue circles
## Min. :0.000 Min. :0.000 Length:194 Min. :0.0000
## 1st Qu.:0.000 1st Qu.:0.000 Class :character 1st Qu.:0.0000
## Median :0.000 Median :0.000 Mode :character Median :0.0000
## Mean :0.268 Mean :0.134 Mean :0.1701
## 3rd Qu.:1.000 3rd Qu.:0.000 3rd Qu.:0.0000
## Max. :1.000 Max. :1.000 Max. :4.0000
## crosses saltires quarters sunstars
## Min. :0.0000 Min. :0.00000 Min. :0.0000 Min. : 0.000
## 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.: 0.000
## Median :0.0000 Median :0.00000 Median :0.0000 Median : 0.000
## Mean :0.1495 Mean :0.09278 Mean :0.1495 Mean : 1.387
## 3rd Qu.:0.0000 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.: 1.000
## Max. :2.0000 Max. :1.00000 Max. :4.0000 Max. :50.000
## crescent triangle icon animate
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000
## Median :0.0000 Median :0.0000 Median :0.0000 Median :0.000
## Mean :0.0567 Mean :0.1392 Mean :0.2526 Mean :0.201
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.7500 3rd Qu.:0.000
## Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.000
## text topleft botright
## Min. :0.00000 Length:194 Length:194
## 1st Qu.:0.00000 Class :character Class :character
## Median :0.00000 Mode :character Mode :character
## Mean :0.08247
## 3rd Qu.:0.00000
## Max. :1.00000
str(flag_df)
## spec_tbl_df [194 x 31] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ ...1 : num [1:194] 1 2 3 4 5 6 7 8 9 10 ...
## $ name : chr [1:194] "Afghanistan" "Albania" "Algeria" "American-Samoa" ...
## $ landmass : num [1:194] 5 3 4 6 3 4 1 1 2 2 ...
## $ zone : num [1:194] 1 1 1 3 1 2 4 4 3 3 ...
## $ area : num [1:194] 648 29 2388 0 0 ...
## $ population: num [1:194] 16 3 20 0 0 7 0 0 28 28 ...
## $ language : num [1:194] 10 6 8 1 6 10 1 1 2 2 ...
## $ religion : num [1:194] 2 6 2 1 0 5 1 1 0 0 ...
## $ bars : num [1:194] 0 0 2 0 3 0 0 0 0 0 ...
## $ stripes : num [1:194] 3 0 0 0 0 2 1 1 3 3 ...
## $ colours : num [1:194] 5 3 3 5 3 3 3 5 2 3 ...
## $ red : num [1:194] 1 1 1 1 1 1 0 1 0 0 ...
## $ green : num [1:194] 1 0 1 0 0 0 0 0 0 0 ...
## $ blue : num [1:194] 0 0 0 1 1 0 1 1 1 1 ...
## $ gold : num [1:194] 1 1 0 1 1 1 0 1 0 1 ...
## $ white : num [1:194] 1 0 1 1 0 0 1 1 1 1 ...
## $ black : num [1:194] 1 1 0 0 0 1 0 1 0 0 ...
## $ orange : num [1:194] 0 0 0 1 0 0 1 0 0 0 ...
## $ mainhue : chr [1:194] "green" "red" "green" "blue" ...
## $ circles : num [1:194] 0 0 0 0 0 0 0 0 0 0 ...
## $ crosses : num [1:194] 0 0 0 0 0 0 0 0 0 0 ...
## $ saltires : num [1:194] 0 0 0 0 0 0 0 0 0 0 ...
## $ quarters : num [1:194] 0 0 0 0 0 0 0 0 0 0 ...
## $ sunstars : num [1:194] 1 1 1 0 0 1 0 1 0 1 ...
## $ crescent : num [1:194] 0 0 1 0 0 0 0 0 0 0 ...
## $ triangle : num [1:194] 0 0 0 1 0 0 0 1 0 0 ...
## $ icon : num [1:194] 1 0 0 1 0 1 0 0 0 0 ...
## $ animate : num [1:194] 0 1 0 1 0 0 1 0 0 0 ...
## $ text : num [1:194] 0 0 0 0 0 0 0 0 0 0 ...
## $ topleft : chr [1:194] "black" "red" "green" "blue" ...
## $ botright : chr [1:194] "green" "red" "white" "red" ...
## - attr(*, "spec")=
## .. cols(
## .. ...1 = col_double(),
## .. name = col_character(),
## .. landmass = col_double(),
## .. zone = col_double(),
## .. area = col_double(),
## .. population = col_double(),
## .. language = col_double(),
## .. religion = col_double(),
## .. bars = col_double(),
## .. stripes = col_double(),
## .. colours = col_double(),
## .. red = col_double(),
## .. green = col_double(),
## .. blue = col_double(),
## .. gold = col_double(),
## .. white = col_double(),
## .. black = col_double(),
## .. orange = col_double(),
## .. mainhue = col_character(),
## .. circles = col_double(),
## .. crosses = col_double(),
## .. saltires = col_double(),
## .. quarters = col_double(),
## .. sunstars = col_double(),
## .. crescent = col_double(),
## .. triangle = col_double(),
## .. icon = col_double(),
## .. animate = col_double(),
## .. text = col_double(),
## .. topleft = col_character(),
## .. botright = col_character()
## .. )
## - attr(*, "problems")=<externalptr>
We are going to use the dplyr package.
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v dplyr 1.0.8
## v tibble 3.1.6 v stringr 1.4.0
## v tidyr 1.2.0 v forcats 0.5.1
## v purrr 0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
colnames(flag_df)
## [1] "...1" "name" "landmass" "zone" "area"
## [6] "population" "language" "religion" "bars" "stripes"
## [11] "colours" "red" "green" "blue" "gold"
## [16] "white" "black" "orange" "mainhue" "circles"
## [21] "crosses" "saltires" "quarters" "sunstars" "crescent"
## [26] "triangle" "icon" "animate" "text" "topleft"
## [31] "botright"
Something should look strange about the first column name. Let’s investigate this.
library(dplyr)
flag_df %>%
select(c("...1"))
## # A tibble: 194 x 1
## ...1
## <dbl>
## 1 1
## 2 2
## 3 3
## 4 4
## 5 5
## 6 6
## 7 7
## 8 8
## 9 9
## 10 10
## # ... with 184 more rows
What is in this first column? Numbers
Do we really need it? No
flag_df %>%
select(-...1)
## # A tibble: 194 x 30
## name landmass zone area population language religion bars stripes colours
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Afgh~ 5 1 648 16 10 2 0 3 5
## 2 Alba~ 3 1 29 3 6 6 0 0 3
## 3 Alge~ 4 1 2388 20 8 2 2 0 3
## 4 Amer~ 6 3 0 0 1 1 0 0 5
## 5 Ando~ 3 1 0 0 6 0 3 0 3
## 6 Ango~ 4 2 1247 7 10 5 0 2 3
## 7 Angu~ 1 4 0 0 1 1 0 1 3
## 8 Anti~ 1 4 0 0 1 1 0 1 5
## 9 Arge~ 2 3 2777 28 2 0 0 3 2
## 10 Arge~ 2 3 2777 28 2 0 0 3 3
## # ... with 184 more rows, and 20 more variables: red <dbl>, green <dbl>,
## # blue <dbl>, gold <dbl>, white <dbl>, black <dbl>, orange <dbl>,
## # mainhue <chr>, circles <dbl>, crosses <dbl>, saltires <dbl>,
## # quarters <dbl>, sunstars <dbl>, crescent <dbl>, triangle <dbl>, icon <dbl>,
## # animate <dbl>, text <dbl>, topleft <chr>, botright <chr>
sum(is.na(flag_df))
## [1] 0
At this point, we know there are no missing values in the dataset so we will use dplyr to make the dataset a bit more readable to us. Look at the flag.names file again. Under “Attribute Information” look at the variables landmass, zone, language, religion.
Instead of encoding these categories using numbers, we would like to just use the categories in the variables. For example, in the zone column, we want our data to be “NE”, “SE”, “SW”, “NW”, instead of 1, 2, 3, 4.
flag_df$landmass <- factor(flag_df$landmass,
levels= c(1,2,3,4,5,6),
labels= c("N.America", "S.America", "Europe", "Africa", "Asia", "Oceania"))
flag_df$zone <- factor(flag_df$zone,
levels= c(1,2,3,4),
labels= c("NE", "SE", "SW", "NW"))
flag_df$religion <- factor(flag_df$religion,
levels= c(0,1,2,3,4,5,6,7),
labels= c("Catholic", "Other Christian", "Muslim", "Buddhist", "Hindu", "Ethnic", "Marxist", "Other"))
flag_df$language <- factor(flag_df$language,
levels= c(1,2,3,4,5,6,7,8,9,10),
labels= c("English", "Spanish", "French", "German", "Slavic", "Other Indo European", "Chinese", "Arabic", "Japanese/Turkish/Finnish/Magya", "Others"))
Notice from our earlier structure command that the data types for columns red, green, blue, gold, white, black, orange, crescent, triangle, icon, animate, text are all integer. Looking at flag.names these integer variables are really just an encoding for true (1) or false (0). We don’t want to compute with these 1s and 0s (for example find a mean). So we should change these to logicals.
flag_df$red <- as.logical(flag_df$red)
flag_df$green <- as.logical(flag_df$green)
flag_df$blue <- as.logical(flag_df$blue)
flag_df$gold <- as.logical(flag_df$gold)
flag_df$white <- as.logical(flag_df$white)
flag_df$black <- as.logical(flag_df$black)
flag_df$orange <- as.logical(flag_df$orange)
flag_df$crescent <- as.logical(flag_df$crescent)
flag_df$triangle <- as.logical(flag_df$triangle)
flag_df$icon <- as.logical(flag_df$icon)
flag_df$animate <- as.logical(flag_df$animate)
flag_df$text <- as.logical(flag_df$text)
Now that our data is clean, let’s answer some questions about it!
print(flag_df$mainhue)
## [1] "green" "red" "green" "blue" "gold" "red" "white" "red"
## [9] "blue" "blue" "blue" "red" "blue" "red" "green" "blue"
## [17] "gold" "blue" "green" "red" "orange" "red" "blue" "green"
## [25] "blue" "gold" "red" "red" "red" "red" "gold" "red"
## [33] "gold" "blue" "gold" "gold" "red" "red" "gold" "green"
## [41] "red" "blue" "blue" "blue" "white" "white" "red" "blue"
## [49] "green" "blue" "gold" "black" "blue" "green" "green" "white"
## [57] "blue" "blue" "white" "white" "white" "red" "green" "red"
## [65] "gold" "black" "red" "white" "blue" "white" "gold" "blue"
## [73] "blue" "gold" "gold" "green" "black" "blue" "blue" "red"
## [81] "blue" "orange" "red" "red" "red" "white" "white" "white"
## [89] "white" "green" "white" "black" "red" "red" "red" "green"
## [97] "red" "red" "blue" "red" "green" "red" "red" "red"
## [105] "red" "red" "red" "gold" "red" "blue" "green" "red"
## [113] "green" "blue" "red" "red" "blue" "red" "gold" "blue"
## [121] "brown" "red" "white" "blue" "blue" "orange" "green" "gold"
## [129] "blue" "red" "red" "red" "green" "red" "black" "red"
## [137] "red" "blue" "white" "red" "red" "brown" "red" "red"
## [145] "white" "green" "green" "green" "red" "green" "white" "green"
## [153] "blue" "orange" "white" "red" "red" "gold" "blue" "green"
## [161] "blue" "green" "red" "red" "blue" "blue" "red" "red"
## [169] "red" "green" "red" "green" "red" "red" "red" "red"
## [177] "blue" "blue" "green" "gold" "red" "white" "white" "white"
## [185] "red" "red" "gold" "red" "red" "red" "red" "green"
## [193] "green" "green"
63 countries have red, white, and blue in their flags.
flag_df %>%
filter(red == TRUE & blue == TRUE & white == TRUE)
## # A tibble: 63 x 31
## ...1 name landmass zone area population language religion bars stripes
## <dbl> <chr> <fct> <fct> <dbl> <dbl> <fct> <fct> <dbl> <dbl>
## 1 4 Americ~ Oceania SW 0 0 English Other C~ 0 0
## 2 8 Antigu~ N.Ameri~ NW 0 0 English Other C~ 0 1
## 3 11 Austra~ Oceania SE 7690 15 English Other C~ 0 0
## 4 18 Belize N.Ameri~ NW 23 0 English Other C~ 0 2
## 5 20 Bermuda N.Ameri~ NW 0 0 English Other C~ 0 0
## 6 25 Britis~ N.Ameri~ NW 0 0 English Other C~ 0 0
## 7 27 Bulgar~ Europe NE 111 9 Slavic Marxist 0 3
## 8 29 Burma Asia NE 678 35 Others Buddhist 0 0
## 9 34 Cayman~ N.Ameri~ NW 0 0 English Other C~ 0 0
## 10 35 Centra~ Africa NE 623 2 Others Ethnic 1 0
## # ... with 53 more rows, and 21 more variables: colours <dbl>, red <lgl>,
## # green <lgl>, blue <lgl>, gold <lgl>, white <lgl>, black <lgl>,
## # orange <lgl>, mainhue <chr>, circles <dbl>, crosses <dbl>, saltires <dbl>,
## # quarters <dbl>, sunstars <dbl>, crescent <lgl>, triangle <lgl>, icon <lgl>,
## # animate <lgl>, text <lgl>, topleft <chr>, botright <chr>
flag_df %>%
filter(red== TRUE & blue== TRUE & white == TRUE & green == FALSE & black == FALSE & gold == FALSE)
## # A tibble: 27 x 31
## ...1 name landmass zone area population language religion bars stripes
## <dbl> <chr> <fct> <fct> <dbl> <dbl> <fct> <fct> <dbl> <dbl>
## 1 11 Austra~ Oceania SE 7690 15 English Other C~ 0 0
## 2 29 Burma Asia NE 678 35 Others Buddhist 0 0
## 3 37 Chile S.Ameri~ SW 757 11 Spanish Catholic 0 2
## 4 42 Cook-I~ Oceania SW 0 0 English Other C~ 0 0
## 5 43 Costa-~ N.Ameri~ NW 51 2 Spanish Catholic 0 5
## 6 44 Cuba N.Ameri~ NW 115 10 Spanish Marxist 0 5
## 7 46 Czecho~ Europe NE 128 15 Slavic Marxist 0 0
## 8 50 Domini~ N.Ameri~ NW 49 6 Spanish Catholic 0 0
## 9 56 Faeroes Europe NW 1 0 Other I~ Other C~ 0 0
## 10 60 France Europe NE 547 54 French Catholic 3 0
## # ... with 17 more rows, and 21 more variables: colours <dbl>, red <lgl>,
## # green <lgl>, blue <lgl>, gold <lgl>, white <lgl>, black <lgl>,
## # orange <lgl>, mainhue <chr>, circles <dbl>, crosses <dbl>, saltires <dbl>,
## # quarters <dbl>, sunstars <dbl>, crescent <lgl>, triangle <lgl>, icon <lgl>,
## # animate <lgl>, text <lgl>, topleft <chr>, botright <chr>
flag_df %>%
arrange(desc(population)) %>%
slice(1:10)
## # A tibble: 10 x 31
## ...1 name landmass zone area population language religion bars stripes
## <dbl> <chr> <fct> <fct> <dbl> <dbl> <fct> <fct> <dbl> <dbl>
## 1 38 China Asia NE 9561 1008 Chinese Marxist 0 0
## 2 82 India Asia NE 3268 684 Other I~ Hindu 0 3
## 3 185 USSR Asia NE 22402 274 Slavic Marxist 0 0
## 4 184 USA N.Ameri~ NW 9363 231 English Other C~ 0 13
## 5 83 Indone~ Oceania SE 1904 157 Others Muslim 0 2
## 6 24 Brazil S.Ameri~ SW 8512 119 Other I~ Catholic 0 0
## 7 91 Japan Asia NE 372 118 Japanes~ Other 0 0
## 8 15 Bangla~ Asia NE 143 90 Other I~ Muslim 0 0
## 9 133 Pakist~ Asia NE 804 84 Other I~ Muslim 1 0
## 10 113 Mexico N.Ameri~ NW 1973 77 Spanish Catholic 3 0
## # ... with 21 more variables: colours <dbl>, red <lgl>, green <lgl>,
## # blue <lgl>, gold <lgl>, white <lgl>, black <lgl>, orange <lgl>,
## # mainhue <chr>, circles <dbl>, crosses <dbl>, saltires <dbl>,
## # quarters <dbl>, sunstars <dbl>, crescent <lgl>, triangle <lgl>, icon <lgl>,
## # animate <lgl>, text <lgl>, topleft <chr>, botright <chr>
Let’s see if we can find any patterns in the data.
Your output should be a data frame with each row corresponding to a group. There will be five columns.
Repeat this process except group by zone, language, and religion.
# You may find this function useful (ie. you should call this function in your code)! It calculates the mode of a factor.
cat_mode <- function(cat_var){
mode_idx <- which.max(table(cat_var))
levels(cat_var)[mode_idx]
}
flag_df$mainhue <- as.factor(flag_df$mainhue)
flag_dfLM <- group_by(flag_df, landmass)
summarise(flag_dfLM, mode_color = cat_mode(mainhue),
sun_star = median(sunstars),
animate_count = sum(animate),
animate_pct = round(100 * animate_count / n(), digits = 2))
## # A tibble: 6 x 5
## landmass mode_color sun_star animate_count animate_pct
## <fct> <chr> <dbl> <int> <dbl>
## 1 N.America blue 0 13 41.9
## 2 S.America red 0 3 17.6
## 3 Europe red 0 4 11.4
## 4 Africa green 0 7 13.5
## 5 Asia red 1 6 15.4
## 6 Oceania blue 2.5 6 30
flag_dfZ <- group_by(flag_df, zone)
summarise(flag_dfZ, mode_color=cat_mode(mainhue),
sun_star=median(sunstars),
animate_count=sum(animate),
animate_pct=100*animate_count/n())
## # A tibble: 4 x 5
## zone mode_color sun_star animate_count animate_pct
## <fct> <chr> <dbl> <int> <dbl>
## 1 NE red 0 14 15.4
## 2 SE red 0 7 24.1
## 3 SW blue 1 3 18.8
## 4 NW blue 0 15 25.9
flag_dfLAN <- group_by(flag_df, language)
summarise(flag_dfLAN, mode_color=cat_mode(mainhue),
sun_star=median(sunstars),
animate_count=sum(animate),
animate_pct=100*animate_count/n())
## # A tibble: 10 x 5
## language mode_color sun_star animate_count animate_pct
## <fct> <chr> <dbl> <int> <dbl>
## 1 English blue 0 18 41.9
## 2 Spanish blue 0 3 14.3
## 3 French gold 0 0 0
## 4 German red 0 0 0
## 5 Slavic red 0.5 1 25
## 6 Other Indo European red 0 5 16.7
## 7 Chinese red 3 1 25
## 8 Arabic red 0 2 10.5
## 9 Japanese/Turkish/Finnish/Magya red 0.5 0 0
## 10 Others red 0 9 19.6
flag_dfRL <- group_by(flag_df, religion)
summarise(flag_dfRL, mode_color=cat_mode(mainhue),
sun_star=median(sunstars),
animate_count=sum(animate),
animate_pct=100*animate_count/n())
## # A tibble: 8 x 5
## religion mode_color sun_star animate_count animate_pct
## <fct> <chr> <dbl> <int> <dbl>
## 1 Catholic red 0 4 10
## 2 Other Christian blue 0 19 31.7
## 3 Muslim red 0 3 8.33
## 4 Buddhist red 0 4 50
## 5 Hindu brown 0 0 0
## 6 Ethnic red 0 6 22.2
## 7 Marxist red 1 3 20
## 8 Other white 1 0 0
Do you see any patterns in flag mainhue, sun or star symbols, and animate images? If so, describe these patterns. (Hint: you should see patterns! Look at the trends when grouping by landmass, zone, language, and religion.) Write a paragraph to answer this question.
Here goes nothing…
I see a pattern with the color BLUE and animate images being popular across landmass, zone, religion, and language. In landmass column , you can see the mode color (blue) and animated images count is 13. In the zone column, the mode color (blue) in the NW row has an an animated count of 15. In the language column, the mode color (blue) has an animated count of 18 and in the religion column the mode color (blue) has an animate count of 19.