# UNIVERSIDAD NACIONAL DEL ALTIPLANO PUNO
# INGENIERIA ESTADISTICA E INFORMATICA
# TECNICAS ESTADISTICAS MULTIVARIADAS

# ANALISIS DE COMPONENTES PRINCIPALES
library(FactoMineR)
## Warning: package 'FactoMineR' was built under R version 4.1.3
library(psych)
## Warning: package 'psych' was built under R version 4.1.3
library(shiny)
## Warning: package 'shiny' was built under R version 4.1.3
library(Factoshiny)
## Warning: package 'Factoshiny' was built under R version 4.1.3
## Loading required package: FactoInvestigate
## Warning: package 'FactoInvestigate' was built under R version 4.1.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.1.3
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
library(colourpicker)
## Warning: package 'colourpicker' was built under R version 4.1.3
## 
## Attaching package: 'colourpicker'
## The following object is masked from 'package:shiny':
## 
##     runExample
datos <- read.csv("usarrest.csv", header = T, sep = ";", row.names = 1)
datos
##                Asesinatos Asaltos Poblac_urbanana Violaciones
## Alabama              13.2     236              58        21.2
## Alaska               10.0     263              48        44.5
## Arizona               8.1     294              80        31.0
## Arkansas              8.8     190              50        19.5
## California            9.0     276              91        40.6
## Colorado              7.9     204              78        38.7
## Connecticut           3.3     110              77        11.1
## Delaware              5.9     238              72        15.8
## Florida              15.4     335              80        31.9
## Georgia              17.4     211              60        25.8
## Hawaii                5.3      46              83        20.2
## Idaho                 2.6     120              54        14.2
## Illinois             10.4     249              83        24.0
## Indiana               7.2     113              65        21.0
## Iowa                  2.2      56              57        11.3
## Kansas                6.0     115              66        18.0
## Kentucky              9.7     109              52        16.3
## Louisiana            15.4     249              66        22.2
## Maine                 2.1      83              51         7.8
## Maryland             11.3     300              67        27.8
## Massachusetts         4.4     149              85        16.3
## Michigan             12.1     255              74        35.1
## Minnesota             2.7      72              66        14.9
## Mississippi          16.1     259              44        17.1
## Missouri              9.0     178              70        28.2
## Montana               6.0     109              53        16.4
## Nebraska              4.3     102              62        16.5
## Nevada               12.2     252              81        46.0
## New Hampshire         2.1      57              56         9.5
## New Jersey            7.4     159              89        18.8
## New Mexico           11.4     285              70        32.1
## New York             11.1     254              86        26.1
## North Carolina       13.0     337              45        16.1
## North Dakota          0.8      45              44         7.3
## Ohio                  7.3     120              75        21.4
## Oklahoma              6.6     151              68        20.0
## Oregon                4.9     159              67        29.3
## Pennsylvania          6.3     106              72        14.9
## Rhode Island          3.4     174              87         8.3
## South Carolina       14.4     279              48        22.5
## South Dakota          3.8      86              45        12.8
## Tennessee            13.2     188              59        26.9
## Texas                12.7     201              80        25.5
## Utah                  3.2     120              80        22.9
## Vermont               2.2      48              32        11.2
## Virginia              8.5     156              63        20.7
## Washington            4.0     145              73        26.2
## West Virginia         5.7      81              39         9.3
## Wisconsin             2.6      53              66        10.8
## Wyoming               6.8     161              60        15.6
#View(datos)
str(datos) 
## 'data.frame':    50 obs. of  4 variables:
##  $ Asesinatos     : num  13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...
##  $ Asaltos        : int  236 263 294 190 276 204 110 238 335 211 ...
##  $ Poblac_urbanana: int  58 48 80 50 91 78 77 72 80 60 ...
##  $ Violaciones    : num  21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8 ...
head(datos)
##            Asesinatos Asaltos Poblac_urbanana Violaciones
## Alabama          13.2     236              58        21.2
## Alaska           10.0     263              48        44.5
## Arizona           8.1     294              80        31.0
## Arkansas          8.8     190              50        19.5
## California        9.0     276              91        40.6
## Colorado          7.9     204              78        38.7
summary(datos)
##    Asesinatos        Asaltos      Poblac_urbanana  Violaciones   
##  Min.   : 0.800   Min.   : 45.0   Min.   :32.00   Min.   : 7.30  
##  1st Qu.: 4.075   1st Qu.:109.0   1st Qu.:54.50   1st Qu.:15.07  
##  Median : 7.250   Median :159.0   Median :66.00   Median :20.10  
##  Mean   : 7.788   Mean   :170.8   Mean   :65.54   Mean   :21.23  
##  3rd Qu.:11.250   3rd Qu.:249.0   3rd Qu.:77.75   3rd Qu.:26.18  
##  Max.   :17.400   Max.   :337.0   Max.   :91.00   Max.   :46.00
cor(datos)
##                 Asesinatos   Asaltos Poblac_urbanana Violaciones
## Asesinatos      1.00000000 0.8018733      0.06957262   0.5635788
## Asaltos         0.80187331 1.0000000      0.25887170   0.6652412
## Poblac_urbanana 0.06957262 0.2588717      1.00000000   0.4113412
## Violaciones     0.56357883 0.6652412      0.41134124   1.0000000
# Prueba de Esfericidad de Bartlett
cortest.bartlett(cor(datos),n=dim(datos))
## $chisq
## [1] 88.288147  1.570963
## 
## $p.value
## [1] 6.868423e-17 9.546421e-01
## 
## $df
## [1] 6
# Indicador Kaiser-Meyer-Olkinn KMO y MSA
KMO(datos)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = datos)
## Overall MSA =  0.65
## MSA for each item = 
##      Asesinatos         Asaltos Poblac_urbanana     Violaciones 
##            0.62            0.64            0.50            0.78
modelo <- prcomp(datos)
modelo
## Standard deviations (1, .., p=4):
## [1] 83.732400 14.212402  6.489426  2.482790
## 
## Rotation (n x k) = (4 x 4):
##                        PC1         PC2         PC3         PC4
## Asesinatos      0.04170432 -0.04482166  0.07989066 -0.99492173
## Asaltos         0.99522128 -0.05876003 -0.06756974  0.03893830
## Poblac_urbanana 0.04633575  0.97685748 -0.20054629 -0.05816914
## Violaciones     0.07515550  0.20071807  0.97408059  0.07232502
# Grafico
biplot(modelo)

# observando los resultados de 2 componentes
result<- PCA(datos,scale.unit = T, ncp=2,graph = T)

# PCAshiny(datos)