The attached who.csv dataset contains real-world data from 2008. The variables included follow.
Country: name of the country
LifeExp: average life expectancy for the country in years
InfantSurvival: proportion of those surviving to one year or more
Under5Survival: proportion of those surviving to five years or more
TBFree: proportion of the population without TB.
PropMD: proportion of the population who are MDs
PropRN: proportion of the population who are RNs
PersExp: mean personal expenditures on healthcare in US dollars at average exchange rate
GovtExp: mean government expenditures per capita on healthcare, US dollars at average exchange rate
TotExp: sum of personal and government expenditures.
Libraries
library(readr)
library(ggplot2)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ tibble 3.1.6 ✓ dplyr 1.0.8
## ✓ tidyr 1.2.0 ✓ stringr 1.4.0
## ✓ purrr 0.3.4 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(skimr)
Import data
who_data <- read_csv('who.csv')
## Rows: 190 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Country
## dbl (9): LifeExp, InfantSurvival, Under5Survival, TBFree, PropMD, PropRN, Pe...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
summary(who_data)
## Country LifeExp InfantSurvival Under5Survival
## Length:190 Min. :40.00 Min. :0.8350 Min. :0.7310
## Class :character 1st Qu.:61.25 1st Qu.:0.9433 1st Qu.:0.9253
## Mode :character Median :70.00 Median :0.9785 Median :0.9745
## Mean :67.38 Mean :0.9624 Mean :0.9459
## 3rd Qu.:75.00 3rd Qu.:0.9910 3rd Qu.:0.9900
## Max. :83.00 Max. :0.9980 Max. :0.9970
## TBFree PropMD PropRN PersExp
## Min. :0.9870 Min. :0.0000196 Min. :0.0000883 Min. : 3.00
## 1st Qu.:0.9969 1st Qu.:0.0002444 1st Qu.:0.0008455 1st Qu.: 36.25
## Median :0.9992 Median :0.0010474 Median :0.0027584 Median : 199.50
## Mean :0.9980 Mean :0.0017954 Mean :0.0041336 Mean : 742.00
## 3rd Qu.:0.9998 3rd Qu.:0.0024584 3rd Qu.:0.0057164 3rd Qu.: 515.25
## Max. :1.0000 Max. :0.0351290 Max. :0.0708387 Max. :6350.00
## GovtExp TotExp
## Min. : 10.0 Min. : 13
## 1st Qu.: 559.5 1st Qu.: 584
## Median : 5385.0 Median : 5541
## Mean : 40953.5 Mean : 41696
## 3rd Qu.: 25680.2 3rd Qu.: 26331
## Max. :476420.0 Max. :482750
skim(who_data)
| Name | who_data |
| Number of rows | 190 |
| Number of columns | 10 |
| _______________________ | |
| Column type frequency: | |
| character | 1 |
| numeric | 9 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| Country | 0 | 1 | 4 | 41 | 0 | 190 | 0 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| LifeExp | 0 | 1 | 67.38 | 10.85 | 40.00 | 61.25 | 70.00 | 75.00 | 83.00 | ▂▂▃▇▅ |
| InfantSurvival | 0 | 1 | 0.96 | 0.04 | 0.84 | 0.94 | 0.98 | 0.99 | 1.00 | ▁▁▂▂▇ |
| Under5Survival | 0 | 1 | 0.95 | 0.06 | 0.73 | 0.93 | 0.97 | 0.99 | 1.00 | ▁▁▁▂▇ |
| TBFree | 0 | 1 | 1.00 | 0.00 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▁▂▇ |
| PropMD | 0 | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | ▇▁▁▁▁ |
| PropRN | 0 | 1 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.07 | ▇▁▁▁▁ |
| PersExp | 0 | 1 | 742.00 | 1354.00 | 3.00 | 36.25 | 199.50 | 515.25 | 6350.00 | ▇▁▁▁▁ |
| GovtExp | 0 | 1 | 40953.49 | 86140.65 | 10.00 | 559.50 | 5385.00 | 25680.25 | 476420.00 | ▇▁▁▁▁ |
| TotExp | 0 | 1 | 41695.49 | 87449.85 | 13.00 | 584.00 | 5541.00 | 26331.00 | 482750.00 | ▇▁▁▁▁ |
Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.
# Scatter plot
ggplot(who_data, aes(x = TotExp, y = LifeExp ))+geom_point(color = 'blue')+
labs(x = 'Total Expenditure', y = 'Life Expectancy', title = 'Life Expectancy vs Total Expenditures')+geom_smooth(method = "lm")
## `geom_smooth()` using formula 'y ~ x'
# Linear regression model
life_exp_lm <- lm(LifeExp ~ TotExp, data=who_data)
# summary of model
summary(life_exp_lm)
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = who_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
# residuals plot
hist(life_exp_lm$residuals, main = "histogram of residual")
plot(life_exp_lm$fitted.values, life_exp_lm$residuals,
xlab="Fitted Values", ylab="Residuals",
main="Residuals Plot")
qqnorm(life_exp_lm$residuals)
qqline(life_exp_lm$residuals)
Conclusion:
The adjusted R-squared shows that the model only explains 25.37% of variation in life expectancy
The Standard Error is approximately 8x smaller then the corresponding coefficient.
P value shows the total expenditure is statistically significant in this model. Therefore, reject the null hypothesis.
F-Statistic is large and it is indicates the strong relationship exists between total expenditure and life expectancy.
The residual plot shows residuals are leftly skewed.
Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”
# Create new variable - LifeExp^4.6
who_data$LifeExp4.6 <- who_data$LifeExp^4.6
# Create new variable - TotExp^0.06
who_data$TotExp0.06 <- who_data$TotExp^0.06
# Scatter plot
ggplot(who_data, aes(x = TotExp0.06, y = LifeExp4.6 ))+geom_point(color = 'blue')+
labs(x = 'Total Expenditure^0.06', y = 'Life Expectancy^4.6', title = 'Life Expectancy vs Total Expenditures')+geom_smooth(method = "lm")
## `geom_smooth()` using formula 'y ~ x'
# Linear regression model
life_exp_lm2 <- lm(LifeExp4.6 ~ TotExp0.06, data=who_data)
# summary of model
summary(life_exp_lm2)
##
## Call:
## lm(formula = LifeExp4.6 ~ TotExp0.06, data = who_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## TotExp0.06 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
# residuals plot
hist(life_exp_lm2$residuals, main = "histogram of residual")
plot(life_exp_lm2$fitted.values, life_exp_lm2$residuals,
xlab="Fitted Values", ylab="Residuals",
main="Residuals Plot")
qqnorm(life_exp_lm2$residuals)
qqline(life_exp_lm2$residuals)
Conclusion:
The model is greatly improved, the adjusted R-square increase to an acceptable range. This model is definitely better than the model in problem 1.
The adjusted R-squared shows that the model only explains 72.83% of variation in life
P value shows the total expenditure is statistically significant in this model. Therefore, reject the null hypothesis.
3.F-Statistic is large and it is indicates the strong relationship exists between total expenditure and life expectancy.
Using the results from 3, forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.
forecast<-data.frame(TotExp0.06=c(1.5,2.5))
predict(life_exp_lm2, forecast, interval = "predict")^(1/4.6)
## fit lwr upr
## 1 63.31153 35.93545 73.00793
## 2 86.50645 81.80643 90.43414
When TotExo^0.06 = 1.5, the forecast for life expectancy is 63.31 years. When TotExo^0.06 = 2.5, the forecast for life expectancy is 86.50 years.
Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model? LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp
life_exp_lm3 <- lm(LifeExp ~ PropMD + TotExp + TotExp * PropMD, who_data)
summary(life_exp_lm3)
##
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + TotExp * PropMD, data = who_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
# residuals plot
hist(life_exp_lm3$residuals, main = "histogram of residual")
plot(life_exp_lm3$fitted.values, life_exp_lm3$residuals,
xlab="Fitted Values", ylab="Residuals",
main="Residuals Plot")
qqnorm(life_exp_lm3$residuals)
qqline(life_exp_lm3$residuals)
Conclusion:
The adjusted R-squared shows that the model only explains 34.71% of variation in life expectancy
The Standard Error 8.765 and F-statistic is 34.49.
P value shows the total expenditure is statistically significant in this model. Therefore, reject the null hypothesis.
4.F-Statistic is indicates there is relationship exists between dependent and independent variables.
Eventhough the model included more variables, but the model performs worse than the model from the problem 2 (the scaled simple linear model).
Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?
forecast2 <- data.frame(PropMD=0.03, TotExp=14)
predict(life_exp_lm3,forecast2,interval="predict")
## fit lwr upr
## 1 107.696 84.24791 131.1441
Conclusion:
The model predicts the life expectancy of 107.69 years when Total Expenditure is 14. According to the summay of data, this is not realistic since the max value of life expectancy is 83.