library(psych)
library(readxl)
places <- read_excel("~/2nd Sem/MULTIVARIATE DATA ANALYSIS/Factor-Analysis/places.xlsx")
data<- places[,1:9]
head(data)
## # A tibble: 6 x 9
## Climate Housing Health Crime Transpo Education Arts Recreation Economics
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 521 6200 237 923 4031 2757 996 1405 7633
## 2 575 8138 1656 886 4883 2438 5564 2632 4350
## 3 468 7339 618 970 2531 2560 237 859 5250
## 4 476 7908 1431 610 6883 3399 4655 1617 5864
## 5 659 8393 1853 1483 6558 3026 4496 2612 5727
## 6 520 5819 640 727 2444 2972 334 1018 5254
Maximum Likelihood
ml <- fa(r = data,
nfactors = 3,
rotate = "varimax",
fm = "ml",
residuals = TRUE)
ml
## Factor Analysis using method = ml
## Call: fa(r = data, nfactors = 3, rotate = "varimax", residuals = TRUE,
## fm = "ml")
## Standardized loadings (pattern matrix) based upon correlation matrix
## ML2 ML1 ML3 h2 u2 com
## Climate 0.13 0.37 0.11 0.17 0.831 1.4
## Housing 0.28 0.95 -0.08 1.00 0.005 1.2
## Health 0.97 0.20 0.11 0.98 0.017 1.1
## Crime 0.18 0.16 0.90 0.87 0.132 1.1
## Transpo 0.43 0.17 0.21 0.26 0.741 1.8
## Education 0.50 0.06 -0.03 0.25 0.749 1.0
## Arts 0.82 0.25 0.22 0.78 0.215 1.3
## Recreation 0.23 0.40 0.28 0.29 0.714 2.4
## Economics -0.02 0.30 0.22 0.14 0.856 1.8
##
## ML2 ML1 ML3
## SS loadings 2.22 1.46 1.06
## Proportion Var 0.25 0.16 0.12
## Cumulative Var 0.25 0.41 0.53
## Proportion Explained 0.47 0.31 0.22
## Cumulative Proportion 0.47 0.78 1.00
##
## Mean item complexity = 1.5
## Test of the hypothesis that 3 factors are sufficient.
##
## The degrees of freedom for the null model are 36 and the objective function was 3.24 with Chi Square of 1051.61
## The degrees of freedom for the model are 12 and the objective function was 0.22
##
## The root mean square of the residuals (RMSR) is 0.06
## The df corrected root mean square of the residuals is 0.1
##
## The harmonic number of observations is 329 with the empirical chi square 76.37 with prob < 2e-11
## The total number of observations was 329 with Likelihood Chi Square = 72.24 with prob < 1.2e-10
##
## Tucker Lewis Index of factoring reliability = 0.821
## RMSEA index = 0.123 and the 90 % confidence intervals are 0.097 0.152
## BIC = 2.68
## Fit based upon off diagonal values = 0.97
## Measures of factor score adequacy
## ML2 ML1 ML3
## Correlation of (regression) scores with factors 0.99 1.00 0.93
## Multiple R square of scores with factors 0.98 0.99 0.87
## Minimum correlation of possible factor scores 0.96 0.98 0.73
Let us now interpret the data based on factor rotation:
ML2: primarily a measure of Health, Transportation, Education, and the Arts.
ML1: primarily a measure of Housing, Recreation, the Economics, and Climate .
ML3: primarily a measure of Crime alone.
To see it clearly, below is the diagram for our factor analysis.
fa.diagram(ml,main="data")