library(shiny)
## Warning: package 'shiny' was built under R version 4.1.3
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.3
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.2 v dplyr 1.0.7
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.2
## Warning: package 'stringr' was built under R version 4.1.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(openintro)
## Warning: package 'openintro' was built under R version 4.1.2
## Loading required package: airports
## Warning: package 'airports' was built under R version 4.1.2
## Loading required package: cherryblossom
## Warning: package 'cherryblossom' was built under R version 4.1.2
## Loading required package: usdata
## Warning: package 'usdata' was built under R version 4.1.2
data('hfi', package='openintro')
hfi
## # A tibble: 1,458 x 123
## year ISO_code countries region pf_rol_procedur~ pf_rol_civil pf_rol_criminal
## <dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 2016 ALB Albania Easte~ 6.66 4.55 4.67
## 2 2016 DZA Algeria Middl~ NA NA NA
## 3 2016 AGO Angola Sub-S~ NA NA NA
## 4 2016 ARG Argentina Latin~ 7.10 5.79 4.34
## 5 2016 ARM Armenia Cauca~ NA NA NA
## 6 2016 AUS Australia Ocean~ 8.44 7.53 7.36
## 7 2016 AUT Austria Weste~ 8.97 7.87 7.67
## 8 2016 AZE Azerbaij~ Cauca~ NA NA NA
## 9 2016 BHS Bahamas Latin~ 6.93 6.01 6.26
## 10 2016 BHR Bahrain Middl~ NA NA NA
## # ... with 1,448 more rows, and 116 more variables: pf_rol <dbl>,
## # pf_ss_homicide <dbl>, pf_ss_disappearances_disap <dbl>,
## # pf_ss_disappearances_violent <dbl>, pf_ss_disappearances_organized <dbl>,
## # pf_ss_disappearances_fatalities <dbl>, pf_ss_disappearances_injuries <dbl>,
## # pf_ss_disappearances <dbl>, pf_ss_women_fgm <dbl>,
## # pf_ss_women_missing <dbl>, pf_ss_women_inheritance_widows <dbl>,
## # pf_ss_women_inheritance_daughters <dbl>, pf_ss_women_inheritance <dbl>,
## # pf_ss_women <dbl>, pf_ss <dbl>, pf_movement_domestic <dbl>,
## # pf_movement_foreign <dbl>, pf_movement_women <dbl>, pf_movement <dbl>,
## # pf_religion_estop_establish <dbl>, pf_religion_estop_operate <dbl>,
## # pf_religion_estop <dbl>, pf_religion_harassment <dbl>,
## # pf_religion_restrictions <dbl>, pf_religion <dbl>,
## # pf_association_association <dbl>, pf_association_assembly <dbl>,
## # pf_association_political_establish <dbl>,
## # pf_association_political_operate <dbl>, pf_association_political <dbl>,
## # pf_association_prof_establish <dbl>, pf_association_prof_operate <dbl>,
## # pf_association_prof <dbl>, pf_association_sport_establish <dbl>,
## # pf_association_sport_operate <dbl>, pf_association_sport <dbl>,
## # pf_association <dbl>, pf_expression_killed <dbl>,
## # pf_expression_jailed <dbl>, pf_expression_influence <dbl>,
## # pf_expression_control <dbl>, pf_expression_cable <dbl>,
## # pf_expression_newspapers <dbl>, pf_expression_internet <dbl>,
## # pf_expression <dbl>, pf_identity_legal <dbl>,
## # pf_identity_parental_marriage <dbl>, pf_identity_parental_divorce <dbl>,
## # pf_identity_parental <dbl>, pf_identity_sex_male <dbl>,
## # pf_identity_sex_female <dbl>, pf_identity_sex <dbl>,
## # pf_identity_divorce <dbl>, pf_identity <dbl>, pf_score <dbl>,
## # pf_rank <dbl>, ef_government_consumption <dbl>,
## # ef_government_transfers <dbl>, ef_government_enterprises <dbl>,
## # ef_government_tax_income <dbl>, ef_government_tax_payroll <dbl>,
## # ef_government_tax <dbl>, ef_government <dbl>, ef_legal_judicial <dbl>,
## # ef_legal_courts <dbl>, ef_legal_protection <dbl>, ef_legal_military <dbl>,
## # ef_legal_integrity <dbl>, ef_legal_enforcement <dbl>,
## # ef_legal_restrictions <dbl>, ef_legal_police <dbl>, ef_legal_crime <dbl>,
## # ef_legal_gender <dbl>, ef_legal <dbl>, ef_money_growth <dbl>,
## # ef_money_sd <dbl>, ef_money_inflation <dbl>, ef_money_currency <dbl>,
## # ef_money <dbl>, ef_trade_tariffs_revenue <dbl>,
## # ef_trade_tariffs_mean <dbl>, ef_trade_tariffs_sd <dbl>,
## # ef_trade_tariffs <dbl>, ef_trade_regulatory_nontariff <dbl>,
## # ef_trade_regulatory_compliance <dbl>, ef_trade_regulatory <dbl>,
## # ef_trade_black <dbl>, ef_trade_movement_foreign <dbl>,
## # ef_trade_movement_capital <dbl>, ef_trade_movement_visit <dbl>,
## # ef_trade_movement <dbl>, ef_trade <dbl>,
## # ef_regulation_credit_ownership <dbl>, ef_regulation_credit_private <dbl>,
## # ef_regulation_credit_interest <dbl>, ef_regulation_credit <dbl>,
## # ef_regulation_labor_minwage <dbl>, ef_regulation_labor_firing <dbl>,
## # ef_regulation_labor_bargain <dbl>, ef_regulation_labor_hours <dbl>, ...
What are the dimensions of the dataset?
The dataset has 1458 rows, 123 columns
dim(hfi)
## [1] 1458 123
#glimpse(hfi)
#str(hfi)
view(hfi)
What type of plot would you use to display the relationship between the personal freedom score, pf_score, and one of the other numerical variables? Plot this relationship using the variable pf_expression_control as the predictor. Does the relationship look linear? If you knew a country’s pf_expression_control, or its score out of 10, with 0 being the most, of political pressures and controls on media content, would you be comfortable using a linear model to predict the personal freedom score?
model <- plot(hfi$pf_score ~ hfi$pf_expression_control,
xlab = "Expression control", ylab = "Pf score")
abline(lm(hfi$pf_score ~ hfi$pf_expression_control), col = "orange", lwd = 3)
I would use scatter plot to display the relationship between the personal freedom score, pf_score, and one of the other numerical variables.If I knew a country’s pf_expression_control,or its score out of 10, with 0 being the most, of political pressures and controls on media content, I would be using a linear model to predict the personal freedom score. The plot drawn shows linear relationship and we can quantify the strength of the relationship with the correlation coefficient, which is 0.7 and shows strong positive relationship.
hfi %>%
summarise(cor(pf_expression_control, pf_score, use = "complete.obs"))
## # A tibble: 1 x 1
## `cor(pf_expression_control, pf_score, use = "complete.obs")`
## <dbl>
## 1 0.796
Looking at your plot from the previous exercise, describe the relationship between these two variables. Make sure to discuss the form, direction, and strength of the relationship as well as any unusual observations.
The relationship between the variables is linear.The correlation is moderate strong positive.pf_score increases with increase in pf_expression_control.
Just as you’ve used the mean and standard deviation to summarize a single variable, you can summarize the relationship between these two variables by finding the line that best follows their association. Use the following interactive function to select the line that you think does the best job of going through the cloud of points.
It is rather cumbersome to try to get the correct least squares line, i.e. the line that minimizes the sum of squared residuals, through trial and error. Instead, you can use the lm function in R to fit the linear model (a.k.a. regression line).
m1 <- lm(pf_score ~ pf_expression_control, data = hfi)
m1
##
## Call:
## lm(formula = pf_score ~ pf_expression_control, data = hfi)
##
## Coefficients:
## (Intercept) pf_expression_control
## 4.6171 0.4914
The first argument in the function lm is a formula that takes the form y ~ x. Here it can be read that we want to make a linear model of pf_score as a function of pf_expression_control. The second argument specifies that R should look in the hfi data frame to find the two variables.
The output of lm is an object that contains all of the information we need about the linear model that was just fit. We can access this information using the summary function.
summary(m1)
##
## Call:
## lm(formula = pf_score ~ pf_expression_control, data = hfi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8467 -0.5704 0.1452 0.6066 3.2060
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.61707 0.05745 80.36 <2e-16 ***
## pf_expression_control 0.49143 0.01006 48.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8318 on 1376 degrees of freedom
## (80 observations deleted due to missingness)
## Multiple R-squared: 0.6342, Adjusted R-squared: 0.634
## F-statistic: 2386 on 1 and 1376 DF, p-value: < 2.2e-16
Fit a new model that uses pf_expression_control to predict hf_score, or the total human freedom score. Using the estimates from the R output, write the equation of the regression line. What does the slope tell us in the context of the relationship between human freedom and the amount of political pressure on media content?
ex_5 <- lm(hf_score ~ pf_expression_control, data = hfi)
summary(ex_5)
##
## Call:
## lm(formula = hf_score ~ pf_expression_control, data = hfi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6198 -0.4908 0.1031 0.4703 2.2933
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.153687 0.046070 111.87 <2e-16 ***
## pf_expression_control 0.349862 0.008067 43.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.667 on 1376 degrees of freedom
## (80 observations deleted due to missingness)
## Multiple R-squared: 0.5775, Adjusted R-squared: 0.5772
## F-statistic: 1881 on 1 and 1376 DF, p-value: < 2.2e-16
hf_score = 5.153687 + 0.349862*pf_expression_control intercept: 5.153687 slope: 0.349862
Let’s create a scatterplot with the least squares line for m1 laid on top.
ggplot(data = hfi, aes(x = pf_expression_control, y = pf_score)) +
geom_point() +
stat_smooth(method = "lm", se = FALSE)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 80 rows containing non-finite values (stat_smooth).
## Warning: Removed 80 rows containing missing values (geom_point).
ere, we are literally adding a layer on top of our plot. geom_smooth creates the line by fitting a linear model. It can also show us the standard error se associated with our line, but we’ll suppress that for now.
If someone saw the least squares regression line and not the actual data, how would they predict a country’s personal freedom school for one with a 6.7 rating for pf_expression_control? Is this an overestimate or an underestimate, and by how much? In other words, what is the residual for this prediction?
pf_exp_6 <- 6.7
ex_6 <- 4.61707 + 0.49143 * pf_exp_6
ex_6
## [1] 7.909651
hfi %>%
group_by(pf_score) %>%
filter(pf_expression_control == 6.7)
## # A tibble: 0 x 123
## # Groups: pf_score [0]
## # ... with 123 variables: year <dbl>, ISO_code <chr>, countries <chr>,
## # region <chr>, pf_rol_procedural <dbl>, pf_rol_civil <dbl>,
## # pf_rol_criminal <dbl>, pf_rol <dbl>, pf_ss_homicide <dbl>,
## # pf_ss_disappearances_disap <dbl>, pf_ss_disappearances_violent <dbl>,
## # pf_ss_disappearances_organized <dbl>,
## # pf_ss_disappearances_fatalities <dbl>, pf_ss_disappearances_injuries <dbl>,
## # pf_ss_disappearances <dbl>, pf_ss_women_fgm <dbl>,
## # pf_ss_women_missing <dbl>, pf_ss_women_inheritance_widows <dbl>,
## # pf_ss_women_inheritance_daughters <dbl>, pf_ss_women_inheritance <dbl>,
## # pf_ss_women <dbl>, pf_ss <dbl>, pf_movement_domestic <dbl>,
## # pf_movement_foreign <dbl>, pf_movement_women <dbl>, pf_movement <dbl>,
## # pf_religion_estop_establish <dbl>, pf_religion_estop_operate <dbl>,
## # pf_religion_estop <dbl>, pf_religion_harassment <dbl>,
## # pf_religion_restrictions <dbl>, pf_religion <dbl>,
## # pf_association_association <dbl>, pf_association_assembly <dbl>,
## # pf_association_political_establish <dbl>,
## # pf_association_political_operate <dbl>, pf_association_political <dbl>,
## # pf_association_prof_establish <dbl>, pf_association_prof_operate <dbl>,
## # pf_association_prof <dbl>, pf_association_sport_establish <dbl>,
## # pf_association_sport_operate <dbl>, pf_association_sport <dbl>,
## # pf_association <dbl>, pf_expression_killed <dbl>,
## # pf_expression_jailed <dbl>, pf_expression_influence <dbl>,
## # pf_expression_control <dbl>, pf_expression_cable <dbl>,
## # pf_expression_newspapers <dbl>, pf_expression_internet <dbl>,
## # pf_expression <dbl>, pf_identity_legal <dbl>,
## # pf_identity_parental_marriage <dbl>, pf_identity_parental_divorce <dbl>,
## # pf_identity_parental <dbl>, pf_identity_sex_male <dbl>,
## # pf_identity_sex_female <dbl>, pf_identity_sex <dbl>,
## # pf_identity_divorce <dbl>, pf_identity <dbl>, pf_score <dbl>,
## # pf_rank <dbl>, ef_government_consumption <dbl>,
## # ef_government_transfers <dbl>, ef_government_enterprises <dbl>,
## # ef_government_tax_income <dbl>, ef_government_tax_payroll <dbl>,
## # ef_government_tax <dbl>, ef_government <dbl>, ef_legal_judicial <dbl>,
## # ef_legal_courts <dbl>, ef_legal_protection <dbl>, ef_legal_military <dbl>,
## # ef_legal_integrity <dbl>, ef_legal_enforcement <dbl>,
## # ef_legal_restrictions <dbl>, ef_legal_police <dbl>, ef_legal_crime <dbl>,
## # ef_legal_gender <dbl>, ef_legal <dbl>, ef_money_growth <dbl>,
## # ef_money_sd <dbl>, ef_money_inflation <dbl>, ef_money_currency <dbl>,
## # ef_money <dbl>, ef_trade_tariffs_revenue <dbl>,
## # ef_trade_tariffs_mean <dbl>, ef_trade_tariffs_sd <dbl>,
## # ef_trade_tariffs <dbl>, ef_trade_regulatory_nontariff <dbl>,
## # ef_trade_regulatory_compliance <dbl>, ef_trade_regulatory <dbl>,
## # ef_trade_black <dbl>, ef_trade_movement_foreign <dbl>,
## # ef_trade_movement_capital <dbl>, ef_trade_movement_visit <dbl>,
## # ef_trade_movement <dbl>, ef_trade <dbl>,
## # ef_regulation_credit_ownership <dbl>, ...
There is no observation having pf_expression_control==6.7
###Model diagnostics
To assess whether the linear model is reliable, we need to check for (1) linearity, (2) nearly normal residuals, and (3) constant variability.
Linearity: You already checked if the relationship between pf_score and `pf_expression_control’ is linear using a scatterplot. We should also verify this condition with a plot of the residuals vs. fitted (predicted) values.
ggplot(data = m1, aes(x = .fitted, y = .resid)) +
geom_point() +
geom_hline(yintercept = 0, linetype = "dashed") +
xlab("Fitted values") +
ylab("Residuals")
Notice here that m1 can also serve as a data set because stored within it are the fitted values (y^) and the residuals. Also note that we’re getting fancy with the code here. After creating the scatterplot on the first layer (first line of code), we overlay a horizontal dashed line at y=0 (to help us check whether residuals are distributed around 0), and we also reanme the axis labels to be more informative.
s there any apparent pattern in the residuals plot? What does this indicate about the linearity of the relationship between the two variables?
Nearly normal residuals: To check this condition, we can look at a histogram
ggplot(data = m1, aes(x = .resid)) +
geom_histogram(binwidth = 0.5) +
xlab("Residuals")
or a normal probability plot of the residuals.
ggplot(data = m1, aes(sample = .resid)) +
stat_qq()
Note that the syntax for making a normal probability plot is a bit different than what you’re used to seeing: we set sample equal to the residuals instead of x, and we set a statistical method qq, which stands for “quantile-quantile”, another name commonly used for normal probability plots.
Based on the histogram and the normal probability plot, does the nearly normal residuals condition appear to be met?
From the output of the histogram and the normal probability plot, the nearly normal residuals condition appear to be met.
Based on the residuals vs. fitted plot, does the constant variability condition appear to be met?
From the output of residuals vs. fitted plot, the constant variability condition appear to be met.
ggplot(data = hfi, aes(x = pf_ss, y = hf_rank)) +
geom_point() +
stat_smooth(method = "lm", se = FALSE)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 80 rows containing non-finite values (stat_smooth).
## Warning: Removed 80 rows containing missing values (geom_point).
lm_2 <- lm(hfi$hf_score ~ hfi$pf_expression_control)
summary(lm_2)
##
## Call:
## lm(formula = hfi$hf_score ~ hfi$pf_expression_control)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6198 -0.4908 0.1031 0.4703 2.2933
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.153687 0.046070 111.87 <2e-16 ***
## hfi$pf_expression_control 0.349862 0.008067 43.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.667 on 1376 degrees of freedom
## (80 observations deleted due to missingness)
## Multiple R-squared: 0.5775, Adjusted R-squared: 0.5772
## F-statistic: 1881 on 1 and 1376 DF, p-value: < 2.2e-16
lm_2_1 <- lm(hfi$hf_rank ~ hfi$pf_ss)
summary(lm_2_1)
##
## Call:
## lm(formula = hfi$hf_rank ~ hfi$pf_ss)
##
## Residuals:
## Min 1Q Median 3Q Max
## -100.628 -23.567 -3.302 23.189 77.679
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 266.3430 5.1084 52.14 <2e-16 ***
## hfi$pf_ss -23.1430 0.6159 -37.58 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 31.28 on 1376 degrees of freedom
## (80 observations deleted due to missingness)
## Multiple R-squared: 0.5065, Adjusted R-squared: 0.5061
## F-statistic: 1412 on 1 and 1376 DF, p-value: < 2.2e-16
The independent variable does not seem to predict that the dependent one better as the R Square value is less than pf_expression_control and pf_score.