library(rgenoud)
## ##  rgenoud (Version 5.8-3.0, Build Date: 2019-01-22)
## ##  See http://sekhon.berkeley.edu/rgenoud for additional documentation.
## ##  Please cite software as:
## ##   Walter Mebane, Jr. and Jasjeet S. Sekhon. 2011.
## ##   ``Genetic Optimization Using Derivatives: The rgenoud package for R.''
## ##   Journal of Statistical Software, 42(11): 1-26. 
## ##
library(Matching)
## Loading required package: MASS
## ## 
## ##  Matching (Version 4.9-11, Build Date: 2021-10-18)
## ##  See http://sekhon.berkeley.edu/matching for additional documentation.
## ##  Please cite software as:
## ##   Jasjeet S. Sekhon. 2011. ``Multivariate and Propensity Score Matching
## ##   Software with Automated Balance Optimization: The Matching package for R.''
## ##   Journal of Statistical Software, 42(7): 1-52. 
## ##
foo <- read.csv(url("https://course-resources.minerva.kgi.edu/uploaded_files/mke/00089202-1711/daughters.csv"))
head(foo)
##   X      year congress party district statenam                name ngirls nboys
## 1 1 1997-1998      105     0        1   HAWAII   ABERCROMBIE, NEIL      0     0
## 2 2 1997-1998      105     0        5  NEW YOR   ACKERMAN, GARY L.      1     2
## 3 3 1997-1998      105     1        4  ALABAMA ADERHOLT, ROBERT B.      0     0
## 4 4 1997-1998      105     0        1    MAINE    ALLEN, THOMAS H.      2     0
## 5 5 1997-1998      105     0        1  NEW JER  ANDREWS, ROBERT E.      2     0
## 6 6 1997-1998      105     1        7    TEXAS        ARCHER, W.R.      3     4
##   totchi anygirls propgirls rgroup statabb statalph region repub srvlng female
## 1      0        0 0.0000000      0      HI       12      9     0      7      0
## 2      3        1 0.3333333      4      NY       33      2     0     15      0
## 3      0        0 0.0000000      1      AL        1      6     1      1      0
## 4      2        1 1.0000000      1      ME       20      1     0      1      0
## 5      2        1 1.0000000      1      NJ       31      2     0      7      0
## 6      7        1 0.4285714      2      TX       44      7     1     27      0
##   white       bday age demvote medinc      perf      perw perhs percol
## 1     1 1938-06-26  58    0.57  46389 0.5000151 0.2909628 0.814  0.266
## 2     1 1942-11-19  54    0.60  57915 0.5283446 0.8401480 0.839  0.348
## 3     1 1965-07-22  31    0.43  25401 0.5291693 0.9251785 0.577  0.081
## 4     1 1945-04-16  51    0.52  36067 0.5252141 0.9851513 0.817  0.224
## 5     1 1957-08-04  39    0.59  40674 0.5291277 0.7835612 0.742  0.169
## 6     1 1928-03-22  68    0.28  51258 0.5126253 0.8334154 0.901  0.407
##       perur   alabort  moreserv   moredef morecrimesp   protgay dr1per dr2per
## 1 0.9979499        NA        NA        NA          NA        NA     NA     NA
## 2 0.9934435 0.5688074 0.4726477 0.1709234   0.5885510 0.7051282   0.30   0.38
## 3 0.3419504 0.2970711 0.5000000 0.3140097   0.5483871 0.5343512   0.69   0.13
## 4 0.4894656        NA        NA        NA          NA        NA   0.58   0.24
## 5 0.9607588 0.5555556 0.3771930 0.1647510   0.5729927 0.7071428   0.31   0.37
## 6 0.9580938 0.3655172 0.3251748 0.2549923   0.5853333 0.5652174   0.52   0.28
##   dr3per dr4per dr5per aauw rtl nowtot now1 now2 now3 now4 now5 now6 now7 now8
## 1     NA     NA     NA  100  10     90    1    1    1    1    1    1    1    1
## 2   0.00   0.12   0.19   88   5     90    1    1    1    1    1    1    1    1
## 3   0.02   0.04   0.12    0 100      0    0    0    0    0    0    0    0    0
## 4   0.02   0.03   0.20  100   5     95    1    1    1    1    1    1    1    1
## 5   0.02   0.09   0.20  100   6     90    1    1    1    1    1    1    1    1
## 6   0.01   0.03   0.15    0 100      0    0    0    0    0    0    0    0    0
##   now9 now10 now11 now12 now13 now14 now15 now16 now17 now18 now19 now20 none
## 1    1     1     0     0     1     1     1     1     1     1     1     1    1
## 2    1     1     1     0     1     1     0     1     1     1     1     1    0
## 3    0     0     0     0     0     0     0     0     0     0     0     0    0
## 4    1     1     1     0     1     1     1     1     1     1     1     1    0
## 5    1     1     1     0     1     0     1     1     1     1     1     1    0
## 6    0     0     0     0     0     0     0     0     0     0     0     0    0
##   Protestant Catholic OtherC OtherR Christian hasgirls hasboys haskids reg1
## 1          0        0      0      0         1        0       0       0    0
## 2          0        0      0      1         0        1       1       1    0
## 3          1        0      0      0         1        0       0       0    0
## 4          1        0      0      0         1        1       0       1    1
## 5          1        0      0      0         1        1       0       1    0
## 6          0        1      0      0         1        1       1       1    0
##   reg2 reg3 reg4 reg5 reg6 reg7 reg8 reg9 Dems Repubs OthParty
## 1    0    0    0    0    0    0    0    1    1      0        0
## 2    1    0    0    0    0    0    0    0    1      0        0
## 3    0    0    0    0    1    0    0    0    0      1        0
## 4    0    0    0    0    0    0    0    0    1      0        0
## 5    1    0    0    0    0    0    0    0    1      0        0
## 6    0    0    0    0    0    1    0    0    0      1        0
model <- lm(nowtot ~ Dems + Repubs + Christian + age + srvlng + demvote + hasgirls, data = foo)
summary(model)
## 
## Call:
## lm(formula = nowtot ~ Dems + Repubs + Christian + age + srvlng + 
##     demvote + hasgirls, data = foo)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -56.028 -10.322  -1.517  11.208  69.642 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  38.6991    18.6306   2.077 0.038390 *  
## Dems         -8.1022    17.5861  -0.461 0.645238    
## Repubs      -55.1069    17.6340  -3.125 0.001901 ** 
## Christian   -13.3961     3.7218  -3.599 0.000357 ***
## age           0.1260     0.1117   1.128 0.259938    
## srvlng       -0.2251     0.1355  -1.662 0.097349 .  
## demvote      87.5501     8.4847  10.319  < 2e-16 ***
## hasgirls     -0.4523     1.9036  -0.238 0.812322    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.19 on 422 degrees of freedom
## Multiple R-squared:  0.7821, Adjusted R-squared:  0.7784 
## F-statistic: 216.3 on 7 and 422 DF,  p-value: < 2.2e-16
confint(model)
##                    2.5 %       97.5 %
## (Intercept)   2.07870870  75.31946777
## Dems        -42.66951687  26.46501755
## Repubs      -89.76834880 -20.44543598
## Christian   -20.71160536  -6.08052567
## age          -0.09351808   0.34542799
## srvlng       -0.49145173   0.04119929
## demvote      70.87248062 104.22768129
## hasgirls     -4.19406023   3.28952473
model_new <- lm(nowtot ~ Repubs + Christian + demvote + hasgirls, data = foo)
summary(model_new)
## 
## Call:
## lm(formula = nowtot ~ Repubs + Christian + demvote + hasgirls, 
##     data = foo)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -55.584 -10.383  -1.666  11.515  70.581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  34.63047    6.40080   5.410 1.05e-07 ***
## Repubs      -46.90998    2.13207 -22.002  < 2e-16 ***
## Christian   -13.20079    3.63140  -3.635 0.000312 ***
## demvote      87.47064    8.47509  10.321  < 2e-16 ***
## hasgirls      0.04111    1.86040   0.022 0.982382    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.19 on 425 degrees of freedom
## Multiple R-squared:  0.7805, Adjusted R-squared:  0.7784 
## F-statistic: 377.7 on 4 and 425 DF,  p-value: < 2.2e-16
confint(model_new)
##                  2.5 %     97.5 %
## (Intercept)  22.049313  47.211626
## Repubs      -51.100690 -42.719274
## Christian   -20.338529  -6.063044
## demvote      70.812324 104.128948
## hasgirls     -3.615627   3.697841
# Check balance of the unmatched set
mb <- MatchBalance(hasgirls ~ Dems + Repubs + Christian + age + srvlng + demvote, data = foo)
## 
## ***** (V1) Dems *****
## before matching:
## mean treatment........ 0.45833 
## mean control.......... 0.50847 
## std mean diff......... -10.047 
## 
## mean raw eQQ diff..... 0.050847 
## med  raw eQQ diff..... 0 
## max  raw eQQ diff..... 1 
## 
## mean eCDF diff........ 0.025071 
## med  eCDF diff........ 0.025071 
## max  eCDF diff........ 0.050141 
## 
## var ratio (Tr/Co)..... 0.98809 
## T-test p-value........ 0.35571 
## 
## 
## ***** (V2) Repubs *****
## before matching:
## mean treatment........ 0.53846 
## mean control.......... 0.49153 
## std mean diff......... 9.4 
## 
## mean raw eQQ diff..... 0.042373 
## med  raw eQQ diff..... 0 
## max  raw eQQ diff..... 1 
## 
## mean eCDF diff........ 0.023468 
## med  eCDF diff........ 0.023468 
## max  eCDF diff........ 0.046936 
## 
## var ratio (Tr/Co)..... 0.98911 
## T-test p-value........ 0.3873 
## 
## 
## ***** (V3) Christian *****
## before matching:
## mean treatment........ 0.9391 
## mean control.......... 0.94915 
## std mean diff......... -4.1958 
## 
## mean raw eQQ diff..... 0.016949 
## med  raw eQQ diff..... 0 
## max  raw eQQ diff..... 1 
## 
## mean eCDF diff........ 0.005025 
## med  eCDF diff........ 0.005025 
## max  eCDF diff........ 0.01005 
## 
## var ratio (Tr/Co)..... 1.1787 
## T-test p-value........ 0.68107 
## 
## 
## ***** (V4) age *****
## before matching:
## mean treatment........ 52.628 
## mean control.......... 49.178 
## std mean diff......... 38.385 
## 
## mean raw eQQ diff..... 3.661 
## med  raw eQQ diff..... 4 
## max  raw eQQ diff..... 7 
## 
## mean eCDF diff........ 0.075348 
## med  eCDF diff........ 0.075538 
## max  eCDF diff........ 0.17807 
## 
## var ratio (Tr/Co)..... 0.71552 
## T-test p-value........ 0.0020402 
## KS Bootstrap p-value.. 0.004 
## KS Naive p-value...... 0.0087659 
## KS Statistic.......... 0.17807 
## 
## 
## ***** (V5) srvlng *****
## before matching:
## mean treatment........ 8.5865 
## mean control.......... 8.7458 
## std mean diff......... -2.1085 
## 
## mean raw eQQ diff..... 0.66949 
## med  raw eQQ diff..... 0 
## max  raw eQQ diff..... 5 
## 
## mean eCDF diff........ 0.017181 
## med  eCDF diff........ 0.01445 
## max  eCDF diff........ 0.051608 
## 
## var ratio (Tr/Co)..... 0.77347 
## T-test p-value........ 0.85956 
## KS Bootstrap p-value.. 0.782 
## KS Naive p-value...... 0.97653 
## KS Statistic.......... 0.051608 
## 
## 
## ***** (V6) demvote *****
## before matching:
## mean treatment........ 0.49929 
## mean control.......... 0.50602 
## std mean diff......... -5.2747 
## 
## mean raw eQQ diff..... 0.011441 
## med  raw eQQ diff..... 0.01 
## max  raw eQQ diff..... 0.08 
## 
## mean eCDF diff........ 0.015928 
## med  eCDF diff........ 0.010811 
## max  eCDF diff........ 0.048512 
## 
## var ratio (Tr/Co)..... 1.1269 
## T-test p-value........ 0.61103 
## KS Bootstrap p-value.. 0.932 
## KS Naive p-value...... 0.98776 
## KS Statistic.......... 0.048512 
## 
## 
## Before Matching Minimum p.value: 0.0020402 
## Variable Name(s): age  Number(s): 4
set.seed(2324)
genout <- GenMatch(Tr = foo$hasgirls, X = cbind(foo$Dems, foo$Repubs, foo$Christian, foo$age, foo$srvlng, foo$demvote), pop.size = 20, nboots = 250)
## 
## 
## Sun Apr 10 22:39:38 2022
## Domains:
##  0.000000e+00   <=  X1   <=    1.000000e+03 
##  0.000000e+00   <=  X2   <=    1.000000e+03 
##  0.000000e+00   <=  X3   <=    1.000000e+03 
##  0.000000e+00   <=  X4   <=    1.000000e+03 
##  0.000000e+00   <=  X5   <=    1.000000e+03 
##  0.000000e+00   <=  X6   <=    1.000000e+03 
## 
## Data Type: Floating Point
## Operators (code number, name, population) 
##  (1) Cloning...........................  5
##  (2) Uniform Mutation..................  2
##  (3) Boundary Mutation.................  2
##  (4) Non-Uniform Mutation..............  2
##  (5) Polytope Crossover................  2
##  (6) Simple Crossover..................  2
##  (7) Whole Non-Uniform Mutation........  2
##  (8) Heuristic Crossover...............  2
##  (9) Local-Minimum Crossover...........  0
## 
## SOFT Maximum Number of Generations: 100
## Maximum Nonchanging Generations: 4
## Population size       : 20
## Convergence Tolerance: 1.000000e-03
## 
## Not Using the BFGS Derivative Based Optimizer on the Best Individual Each Generation.
## Not Checking Gradients before Stopping.
## Using Out of Bounds Individuals.
## 
## Maximization Problem.
## GENERATION: 0 (initializing the population)
## Lexical Fit..... 3.007141e-01  3.173124e-01  3.173124e-01  4.935434e-01  6.160000e-01  6.533362e-01  7.800000e-01  8.520000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 20, #Total UniqueCount: 20
## var 1:
## best............ 8.988479e+02
## mean............ 4.681714e+02
## variance........ 8.152584e+04
## var 2:
## best............ 2.618078e+02
## mean............ 5.271953e+02
## variance........ 9.003735e+04
## var 3:
## best............ 5.277070e+02
## mean............ 3.349127e+02
## variance........ 8.501048e+04
## var 4:
## best............ 6.312860e+02
## mean............ 4.497491e+02
## variance........ 8.534085e+04
## var 5:
## best............ 2.743422e+02
## mean............ 4.406555e+02
## variance........ 8.114577e+04
## var 6:
## best............ 3.453593e+02
## mean............ 3.835392e+02
## variance........ 7.908836e+04
## 
## GENERATION: 1
## Lexical Fit..... 3.173124e-01  3.173124e-01  3.881842e-01  5.223950e-01  5.391942e-01  6.920000e-01  7.760000e-01  7.880000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 32
## var 1:
## best............ 9.746223e+02
## mean............ 6.103488e+02
## variance........ 7.739349e+04
## var 2:
## best............ 1.721019e+02
## mean............ 5.375921e+02
## variance........ 7.486352e+04
## var 3:
## best............ 5.093256e+02
## mean............ 5.084006e+02
## variance........ 3.501109e+04
## var 4:
## best............ 6.423314e+02
## mean............ 6.396202e+02
## variance........ 2.167824e+04
## var 5:
## best............ 2.826821e+02
## mean............ 3.643816e+02
## variance........ 2.952440e+04
## var 6:
## best............ 3.727488e+02
## mean............ 3.101248e+02
## variance........ 4.780059e+04
## 
## GENERATION: 2
## Lexical Fit..... 3.173124e-01  3.173124e-01  4.266902e-01  4.306904e-01  6.326717e-01  6.960000e-01  8.120000e-01  8.280000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 44
## var 1:
## best............ 9.235152e+02
## mean............ 8.576748e+02
## variance........ 3.176503e+04
## var 2:
## best............ 3.719707e+02
## mean............ 3.560297e+02
## variance........ 3.383778e+04
## var 3:
## best............ 6.680485e+02
## mean............ 5.933514e+02
## variance........ 2.207705e+04
## var 4:
## best............ 6.926548e+02
## mean............ 6.698812e+02
## variance........ 3.958517e+03
## var 5:
## best............ 2.770571e+02
## mean............ 2.856806e+02
## variance........ 9.771335e+02
## var 6:
## best............ 3.861470e+02
## mean............ 3.443519e+02
## variance........ 1.520541e+04
## 
## GENERATION: 3
## Lexical Fit..... 3.173124e-01  3.173124e-01  4.266902e-01  4.306904e-01  6.326717e-01  6.960000e-01  8.120000e-01  8.280000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 10, #Total UniqueCount: 54
## var 1:
## best............ 9.235152e+02
## mean............ 9.006171e+02
## variance........ 1.856535e+04
## var 2:
## best............ 3.719707e+02
## mean............ 3.154049e+02
## variance........ 1.069262e+04
## var 3:
## best............ 6.680485e+02
## mean............ 6.417026e+02
## variance........ 1.102847e+04
## var 4:
## best............ 6.926548e+02
## mean............ 6.730033e+02
## variance........ 2.554493e+03
## var 5:
## best............ 2.770571e+02
## mean............ 2.979630e+02
## variance........ 5.964492e+03
## var 6:
## best............ 3.861470e+02
## mean............ 3.956177e+02
## variance........ 3.962419e+03
## 
## GENERATION: 4
## Lexical Fit..... 3.173124e-01  3.173124e-01  4.266902e-01  4.306904e-01  6.326717e-01  7.160000e-01  7.760000e-01  7.920000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 66
## var 1:
## best............ 9.233613e+02
## mean............ 9.167202e+02
## variance........ 4.390513e+03
## var 2:
## best............ 3.720204e+02
## mean............ 3.387525e+02
## variance........ 4.581158e+03
## var 3:
## best............ 6.679467e+02
## mean............ 6.238810e+02
## variance........ 1.773897e+04
## var 4:
## best............ 6.925774e+02
## mean............ 6.609378e+02
## variance........ 1.392701e+04
## var 5:
## best............ 2.770402e+02
## mean............ 2.796798e+02
## variance........ 7.359864e+01
## var 6:
## best............ 3.860611e+02
## mean............ 3.825918e+02
## variance........ 3.136723e+01
## 
## GENERATION: 5
## Lexical Fit..... 3.173124e-01  3.173124e-01  4.266902e-01  4.306904e-01  6.326717e-01  7.160000e-01  7.760000e-01  7.920000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 78
## var 1:
## best............ 9.233613e+02
## mean............ 8.559007e+02
## variance........ 1.157566e+04
## var 2:
## best............ 3.720204e+02
## mean............ 3.665411e+02
## variance........ 1.115315e+03
## var 3:
## best............ 6.679467e+02
## mean............ 6.541262e+02
## variance........ 2.048069e+03
## var 4:
## best............ 6.925774e+02
## mean............ 6.843354e+02
## variance........ 4.898882e+03
## var 5:
## best............ 2.770402e+02
## mean............ 2.935772e+02
## variance........ 1.751985e+03
## var 6:
## best............ 3.860611e+02
## mean............ 3.894589e+02
## variance........ 2.200047e+02
## 
## GENERATION: 6
## Lexical Fit..... 3.173124e-01  3.173124e-01  4.266902e-01  4.306904e-01  6.326717e-01  7.400000e-01  7.480000e-01  8.080000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 11, #Total UniqueCount: 89
## var 1:
## best............ 9.233613e+02
## mean............ 8.752080e+02
## variance........ 9.967567e+03
## var 2:
## best............ 3.720204e+02
## mean............ 3.700676e+02
## variance........ 2.472346e+02
## var 3:
## best............ 6.680383e+02
## mean............ 6.833747e+02
## variance........ 2.023081e+03
## var 4:
## best............ 6.926471e+02
## mean............ 6.985471e+02
## variance........ 6.472662e+02
## var 5:
## best............ 2.770554e+02
## mean............ 2.706025e+02
## variance........ 7.690241e+02
## var 6:
## best............ 3.861384e+02
## mean............ 3.861674e+02
## variance........ 6.054876e+03
## 
## GENERATION: 7
## Lexical Fit..... 3.173124e-01  3.173124e-01  4.266902e-01  4.306904e-01  6.326717e-01  7.400000e-01  7.480000e-01  8.080000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 101
## var 1:
## best............ 9.233613e+02
## mean............ 9.122790e+02
## variance........ 4.175793e+03
## var 2:
## best............ 3.720204e+02
## mean............ 3.653292e+02
## variance........ 4.471450e+02
## var 3:
## best............ 6.680383e+02
## mean............ 6.830124e+02
## variance........ 1.522754e+03
## var 4:
## best............ 6.926471e+02
## mean............ 6.996183e+02
## variance........ 1.415870e+03
## var 5:
## best............ 2.770554e+02
## mean............ 2.902830e+02
## variance........ 2.863161e+03
## var 6:
## best............ 3.861384e+02
## mean............ 4.131607e+02
## variance........ 5.451677e+03
## 
## GENERATION: 8
## Lexical Fit..... 3.173124e-01  3.173124e-01  4.266902e-01  4.306904e-01  6.326717e-01  7.400000e-01  7.480000e-01  8.080000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 11, #Total UniqueCount: 112
## var 1:
## best............ 9.233613e+02
## mean............ 9.117857e+02
## variance........ 3.434609e+03
## var 2:
## best............ 3.720204e+02
## mean............ 3.867187e+02
## variance........ 4.718236e+03
## var 3:
## best............ 6.680383e+02
## mean............ 6.774556e+02
## variance........ 1.605715e+03
## var 4:
## best............ 6.926471e+02
## mean............ 6.702609e+02
## variance........ 1.533991e+04
## var 5:
## best............ 2.770554e+02
## mean............ 2.905452e+02
## variance........ 2.377334e+03
## var 6:
## best............ 3.861384e+02
## mean............ 4.217108e+02
## variance........ 1.553579e+04
## 
## GENERATION: 9
## Lexical Fit..... 3.173124e-01  3.173124e-01  4.266902e-01  4.306904e-01  6.326717e-01  7.400000e-01  7.480000e-01  8.080000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 124
## var 1:
## best............ 9.233613e+02
## mean............ 8.891062e+02
## variance........ 2.296431e+04
## var 2:
## best............ 3.720204e+02
## mean............ 3.733970e+02
## variance........ 4.637219e+01
## var 3:
## best............ 6.680383e+02
## mean............ 6.716955e+02
## variance........ 8.017481e+01
## var 4:
## best............ 6.926471e+02
## mean............ 6.881312e+02
## variance........ 1.509201e+03
## var 5:
## best............ 2.770554e+02
## mean............ 2.912030e+02
## variance........ 1.092848e+03
## var 6:
## best............ 3.861384e+02
## mean............ 3.798968e+02
## variance........ 3.811224e+02
## 
## GENERATION: 10
## Lexical Fit..... 3.173124e-01  3.173124e-01  4.266902e-01  4.306904e-01  6.326717e-01  7.400000e-01  7.480000e-01  8.080000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 11, #Total UniqueCount: 135
## var 1:
## best............ 9.233613e+02
## mean............ 9.139450e+02
## variance........ 1.564568e+03
## var 2:
## best............ 3.720204e+02
## mean............ 3.754320e+02
## variance........ 1.614096e+03
## var 3:
## best............ 6.680383e+02
## mean............ 6.725896e+02
## variance........ 2.024168e+02
## var 4:
## best............ 6.926471e+02
## mean............ 6.972219e+02
## variance........ 1.641362e+03
## var 5:
## best............ 2.770554e+02
## mean............ 2.851375e+02
## variance........ 1.376431e+03
## var 6:
## best............ 3.861384e+02
## mean............ 3.969678e+02
## variance........ 1.248760e+03
## 
## GENERATION: 11
## Lexical Fit..... 3.173124e-01  3.173124e-01  4.266902e-01  4.306904e-01  6.326717e-01  7.400000e-01  7.480000e-01  8.080000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 11, #Total UniqueCount: 146
## var 1:
## best............ 9.233613e+02
## mean............ 9.241409e+02
## variance........ 8.301958e+00
## var 2:
## best............ 3.720204e+02
## mean............ 3.736094e+02
## variance........ 8.330237e+02
## var 3:
## best............ 6.680383e+02
## mean............ 6.377156e+02
## variance........ 5.788900e+03
## var 4:
## best............ 6.926471e+02
## mean............ 6.824281e+02
## variance........ 5.288418e+03
## var 5:
## best............ 2.770554e+02
## mean............ 2.714709e+02
## variance........ 5.075078e+03
## var 6:
## best............ 3.861384e+02
## mean............ 3.857805e+02
## variance........ 2.346375e+00
## 
## 'wait.generations' limit reached.
## No significant improvement in 4 generations.
## 
## Solution Lexical Fitness Value:
## 3.173124e-01  3.173124e-01  4.266902e-01  4.306904e-01  6.326717e-01  7.400000e-01  7.480000e-01  8.080000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## 
## Parameters at the Solution:
## 
##  X[ 1] : 9.233613e+02
##  X[ 2] : 3.720204e+02
##  X[ 3] : 6.680383e+02
##  X[ 4] : 6.926471e+02
##  X[ 5] : 2.770554e+02
##  X[ 6] : 3.861384e+02
## 
## Solution Found Generation 6
## Number of Generations Run 11
## 
## Sun Apr 10 22:39:59 2022
## Total run time : 0 hours 0 minutes and 21 seconds
mout <- Match(Tr = foo$hasgirls, X = cbind(foo$Dems, foo$Repubs, foo$Christian, foo$age, foo$srvlng, foo$demvote), Weight.matrix = genout)
mb_after <- MatchBalance(hasgirls ~ Dems + Repubs + Christian + age + srvlng + demvote, data = foo, match.out = mout)
## 
## ***** (V1) Dems *****
##                        Before Matching        After Matching
## mean treatment........    0.45833            0.45833 
## mean control..........    0.50847            0.46154 
## std mean diff.........    -10.047           -0.64223 
## 
## mean raw eQQ diff.....   0.050847          0.0032051 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.025071          0.0016026 
## med  eCDF diff........   0.025071          0.0016026 
## max  eCDF diff........   0.050141          0.0032051 
## 
## var ratio (Tr/Co).....    0.98809            0.99897 
## T-test p-value........    0.35571            0.31731 
## 
## 
## ***** (V2) Repubs *****
##                        Before Matching        After Matching
## mean treatment........    0.53846            0.53846 
## mean control..........    0.49153            0.53846 
## std mean diff.........        9.4                  0 
## 
## mean raw eQQ diff.....   0.042373                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  0 
## 
## mean eCDF diff........   0.023468                  0 
## med  eCDF diff........   0.023468                  0 
## max  eCDF diff........   0.046936                  0 
## 
## var ratio (Tr/Co).....    0.98911                  1 
## T-test p-value........     0.3873                  1 
## 
## 
## ***** (V3) Christian *****
##                        Before Matching        After Matching
## mean treatment........     0.9391             0.9391 
## mean control..........    0.94915             0.9391 
## std mean diff.........    -4.1958                  0 
## 
## mean raw eQQ diff.....   0.016949                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  0 
## 
## mean eCDF diff........   0.005025                  0 
## med  eCDF diff........   0.005025                  0 
## max  eCDF diff........    0.01005                  0 
## 
## var ratio (Tr/Co).....     1.1787                  1 
## T-test p-value........    0.68107                  1 
## 
## 
## ***** (V4) age *****
##                        Before Matching        After Matching
## mean treatment........     52.628             52.628 
## mean control..........     49.178             52.506 
## std mean diff.........     38.385              1.355 
## 
## mean raw eQQ diff.....      3.661            0.58974 
## med  raw eQQ diff.....          4                  1 
## max  raw eQQ diff.....          7                  4 
## 
## mean eCDF diff........   0.075348           0.012821 
## med  eCDF diff........   0.075538          0.0064103 
## max  eCDF diff........    0.17807           0.044872 
## 
## var ratio (Tr/Co).....    0.71552             1.0074 
## T-test p-value........  0.0020402            0.43069 
## KS Bootstrap p-value..      0.004              0.798 
## KS Naive p-value......  0.0087659            0.91194 
## KS Statistic..........    0.17807           0.044872 
## 
## 
## ***** (V5) srvlng *****
##                        Before Matching        After Matching
## mean treatment........     8.5865             8.5865 
## mean control..........     8.7458             8.7179 
## std mean diff.........    -2.1085            -1.7401 
## 
## mean raw eQQ diff.....    0.66949            0.45192 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          5                  9 
## 
## mean eCDF diff........   0.017181           0.012204 
## med  eCDF diff........    0.01445          0.0080128 
## max  eCDF diff........   0.051608           0.044872 
## 
## var ratio (Tr/Co).....    0.77347            0.94705 
## T-test p-value........    0.85956            0.42669 
## KS Bootstrap p-value..      0.788              0.672 
## KS Naive p-value......    0.97653            0.91194 
## KS Statistic..........   0.051608           0.044872 
## 
## 
## ***** (V6) demvote *****
##                        Before Matching        After Matching
## mean treatment........    0.49929            0.49929 
## mean control..........    0.50602            0.49811 
## std mean diff.........    -5.2747            0.93056 
## 
## mean raw eQQ diff.....   0.011441           0.010032 
## med  raw eQQ diff.....       0.01               0.01 
## max  raw eQQ diff.....       0.08               0.08 
## 
## mean eCDF diff........   0.015928           0.015161 
## med  eCDF diff........   0.010811          0.0096154 
## max  eCDF diff........   0.048512           0.044872 
## 
## var ratio (Tr/Co).....     1.1269             1.1572 
## T-test p-value........    0.61103            0.63267 
## KS Bootstrap p-value..      0.936              0.838 
## KS Naive p-value......    0.98776            0.91194 
## KS Statistic..........   0.048512           0.044872 
## 
## 
## Before Matching Minimum p.value: 0.0020402 
## Variable Name(s): age  Number(s): 4 
## 
## After Matching Minimum p.value: 0.31731 
## Variable Name(s): Dems  Number(s): 1
genout_withM2 <- GenMatch(Tr = foo$hasgirls, X = cbind(foo$Dems, foo$Repubs, foo$Christian, foo$age, foo$srvlng, foo$demvote), pop.size = 20, nboots = 250, M = 2)
## 
## 
## Sun Apr 10 22:40:00 2022
## Domains:
##  0.000000e+00   <=  X1   <=    1.000000e+03 
##  0.000000e+00   <=  X2   <=    1.000000e+03 
##  0.000000e+00   <=  X3   <=    1.000000e+03 
##  0.000000e+00   <=  X4   <=    1.000000e+03 
##  0.000000e+00   <=  X5   <=    1.000000e+03 
##  0.000000e+00   <=  X6   <=    1.000000e+03 
## 
## Data Type: Floating Point
## Operators (code number, name, population) 
##  (1) Cloning...........................  5
##  (2) Uniform Mutation..................  2
##  (3) Boundary Mutation.................  2
##  (4) Non-Uniform Mutation..............  2
##  (5) Polytope Crossover................  2
##  (6) Simple Crossover..................  2
##  (7) Whole Non-Uniform Mutation........  2
##  (8) Heuristic Crossover...............  2
##  (9) Local-Minimum Crossover...........  0
## 
## SOFT Maximum Number of Generations: 100
## Maximum Nonchanging Generations: 4
## Population size       : 20
## Convergence Tolerance: 1.000000e-03
## 
## Not Using the BFGS Derivative Based Optimizer on the Best Individual Each Generation.
## Not Checking Gradients before Stopping.
## Using Out of Bounds Individuals.
## 
## Maximization Problem.
## GENERATION: 0 (initializing the population)
## Lexical Fit..... 1.217810e-01  1.440000e-01  1.569680e-01  1.569680e-01  1.760000e-01  4.796777e-01  4.796777e-01  5.991101e-01  6.080000e-01  6.625970e-01  1.000000e+00  1.000000e+00  
## #unique......... 20, #Total UniqueCount: 20
## var 1:
## best............ 4.787857e+02
## mean............ 4.421109e+02
## variance........ 1.239736e+05
## var 2:
## best............ 1.053834e+02
## mean............ 3.374058e+02
## variance........ 8.312254e+04
## var 3:
## best............ 8.531904e+02
## mean............ 4.615873e+02
## variance........ 8.575886e+04
## var 4:
## best............ 6.637632e+02
## mean............ 4.612241e+02
## variance........ 5.406375e+04
## var 5:
## best............ 9.450033e+01
## mean............ 4.367318e+02
## variance........ 8.658821e+04
## var 6:
## best............ 3.141164e+02
## mean............ 5.176758e+02
## variance........ 7.811055e+04
## 
## GENERATION: 1
## Lexical Fit..... 1.276416e-01  1.480000e-01  1.569680e-01  1.569680e-01  2.080000e-01  4.796777e-01  4.796777e-01  5.880903e-01  7.080000e-01  7.777129e-01  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 32
## var 1:
## best............ 4.787857e+02
## mean............ 4.562313e+02
## variance........ 7.564409e+04
## var 2:
## best............ 1.053834e+02
## mean............ 2.677724e+02
## variance........ 7.297712e+04
## var 3:
## best............ 8.531904e+02
## mean............ 5.769707e+02
## variance........ 1.184606e+05
## var 4:
## best............ 7.819171e+02
## mean............ 6.012454e+02
## variance........ 4.942781e+04
## var 5:
## best............ 9.450033e+01
## mean............ 3.300927e+02
## variance........ 7.701517e+04
## var 6:
## best............ 3.141164e+02
## mean............ 2.730699e+02
## variance........ 3.350372e+04
## 
## GENERATION: 2
## Lexical Fit..... 1.276416e-01  1.569680e-01  1.569680e-01  1.720000e-01  1.920000e-01  4.796777e-01  4.796777e-01  5.880903e-01  7.440000e-01  7.777129e-01  1.000000e+00  1.000000e+00  
## #unique......... 9, #Total UniqueCount: 41
## var 1:
## best............ 2.210264e+02
## mean............ 4.275622e+02
## variance........ 1.896408e+04
## var 2:
## best............ 1.053834e+02
## mean............ 2.943579e+02
## variance........ 6.150222e+04
## var 3:
## best............ 8.531904e+02
## mean............ 8.300231e+02
## variance........ 1.475919e+04
## var 4:
## best............ 7.819171e+02
## mean............ 7.148938e+02
## variance........ 7.189240e+03
## var 5:
## best............ 9.450033e+01
## mean............ 2.243822e+02
## variance........ 4.382550e+04
## var 6:
## best............ 3.141164e+02
## mean............ 2.924198e+02
## variance........ 4.785605e+03
## 
## GENERATION: 3
## Lexical Fit..... 1.457757e-01  1.480000e-01  1.800000e-01  6.172877e-01  6.172877e-01  7.400000e-01  8.153316e-01  9.026872e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 53
## var 1:
## best............ 9.015035e+01
## mean............ 3.715619e+02
## variance........ 2.072205e+04
## var 2:
## best............ 1.053834e+02
## mean............ 1.478286e+02
## variance........ 2.077822e+04
## var 3:
## best............ 8.531904e+02
## mean............ 8.448531e+02
## variance........ 6.581451e+02
## var 4:
## best............ 8.419091e+02
## mean............ 7.307944e+02
## variance........ 5.175133e+03
## var 5:
## best............ 9.450033e+01
## mean............ 9.001822e+01
## variance........ 3.322537e+02
## var 6:
## best............ 3.141164e+02
## mean............ 3.098669e+02
## variance........ 1.243496e+03
## 
## GENERATION: 4
## Lexical Fit..... 1.640000e-01  1.943474e-01  2.520000e-01  2.863712e-01  2.863712e-01  5.226296e-01  5.226296e-01  6.600000e-01  7.764139e-01  9.449636e-01  1.000000e+00  1.000000e+00  
## #unique......... 10, #Total UniqueCount: 63
## var 1:
## best............ 4.969046e+01
## mean............ 2.864780e+02
## variance........ 2.974330e+04
## var 2:
## best............ 1.053834e+02
## mean............ 1.329274e+02
## variance........ 1.080344e+04
## var 3:
## best............ 8.531904e+02
## mean............ 8.312898e+02
## variance........ 1.613231e+04
## var 4:
## best............ 8.604555e+02
## mean............ 7.751116e+02
## variance........ 5.965947e+03
## var 5:
## best............ 1.021196e+02
## mean............ 1.251289e+02
## variance........ 1.286621e+04
## var 6:
## best............ 3.141164e+02
## mean............ 3.448520e+02
## variance........ 9.802560e+03
## 
## GENERATION: 5
## Lexical Fit..... 1.840000e-01  1.943474e-01  2.720000e-01  2.863712e-01  2.863712e-01  5.226296e-01  5.226296e-01  7.080000e-01  7.764139e-01  9.449636e-01  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 75
## var 1:
## best............ 4.969046e+01
## mean............ 1.420261e+02
## variance........ 2.173175e+04
## var 2:
## best............ 1.053834e+02
## mean............ 1.211457e+02
## variance........ 4.555301e+03
## var 3:
## best............ 8.531904e+02
## mean............ 8.310341e+02
## variance........ 1.237357e+04
## var 4:
## best............ 8.604555e+02
## mean............ 7.947639e+02
## variance........ 2.426786e+04
## var 5:
## best............ 1.021196e+02
## mean............ 9.213941e+01
## variance........ 5.802513e+02
## var 6:
## best............ 3.141164e+02
## mean............ 3.033579e+02
## variance........ 3.831415e+03
## 
## GENERATION: 6
## Lexical Fit..... 1.975357e-01  2.320000e-01  2.720000e-01  2.863712e-01  2.863712e-01  5.226296e-01  5.226296e-01  6.880000e-01  7.280932e-01  9.789320e-01  1.000000e+00  1.000000e+00  
## #unique......... 10, #Total UniqueCount: 85
## var 1:
## best............ 4.969046e+01
## mean............ 7.874655e+01
## variance........ 8.428700e+03
## var 2:
## best............ 1.053834e+02
## mean............ 1.531207e+02
## variance........ 1.423649e+04
## var 3:
## best............ 8.531904e+02
## mean............ 8.348568e+02
## variance........ 1.080465e+04
## var 4:
## best............ 8.604555e+02
## mean............ 8.481878e+02
## variance........ 1.869834e+03
## var 5:
## best............ 1.022604e+02
## mean............ 1.016482e+02
## variance........ 5.775863e+01
## var 6:
## best............ 3.141164e+02
## mean............ 3.257501e+02
## variance........ 1.307749e+03
## 
## GENERATION: 7
## Lexical Fit..... 1.975357e-01  2.320000e-01  2.720000e-01  2.863712e-01  2.863712e-01  5.226296e-01  5.226296e-01  6.880000e-01  7.280932e-01  9.789320e-01  1.000000e+00  1.000000e+00  
## #unique......... 9, #Total UniqueCount: 94
## var 1:
## best............ 4.969046e+01
## mean............ 5.265729e+01
## variance........ 1.896575e+02
## var 2:
## best............ 1.053834e+02
## mean............ 1.112971e+02
## variance........ 5.081565e+02
## var 3:
## best............ 8.531904e+02
## mean............ 8.109110e+02
## variance........ 1.668549e+04
## var 4:
## best............ 8.604555e+02
## mean............ 8.512613e+02
## variance........ 1.672911e+03
## var 5:
## best............ 1.022604e+02
## mean............ 9.717612e+01
## variance........ 2.153905e+02
## var 6:
## best............ 3.141164e+02
## mean............ 3.234236e+02
## variance........ 1.421549e+03
## 
## GENERATION: 8
## Lexical Fit..... 1.975357e-01  2.440000e-01  2.560000e-01  2.863712e-01  2.863712e-01  5.226296e-01  5.226296e-01  6.480000e-01  7.280932e-01  9.789320e-01  1.000000e+00  1.000000e+00  
## #unique......... 11, #Total UniqueCount: 105
## var 1:
## best............ 4.969046e+01
## mean............ 8.737804e+01
## variance........ 1.511847e+04
## var 2:
## best............ 1.053834e+02
## mean............ 1.361306e+02
## variance........ 8.003292e+03
## var 3:
## best............ 9.610316e+02
## mean............ 7.845183e+02
## variance........ 4.169643e+04
## var 4:
## best............ 8.604555e+02
## mean............ 8.334967e+02
## variance........ 1.120493e+04
## var 5:
## best............ 1.022604e+02
## mean............ 1.353815e+02
## variance........ 1.010895e+04
## var 6:
## best............ 3.141164e+02
## mean............ 3.298633e+02
## variance........ 2.384849e+03
## 
## GENERATION: 9
## Lexical Fit..... 1.975357e-01  2.440000e-01  2.560000e-01  2.863712e-01  2.863712e-01  5.226296e-01  5.226296e-01  6.480000e-01  7.280932e-01  9.789320e-01  1.000000e+00  1.000000e+00  
## #unique......... 13, #Total UniqueCount: 118
## var 1:
## best............ 4.969046e+01
## mean............ 5.867194e+01
## variance........ 1.598794e+03
## var 2:
## best............ 1.053834e+02
## mean............ 1.604772e+02
## variance........ 2.980829e+04
## var 3:
## best............ 9.610316e+02
## mean............ 8.482487e+02
## variance........ 1.625532e+04
## var 4:
## best............ 8.604555e+02
## mean............ 8.653085e+02
## variance........ 1.878150e+02
## var 5:
## best............ 1.022604e+02
## mean............ 1.421845e+02
## variance........ 9.469128e+03
## var 6:
## best............ 3.141164e+02
## mean............ 3.051303e+02
## variance........ 8.177305e+02
## 
## GENERATION: 10
## Lexical Fit..... 1.975357e-01  2.440000e-01  2.560000e-01  2.863712e-01  2.863712e-01  5.226296e-01  5.226296e-01  6.480000e-01  7.280932e-01  9.789320e-01  1.000000e+00  1.000000e+00  
## #unique......... 10, #Total UniqueCount: 128
## var 1:
## best............ 4.969046e+01
## mean............ 7.309218e+01
## variance........ 1.055539e+04
## var 2:
## best............ 1.053834e+02
## mean............ 1.674024e+02
## variance........ 2.870194e+04
## var 3:
## best............ 9.610316e+02
## mean............ 8.730899e+02
## variance........ 2.204151e+04
## var 4:
## best............ 8.604555e+02
## mean............ 8.339089e+02
## variance........ 7.469210e+03
## var 5:
## best............ 1.022604e+02
## mean............ 1.077536e+02
## variance........ 7.004114e+02
## var 6:
## best............ 3.141164e+02
## mean............ 3.213868e+02
## variance........ 1.735236e+03
## 
## GENERATION: 11
## Lexical Fit..... 1.975357e-01  2.440000e-01  2.560000e-01  2.863712e-01  2.863712e-01  5.226296e-01  5.226296e-01  6.480000e-01  7.280932e-01  9.789320e-01  1.000000e+00  1.000000e+00  
## #unique......... 9, #Total UniqueCount: 137
## var 1:
## best............ 4.969046e+01
## mean............ 8.314163e+01
## variance........ 8.288561e+03
## var 2:
## best............ 1.053834e+02
## mean............ 1.429799e+02
## variance........ 1.662663e+04
## var 3:
## best............ 9.610316e+02
## mean............ 9.025552e+02
## variance........ 1.289274e+04
## var 4:
## best............ 8.604555e+02
## mean............ 8.607457e+02
## variance........ 1.649183e+02
## var 5:
## best............ 1.022604e+02
## mean............ 1.529418e+02
## variance........ 1.848288e+04
## var 6:
## best............ 3.141164e+02
## mean............ 3.145325e+02
## variance........ 5.019916e+01
## 
## GENERATION: 12
## Lexical Fit..... 1.975357e-01  2.440000e-01  2.560000e-01  2.863712e-01  2.863712e-01  5.226296e-01  5.226296e-01  6.480000e-01  7.280932e-01  9.789320e-01  1.000000e+00  1.000000e+00  
## #unique......... 7, #Total UniqueCount: 144
## var 1:
## best............ 4.969046e+01
## mean............ 5.784924e+01
## variance........ 1.259940e+03
## var 2:
## best............ 1.053834e+02
## mean............ 1.092174e+02
## variance........ 4.662368e+02
## var 3:
## best............ 9.610316e+02
## mean............ 9.405765e+02
## variance........ 1.974704e+03
## var 4:
## best............ 8.604555e+02
## mean............ 8.406489e+02
## variance........ 3.930331e+03
## var 5:
## best............ 1.022604e+02
## mean............ 1.180278e+02
## variance........ 2.543079e+03
## var 6:
## best............ 3.141164e+02
## mean............ 3.272319e+02
## variance........ 1.990028e+03
## 
## GENERATION: 13
## Lexical Fit..... 1.975357e-01  2.440000e-01  2.560000e-01  2.863712e-01  2.863712e-01  5.226296e-01  5.226296e-01  6.480000e-01  7.280932e-01  9.789320e-01  1.000000e+00  1.000000e+00  
## #unique......... 8, #Total UniqueCount: 152
## var 1:
## best............ 4.969046e+01
## mean............ 6.455565e+01
## variance........ 2.531087e+03
## var 2:
## best............ 1.053834e+02
## mean............ 1.099929e+02
## variance........ 4.735317e+02
## var 3:
## best............ 9.610316e+02
## mean............ 9.452990e+02
## variance........ 4.270057e+03
## var 4:
## best............ 8.604555e+02
## mean............ 8.481815e+02
## variance........ 1.395909e+03
## var 5:
## best............ 1.022604e+02
## mean............ 1.000700e+02
## variance........ 3.852534e+01
## var 6:
## best............ 3.141164e+02
## mean............ 3.151712e+02
## variance........ 2.256832e+01
## 
## 'wait.generations' limit reached.
## No significant improvement in 4 generations.
## 
## Solution Lexical Fitness Value:
## 1.975357e-01  2.440000e-01  2.560000e-01  2.863712e-01  2.863712e-01  5.226296e-01  5.226296e-01  6.480000e-01  7.280932e-01  9.789320e-01  1.000000e+00  1.000000e+00  
## 
## Parameters at the Solution:
## 
##  X[ 1] : 4.969046e+01
##  X[ 2] : 1.053834e+02
##  X[ 3] : 9.610316e+02
##  X[ 4] : 8.604555e+02
##  X[ 5] : 1.022604e+02
##  X[ 6] : 3.141164e+02
## 
## Solution Found Generation 8
## Number of Generations Run 13
## 
## Sun Apr 10 22:40:32 2022
## Total run time : 0 hours 0 minutes and 32 seconds
mout_withM2 <- Match(Tr = foo$hasgirls, X = cbind(foo$Dems, foo$Repubs, foo$Christian, foo$age, foo$srvlng, foo$demvote), Weight.matrix = genout_withM2, M = 2)
mb_withM2 <- MatchBalance(hasgirls ~ Dems + Repubs + Christian + age + srvlng + demvote, data = foo, match.out = mout_withM2)
## 
## ***** (V1) Dems *****
##                        Before Matching        After Matching
## mean treatment........    0.45833            0.45833 
## mean control..........    0.50847            0.45353 
## std mean diff.........    -10.047            0.96335 
## 
## mean raw eQQ diff.....   0.050847             0.0048 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.025071             0.0024 
## med  eCDF diff........   0.025071             0.0024 
## max  eCDF diff........   0.050141             0.0048 
## 
## var ratio (Tr/Co).....    0.98809             1.0017 
## T-test p-value........    0.35571            0.52263 
## 
## 
## ***** (V2) Repubs *****
##                        Before Matching        After Matching
## mean treatment........    0.53846            0.53846 
## mean control..........    0.49153            0.54647 
## std mean diff.........        9.4            -1.6047 
## 
## mean raw eQQ diff.....   0.042373              0.008 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.023468              0.004 
## med  eCDF diff........   0.023468              0.004 
## max  eCDF diff........   0.046936              0.008 
## 
## var ratio (Tr/Co).....    0.98911             1.0027 
## T-test p-value........     0.3873            0.28637 
## 
## 
## ***** (V3) Christian *****
##                        Before Matching        After Matching
## mean treatment........     0.9391             0.9391 
## mean control..........    0.94915             0.9391 
## std mean diff.........    -4.1958                  0 
## 
## mean raw eQQ diff.....   0.016949                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  0 
## 
## mean eCDF diff........   0.005025                  0 
## med  eCDF diff........   0.005025                  0 
## max  eCDF diff........    0.01005                  0 
## 
## var ratio (Tr/Co).....     1.1787                  1 
## T-test p-value........    0.68107                  1 
## 
## 
## ***** (V4) age *****
##                        Before Matching        After Matching
## mean treatment........     52.628             52.628 
## mean control..........     49.178             52.431 
## std mean diff.........     38.385              2.193 
## 
## mean raw eQQ diff.....      3.661              0.616 
## med  raw eQQ diff.....          4                  1 
## max  raw eQQ diff.....          7                  7 
## 
## mean eCDF diff........   0.075348           0.013043 
## med  eCDF diff........   0.075538              0.008 
## max  eCDF diff........    0.17807             0.0512 
## 
## var ratio (Tr/Co).....    0.71552             1.0449 
## T-test p-value........  0.0020402            0.19754 
## KS Bootstrap p-value..      0.004              0.258 
## KS Naive p-value......  0.0087659            0.38574 
## KS Statistic..........    0.17807             0.0512 
## 
## 
## ***** (V5) srvlng *****
##                        Before Matching        After Matching
## mean treatment........     8.5865             8.5865 
## mean control..........     8.7458             8.6768 
## std mean diff.........    -2.1085            -1.1955 
## 
## mean raw eQQ diff.....    0.66949             0.4016 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          5                  9 
## 
## mean eCDF diff........   0.017181            0.01043 
## med  eCDF diff........    0.01445              0.008 
## max  eCDF diff........   0.051608              0.032 
## 
## var ratio (Tr/Co).....    0.77347             1.0244 
## T-test p-value........    0.85956            0.72809 
## KS Bootstrap p-value..      0.792              0.634 
## KS Naive p-value......    0.97653            0.90621 
## KS Statistic..........   0.051608              0.032 
## 
## 
## ***** (V6) demvote *****
##                        Before Matching        After Matching
## mean treatment........    0.49929            0.49929 
## mean control..........    0.50602            0.49937 
## std mean diff.........    -5.2747          -0.062875 
## 
## mean raw eQQ diff.....   0.011441           0.010864 
## med  raw eQQ diff.....       0.01               0.01 
## max  raw eQQ diff.....       0.08               0.08 
## 
## mean eCDF diff........   0.015928           0.016432 
## med  eCDF diff........   0.010811             0.0144 
## max  eCDF diff........   0.048512              0.056 
## 
## var ratio (Tr/Co).....     1.1269             1.1832 
## T-test p-value........    0.61103            0.97893 
## KS Bootstrap p-value..      0.924              0.186 
## KS Naive p-value......    0.98776            0.28096 
## KS Statistic..........   0.048512              0.056 
## 
## 
## Before Matching Minimum p.value: 0.0020402 
## Variable Name(s): age  Number(s): 4 
## 
## After Matching Minimum p.value: 0.186 
## Variable Name(s): demvote  Number(s): 6
genout_withM3 <- GenMatch(Tr = foo$hasgirls, X = cbind(foo$Dems, foo$Repubs, foo$Christian, foo$age, foo$srvlng, foo$demvote), pop.size = 20, nboots = 250, M = 3)
## 
## 
## Sun Apr 10 22:40:33 2022
## Domains:
##  0.000000e+00   <=  X1   <=    1.000000e+03 
##  0.000000e+00   <=  X2   <=    1.000000e+03 
##  0.000000e+00   <=  X3   <=    1.000000e+03 
##  0.000000e+00   <=  X4   <=    1.000000e+03 
##  0.000000e+00   <=  X5   <=    1.000000e+03 
##  0.000000e+00   <=  X6   <=    1.000000e+03 
## 
## Data Type: Floating Point
## Operators (code number, name, population) 
##  (1) Cloning...........................  5
##  (2) Uniform Mutation..................  2
##  (3) Boundary Mutation.................  2
##  (4) Non-Uniform Mutation..............  2
##  (5) Polytope Crossover................  2
##  (6) Simple Crossover..................  2
##  (7) Whole Non-Uniform Mutation........  2
##  (8) Heuristic Crossover...............  2
##  (9) Local-Minimum Crossover...........  0
## 
## SOFT Maximum Number of Generations: 100
## Maximum Nonchanging Generations: 4
## Population size       : 20
## Convergence Tolerance: 1.000000e-03
## 
## Not Using the BFGS Derivative Based Optimizer on the Best Individual Each Generation.
## Not Checking Gradients before Stopping.
## Using Out of Bounds Individuals.
## 
## Maximization Problem.
## GENERATION: 0 (initializing the population)
## Lexical Fit..... 1.621419e-02  2.000000e-02  7.200000e-02  1.569680e-01  1.569680e-01  4.387264e-01  4.387264e-01  5.240000e-01  6.705279e-01  7.787449e-01  1.000000e+00  1.000000e+00  
## #unique......... 20, #Total UniqueCount: 20
## var 1:
## best............ 5.753846e+02
## mean............ 5.555705e+02
## variance........ 1.102707e+05
## var 2:
## best............ 3.995648e+02
## mean............ 4.124175e+02
## variance........ 8.398474e+04
## var 3:
## best............ 8.339054e+02
## mean............ 5.485548e+02
## variance........ 7.841503e+04
## var 4:
## best............ 7.859569e+02
## mean............ 4.760546e+02
## variance........ 8.926673e+04
## var 5:
## best............ 4.739673e+01
## mean............ 5.189730e+02
## variance........ 9.563991e+04
## var 6:
## best............ 6.958361e+02
## mean............ 4.959198e+02
## variance........ 7.648976e+04
## 
## GENERATION: 1
## Lexical Fit..... 1.621419e-02  2.000000e-02  7.200000e-02  1.569680e-01  1.569680e-01  4.387264e-01  4.387264e-01  5.240000e-01  6.705279e-01  7.787449e-01  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 32
## var 1:
## best............ 5.753846e+02
## mean............ 4.270557e+02
## variance........ 6.575962e+04
## var 2:
## best............ 3.995648e+02
## mean............ 3.622430e+02
## variance........ 6.216538e+04
## var 3:
## best............ 8.339054e+02
## mean............ 7.217667e+02
## variance........ 3.473626e+04
## var 4:
## best............ 7.859569e+02
## mean............ 6.913169e+02
## variance........ 3.300717e+04
## var 5:
## best............ 4.739673e+01
## mean............ 4.866323e+02
## variance........ 1.101391e+05
## var 6:
## best............ 6.958361e+02
## mean............ 4.049157e+02
## variance........ 8.584864e+04
## 
## GENERATION: 2
## Lexical Fit..... 2.800000e-02  2.846634e-02  6.400000e-02  1.060246e-01  1.200000e-01  5.075069e-01  7.390625e-01  7.390625e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 11, #Total UniqueCount: 43
## var 1:
## best............ 1.094605e+02
## mean............ 4.790964e+02
## variance........ 3.169821e+04
## var 2:
## best............ 4.024473e+01
## mean............ 3.345182e+02
## variance........ 2.708718e+04
## var 3:
## best............ 6.647515e+02
## mean............ 7.296513e+02
## variance........ 1.739375e+04
## var 4:
## best............ 6.837231e+02
## mean............ 7.523776e+02
## variance........ 1.212423e+04
## var 5:
## best............ 8.705133e+02
## mean............ 2.094407e+02
## variance........ 8.821512e+04
## var 6:
## best............ 1.175579e+01
## mean............ 4.990478e+02
## variance........ 7.302942e+04
## 
## GENERATION: 3
## Lexical Fit..... 3.297033e-02  5.600000e-02  6.800000e-02  1.400000e-01  2.204882e-01  2.204882e-01  2.387960e-01  2.863252e-01  5.128852e-01  5.128852e-01  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 55
## var 1:
## best............ 5.532382e+02
## mean............ 3.628030e+02
## variance........ 4.843976e+04
## var 2:
## best............ 3.472824e+01
## mean............ 1.863646e+02
## variance........ 2.524689e+04
## var 3:
## best............ 6.264175e+02
## mean............ 7.369862e+02
## variance........ 5.547301e+03
## var 4:
## best............ 7.234631e+02
## mean............ 7.352021e+02
## variance........ 8.223759e+03
## var 5:
## best............ 2.720762e+02
## mean............ 3.858978e+02
## variance........ 1.330678e+05
## var 6:
## best............ 8.651452e+00
## mean............ 2.626411e+02
## variance........ 7.070853e+04
## 
## GENERATION: 4
## Lexical Fit..... 4.888926e-02  8.000000e-02  1.040000e-01  1.080000e-01  1.251284e-01  2.609555e-01  2.609555e-01  4.054981e-01  4.054981e-01  6.974754e-01  1.000000e+00  1.000000e+00  
## #unique......... 13, #Total UniqueCount: 68
## var 1:
## best............ 1.063671e+02
## mean............ 4.081230e+02
## variance........ 5.232050e+04
## var 2:
## best............ 4.979002e+00
## mean............ 7.663751e+01
## variance........ 8.946600e+03
## var 3:
## best............ 6.636285e+02
## mean............ 6.640422e+02
## variance........ 2.944609e+03
## var 4:
## best............ 6.825330e+02
## mean............ 7.075752e+02
## variance........ 3.097057e+03
## var 5:
## best............ 8.759782e+02
## mean............ 4.606583e+02
## variance........ 1.167103e+05
## var 6:
## best............ 7.214021e+00
## mean............ 1.224933e+02
## variance........ 6.240560e+04
## 
## GENERATION: 5
## Lexical Fit..... 4.921943e-02  7.600000e-02  7.600000e-02  1.000000e-01  1.255774e-01  2.609555e-01  2.609555e-01  4.054981e-01  4.054981e-01  6.770107e-01  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 80
## var 1:
## best............ 1.063671e+02
## mean............ 2.376657e+02
## variance........ 4.094935e+04
## var 2:
## best............ 4.979002e+00
## mean............ 8.724578e+01
## variance........ 2.638443e+04
## var 3:
## best............ 6.636285e+02
## mean............ 6.420159e+02
## variance........ 1.711728e+03
## var 4:
## best............ 6.825330e+02
## mean............ 6.586449e+02
## variance........ 6.013599e+03
## var 5:
## best............ 9.047249e+02
## mean............ 7.068684e+02
## variance........ 7.510790e+04
## var 6:
## best............ 7.214021e+00
## mean............ 5.386398e+01
## variance........ 1.533817e+04
## 
## GENERATION: 6
## Lexical Fit..... 4.921943e-02  7.600000e-02  7.600000e-02  1.000000e-01  1.255774e-01  2.609555e-01  2.609555e-01  4.054981e-01  4.054981e-01  6.770107e-01  1.000000e+00  1.000000e+00  
## #unique......... 9, #Total UniqueCount: 89
## var 1:
## best............ 1.063671e+02
## mean............ 2.292796e+02
## variance........ 4.380493e+04
## var 2:
## best............ 4.979002e+00
## mean............ 1.621657e+01
## variance........ 3.219378e+02
## var 3:
## best............ 6.636285e+02
## mean............ 6.551896e+02
## variance........ 4.061753e+03
## var 4:
## best............ 6.825330e+02
## mean............ 6.592471e+02
## variance........ 7.159028e+03
## var 5:
## best............ 9.047249e+02
## mean............ 7.173508e+02
## variance........ 8.769432e+04
## var 6:
## best............ 7.214021e+00
## mean............ 1.212284e+01
## variance........ 6.454829e+02
## 
## GENERATION: 7
## Lexical Fit..... 6.716891e-02  9.600000e-02  1.000000e-01  1.166667e-01  1.166667e-01  1.911686e-01  1.911686e-01  2.000000e-01  3.807400e-01  7.240898e-01  1.000000e+00  1.000000e+00  
## #unique......... 8, #Total UniqueCount: 97
## var 1:
## best............ 1.063671e+02
## mean............ 1.069118e+02
## variance........ 4.669512e+02
## var 2:
## best............ 4.979002e+00
## mean............ 1.690317e+01
## variance........ 1.442867e+03
## var 3:
## best............ 6.636285e+02
## mean............ 6.540005e+02
## variance........ 5.298288e+03
## var 4:
## best............ 9.473561e+02
## mean............ 6.987704e+02
## variance........ 3.588590e+03
## var 5:
## best............ 9.047249e+02
## mean............ 9.038005e+02
## variance........ 3.907926e+02
## var 6:
## best............ 7.214021e+00
## mean............ 2.185364e+01
## variance........ 4.182589e+03
## 
## GENERATION: 8
## Lexical Fit..... 8.181862e-02  9.600000e-02  1.020127e-01  1.020127e-01  1.040000e-01  1.690250e-01  1.690250e-01  2.040000e-01  3.598874e-01  6.977615e-01  1.000000e+00  1.000000e+00  
## #unique......... 10, #Total UniqueCount: 107
## var 1:
## best............ 1.063671e+02
## mean............ 1.356750e+02
## variance........ 9.376082e+03
## var 2:
## best............ 4.979002e+00
## mean............ 8.675496e+01
## variance........ 4.034698e+04
## var 3:
## best............ 6.636285e+02
## mean............ 6.551897e+02
## variance........ 1.251519e+03
## var 4:
## best............ 9.905277e+02
## mean............ 7.888536e+02
## variance........ 1.694211e+04
## var 5:
## best............ 9.047249e+02
## mean............ 8.662759e+02
## variance........ 2.782768e+04
## var 6:
## best............ 7.214021e+00
## mean............ 1.601552e+01
## variance........ 7.929939e+02
## 
## GENERATION: 9
## Lexical Fit..... 9.600000e-02  9.600000e-02  1.040000e-01  2.192399e-01  2.275353e-01  2.275353e-01  2.914943e-01  2.914943e-01  3.144880e-01  9.155194e-01  1.000000e+00  1.000000e+00  
## #unique......... 11, #Total UniqueCount: 118
## var 1:
## best............ 3.075592e+01
## mean............ 8.738985e+01
## variance........ 1.019117e+03
## var 2:
## best............ 4.409500e+00
## mean............ 6.385351e+01
## variance........ 3.200630e+04
## var 3:
## best............ 6.619400e+02
## mean............ 6.508772e+02
## variance........ 1.100414e+04
## var 4:
## best............ 9.409769e+02
## mean............ 8.939482e+02
## variance........ 2.903987e+04
## var 5:
## best............ 9.038527e+02
## mean............ 8.860725e+02
## variance........ 4.488978e+03
## var 6:
## best............ 5.594384e+00
## mean............ 9.307132e+00
## variance........ 1.037578e+02
## 
## GENERATION: 10
## Lexical Fit..... 1.200000e-01  1.520000e-01  1.569680e-01  1.569680e-01  1.770186e-01  1.770186e-01  2.280000e-01  2.309052e-01  2.309052e-01  3.008787e-01  4.221285e-01  9.295623e-01  
## #unique......... 11, #Total UniqueCount: 129
## var 1:
## best............ 3.075592e+01
## mean............ 1.149816e+02
## variance........ 1.756656e+04
## var 2:
## best............ 4.409500e+00
## mean............ 2.328608e+01
## variance........ 3.234210e+03
## var 3:
## best............ 1.767479e+02
## mean............ 6.420415e+02
## variance........ 1.156782e+04
## var 4:
## best............ 9.409769e+02
## mean............ 9.157817e+02
## variance........ 3.472189e+04
## var 5:
## best............ 9.038527e+02
## mean............ 8.969442e+02
## variance........ 1.656894e+03
## var 6:
## best............ 5.594384e+00
## mean............ 2.744616e+01
## variance........ 2.882705e+03
## 
## GENERATION: 11
## Lexical Fit..... 1.200000e-01  1.520000e-01  1.569680e-01  1.569680e-01  1.770186e-01  1.770186e-01  2.280000e-01  2.309052e-01  2.309052e-01  3.008787e-01  4.221285e-01  9.295623e-01  
## #unique......... 11, #Total UniqueCount: 140
## var 1:
## best............ 3.075592e+01
## mean............ 4.693015e+01
## variance........ 1.163284e+03
## var 2:
## best............ 4.409500e+00
## mean............ 8.791549e+00
## variance........ 1.811752e+02
## var 3:
## best............ 1.767479e+02
## mean............ 5.393465e+02
## variance........ 3.690845e+04
## var 4:
## best............ 9.409769e+02
## mean............ 9.278445e+02
## variance........ 2.814470e+03
## var 5:
## best............ 9.038527e+02
## mean............ 8.990767e+02
## variance........ 1.117142e+03
## var 6:
## best............ 5.594384e+00
## mean............ 5.251665e+01
## variance........ 2.809062e+04
## 
## GENERATION: 12
## Lexical Fit..... 1.200000e-01  1.520000e-01  1.569680e-01  1.569680e-01  1.770186e-01  1.770186e-01  2.280000e-01  2.309052e-01  2.309052e-01  3.008787e-01  4.221285e-01  9.295623e-01  
## #unique......... 6, #Total UniqueCount: 146
## var 1:
## best............ 3.075592e+01
## mean............ 3.458910e+01
## variance........ 3.264829e+02
## var 2:
## best............ 4.409500e+00
## mean............ 1.304247e+01
## variance........ 7.257350e+02
## var 3:
## best............ 1.767479e+02
## mean............ 3.278778e+02
## variance........ 4.980355e+04
## var 4:
## best............ 9.409769e+02
## mean............ 9.369355e+02
## variance........ 3.701659e+02
## var 5:
## best............ 9.038527e+02
## mean............ 9.045183e+02
## variance........ 2.114907e+02
## var 6:
## best............ 5.594384e+00
## mean............ 6.014242e+00
## variance........ 3.216356e+00
## 
## GENERATION: 13
## Lexical Fit..... 1.320000e-01  1.533062e-01  1.533062e-01  1.569680e-01  1.569680e-01  2.013049e-01  2.013049e-01  2.160000e-01  2.640000e-01  3.635938e-01  3.791716e-01  8.782963e-01  
## #unique......... 8, #Total UniqueCount: 154
## var 1:
## best............ 3.075592e+01
## mean............ 7.654629e+01
## variance........ 1.090494e+04
## var 2:
## best............ 4.409500e+00
## mean............ 1.794567e+01
## variance........ 3.061769e+03
## var 3:
## best............ 1.767479e+02
## mean............ 1.976682e+02
## variance........ 8.203072e+03
## var 4:
## best............ 9.671828e+02
## mean............ 9.336125e+02
## variance........ 4.567080e+02
## var 5:
## best............ 9.038527e+02
## mean............ 8.870277e+02
## variance........ 3.663486e+03
## var 6:
## best............ 5.594384e+00
## mean............ 3.545039e+01
## variance........ 1.159189e+04
## 
## GENERATION: 14
## Lexical Fit..... 1.320000e-01  1.533062e-01  1.533062e-01  1.569680e-01  1.569680e-01  2.013049e-01  2.013049e-01  2.160000e-01  2.640000e-01  3.635938e-01  3.791716e-01  8.782963e-01  
## #unique......... 12, #Total UniqueCount: 166
## var 1:
## best............ 3.075592e+01
## mean............ 3.581525e+01
## variance........ 2.561811e+02
## var 2:
## best............ 4.409500e+00
## mean............ 2.060610e+01
## variance........ 3.409887e+03
## var 3:
## best............ 1.767479e+02
## mean............ 1.716697e+02
## variance........ 1.255790e+02
## var 4:
## best............ 9.671828e+02
## mean............ 9.520914e+02
## variance........ 2.125235e+02
## var 5:
## best............ 9.038527e+02
## mean............ 8.734622e+02
## variance........ 1.098850e+04
## var 6:
## best............ 5.594384e+00
## mean............ 4.054465e+01
## variance........ 1.565574e+04
## 
## GENERATION: 15
## Lexical Fit..... 1.320000e-01  1.533062e-01  1.533062e-01  1.569680e-01  1.569680e-01  2.013049e-01  2.013049e-01  2.160000e-01  2.640000e-01  3.635938e-01  3.791716e-01  8.782963e-01  
## #unique......... 11, #Total UniqueCount: 177
## var 1:
## best............ 3.075592e+01
## mean............ 4.605072e+01
## variance........ 1.564637e+03
## var 2:
## best............ 4.409500e+00
## mean............ 7.750379e+00
## variance........ 2.136011e+02
## var 3:
## best............ 1.767479e+02
## mean............ 1.933981e+02
## variance........ 8.784576e+03
## var 4:
## best............ 9.671828e+02
## mean............ 9.423585e+02
## variance........ 1.303913e+03
## var 5:
## best............ 9.038527e+02
## mean............ 8.854600e+02
## variance........ 2.879091e+03
## var 6:
## best............ 5.594384e+00
## mean............ 4.717376e+01
## variance........ 1.670557e+04
## 
## GENERATION: 16
## Lexical Fit..... 1.320000e-01  1.533062e-01  1.533062e-01  1.569680e-01  1.569680e-01  2.013049e-01  2.013049e-01  2.160000e-01  2.640000e-01  3.635938e-01  3.791716e-01  8.782963e-01  
## #unique......... 8, #Total UniqueCount: 185
## var 1:
## best............ 3.075592e+01
## mean............ 3.842214e+01
## variance........ 5.055084e+02
## var 2:
## best............ 4.409500e+00
## mean............ 2.231734e+01
## variance........ 1.889943e+03
## var 3:
## best............ 1.767479e+02
## mean............ 1.911297e+02
## variance........ 4.471888e+03
## var 4:
## best............ 9.671828e+02
## mean............ 9.594125e+02
## variance........ 1.349411e+02
## var 5:
## best............ 9.038527e+02
## mean............ 8.919181e+02
## variance........ 8.566335e+02
## var 6:
## best............ 5.594384e+00
## mean............ 1.783102e+01
## variance........ 2.833980e+03
## 
## GENERATION: 17
## Lexical Fit..... 1.320000e-01  1.533062e-01  1.533062e-01  1.569680e-01  1.569680e-01  2.013049e-01  2.013049e-01  2.160000e-01  2.640000e-01  3.635938e-01  3.791716e-01  8.782963e-01  
## #unique......... 9, #Total UniqueCount: 194
## var 1:
## best............ 3.075592e+01
## mean............ 3.084220e+01
## variance........ 4.472427e+00
## var 2:
## best............ 4.409500e+00
## mean............ 1.596190e+01
## variance........ 1.220704e+03
## var 3:
## best............ 1.767479e+02
## mean............ 2.200967e+02
## variance........ 2.191616e+04
## var 4:
## best............ 9.671828e+02
## mean............ 9.341714e+02
## variance........ 1.717979e+04
## var 5:
## best............ 9.038527e+02
## mean............ 8.923707e+02
## variance........ 3.548442e+03
## var 6:
## best............ 5.594384e+00
## mean............ 1.416296e+01
## variance........ 1.404137e+03
## 
## GENERATION: 18
## Lexical Fit..... 1.320000e-01  1.533062e-01  1.533062e-01  1.569680e-01  1.569680e-01  2.013049e-01  2.013049e-01  2.160000e-01  2.640000e-01  3.635938e-01  3.791716e-01  8.782963e-01  
## #unique......... 6, #Total UniqueCount: 200
## var 1:
## best............ 3.075592e+01
## mean............ 3.209304e+01
## variance........ 7.798555e+01
## var 2:
## best............ 4.409500e+00
## mean............ 4.572540e+01
## variance........ 1.570474e+04
## var 3:
## best............ 1.767479e+02
## mean............ 1.865372e+02
## variance........ 2.993043e+03
## var 4:
## best............ 9.671828e+02
## mean............ 9.528167e+02
## variance........ 4.522131e+03
## var 5:
## best............ 9.038527e+02
## mean............ 8.756600e+02
## variance........ 7.685604e+03
## var 6:
## best............ 5.594384e+00
## mean............ 5.575285e+00
## variance........ 5.613593e-03
## 
## 'wait.generations' limit reached.
## No significant improvement in 4 generations.
## 
## Solution Lexical Fitness Value:
## 1.320000e-01  1.533062e-01  1.533062e-01  1.569680e-01  1.569680e-01  2.013049e-01  2.013049e-01  2.160000e-01  2.640000e-01  3.635938e-01  3.791716e-01  8.782963e-01  
## 
## Parameters at the Solution:
## 
##  X[ 1] : 3.075592e+01
##  X[ 2] : 4.409500e+00
##  X[ 3] : 1.767479e+02
##  X[ 4] : 9.671828e+02
##  X[ 5] : 9.038527e+02
##  X[ 6] : 5.594384e+00
## 
## Solution Found Generation 13
## Number of Generations Run 18
## 
## Sun Apr 10 22:41:27 2022
## Total run time : 0 hours 0 minutes and 54 seconds
mout_withM3 <- Match(Tr = foo$hasgirls, X = cbind(foo$Dems, foo$Repubs, foo$Christian, foo$age, foo$srvlng, foo$demvote), Weight.matrix = genout_withM3, M = 3)
mb_withM3 <- MatchBalance(hasgirls ~ Dems + Repubs + Christian + age + srvlng + demvote, data = foo, match.out = mout_withM3)
## 
## ***** (V1) Dems *****
##                        Before Matching        After Matching
## mean treatment........    0.45833            0.45833 
## mean control..........    0.50847            0.43002 
## std mean diff.........    -10.047              5.673 
## 
## mean raw eQQ diff.....   0.050847           0.027719 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.025071           0.013859 
## med  eCDF diff........   0.025071           0.013859 
## max  eCDF diff........   0.050141           0.027719 
## 
## var ratio (Tr/Co).....    0.98809             1.0129 
## T-test p-value........    0.35571             0.2013 
## 
## 
## ***** (V2) Repubs *****
##                        Before Matching        After Matching
## mean treatment........    0.53846            0.53846 
## mean control..........    0.49153            0.56998 
## std mean diff.........        9.4             -6.312 
## 
## mean raw eQQ diff.....   0.042373           0.030917 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.023468           0.015458 
## med  eCDF diff........   0.023468           0.015458 
## max  eCDF diff........   0.046936           0.030917 
## 
## var ratio (Tr/Co).....    0.98911             1.0139 
## T-test p-value........     0.3873            0.15331 
## 
## 
## ***** (V3) Christian *****
##                        Before Matching        After Matching
## mean treatment........     0.9391             0.9391 
## mean control..........    0.94915            0.94551 
## std mean diff.........    -4.1958            -2.6762 
## 
## mean raw eQQ diff.....   0.016949          0.0063966 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.005025          0.0031983 
## med  eCDF diff........   0.005025          0.0031983 
## max  eCDF diff........    0.01005          0.0063966 
## 
## var ratio (Tr/Co).....     1.1787             1.1101 
## T-test p-value........    0.68107            0.15697 
## 
## 
## ***** (V4) age *****
##                        Before Matching        After Matching
## mean treatment........     52.628             52.628 
## mean control..........     49.178             52.493 
## std mean diff.........     38.385             1.5036 
## 
## mean raw eQQ diff.....      3.661            0.54797 
## med  raw eQQ diff.....          4                  1 
## max  raw eQQ diff.....          7                  7 
## 
## mean eCDF diff........   0.075348            0.01194 
## med  eCDF diff........   0.075538          0.0074627 
## max  eCDF diff........    0.17807           0.044776 
## 
## var ratio (Tr/Co).....    0.71552             1.0444 
## T-test p-value........  0.0020402            0.37917 
## KS Bootstrap p-value..      0.004               0.25 
## KS Naive p-value......  0.0087659            0.30394 
## KS Statistic..........    0.17807           0.044776 
## 
## 
## ***** (V5) srvlng *****
##                        Before Matching        After Matching
## mean treatment........     8.5865             8.5865 
## mean control..........     8.7458             8.4674 
## std mean diff.........    -2.1085             1.5774 
## 
## mean raw eQQ diff.....    0.66949            0.39232 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          5                  9 
## 
## mean eCDF diff........   0.017181          0.0099229 
## med  eCDF diff........    0.01445          0.0063966 
## max  eCDF diff........   0.051608           0.039446 
## 
## var ratio (Tr/Co).....    0.77347             1.0436 
## T-test p-value........    0.85956            0.36359 
## KS Bootstrap p-value..       0.77              0.266 
## KS Naive p-value......    0.97653            0.45889 
## KS Statistic..........   0.051608           0.039446 
## 
## 
## ***** (V6) demvote *****
##                        Before Matching        After Matching
## mean treatment........    0.49929            0.49929 
## mean control..........    0.50602            0.49809 
## std mean diff.........    -5.2747            0.94314 
## 
## mean raw eQQ diff.....   0.011441           0.011514 
## med  raw eQQ diff.....       0.01               0.01 
## max  raw eQQ diff.....       0.08               0.08 
## 
## mean eCDF diff........   0.015928           0.017345 
## med  eCDF diff........   0.010811           0.014925 
## max  eCDF diff........   0.048512           0.053305 
## 
## var ratio (Tr/Co).....     1.1269             1.2317 
## T-test p-value........    0.61103             0.8783 
## KS Bootstrap p-value..      0.946               0.07 
## KS Naive p-value......    0.98776            0.13912 
## KS Statistic..........   0.048512           0.053305 
## 
## 
## Before Matching Minimum p.value: 0.0020402 
## Variable Name(s): age  Number(s): 4 
## 
## After Matching Minimum p.value: 0.07 
## Variable Name(s): demvote  Number(s): 6
mout_withY <- Match(Y = foo$nowtot, Tr = foo$hasgirls, X = cbind(foo$Dems, foo$Repubs, foo$Christian, foo$age, foo$srvlng, foo$demvote), Weight.matrix = genout)
mb_withY <- MatchBalance(hasgirls ~ Dems + Repubs + Christian + age + srvlng + demvote, data = foo, match.out = mout_withY)
## 
## ***** (V1) Dems *****
##                        Before Matching        After Matching
## mean treatment........    0.45833            0.45833 
## mean control..........    0.50847            0.46154 
## std mean diff.........    -10.047           -0.64223 
## 
## mean raw eQQ diff.....   0.050847          0.0032051 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.025071          0.0016026 
## med  eCDF diff........   0.025071          0.0016026 
## max  eCDF diff........   0.050141          0.0032051 
## 
## var ratio (Tr/Co).....    0.98809            0.99897 
## T-test p-value........    0.35571            0.31731 
## 
## 
## ***** (V2) Repubs *****
##                        Before Matching        After Matching
## mean treatment........    0.53846            0.53846 
## mean control..........    0.49153            0.53846 
## std mean diff.........        9.4                  0 
## 
## mean raw eQQ diff.....   0.042373                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  0 
## 
## mean eCDF diff........   0.023468                  0 
## med  eCDF diff........   0.023468                  0 
## max  eCDF diff........   0.046936                  0 
## 
## var ratio (Tr/Co).....    0.98911                  1 
## T-test p-value........     0.3873                  1 
## 
## 
## ***** (V3) Christian *****
##                        Before Matching        After Matching
## mean treatment........     0.9391             0.9391 
## mean control..........    0.94915             0.9391 
## std mean diff.........    -4.1958                  0 
## 
## mean raw eQQ diff.....   0.016949                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  0 
## 
## mean eCDF diff........   0.005025                  0 
## med  eCDF diff........   0.005025                  0 
## max  eCDF diff........    0.01005                  0 
## 
## var ratio (Tr/Co).....     1.1787                  1 
## T-test p-value........    0.68107                  1 
## 
## 
## ***** (V4) age *****
##                        Before Matching        After Matching
## mean treatment........     52.628             52.628 
## mean control..........     49.178             52.506 
## std mean diff.........     38.385              1.355 
## 
## mean raw eQQ diff.....      3.661            0.58974 
## med  raw eQQ diff.....          4                  1 
## max  raw eQQ diff.....          7                  4 
## 
## mean eCDF diff........   0.075348           0.012821 
## med  eCDF diff........   0.075538          0.0064103 
## max  eCDF diff........    0.17807           0.044872 
## 
## var ratio (Tr/Co).....    0.71552             1.0074 
## T-test p-value........  0.0020402            0.43069 
## KS Bootstrap p-value..      0.002              0.786 
## KS Naive p-value......  0.0087659            0.91194 
## KS Statistic..........    0.17807           0.044872 
## 
## 
## ***** (V5) srvlng *****
##                        Before Matching        After Matching
## mean treatment........     8.5865             8.5865 
## mean control..........     8.7458             8.7179 
## std mean diff.........    -2.1085            -1.7401 
## 
## mean raw eQQ diff.....    0.66949            0.45192 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          5                  9 
## 
## mean eCDF diff........   0.017181           0.012204 
## med  eCDF diff........    0.01445          0.0080128 
## max  eCDF diff........   0.051608           0.044872 
## 
## var ratio (Tr/Co).....    0.77347            0.94705 
## T-test p-value........    0.85956            0.42669 
## KS Bootstrap p-value..       0.78               0.68 
## KS Naive p-value......    0.97653            0.91194 
## KS Statistic..........   0.051608           0.044872 
## 
## 
## ***** (V6) demvote *****
##                        Before Matching        After Matching
## mean treatment........    0.49929            0.49929 
## mean control..........    0.50602            0.49811 
## std mean diff.........    -5.2747            0.93056 
## 
## mean raw eQQ diff.....   0.011441           0.010032 
## med  raw eQQ diff.....       0.01               0.01 
## max  raw eQQ diff.....       0.08               0.08 
## 
## mean eCDF diff........   0.015928           0.015161 
## med  eCDF diff........   0.010811          0.0096154 
## max  eCDF diff........   0.048512           0.044872 
## 
## var ratio (Tr/Co).....     1.1269             1.1572 
## T-test p-value........    0.61103            0.63267 
## KS Bootstrap p-value..       0.92              0.792 
## KS Naive p-value......    0.98776            0.91194 
## KS Statistic..........   0.048512           0.044872 
## 
## 
## Before Matching Minimum p.value: 0.002 
## Variable Name(s): age  Number(s): 4 
## 
## After Matching Minimum p.value: 0.31731 
## Variable Name(s): Dems  Number(s): 1
summary(mout_withY)
## 
## Estimate...  1.0737 
## AI SE......  2.213 
## T-stat.....  0.48519 
## p.val......  0.62754 
## 
## Original number of observations..............  430 
## Original number of treated obs...............  312 
## Matched number of observations...............  312 
## Matched number of observations  (unweighted).  312
lower_bound = mout_withY$est - 1.96 * mout_withY$se
upper_bound = mout_withY$est + 1.96 * mout_withY$se
cat("The 95% confidence interval of the average treatment effect is [", lower_bound, "," ,upper_bound, "]")
## The 95% confidence interval of the average treatment effect is [ -3.26369 , 5.411126 ]

PART B:

foo <- read.csv(url("https://course-resources.minerva.kgi.edu/uploaded_files/mke/00089202-1711/daughters.csv"))
foo_treat <- subset(foo, foo$ngirls >= 2 & foo$nboys == 0)
foo_control <- subset(foo, foo$nboys >= 2 & foo$ngirls == 0)

foo2 <- rbind(foo_treat, foo_control)

dim(foo2)
## [1] 91 83
model2 <- lm(nowtot ~ Dems + Repubs + Christian + age + srvlng + demvote + hasgirls, data = foo2)
summary(model2)
## 
## Call:
## lm(formula = nowtot ~ Dems + Repubs + Christian + age + srvlng + 
##     demvote + hasgirls, data = foo2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -51.636  -6.608   0.928   8.992  46.235 
## 
## Coefficients: (1 not defined because of singularities)
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -18.4332    16.3697  -1.126  0.26335    
## Dems         49.9284     4.4002  11.347  < 2e-16 ***
## Repubs            NA         NA      NA       NA    
## Christian    -3.4303     7.7211  -0.444  0.65798    
## age          -0.2558     0.2180  -1.173  0.24395    
## srvlng        0.3908     0.2654   1.473  0.14461    
## demvote      86.6631    17.9813   4.820 6.32e-06 ***
## hasgirls     12.2925     3.5008   3.511  0.00072 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.82 on 84 degrees of freedom
## Multiple R-squared:  0.839,  Adjusted R-squared:  0.8275 
## F-statistic: 72.97 on 6 and 84 DF,  p-value: < 2.2e-16
confint(model2)
##                   2.5 %      97.5 %
## (Intercept) -50.9860577  14.1196514
## Dems         41.1780715  58.6786775
## Repubs               NA          NA
## Christian   -18.7845865  11.9239371
## age          -0.6891980   0.1776850
## srvlng       -0.1369568   0.9185161
## demvote      50.9052404 122.4209484
## hasgirls      5.3308756  19.2542092
set.seed(2324)
genout2 <- GenMatch(Tr = foo2$hasgirls, X = cbind(foo2$Dems, foo2$Repubs, foo2$Christian, foo2$age, foo2$srvlng, foo2$demvote), pop.size = 20, nboots = 250)
## 
## 
## Sun Apr 10 22:41:29 2022
## Domains:
##  0.000000e+00   <=  X1   <=    1.000000e+03 
##  0.000000e+00   <=  X2   <=    1.000000e+03 
##  0.000000e+00   <=  X3   <=    1.000000e+03 
##  0.000000e+00   <=  X4   <=    1.000000e+03 
##  0.000000e+00   <=  X5   <=    1.000000e+03 
##  0.000000e+00   <=  X6   <=    1.000000e+03 
## 
## Data Type: Floating Point
## Operators (code number, name, population) 
##  (1) Cloning...........................  5
##  (2) Uniform Mutation..................  2
##  (3) Boundary Mutation.................  2
##  (4) Non-Uniform Mutation..............  2
##  (5) Polytope Crossover................  2
##  (6) Simple Crossover..................  2
##  (7) Whole Non-Uniform Mutation........  2
##  (8) Heuristic Crossover...............  2
##  (9) Local-Minimum Crossover...........  0
## 
## SOFT Maximum Number of Generations: 100
## Maximum Nonchanging Generations: 4
## Population size       : 20
## Convergence Tolerance: 1.000000e-03
## 
## Not Using the BFGS Derivative Based Optimizer on the Best Individual Each Generation.
## Not Checking Gradients before Stopping.
## Using Out of Bounds Individuals.
## 
## Maximization Problem.
## GENERATION: 0 (initializing the population)
## Lexical Fit..... 4.424600e-01  6.003469e-01  6.696286e-01  7.120000e-01  9.840000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 20, #Total UniqueCount: 20
## var 1:
## best............ 9.293475e+02
## mean............ 4.681714e+02
## variance........ 8.152584e+04
## var 2:
## best............ 3.084540e+02
## mean............ 5.271953e+02
## variance........ 9.003735e+04
## var 3:
## best............ 8.001194e+02
## mean............ 3.349127e+02
## variance........ 8.501048e+04
## var 4:
## best............ 1.709408e+02
## mean............ 4.497491e+02
## variance........ 8.534085e+04
## var 5:
## best............ 2.916808e+02
## mean............ 4.406555e+02
## variance........ 8.114577e+04
## var 6:
## best............ 5.034455e+02
## mean............ 3.835392e+02
## variance........ 7.908836e+04
## 
## GENERATION: 1
## Lexical Fit..... 4.424600e-01  6.003469e-01  6.696286e-01  7.120000e-01  9.920000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 13, #Total UniqueCount: 33
## var 1:
## best............ 1.937411e+02
## mean............ 6.243291e+02
## variance........ 9.769876e+04
## var 2:
## best............ 3.084540e+02
## mean............ 4.500741e+02
## variance........ 5.444226e+04
## var 3:
## best............ 8.001194e+02
## mean............ 5.401662e+02
## variance........ 1.043792e+05
## var 4:
## best............ 1.709408e+02
## mean............ 1.658333e+02
## variance........ 7.302264e+03
## var 5:
## best............ 2.916808e+02
## mean............ 4.660140e+02
## variance........ 6.773521e+04
## var 6:
## best............ 5.034455e+02
## mean............ 3.992819e+02
## variance........ 4.286519e+04
## 
## GENERATION: 2
## Lexical Fit..... 4.424600e-01  6.003469e-01  6.696286e-01  7.400000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 45
## var 1:
## best............ 9.365884e+02
## mean............ 5.927958e+02
## variance........ 1.278823e+05
## var 2:
## best............ 3.084540e+02
## mean............ 3.074677e+02
## variance........ 3.938078e+03
## var 3:
## best............ 8.001194e+02
## mean............ 7.509834e+02
## variance........ 1.461658e+04
## var 4:
## best............ 1.709408e+02
## mean............ 2.079257e+02
## variance........ 1.258770e+04
## var 5:
## best............ 2.916808e+02
## mean............ 3.052627e+02
## variance........ 8.427622e+03
## var 6:
## best............ 5.034455e+02
## mean............ 5.398263e+02
## variance........ 7.949536e+03
## 
## GENERATION: 3
## Lexical Fit..... 4.424600e-01  6.003469e-01  6.696286e-01  7.760000e-01  9.880000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 57
## var 1:
## best............ 1.022298e+02
## mean............ 5.311892e+02
## variance........ 1.266886e+05
## var 2:
## best............ 3.153794e+02
## mean............ 3.030091e+02
## variance........ 8.418810e+02
## var 3:
## best............ 8.726853e+02
## mean............ 7.910731e+02
## variance........ 7.639348e+03
## var 4:
## best............ 1.657895e+02
## mean............ 1.898282e+02
## variance........ 9.957129e+03
## var 5:
## best............ 2.936771e+02
## mean............ 2.958649e+02
## variance........ 2.917297e+03
## var 6:
## best............ 4.859064e+02
## mean............ 4.770910e+02
## variance........ 5.813069e+03
## 
## GENERATION: 4
## Lexical Fit..... 4.424600e-01  6.003469e-01  6.696286e-01  7.760000e-01  9.880000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 69
## var 1:
## best............ 1.022298e+02
## mean............ 5.613359e+02
## variance........ 1.072145e+05
## var 2:
## best............ 3.153794e+02
## mean............ 3.099964e+02
## variance........ 8.357769e+02
## var 3:
## best............ 8.726853e+02
## mean............ 6.988867e+02
## variance........ 2.992970e+04
## var 4:
## best............ 1.657895e+02
## mean............ 1.633236e+02
## variance........ 2.791922e+02
## var 5:
## best............ 2.936771e+02
## mean............ 2.859652e+02
## variance........ 1.627083e+03
## var 6:
## best............ 4.859064e+02
## mean............ 4.891927e+02
## variance........ 7.368361e+03
## 
## GENERATION: 5
## Lexical Fit..... 4.424600e-01  6.003469e-01  6.696286e-01  7.760000e-01  9.880000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 10, #Total UniqueCount: 79
## var 1:
## best............ 1.022298e+02
## mean............ 4.014125e+02
## variance........ 9.979589e+04
## var 2:
## best............ 3.153794e+02
## mean............ 3.275115e+02
## variance........ 1.710163e+03
## var 3:
## best............ 8.726853e+02
## mean............ 7.724323e+02
## variance........ 1.909199e+04
## var 4:
## best............ 1.657895e+02
## mean............ 1.822417e+02
## variance........ 5.189189e+03
## var 5:
## best............ 2.936771e+02
## mean............ 3.383906e+02
## variance........ 1.270683e+04
## var 6:
## best............ 4.859064e+02
## mean............ 5.064322e+02
## variance........ 3.202219e+03
## 
## GENERATION: 6
## Lexical Fit..... 4.424600e-01  6.003469e-01  6.696286e-01  7.760000e-01  9.880000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 91
## var 1:
## best............ 1.022298e+02
## mean............ 4.403256e+02
## variance........ 8.049661e+04
## var 2:
## best............ 3.153794e+02
## mean............ 2.991970e+02
## variance........ 6.228253e+03
## var 3:
## best............ 8.726853e+02
## mean............ 7.595408e+02
## variance........ 2.162571e+04
## var 4:
## best............ 1.657895e+02
## mean............ 2.111712e+02
## variance........ 1.627123e+04
## var 5:
## best............ 2.936771e+02
## mean............ 3.155704e+02
## variance........ 7.024166e+03
## var 6:
## best............ 4.859064e+02
## mean............ 4.850533e+02
## variance........ 8.431503e+02
## 
## GENERATION: 7
## Lexical Fit..... 4.424600e-01  6.003469e-01  6.696286e-01  8.040000e-01  9.880000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 9, #Total UniqueCount: 100
## var 1:
## best............ 8.900951e+01
## mean............ 3.410521e+02
## variance........ 1.049331e+05
## var 2:
## best............ 3.156828e+02
## mean............ 3.093487e+02
## variance........ 6.342108e+02
## var 3:
## best............ 8.758643e+02
## mean............ 7.599383e+02
## variance........ 2.876365e+04
## var 4:
## best............ 1.655638e+02
## mean............ 2.120631e+02
## variance........ 1.934225e+04
## var 5:
## best............ 2.937645e+02
## mean............ 2.908498e+02
## variance........ 3.801237e+03
## var 6:
## best............ 4.851331e+02
## mean............ 4.867729e+02
## variance........ 3.436151e+02
## 
## GENERATION: 8
## Lexical Fit..... 4.424600e-01  6.003469e-01  6.696286e-01  8.040000e-01  9.880000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 112
## var 1:
## best............ 8.900951e+01
## mean............ 2.117857e+02
## variance........ 4.569035e+04
## var 2:
## best............ 3.156828e+02
## mean............ 3.270372e+02
## variance........ 1.467804e+04
## var 3:
## best............ 8.758643e+02
## mean............ 8.235576e+02
## variance........ 1.357938e+04
## var 4:
## best............ 1.655638e+02
## mean............ 2.182178e+02
## variance........ 2.732044e+04
## var 5:
## best............ 2.937645e+02
## mean............ 3.077500e+02
## variance........ 7.599008e+03
## var 6:
## best............ 4.851331e+02
## mean............ 4.961829e+02
## variance........ 3.561675e+03
## 
## GENERATION: 9
## Lexical Fit..... 4.424600e-01  6.003469e-01  6.696286e-01  8.040000e-01  9.880000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 10, #Total UniqueCount: 122
## var 1:
## best............ 8.900951e+01
## mean............ 2.232582e+02
## variance........ 4.717121e+04
## var 2:
## best............ 3.156828e+02
## mean............ 3.105519e+02
## variance........ 3.700904e+02
## var 3:
## best............ 8.758643e+02
## mean............ 8.261784e+02
## variance........ 6.839198e+03
## var 4:
## best............ 1.655638e+02
## mean............ 1.706934e+02
## variance........ 4.289453e+02
## var 5:
## best............ 2.937645e+02
## mean............ 2.995581e+02
## variance........ 1.551937e+03
## var 6:
## best............ 4.851331e+02
## mean............ 4.982248e+02
## variance........ 5.578810e+03
## 
## GENERATION: 10
## Lexical Fit..... 4.424600e-01  6.003469e-01  6.696286e-01  8.040000e-01  9.880000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 10, #Total UniqueCount: 132
## var 1:
## best............ 8.900951e+01
## mean............ 1.574849e+02
## variance........ 1.695707e+04
## var 2:
## best............ 3.156828e+02
## mean............ 3.229368e+02
## variance........ 5.796004e+02
## var 3:
## best............ 8.758643e+02
## mean............ 8.354259e+02
## variance........ 1.383487e+04
## var 4:
## best............ 1.655638e+02
## mean............ 1.669603e+02
## variance........ 1.706226e+01
## var 5:
## best............ 2.937645e+02
## mean............ 2.888274e+02
## variance........ 1.991678e+02
## var 6:
## best............ 4.851331e+02
## mean............ 5.136470e+02
## variance........ 5.530299e+03
## 
## GENERATION: 11
## Lexical Fit..... 4.424600e-01  6.003469e-01  6.696286e-01  8.040000e-01  9.880000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 144
## var 1:
## best............ 8.900951e+01
## mean............ 1.214857e+02
## variance........ 6.304872e+03
## var 2:
## best............ 3.156828e+02
## mean............ 3.118972e+02
## variance........ 5.700417e+02
## var 3:
## best............ 8.758643e+02
## mean............ 8.456182e+02
## variance........ 1.235778e+04
## var 4:
## best............ 1.655638e+02
## mean............ 2.048345e+02
## variance........ 2.933928e+04
## var 5:
## best............ 2.937645e+02
## mean............ 2.849486e+02
## variance........ 1.432021e+03
## var 6:
## best............ 4.851331e+02
## mean............ 4.872592e+02
## variance........ 5.574477e+02
## 
## GENERATION: 12
## Lexical Fit..... 4.424600e-01  6.003469e-01  6.696286e-01  8.040000e-01  9.880000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 8, #Total UniqueCount: 152
## var 1:
## best............ 8.900951e+01
## mean............ 1.015286e+02
## variance........ 1.958312e+03
## var 2:
## best............ 3.156828e+02
## mean............ 3.179348e+02
## variance........ 2.060566e+03
## var 3:
## best............ 8.758643e+02
## mean............ 8.373383e+02
## variance........ 1.843205e+04
## var 4:
## best............ 1.655638e+02
## mean............ 1.739300e+02
## variance........ 4.487269e+02
## var 5:
## best............ 2.937645e+02
## mean............ 3.195734e+02
## variance........ 5.129672e+03
## var 6:
## best............ 4.851331e+02
## mean............ 4.684641e+02
## variance........ 1.993905e+03
## 
## 'wait.generations' limit reached.
## No significant improvement in 4 generations.
## 
## Solution Lexical Fitness Value:
## 4.424600e-01  6.003469e-01  6.696286e-01  8.040000e-01  9.880000e-01  9.960000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## 
## Parameters at the Solution:
## 
##  X[ 1] : 8.900951e+01
##  X[ 2] : 3.156828e+02
##  X[ 3] : 8.758643e+02
##  X[ 4] : 1.655638e+02
##  X[ 5] : 2.937645e+02
##  X[ 6] : 4.851331e+02
## 
## Solution Found Generation 7
## Number of Generations Run 12
## 
## Sun Apr 10 22:41:46 2022
## Total run time : 0 hours 0 minutes and 17 seconds
mout2 <- Match(Y=foo2$nowtot, Tr = foo2$hasgirls, X = cbind(foo2$Dems, foo2$Repubs, foo2$Christian, foo2$age, foo2$srvlng, foo2$demvote), Weight.matrix = genout2)
mb_after2 <- MatchBalance(hasgirls ~ Dems + Repubs + Christian + age + srvlng + demvote, data = foo2, match.out = mout2)
## 
## ***** (V1) Dems *****
##                        Before Matching        After Matching
## mean treatment........    0.61702            0.61702 
## mean control..........    0.40909            0.61702 
## std mean diff.........     42.317                  0 
## 
## mean raw eQQ diff.....    0.20455                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  0 
## 
## mean eCDF diff........    0.10397                  0 
## med  eCDF diff........    0.10397                  0 
## max  eCDF diff........    0.20793                  0 
## 
## var ratio (Tr/Co).....    0.97609                  1 
## T-test p-value........    0.04806                  1 
## 
## 
## ***** (V2) Repubs *****
##                        Before Matching        After Matching
## mean treatment........    0.38298            0.38298 
## mean control..........    0.59091            0.38298 
## std mean diff.........    -42.317                  0 
## 
## mean raw eQQ diff.....    0.22727                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  0 
## 
## mean eCDF diff........    0.10397                  0 
## med  eCDF diff........    0.10397                  0 
## max  eCDF diff........    0.20793                  0 
## 
## var ratio (Tr/Co).....    0.97609                  1 
## T-test p-value........    0.04806                  1 
## 
## 
## ***** (V3) Christian *****
##                        Before Matching        After Matching
## mean treatment........    0.91489            0.91489 
## mean control..........    0.97727            0.91489 
## std mean diff.........    -22.116                  0 
## 
## mean raw eQQ diff.....   0.068182                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  0 
## 
## mean eCDF diff........    0.03119                  0 
## med  eCDF diff........    0.03119                  0 
## max  eCDF diff........   0.062379                  0 
## 
## var ratio (Tr/Co).....     3.5005                  1 
## T-test p-value........     0.1887                  1 
## 
## 
## ***** (V4) age *****
##                        Before Matching        After Matching
## mean treatment........     51.213             51.213 
## mean control..........     51.977             51.745 
## std mean diff.........    -8.2171            -5.7171 
## 
## mean raw eQQ diff.....     1.5682            0.95745 
## med  raw eQQ diff.....          1                  1 
## max  raw eQQ diff.....          6                  3 
## 
## mean eCDF diff........     0.0288            0.02695 
## med  eCDF diff........   0.025629           0.021277 
## max  eCDF diff........    0.07882            0.06383 
## 
## var ratio (Tr/Co).....    0.79756             1.0089 
## T-test p-value........    0.71354            0.60035 
## KS Bootstrap p-value..      0.976              0.998 
## KS Naive p-value......    0.99893            0.99998 
## KS Statistic..........    0.07882            0.06383 
## 
## 
## ***** (V5) srvlng *****
##                        Before Matching        After Matching
## mean treatment........     7.9574             7.9574 
## mean control..........     10.568             8.1489 
## std mean diff.........    -38.919            -2.8546 
## 
## mean raw eQQ diff.....     2.8636            0.61702 
## med  raw eQQ diff.....          2                  0 
## max  raw eQQ diff.....         14                  2 
## 
## mean eCDF diff........   0.079008           0.022695 
## med  eCDF diff........   0.091876           0.021277 
## max  eCDF diff........    0.13926            0.06383 
## 
## var ratio (Tr/Co).....    0.48803            0.92491 
## T-test p-value........    0.13925            0.66963 
## KS Bootstrap p-value..        0.5              0.982 
## KS Naive p-value......    0.77019            0.99998 
## KS Statistic..........    0.13926            0.06383 
## 
## 
## ***** (V6) demvote *****
##                        Before Matching        After Matching
## mean treatment........    0.51745            0.51745 
## mean control..........    0.48727               0.51 
## std mean diff.........     24.982             6.1654 
## 
## mean raw eQQ diff.....   0.045909           0.025745 
## med  raw eQQ diff.....      0.045               0.02 
## max  raw eQQ diff.....       0.11               0.07 
## 
## mean eCDF diff........    0.10233           0.053495 
## med  eCDF diff........   0.091393           0.042553 
## max  eCDF diff........    0.25193            0.12766 
## 
## var ratio (Tr/Co).....     1.0419             1.3854 
## T-test p-value........    0.23199            0.44246 
## KS Bootstrap p-value..      0.072              0.728 
## KS Naive p-value......    0.11171            0.83838 
## KS Statistic..........    0.25193            0.12766 
## 
## 
## Before Matching Minimum p.value: 0.04806 
## Variable Name(s): Dems Repubs  Number(s): 1 2 
## 
## After Matching Minimum p.value: 0.44246 
## Variable Name(s): demvote  Number(s): 6
summary(mout2)
## 
## Estimate...  11.383 
## AI SE......  4.0247 
## T-stat.....  2.8283 
## p.val......  0.0046797 
## 
## Original number of observations..............  91 
## Original number of treated obs...............  47 
## Matched number of observations...............  47 
## Matched number of observations  (unweighted).  47
lower_bound2 = mout2$est - 1.96 * mout2$se
upper_bound2 = mout2$est + 1.96 * mout2$se
cat("The 95% confidence interval of the average treatment effect is [", lower_bound2, "," ,upper_bound2, "]")
## The 95% confidence interval of the average treatment effect is [ 3.494597 , 19.27136 ]
genout2_specified <- GenMatch(Tr = foo2$hasgirls, X = cbind(foo2$Dems, foo2$Repubs, foo2$Christian, foo2$age, foo2$srvlng, foo2$demvote, foo2$white, foo2$female), pop.size = 20, nboots = 250)
## 
## 
## Sun Apr 10 22:41:47 2022
## Domains:
##  0.000000e+00   <=  X1   <=    1.000000e+03 
##  0.000000e+00   <=  X2   <=    1.000000e+03 
##  0.000000e+00   <=  X3   <=    1.000000e+03 
##  0.000000e+00   <=  X4   <=    1.000000e+03 
##  0.000000e+00   <=  X5   <=    1.000000e+03 
##  0.000000e+00   <=  X6   <=    1.000000e+03 
##  0.000000e+00   <=  X7   <=    1.000000e+03 
##  0.000000e+00   <=  X8   <=    1.000000e+03 
## 
## Data Type: Floating Point
## Operators (code number, name, population) 
##  (1) Cloning...........................  5
##  (2) Uniform Mutation..................  2
##  (3) Boundary Mutation.................  2
##  (4) Non-Uniform Mutation..............  2
##  (5) Polytope Crossover................  2
##  (6) Simple Crossover..................  2
##  (7) Whole Non-Uniform Mutation........  2
##  (8) Heuristic Crossover...............  2
##  (9) Local-Minimum Crossover...........  0
## 
## SOFT Maximum Number of Generations: 100
## Maximum Nonchanging Generations: 4
## Population size       : 20
## Convergence Tolerance: 1.000000e-03
## 
## Not Using the BFGS Derivative Based Optimizer on the Best Individual Each Generation.
## Not Checking Gradients before Stopping.
## Using Out of Bounds Individuals.
## 
## Maximization Problem.
## GENERATION: 0 (initializing the population)
## Lexical Fit..... 8.001714e-02  8.001714e-02  8.001714e-02  8.001714e-02  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.294060e-01  3.731547e-01  3.943391e-01  4.240000e-01  8.760000e-01  9.880000e-01  1.000000e+00  1.000000e+00  
## #unique......... 20, #Total UniqueCount: 20
## var 1:
## best............ 3.404333e+02
## mean............ 4.384249e+02
## variance........ 1.179087e+05
## var 2:
## best............ 2.383439e+02
## mean............ 4.321657e+02
## variance........ 5.968209e+04
## var 3:
## best............ 2.383137e+02
## mean............ 4.394400e+02
## variance........ 7.170056e+04
## var 4:
## best............ 8.322159e+02
## mean............ 5.727523e+02
## variance........ 9.188758e+04
## var 5:
## best............ 1.684170e+02
## mean............ 4.362754e+02
## variance........ 7.067681e+04
## var 6:
## best............ 9.984728e+02
## mean............ 5.823259e+02
## variance........ 1.100798e+05
## var 7:
## best............ 6.432509e+02
## mean............ 4.040143e+02
## variance........ 9.628071e+04
## var 8:
## best............ 4.149353e+02
## mean............ 5.309907e+02
## variance........ 1.069360e+05
## 
## GENERATION: 1
## Lexical Fit..... 1.551525e-01  1.551525e-01  1.551525e-01  1.551525e-01  1.551525e-01  1.551525e-01  1.839089e-01  2.727392e-01  3.160000e-01  7.153110e-01  8.560000e-01  9.840000e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 13, #Total UniqueCount: 33
## var 1:
## best............ 3.400124e+02
## mean............ 2.955884e+02
## variance........ 8.553916e+04
## var 2:
## best............ 3.335243e+02
## mean............ 3.871914e+02
## variance........ 2.604512e+04
## var 3:
## best............ 3.389693e+02
## mean............ 5.622344e+02
## variance........ 8.361320e+04
## var 4:
## best............ 7.090632e+02
## mean............ 4.844830e+02
## variance........ 1.056967e+05
## var 5:
## best............ 1.684510e+02
## mean............ 3.782347e+02
## variance........ 4.895480e+04
## var 6:
## best............ 9.988146e+02
## mean............ 8.737712e+02
## variance........ 1.663889e+04
## var 7:
## best............ 6.709617e+02
## mean............ 3.360079e+02
## variance........ 6.483780e+04
## var 8:
## best............ 3.399098e+02
## mean............ 4.263291e+02
## variance........ 6.541904e+04
## 
## GENERATION: 2
## Lexical Fit..... 1.551525e-01  1.551525e-01  1.551525e-01  1.551525e-01  1.551525e-01  1.551525e-01  3.035008e-01  3.173944e-01  3.173944e-01  4.214416e-01  4.240000e-01  5.353141e-01  8.800000e-01  9.840000e-01  1.000000e+00  1.000000e+00  
## #unique......... 13, #Total UniqueCount: 46
## var 1:
## best............ 3.400124e+02
## mean............ 2.360358e+02
## variance........ 2.770059e+04
## var 2:
## best............ 3.335243e+02
## mean............ 3.637361e+02
## variance........ 1.737818e+04
## var 3:
## best............ 3.248698e+02
## mean............ 4.924060e+02
## variance........ 7.747380e+04
## var 4:
## best............ 7.090632e+02
## mean............ 6.373209e+02
## variance........ 7.309747e+04
## var 5:
## best............ 1.684510e+02
## mean............ 2.893330e+02
## variance........ 2.916304e+04
## var 6:
## best............ 9.988146e+02
## mean............ 8.751428e+02
## variance........ 2.700602e+04
## var 7:
## best............ 6.709617e+02
## mean............ 3.665602e+02
## variance........ 7.281166e+04
## var 8:
## best............ 3.399098e+02
## mean............ 2.720737e+02
## variance........ 1.068027e+04
## 
## GENERATION: 3
## Lexical Fit..... 1.551525e-01  1.551525e-01  1.551525e-01  1.551525e-01  1.551525e-01  1.551525e-01  3.173944e-01  3.173944e-01  3.440000e-01  3.469493e-01  4.075674e-01  5.450929e-01  9.640000e-01  9.920000e-01  1.000000e+00  1.000000e+00  
## #unique......... 12, #Total UniqueCount: 58
## var 1:
## best............ 3.400124e+02
## mean............ 2.731983e+02
## variance........ 2.015687e+04
## var 2:
## best............ 3.335243e+02
## mean............ 3.362687e+02
## variance........ 1.630328e+04
## var 3:
## best............ 3.248698e+02
## mean............ 4.354872e+02
## variance........ 5.333918e+04
## var 4:
## best............ 8.051509e+02
## mean............ 6.467903e+02
## variance........ 6.565415e+04
## var 5:
## best............ 1.684510e+02
## mean............ 2.425129e+02
## variance........ 9.883639e+03
## var 6:
## best............ 9.988146e+02
## mean............ 9.076434e+02
## variance........ 1.900512e+04
## var 7:
## best............ 6.829108e+02
## mean............ 4.143338e+02
## variance........ 7.342387e+04
## var 8:
## best............ 3.399098e+02
## mean............ 2.565420e+02
## variance........ 6.680133e+03
## 
## GENERATION: 4
## Lexical Fit..... 1.551525e-01  1.551525e-01  1.551525e-01  1.551525e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.189180e-01  3.635497e-01  4.240000e-01  5.825066e-01  6.960000e-01  9.800000e-01  
## #unique......... 13, #Total UniqueCount: 71
## var 1:
## best............ 3.411394e+02
## mean............ 3.359093e+02
## variance........ 7.511352e+03
## var 2:
## best............ 3.719294e+02
## mean............ 3.559707e+02
## variance........ 3.775513e+03
## var 3:
## best............ 3.209349e+02
## mean............ 3.453297e+02
## variance........ 2.052429e+04
## var 4:
## best............ 7.112545e+02
## mean............ 6.744251e+02
## variance........ 4.069810e+04
## var 5:
## best............ 1.676127e+02
## mean............ 2.027451e+02
## variance........ 7.244913e+03
## var 6:
## best............ 9.992147e+02
## mean............ 9.721626e+02
## variance........ 3.133559e+03
## var 7:
## best............ 2.782766e+02
## mean............ 6.264445e+02
## variance........ 2.930228e+04
## var 8:
## best............ 3.407796e+02
## mean............ 3.132111e+02
## variance........ 3.403396e+03
## 
## GENERATION: 5
## Lexical Fit..... 1.551525e-01  1.551525e-01  1.551525e-01  1.551525e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.189180e-01  3.635497e-01  4.240000e-01  5.825066e-01  6.960000e-01  9.800000e-01  
## #unique......... 12, #Total UniqueCount: 83
## var 1:
## best............ 3.411394e+02
## mean............ 3.440945e+02
## variance........ 2.827798e+02
## var 2:
## best............ 3.719294e+02
## mean............ 3.796959e+02
## variance........ 1.102326e+04
## var 3:
## best............ 3.209349e+02
## mean............ 3.246799e+02
## variance........ 2.791641e+02
## var 4:
## best............ 7.112545e+02
## mean............ 7.704905e+02
## variance........ 4.590561e+03
## var 5:
## best............ 1.676127e+02
## mean............ 2.194748e+02
## variance........ 3.186651e+04
## var 6:
## best............ 9.992147e+02
## mean............ 9.824489e+02
## variance........ 2.620841e+03
## var 7:
## best............ 2.782766e+02
## mean............ 5.378111e+02
## variance........ 3.480881e+04
## var 8:
## best............ 3.407796e+02
## mean............ 3.570306e+02
## variance........ 3.547965e+03
## 
## GENERATION: 6
## Lexical Fit..... 1.551525e-01  1.551525e-01  1.551525e-01  1.551525e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.189180e-01  3.635497e-01  4.240000e-01  5.825066e-01  6.960000e-01  9.800000e-01  
## #unique......... 12, #Total UniqueCount: 95
## var 1:
## best............ 3.411394e+02
## mean............ 3.460625e+02
## variance........ 6.225608e+02
## var 2:
## best............ 3.719294e+02
## mean............ 3.812686e+02
## variance........ 2.685304e+03
## var 3:
## best............ 3.209349e+02
## mean............ 3.245578e+02
## variance........ 2.423441e+03
## var 4:
## best............ 7.112545e+02
## mean............ 7.389566e+02
## variance........ 3.717534e+03
## var 5:
## best............ 1.676127e+02
## mean............ 1.918949e+02
## variance........ 1.012031e+04
## var 6:
## best............ 9.992147e+02
## mean............ 9.692823e+02
## variance........ 1.694379e+04
## var 7:
## best............ 2.782766e+02
## mean............ 3.710172e+02
## variance........ 2.587312e+04
## var 8:
## best............ 3.407796e+02
## mean............ 3.279993e+02
## variance........ 9.102650e+02
## 
## GENERATION: 7
## Lexical Fit..... 1.551525e-01  1.551525e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  4.335631e-01  4.883156e-01  5.360000e-01  5.884981e-01  9.440000e-01  9.880000e-01  
## #unique......... 10, #Total UniqueCount: 105
## var 1:
## best............ 3.411394e+02
## mean............ 3.349257e+02
## variance........ 7.361403e+02
## var 2:
## best............ 3.656871e+02
## mean............ 3.568628e+02
## variance........ 2.780548e+03
## var 3:
## best............ 3.207194e+02
## mean............ 3.222653e+02
## variance........ 3.160683e+02
## var 4:
## best............ 8.084412e+02
## mean............ 7.221408e+02
## variance........ 7.507271e+02
## var 5:
## best............ 1.676127e+02
## mean............ 1.714018e+02
## variance........ 1.876041e+03
## var 6:
## best............ 9.992147e+02
## mean............ 9.593840e+02
## variance........ 9.737514e+03
## var 7:
## best............ 2.782766e+02
## mean............ 2.648806e+02
## variance........ 4.578542e+03
## var 8:
## best............ 3.407796e+02
## mean............ 3.759387e+02
## variance........ 1.608831e+04
## 
## GENERATION: 8
## Lexical Fit..... 1.551525e-01  1.551525e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  4.335631e-01  4.883156e-01  5.884981e-01  6.120000e-01  9.720000e-01  9.800000e-01  
## #unique......... 9, #Total UniqueCount: 114
## var 1:
## best............ 3.411394e+02
## mean............ 3.407077e+02
## variance........ 2.893974e+00
## var 2:
## best............ 3.655379e+02
## mean............ 3.539316e+02
## variance........ 3.502875e+03
## var 3:
## best............ 3.207194e+02
## mean............ 3.274396e+02
## variance........ 5.367178e+02
## var 4:
## best............ 8.107650e+02
## mean............ 7.684776e+02
## variance........ 2.900374e+03
## var 5:
## best............ 1.676127e+02
## mean............ 1.648107e+02
## variance........ 3.116912e+02
## var 6:
## best............ 9.992147e+02
## mean............ 9.523565e+02
## variance........ 1.298205e+04
## var 7:
## best............ 2.782766e+02
## mean............ 2.755479e+02
## variance........ 5.264469e+02
## var 8:
## best............ 3.407796e+02
## mean............ 3.566451e+02
## variance........ 1.233406e+04
## 
## GENERATION: 9
## Lexical Fit..... 1.551525e-01  1.551525e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  4.335631e-01  4.883156e-01  5.884981e-01  6.120000e-01  9.720000e-01  9.800000e-01  
## #unique......... 10, #Total UniqueCount: 124
## var 1:
## best............ 3.411394e+02
## mean............ 3.406400e+02
## variance........ 2.418147e+02
## var 2:
## best............ 3.655379e+02
## mean............ 3.572470e+02
## variance........ 8.643318e+02
## var 3:
## best............ 3.207194e+02
## mean............ 3.398494e+02
## variance........ 2.347782e+03
## var 4:
## best............ 8.107650e+02
## mean............ 7.816013e+02
## variance........ 9.138240e+03
## var 5:
## best............ 1.676127e+02
## mean............ 1.846263e+02
## variance........ 5.036956e+03
## var 6:
## best............ 9.992147e+02
## mean............ 9.944405e+02
## variance........ 3.864342e+02
## var 7:
## best............ 2.782766e+02
## mean............ 2.733280e+02
## variance........ 1.362484e+03
## var 8:
## best............ 3.407796e+02
## mean............ 3.312350e+02
## variance........ 1.065757e+03
## 
## GENERATION: 10
## Lexical Fit..... 1.551525e-01  1.551525e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  4.335631e-01  4.883156e-01  5.884981e-01  6.120000e-01  9.720000e-01  9.800000e-01  
## #unique......... 9, #Total UniqueCount: 133
## var 1:
## best............ 3.411394e+02
## mean............ 3.409572e+02
## variance........ 6.310288e-01
## var 2:
## best............ 3.655379e+02
## mean............ 3.763863e+02
## variance........ 3.549725e+03
## var 3:
## best............ 3.207194e+02
## mean............ 3.221968e+02
## variance........ 1.700267e+03
## var 4:
## best............ 8.107650e+02
## mean............ 8.011368e+02
## variance........ 4.728346e+03
## var 5:
## best............ 1.676127e+02
## mean............ 1.692297e+02
## variance........ 7.107124e+01
## var 6:
## best............ 9.992147e+02
## mean............ 9.830352e+02
## variance........ 2.440247e+03
## var 7:
## best............ 2.782766e+02
## mean............ 2.859984e+02
## variance........ 2.067443e+03
## var 8:
## best............ 3.407796e+02
## mean............ 3.341201e+02
## variance........ 1.380574e+03
## 
## GENERATION: 11
## Lexical Fit..... 1.551525e-01  1.551525e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  4.335631e-01  4.883156e-01  5.884981e-01  6.120000e-01  9.720000e-01  9.800000e-01  
## #unique......... 8, #Total UniqueCount: 141
## var 1:
## best............ 3.411394e+02
## mean............ 3.504727e+02
## variance........ 3.334432e+03
## var 2:
## best............ 3.655379e+02
## mean............ 3.572870e+02
## variance........ 4.278696e+02
## var 3:
## best............ 3.207194e+02
## mean............ 3.203188e+02
## variance........ 1.444673e+00
## var 4:
## best............ 8.107650e+02
## mean............ 7.813132e+02
## variance........ 8.373785e+03
## var 5:
## best............ 1.676127e+02
## mean............ 2.113518e+02
## variance........ 2.043083e+04
## var 6:
## best............ 9.992147e+02
## mean............ 9.198271e+02
## variance........ 5.582340e+04
## var 7:
## best............ 2.782766e+02
## mean............ 2.799425e+02
## variance........ 1.799798e+02
## var 8:
## best............ 3.407796e+02
## mean............ 3.371795e+02
## variance........ 6.561627e+02
## 
## GENERATION: 12
## Lexical Fit..... 1.551525e-01  1.551525e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  4.335631e-01  4.883156e-01  5.884981e-01  6.120000e-01  9.720000e-01  9.800000e-01  
## #unique......... 6, #Total UniqueCount: 147
## var 1:
## best............ 3.411394e+02
## mean............ 3.844425e+02
## variance........ 1.456440e+04
## var 2:
## best............ 3.655379e+02
## mean............ 3.669064e+02
## variance........ 9.157810e+02
## var 3:
## best............ 3.207194e+02
## mean............ 3.190019e+02
## variance........ 1.490744e+02
## var 4:
## best............ 8.107650e+02
## mean............ 7.816105e+02
## variance........ 1.722824e+04
## var 5:
## best............ 1.676127e+02
## mean............ 1.900838e+02
## variance........ 7.605194e+03
## var 6:
## best............ 9.992147e+02
## mean............ 9.821590e+02
## variance........ 2.625971e+03
## var 7:
## best............ 2.782766e+02
## mean............ 3.006486e+02
## variance........ 5.463717e+03
## var 8:
## best............ 3.407796e+02
## mean............ 3.524409e+02
## variance........ 2.673145e+03
## 
## GENERATION: 13
## Lexical Fit..... 1.551525e-01  1.551525e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  4.335631e-01  4.883156e-01  5.884981e-01  6.120000e-01  9.720000e-01  9.800000e-01  
## #unique......... 6, #Total UniqueCount: 153
## var 1:
## best............ 3.411394e+02
## mean............ 3.371346e+02
## variance........ 7.705543e+02
## var 2:
## best............ 3.655379e+02
## mean............ 3.747403e+02
## variance........ 3.196401e+03
## var 3:
## best............ 3.207194e+02
## mean............ 3.094717e+02
## variance........ 2.798989e+03
## var 4:
## best............ 8.107650e+02
## mean............ 8.098853e+02
## variance........ 3.142103e+02
## var 5:
## best............ 1.676127e+02
## mean............ 1.785567e+02
## variance........ 1.585748e+03
## var 6:
## best............ 9.992147e+02
## mean............ 9.981903e+02
## variance........ 2.085646e+01
## var 7:
## best............ 2.782766e+02
## mean............ 3.016874e+02
## variance........ 5.537102e+03
## var 8:
## best............ 3.407796e+02
## mean............ 3.500699e+02
## variance........ 1.026714e+03
## 
## 'wait.generations' limit reached.
## No significant improvement in 4 generations.
## 
## Solution Lexical Fitness Value:
## 1.551525e-01  1.551525e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  3.173944e-01  4.335631e-01  4.883156e-01  5.884981e-01  6.120000e-01  9.720000e-01  9.800000e-01  
## 
## Parameters at the Solution:
## 
##  X[ 1] : 3.411394e+02
##  X[ 2] : 3.655379e+02
##  X[ 3] : 3.207194e+02
##  X[ 4] : 8.107650e+02
##  X[ 5] : 1.676127e+02
##  X[ 6] : 9.992147e+02
##  X[ 7] : 2.782766e+02
##  X[ 8] : 3.407796e+02
## 
## Solution Found Generation 8
## Number of Generations Run 13
## 
## Sun Apr 10 22:42:00 2022
## Total run time : 0 hours 0 minutes and 13 seconds
mout2_specified <- Match(Y=foo2$nowtot, Tr = foo2$hasgirls, X = cbind(foo2$Dems, foo2$Repubs, foo2$Christian, foo2$age, foo2$srvlng, foo2$demvote, foo2$white, foo2$female), Weight.matrix = genout2_specified)
mb_after2_specified <- MatchBalance(hasgirls ~ Dems + Repubs + Christian + age + srvlng + demvote + female + white, data = foo2, match.out = mout2_specified)
## 
## ***** (V1) Dems *****
##                        Before Matching        After Matching
## mean treatment........    0.61702            0.61702 
## mean control..........    0.40909            0.59574 
## std mean diff.........     42.317             4.3301 
## 
## mean raw eQQ diff.....    0.20455           0.021277 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........    0.10397           0.010638 
## med  eCDF diff........    0.10397           0.010638 
## max  eCDF diff........    0.20793           0.021277 
## 
## var ratio (Tr/Co).....    0.97609             0.9812 
## T-test p-value........    0.04806            0.31739 
## 
## 
## ***** (V2) Repubs *****
##                        Before Matching        After Matching
## mean treatment........    0.38298            0.38298 
## mean control..........    0.59091            0.40426 
## std mean diff.........    -42.317            -4.3301 
## 
## mean raw eQQ diff.....    0.22727           0.021277 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........    0.10397           0.010638 
## med  eCDF diff........    0.10397           0.010638 
## max  eCDF diff........    0.20793           0.021277 
## 
## var ratio (Tr/Co).....    0.97609             0.9812 
## T-test p-value........    0.04806            0.31739 
## 
## 
## ***** (V3) Christian *****
##                        Before Matching        After Matching
## mean treatment........    0.91489            0.91489 
## mean control..........    0.97727            0.93617 
## std mean diff.........    -22.116            -7.5434 
## 
## mean raw eQQ diff.....   0.068182           0.021277 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........    0.03119           0.010638 
## med  eCDF diff........    0.03119           0.010638 
## max  eCDF diff........   0.062379           0.021277 
## 
## var ratio (Tr/Co).....     3.5005              1.303 
## T-test p-value........     0.1887            0.31739 
## 
## 
## ***** (V4) age *****
##                        Before Matching        After Matching
## mean treatment........     51.213             51.213 
## mean control..........     51.977              51.66 
## std mean diff.........    -8.2171            -4.8024 
## 
## mean raw eQQ diff.....     1.5682             1.1702 
## med  raw eQQ diff.....          1                  1 
## max  raw eQQ diff.....          6                  4 
## 
## mean eCDF diff........     0.0288           0.029255 
## med  eCDF diff........   0.025629           0.021277 
## max  eCDF diff........    0.07882           0.085106 
## 
## var ratio (Tr/Co).....    0.79756             1.0439 
## T-test p-value........    0.71354             0.5885 
## KS Bootstrap p-value..      0.966               0.97 
## KS Naive p-value......    0.99893            0.99568 
## KS Statistic..........    0.07882           0.085106 
## 
## 
## ***** (V5) srvlng *****
##                        Before Matching        After Matching
## mean treatment........     7.9574             7.9574 
## mean control..........     10.568             8.4255 
## std mean diff.........    -38.919            -6.9779 
## 
## mean raw eQQ diff.....     2.8636            0.76596 
## med  raw eQQ diff.....          2                  0 
## max  raw eQQ diff.....         14                  4 
## 
## mean eCDF diff........   0.079008           0.023936 
## med  eCDF diff........   0.091876           0.021277 
## max  eCDF diff........    0.13926            0.06383 
## 
## var ratio (Tr/Co).....    0.48803            0.77656 
## T-test p-value........    0.13925            0.48832 
## KS Bootstrap p-value..      0.502              0.992 
## KS Naive p-value......    0.77019            0.99998 
## KS Statistic..........    0.13926            0.06383 
## 
## 
## ***** (V6) demvote *****
##                        Before Matching        After Matching
## mean treatment........    0.51745            0.51745 
## mean control..........    0.48727            0.50979 
## std mean diff.........     24.982             6.3415 
## 
## mean raw eQQ diff.....   0.045909           0.028511 
## med  raw eQQ diff.....      0.045               0.03 
## max  raw eQQ diff.....       0.11               0.07 
## 
## mean eCDF diff........    0.10233           0.058079 
## med  eCDF diff........   0.091393            0.06383 
## max  eCDF diff........    0.25193            0.14894 
## 
## var ratio (Tr/Co).....     1.0419             1.1922 
## T-test p-value........    0.23199            0.43356 
## KS Bootstrap p-value..      0.082              0.546 
## KS Naive p-value......    0.11171            0.67438 
## KS Statistic..........    0.25193            0.14894 
## 
## 
## ***** (V7) female *****
##                        Before Matching        After Matching
## mean treatment........    0.14894            0.14894 
## mean control..........   0.045455            0.10638 
## std mean diff.........     28.755             11.824 
## 
## mean raw eQQ diff.....   0.090909           0.042553 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........   0.051741           0.021277 
## med  eCDF diff........   0.051741           0.021277 
## max  eCDF diff........    0.10348           0.042553 
## 
## var ratio (Tr/Co).....     2.9171             1.3333 
## T-test p-value........   0.095836            0.15515 
## 
## 
## ***** (V8) white *****
##                        Before Matching        After Matching
## mean treatment........    0.89362            0.89362 
## mean control..........    0.90909            0.91489 
## std mean diff.........     -4.965            -6.8268 
## 
## mean raw eQQ diff.....   0.022727           0.021277 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  1 
## 
## mean eCDF diff........  0.0077369           0.010638 
## med  eCDF diff........  0.0077369           0.010638 
## max  eCDF diff........   0.015474           0.021277 
## 
## var ratio (Tr/Co).....     1.1486             1.2209 
## T-test p-value........    0.80701            0.31739 
## 
## 
## Before Matching Minimum p.value: 0.04806 
## Variable Name(s): Dems Repubs  Number(s): 1 2 
## 
## After Matching Minimum p.value: 0.15515 
## Variable Name(s): female  Number(s): 7
summary(mout2_specified)
## 
## Estimate...  15.638 
## AI SE......  4.8988 
## T-stat.....  3.1923 
## p.val......  0.0014115 
## 
## Original number of observations..............  91 
## Original number of treated obs...............  47 
## Matched number of observations...............  47 
## Matched number of observations  (unweighted).  47
lower_bound2_specified = mout2_specified$est - 1.96 * mout2_specified$se
upper_bound2_specified = mout2_specified$est + 1.96 * mout2_specified$se
cat("The 95% confidence interval of the average treatment effect is [", lower_bound2_specified, "," ,upper_bound2_specified, "]")
## The 95% confidence interval of the average treatment effect is [ 6.036683 , 25.23991 ]

QUESTION 2

library(rgenoud)

library(date)
library(Matching)

rm(list=ls())
foo <- read.csv("Downloads/district - district.csv")

#dim(foo)
#76772   14

missing_bank_code <- rep(0, 76772)
missing_bank_name <- rep(0, 76772)
missing_date_of_birth <- rep(0, 76772)
NA_district_code <- rep(0, 76772)
NA_capital <- rep(0, 76772)
NA_credit_proposal <- rep(0, 76772)

foo <- cbind(foo, missing_bank_code,
             missing_bank_name,
             missing_date_of_birth,
             NA_district_code,
             NA_capital,
             NA_credit_proposal)

foo$missing_bank_code[which(foo$bank_code == "")] <- 1
foo$missing_bank_name[which(foo$bank_name == "")] <- 1
foo$missing_date_of_birth[which(foo$date_of_birth == "")] <- 1
foo$NA_capital[which(is.na(foo$capital) == TRUE)] <- 1
foo$NA_credit_proposal[which(is.na(foo$credit_proposal) == TRUE)] <- 1
foo$NA_district_code[which(is.na(foo$district_code) == TRUE)] <- 1

#change the dates to R-readable format
foo$R_date_of_birth <- as.character(foo[,3])
for(i in 1:length(foo[,3])) {foo$R_date_of_birth[i] <- as.date(foo$R_date_of_birth[i], order = 
                                                                 "dmy")}
foo$R_date_of_birth <- as.date(as.numeric(foo$R_date_of_birth))

oldest <- which(foo$R_date_of_birth < as.date("1-Jan-1910"))
youngest <- which(foo$R_date_of_birth > as.date("1 Jan 2001"))

foo$oldest <- rep(0, length(foo[,3]))
foo$youngest <- rep(0, length(foo[,3]))
foo$outlier_ages <- rep(0, length(foo[,3]))
foo$oldest[oldest] <- 1
foo$youngest[youngest] <- 1
foo$outlier_ages[c(oldest,youngest)] <- 1
foo$R_date_of_birth[which(is.na(foo$R_date_of_birth) == TRUE)] <- -9999999

#standard deviation
SD <- 365/sd(foo$R_date_of_birth)
# 0.000305876

#this obs with specific postal code makes no sense
#foo <- foo[-which(foo$postal_code == 9151), ]

#to extract only the first 2 digits of district codes:
foo$district_code1 <- foo$district_code%/% 100
foo$district_code1[which(is.na(foo$district_code1) == TRUE)] <- -9999999

#credit_proposal feature engineering
foo$credit_proposal[which(is.na(foo$credit_proposal) == TRUE)] <- 9999999

foo$credit_proposal_0 <- foo$credit_proposal == 0 & (is.na(foo$credit_proposal) == FALSE)
foo$credit_proposal_0to5 <- foo$credit_proposal > 0 & foo$credit_proposal < 5000000 & 
  (is.na(foo$credit_proposal) == FALSE)
foo$credit_proposal_5to10 <- foo$credit_proposal >= 5000000 & foo$credit_proposal < 10000000 & 
  (is.na(foo$credit_proposal) == FALSE)
foo$credit_proposal_10to20 <- foo$credit_proposal >= 10000000 & foo$credit_proposal < 20000000 & 
  (is.na(foo$credit_proposal) == FALSE)
foo$credit_proposal_20up <- foo$credit_proposal >= 20000000 & (is.na(foo$credit_proposal) == 
                                                                 FALSE)

foo$credit_proposal_transformed <-
  1*foo$credit_proposal_0 +
  2*foo$credit_proposal_0to5 +
  3*foo$credit_proposal_5to10 +
  4*foo$credit_proposal_10to20 +
  5*foo$credit_proposal_20up +
  6*foo$NA_credit_proposal

#NA capital
foo$capital[which(is.na(foo$capital) == TRUE)] <- 9999999

#capital feature engineering
foo$capital_0 <- foo$capital == 0 & (is.na(foo$capital) == FALSE)
foo$capital_0to2 <- foo$capital > 0 & foo$capital < 200000 & (is.na(foo$capital) == FALSE)
foo$capital_2to5 <- foo$capital >= 200000 & foo$capital < 500000 & (is.na(foo$capital) == FALSE)
foo$capital_5to10 <- foo$capital >= 500000 & foo$capital < 1000000 & (is.na(foo$capital) == 
                                                                        FALSE)
foo$capital_10to20 <- foo$capital >= 1000000 & foo$capital < 2000000 & (is.na(foo$capital) == 
                                                                          FALSE)
foo$capital_20to50 <- foo$capital >= 2000000 & foo$capital < 5000000 & (is.na(foo$capital) == 
                                                                          FALSE)
foo$capital_50up <- foo$capital >= 5000000 & (is.na(foo$capital) == FALSE)
foo$capital_transformed <-
  1*foo$capital_0 +
  2*foo$capital_0to2 +
  3*foo$capital_2to5 +
  4*foo$capital_5to10 +
  5*foo$capital_10to20 +
  6*foo$capital_20to50 +
  7*foo$capital_50up +
  8*foo$NA_capital

#worker feature engineering
#remove outlier in the control group (10 million workers)
foo <- foo[-which(foo$worker == max(foo$worker)),]

foo$worker_0 <- foo$worker == 0
foo$worker_1 <- foo$worker == 1
foo$worker_2 <- foo$worker == 2
foo$worker_3 <- foo$worker == 3
foo$worker_4 <- foo$worker == 4
foo$worker_5to9 <- foo$worker >=5 & foo$worker < 10
foo$worker_10to24 <- foo$worker >=10 & foo$worker < 25
foo$worker_25to99 <- foo$worker >=25 & foo$worker < 100
foo$worker_100up <- foo$worker >= 100

foo$worker_transformed <-
  1*foo$worker_0 +
  2*foo$worker_1 +
  3*foo$worker_2 +
  4*foo$worker_3 +
  5*foo$worker_4 +
  6*foo$worker_5to9 +
  7*foo$worker_10to24 +
  8*foo$worker_25to99 +
  9*foo$worker_100up

#treatment Indicator
foo$treat <- foo$status == "Sudah"

#the only bank code (var 1) is PEM
#the only bank name (var 2) is PEMDA -- regional government, not a bank
#(var 3) 174 outlier ages
#(var 4) gender is 3 levels: men, women, and business entity ("LAKI-LAKI" "PEREMPUAN" "BADAN USAHA")
#(var 5) marital_status: business agency, single, married ("BADAN USAHA" "BELUM KAWIN" "KAWIN")

###(var 6) EDUCATION
#"BADAN USAHA" "DIPLOMA" "LAINNYA" "SARJANA" "SD"  "SMP" "SMU"
#"BUSINESS AGENCY" "DIPLOMA" "OTHER" "GRADUATE" "Elementary School" "Middle School" "High School"

###(var 7) OCCUPATION
#[1]"KARYAWAN SWASTA"  "LAIN-LAIN/BADAN USAHA"  "NELAYAN"  "PEDAGANG"              
#[5]"PENSIUNAN/PURNAWIRAWAN" "PETANI"  "PNS" "PROFESIONAL"          
#[9]"TNI/POLRI"  "WIRASWASTA"      

#[1]"PRIVATE EMPLOYEES" [2] "OTHERS / BUSINESS AGENCIES" [3] "FISHERMANS" [4] "TRADERS"
#[5]"PENSIONERS / PURNAWIRAWAN" [6] "FARMERS" [7] "CIVIL SERVANT" [8] "PROFESSIONAL"
#[9]"ARMY / POLICE" [10] "ENTREPRENEURS"

###(var 8) 938 unique POSTAL CODES

###(var 9) 63 unique DISTRICT CODES

###(var 10) : "worker". unknown meaning... 300+ unique numerical values (maybe no. of staff?)

### (var 11) (capital)
# 0%      25%      50%      75%     100%
# 0.00e+00 1.00e+06 1.00e+07 1.50e+07 1.75e+11

###(var 12) (credit proposal)
#0%     25%     50%     75%    100%
#0.0e+00 0.0e+00 1.0e+07 2.5e+07 5.0e+09

###(var 13) STATUS
#"Belum"    "Sudah"
#"Not Yet"  "Already"

###(var 14) randomid

foo_badan <- foo[which(foo$gender == "BADAN USAHA"), ]
foo_people <- foo[-which(foo$gender == "BADAN USAHA"), ]
######## CODE MODIFICATION ########

X = data.frame(foo$R_date_of_birth, foo$district_code1,
                foo$worker, foo$capital, foo$credit_proposal,
                foo$worker_transformed, foo$capital_transformed, foo$credit_proposal_transformed,
                foo$missing_date_of_birth,
                foo$NA_district_code,
                foo$NA_capital,
                foo$NA_credit_proposal)


Tr <- foo$treat

BalanceMat <- X

genout <- GenMatch(Tr=Tr, X=X, BalanceMatrix=BalanceMat, estimand="ATT", M=1,
                   pop.size=5, max.generations=2, wait.generations=1,
                   caliper = c(0.000305876,1e+16,
                               1e+16,1e+16,1e+16,
                               1e+16,1e+16,1e+16,
                               1e+16,
                               1e+16,
                               1e+16,
                               1e+16),
                   exact = c(FALSE, TRUE,
                             FALSE, FALSE, FALSE,
                             TRUE, TRUE, TRUE,
                             TRUE,
                             TRUE,
                             TRUE,
                             TRUE))
## 
## 
## Sun Apr 10 22:43:21 2022
## Domains:
##  0.000000e+00   <=  X1   <=    1.000000e+03 
##  0.000000e+00   <=  X2   <=    1.000000e+03 
##  0.000000e+00   <=  X3   <=    1.000000e+03 
##  0.000000e+00   <=  X4   <=    1.000000e+03 
##  0.000000e+00   <=  X5   <=    1.000000e+03 
##  0.000000e+00   <=  X6   <=    1.000000e+03 
##  0.000000e+00   <=  X7   <=    1.000000e+03 
##  0.000000e+00   <=  X8   <=    1.000000e+03 
##  0.000000e+00   <=  X9   <=    1.000000e+03 
##  0.000000e+00   <=  X10  <=    1.000000e+03 
##  0.000000e+00   <=  X11  <=    1.000000e+03 
##  0.000000e+00   <=  X12  <=    1.000000e+03 
## NOTE: population size is not an even number
##       increasing population size by 1
## 
## Data Type: Floating Point
## Operators (code number, name, population) 
##  (1) Cloning...........................  5
##  (2) Uniform Mutation..................  0
##  (3) Boundary Mutation.................  0
##  (4) Non-Uniform Mutation..............  0
##  (5) Polytope Crossover................  0
##  (6) Simple Crossover..................  0
##  (7) Whole Non-Uniform Mutation........  0
##  (8) Heuristic Crossover...............  0
##  (9) Local-Minimum Crossover...........  0
## 
## SOFT Maximum Number of Generations: 2
## Maximum Nonchanging Generations: 1
## Population size       : 6
## Convergence Tolerance: 1.000000e-03
## 
## Not Using the BFGS Derivative Based Optimizer on the Best Individual Each Generation.
## Not Checking Gradients before Stopping.
## Using Out of Bounds Individuals.
## 
## Maximization Problem.
## GENERATION: 0 (initializing the population)
## Lexical Fit..... 3.424245e-09  2.141311e-07  1.492337e-03  3.368405e-01  5.872186e-01  7.548118e-01  9.997938e-01  9.999997e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 6, #Total UniqueCount: 6
## var 1:
## best............ 1.426833e+02
## mean............ 3.680701e+02
## variance........ 7.044706e+04
## var 2:
## best............ 7.667203e+02
## mean............ 4.788798e+02
## variance........ 6.084645e+04
## var 3:
## best............ 6.734909e+02
## mean............ 4.325326e+02
## variance........ 9.415470e+04
## var 4:
## best............ 7.125935e+02
## mean............ 3.654580e+02
## variance........ 6.346254e+04
## var 5:
## best............ 5.628359e+02
## mean............ 5.412994e+02
## variance........ 9.172148e+04
## var 6:
## best............ 4.500383e+02
## mean............ 3.280085e+02
## variance........ 3.788392e+04
## var 7:
## best............ 7.559536e+02
## mean............ 5.545150e+02
## variance........ 1.266630e+05
## var 8:
## best............ 2.595235e+02
## mean............ 4.283052e+02
## variance........ 8.637137e+04
## var 9:
## best............ 5.564301e+02
## mean............ 4.307669e+02
## variance........ 1.023857e+05
## var 10:
## best............ 4.522439e+02
## mean............ 4.628556e+02
## variance........ 9.587470e+04
## var 11:
## best............ 9.667644e+02
## mean............ 4.773605e+02
## variance........ 1.270421e+05
## var 12:
## best............ 6.112426e+02
## mean............ 4.306960e+02
## variance........ 1.034021e+05
## 
## GENERATION: 1
## Lexical Fit..... 3.424245e-09  2.141311e-07  1.492337e-03  3.368405e-01  5.872186e-01  7.548118e-01  9.997938e-01  9.999997e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 0, #Total UniqueCount: 6
## var 1:
## best............ 1.426833e+02
## mean............ 3.680701e+02
## variance........ 7.044706e+04
## var 2:
## best............ 7.667203e+02
## mean............ 4.788798e+02
## variance........ 6.084645e+04
## var 3:
## best............ 6.734909e+02
## mean............ 4.325326e+02
## variance........ 9.415470e+04
## var 4:
## best............ 7.125935e+02
## mean............ 3.654580e+02
## variance........ 6.346254e+04
## var 5:
## best............ 5.628359e+02
## mean............ 5.412994e+02
## variance........ 9.172148e+04
## var 6:
## best............ 4.500383e+02
## mean............ 3.280085e+02
## variance........ 3.788392e+04
## var 7:
## best............ 7.559536e+02
## mean............ 5.545150e+02
## variance........ 1.266630e+05
## var 8:
## best............ 2.595235e+02
## mean............ 4.283052e+02
## variance........ 8.637137e+04
## var 9:
## best............ 5.564301e+02
## mean............ 4.307669e+02
## variance........ 1.023857e+05
## var 10:
## best............ 4.522439e+02
## mean............ 4.628556e+02
## variance........ 9.587470e+04
## var 11:
## best............ 9.667644e+02
## mean............ 4.773605e+02
## variance........ 1.270421e+05
## var 12:
## best............ 6.112426e+02
## mean............ 4.306960e+02
## variance........ 1.034021e+05
## 
## GENERATION: 2
## Lexical Fit..... 3.424245e-09  2.141311e-07  1.492337e-03  3.368405e-01  5.872186e-01  7.548118e-01  9.997938e-01  9.999997e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## #unique......... 0, #Total UniqueCount: 6
## var 1:
## best............ 1.426833e+02
## mean............ 3.680701e+02
## variance........ 7.044706e+04
## var 2:
## best............ 7.667203e+02
## mean............ 4.788798e+02
## variance........ 6.084645e+04
## var 3:
## best............ 6.734909e+02
## mean............ 4.325326e+02
## variance........ 9.415470e+04
## var 4:
## best............ 7.125935e+02
## mean............ 3.654580e+02
## variance........ 6.346254e+04
## var 5:
## best............ 5.628359e+02
## mean............ 5.412994e+02
## variance........ 9.172148e+04
## var 6:
## best............ 4.500383e+02
## mean............ 3.280085e+02
## variance........ 3.788392e+04
## var 7:
## best............ 7.559536e+02
## mean............ 5.545150e+02
## variance........ 1.266630e+05
## var 8:
## best............ 2.595235e+02
## mean............ 4.283052e+02
## variance........ 8.637137e+04
## var 9:
## best............ 5.564301e+02
## mean............ 4.307669e+02
## variance........ 1.023857e+05
## var 10:
## best............ 4.522439e+02
## mean............ 4.628556e+02
## variance........ 9.587470e+04
## var 11:
## best............ 9.667644e+02
## mean............ 4.773605e+02
## variance........ 1.270421e+05
## var 12:
## best............ 6.112426e+02
## mean............ 4.306960e+02
## variance........ 1.034021e+05
## 
## 'wait.generations' limit reached.
## No significant improvement in 1 generations.
## 
## Solution Lexical Fitness Value:
## 3.424245e-09  2.141311e-07  1.492337e-03  3.368405e-01  5.872186e-01  7.548118e-01  9.997938e-01  9.999997e-01  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  1.000000e+00  
## 
## Parameters at the Solution:
## 
##  X[ 1] : 1.426833e+02
##  X[ 2] : 7.667203e+02
##  X[ 3] : 6.734909e+02
##  X[ 4] : 7.125935e+02
##  X[ 5] : 5.628359e+02
##  X[ 6] : 4.500383e+02
##  X[ 7] : 7.559536e+02
##  X[ 8] : 2.595235e+02
##  X[ 9] : 5.564301e+02
##  X[10] : 4.522439e+02
##  X[11] : 9.667644e+02
##  X[12] : 6.112426e+02
## 
## Solution Found Generation 1
## Number of Generations Run 2
## 
## Sun Apr 10 22:49:12 2022
## Total run time : 0 hours 5 minutes and 51 seconds
mout <- Match(Tr=Tr, X=X, estimand="ATT", M=1,
              exact = c(FALSE, TRUE,
                        FALSE, FALSE, FALSE,
                        TRUE, TRUE, TRUE,
                        TRUE, 
                        TRUE, 
                        TRUE, 
                        TRUE),
              caliper = c(0.000305876, 1e+16,
                          1e+16,1e+16,1e+16,
                          1e+16,1e+16,1e+16,
                          1e+16,
                          1e+16,
                          1e+16,
                          1e+16),
              Weight.matrix = genout)
                   

summary(mout)
## 
## Estimate...  0 
## SE.........  0 
## T-stat.....  NaN 
## p.val......  NA 
## 
## Original number of observations..............  76771 
## Original number of treated obs...............  15873 
## Matched number of observations...............  15004 
## Matched number of observations  (unweighted).  508234 
## 
## Number of obs dropped by 'exact' or 'caliper'  869
mb <- MatchBalance(foo$treat~
                                foo$R_date_of_birth + foo$district_code1 +
                                foo$worker + foo$capital + foo$credit_proposal +
                                foo$worker_transformed + foo$capital_transformed + 
                              foo$credit_proposal_transformed +
                                foo$missing_date_of_birth +
                                foo$NA_district_code +
                                foo$NA_capital +
                                foo$NA_credit_proposal,
                                match.out=mout, nboots=500)
## 
## ***** (V1) foo$R_date_of_birth *****
##                        Before Matching        After Matching
## mean treatment........    -139141            -143389 
## mean control..........    -139530            -143388 
## std mean diff.........   0.032586         -6.9709e-05 
## 
## mean raw eQQ diff.....     1726.9             12.814 
## med  raw eQQ diff.....        968                  9 
## max  raw eQQ diff.....    9346761                298 
## 
## mean eCDF diff........   0.054932         0.00072914 
## med  eCDF diff........   0.053894          0.0005647 
## max  eCDF diff........    0.11396           0.003764 
## 
## var ratio (Tr/Co).....     1.0052                  1 
## T-test p-value........    0.97082            0.58722 
## KS Bootstrap p-value.. < 2.22e-16              0.002 
## KS Naive p-value...... < 2.22e-16          0.0014923 
## KS Statistic..........    0.11396           0.003764 
## 
## 
## ***** (V2) foo$district_code1 *****
##                        Before Matching        After Matching
## mean treatment........     46.161             46.385 
## mean control..........     47.654             46.385 
## std mean diff.........    -8.5508                  0 
## 
## mean raw eQQ diff.....      1.635                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....         17                  0 
## 
## mean eCDF diff........   0.027068                  0 
## med  eCDF diff........    0.01123                  0 
## max  eCDF diff........   0.092468                  0 
## 
## var ratio (Tr/Co).....    0.97043                  1 
## T-test p-value........ < 2.22e-16                  1 
## KS Bootstrap p-value.. < 2.22e-16                  1 
## KS Naive p-value...... < 2.22e-16                  1 
## KS Statistic..........   0.092468         1.5247e-20 
## 
## 
## ***** (V3) foo$worker *****
##                        Before Matching        After Matching
## mean treatment........      2.821             2.7558 
## mean control..........     2.2934             2.7363 
## std mean diff.........     2.7531            0.10936 
## 
## mean raw eQQ diff.....    0.52183           0.001883 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....        123                 20 
## 
## mean eCDF diff........  0.0013569         6.7717e-06 
## med  eCDF diff........  0.0008236         1.9676e-06 
## max  eCDF diff........   0.067931         0.00052928 
## 
## var ratio (Tr/Co).....     1.3944             1.0237 
## T-test p-value........  0.0014557            0.33684 
## KS Bootstrap p-value.. < 2.22e-16              0.728 
## KS Naive p-value...... < 2.22e-16                  1 
## KS Statistic..........   0.067931         0.00052928 
## 
## 
## ***** (V4) foo$capital *****
##                        Before Matching        After Matching
## mean treatment........   24968674           24831197 
## mean control..........   21207819           21481127 
## std mean diff.........     4.0379             3.9428 
## 
## mean raw eQQ diff.....   17180298             162416 
## med  raw eQQ diff.....      2e+06                  0 
## max  raw eQQ diff.....   1.69e+11            3.5e+09 
## 
## mean eCDF diff........   0.042925         0.00033311 
## med  eCDF diff........   0.046607         0.00024988 
## max  eCDF diff........   0.085326           0.001336 
## 
## var ratio (Tr/Co).....    0.01703             2.4914 
## T-test p-value........    0.20773         3.4242e-09 
## KS Bootstrap p-value.. < 2.22e-16              0.354 
## KS Naive p-value...... < 2.22e-16            0.75481 
## KS Statistic..........   0.085326           0.001336 
## 
## 
## ***** (V5) foo$credit_proposal *****
##                        Before Matching        After Matching
## mean treatment........   15613005           15543926 
## mean control..........   12550889           13615535 
## std mean diff.........     5.8477             3.6451 
## 
## mean raw eQQ diff.....    2987047              91449 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....    2.5e+09            4.5e+09 
## 
## mean eCDF diff........   0.029333         0.00013409 
## med  eCDF diff........   0.029123         0.00010625 
## max  eCDF diff........   0.065598         0.00068079 
## 
## var ratio (Tr/Co).....     4.7388             6.1864 
## T-test p-value........ 7.6383e-13         2.1413e-07 
## KS Bootstrap p-value.. < 2.22e-16              0.846 
## KS Naive p-value...... < 2.22e-16            0.99979 
## KS Statistic..........   0.065598         0.00068079 
## 
## 
## ***** (V6) foo$worker_transformed *****
##                        Before Matching        After Matching
## mean treatment........     2.4636             2.4266 
## mean control..........     2.3237             2.4266 
## std mean diff.........     10.162                  0 
## 
## mean raw eQQ diff.....    0.13973                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  0 
## 
## mean eCDF diff........   0.015539                  0 
## med  eCDF diff........   0.010607                  0 
## max  eCDF diff........   0.067931                  0 
## 
## var ratio (Tr/Co).....     1.0915                  1 
## T-test p-value........ < 2.22e-16                  1 
## KS Bootstrap p-value.. < 2.22e-16                  1 
## KS Naive p-value...... < 2.22e-16                  1 
## KS Statistic..........   0.067931         1.5247e-20 
## 
## 
## ***** (V7) foo$capital_transformed *****
##                        Before Matching        After Matching
## mean treatment........     5.9757             5.9577 
## mean control..........     5.7172             5.9577 
## std mean diff.........     9.9841                  0 
## 
## mean raw eQQ diff.....    0.29805                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          8                  0 
## 
## mean eCDF diff........   0.035096                  0 
## med  eCDF diff........   0.044062                  0 
## max  eCDF diff........   0.050337                  0 
## 
## var ratio (Tr/Co).....    0.85039                  1 
## T-test p-value........ < 2.22e-16                  1 
## KS Bootstrap p-value.. < 2.22e-16                  1 
## KS Naive p-value...... < 2.22e-16                  1 
## KS Statistic..........   0.050337         1.5247e-20 
## 
## 
## ***** (V8) foo$credit_proposal_transformed *****
##                        Before Matching        After Matching
## mean treatment........      4.679             4.6738 
## mean control..........     4.1435             4.6738 
## std mean diff.........     18.605                  0 
## 
## mean raw eQQ diff.....    0.53544                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          4                  0 
## 
## mean eCDF diff........   0.055941                  0 
## med  eCDF diff........   0.060253                  0 
## max  eCDF diff........   0.099595                  0 
## 
## var ratio (Tr/Co).....     1.1027                  1 
## T-test p-value........ < 2.22e-16                  1 
## KS Bootstrap p-value.. < 2.22e-16                  1 
## KS Naive p-value...... < 2.22e-16                  1 
## KS Statistic..........   0.099595         1.5247e-20 
## 
## 
## ***** (V9) foo$missing_date_of_birth *****
##                        Before Matching        After Matching
## mean treatment........    0.01449           0.014929 
## mean control..........   0.014418           0.014929 
## std mean diff.........   0.060638                  0 
## 
## mean raw eQQ diff.....    6.3e-05                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  0 
## 
## mean eCDF diff........ 3.6232e-05                  0 
## med  eCDF diff........ 3.6232e-05                  0 
## max  eCDF diff........ 7.2464e-05                  0 
## 
## var ratio (Tr/Co).....      1.005                  1 
## T-test p-value........    0.94573                  1 
## 
## 
## ***** (V10) foo$NA_district_code *****
##                        Before Matching        After Matching
## mean treatment........          0                  0 
## mean control..........          0                  0 
## std mean diff.........          0                  0 
## 
## mean raw eQQ diff.....          0                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          0                  0 
## 
## mean eCDF diff........          0                  0 
## med  eCDF diff........          0                  0 
## max  eCDF diff........          0                  0 
## 
## var ratio (Tr/Co).....        NaN                NaN 
## T-test p-value........          1                  1 
## 
## 
## ***** (V11) foo$NA_capital *****
##                        Before Matching        After Matching
## mean treatment........   0.022239           0.018862 
## mean control..........   0.024713           0.018862 
## std mean diff.........     -1.678                  0 
## 
## mean raw eQQ diff.....   0.002457                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  0 
## 
## mean eCDF diff........  0.0012372                  0 
## med  eCDF diff........  0.0012372                  0 
## max  eCDF diff........  0.0024744                  0 
## 
## var ratio (Tr/Co).....     0.9022                  1 
## T-test p-value........   0.062598                  1 
## 
## 
## ***** (V12) foo$NA_credit_proposal *****
##                        Before Matching        After Matching
## mean treatment........    0.24356            0.24307 
## mean control..........    0.17695            0.24307 
## std mean diff.........     15.517                  0 
## 
## mean raw eQQ diff.....   0.066591                  0 
## med  raw eQQ diff.....          0                  0 
## max  raw eQQ diff.....          1                  0 
## 
## mean eCDF diff........   0.033303                  0 
## med  eCDF diff........   0.033303                  0 
## max  eCDF diff........   0.066607                  0 
## 
## var ratio (Tr/Co).....     1.2651                  1 
## T-test p-value........ < 2.22e-16                  1 
## 
## 
## Before Matching Minimum p.value: < 2.22e-16 
## Variable Name(s): foo$R_date_of_birth foo$district_code1 foo$worker foo$capital foo$credit_proposal foo$worker_transformed foo$capital_transformed foo$credit_proposal_transformed foo$NA_credit_proposal  Number(s): 1 2 3 4 5 6 7 8 12 
## 
## After Matching Minimum p.value: 3.4242e-09 
## Variable Name(s): foo$capital  Number(s): 4