library(ipumsr)
ddi <- read_ipums_ddi("C:/Users/chrys/Documents/GitHub/DEM7093/data/usa_00004.xml")
data <- read_ipums_micro(ddi)
## Use of data from IPUMS USA is subject to conditions including that users should
## cite the data appropriately. Use command `ipums_conditions()` for more details.
data<-haven::zap_labels(data) #necessary to avoid problems with "labelled" data class
names(data)<-tolower(names(data))
options(tigris_class = "sf")
pumas<-pumas(state = "CA",
year = 2019,
cb = T)
plot(pumas["GEOID10"],
main = "Public Use Microdata Areas in California")
Recoded 0=NA and 9=unknown as missing
data$pwt <- data$perwt
data$hwt <- data$hhwt
data$same <- Recode(data$migrate1, recodes = "1 = 1; 2:4 = 0; else = NA")
des<-svydesign(ids = ~cluster,
strata = ~ strata,
weights = ~pwt,
data = data)
puma_est_same <- svyby(formula = ~same,
by = ~puma,
design = des,
FUN=svymean,
na.rm = TRUE )
puma_est_same$same_pct = round(puma_est_same$same*100,1)
pumas$puma<-as.numeric(pumas$PUMACE10)
geo1<-left_join(pumas, puma_est_same, by=c("puma"= "puma"))
#can change tmap mode to "view" or "plot"
tmap_mode("plot")
geo1%>%
tm_shape()+
tm_polygons("same_pct",
title = "Percent same house \n last year",
palette = "Blues",
style= "quantile",#"kmeans",
n=6,
legend.hist = TRUE) +
tm_layout(legend.outside = TRUE,
main.title = "Percent of population that lived in the same house in the last year by California PUMAs \n 2015-2019",
title.position = c('center', 'top')) +
tm_format("World",
legend.position = c("left", "top"),
legend.title.size = 1,
legend.text.size = .9,
main.title.size = 1)