Paquetes requeridos

library(future)
future::plan("multisession") # Windows

## Run chains in parallel
options(mc.cores = parallel::detectCores()) 

library(lavaan)
## This is lavaan 0.6-10
## lavaan is FREE software! Please report any bugs.
library(blavaan)
## Loading required package: Rcpp
## This is blavaan 0.4-1
## On multicore systems, we suggest use of future::plan("multicore") or
##   future::plan("multisession") for faster post-MCMC computations.
library(semPlot)
## Found more than one class "family" in cache; using the first, from namespace 'MatrixModels'
## Also defined by 'lme4'
## Found more than one class "family" in cache; using the first, from namespace 'MatrixModels'
## Also defined by 'lme4'
## Found more than one class "family" in cache; using the first, from namespace 'MatrixModels'
## Also defined by 'lme4'
library(bayestestR)
## Warning: package 'bayestestR' was built under R version 4.1.3
library(sjPlot)
## Warning: package 'sjPlot' was built under R version 4.1.3
library(knitr)

#leer la base de datos
datos <- readRDS("data/datos.RDS")

#comparacion de modelos

set.seed(535535)

# TODO: Explorar agregar covarianza entre SNT & FNC

#MODELO DE REFERENCIA
model_bayesianoref <- '

  # measurement model
  
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
  
    funcionalidad ~ a*sintomas
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'



# Parametros modelo referencia

BURNIN1 = 3000
SAMPLE1 = 6500

# Parametros modelos variables moderadoras

BURNIN = 2500
SAMPLE = 6500

CHAINS = 30

# TODO: EM explorar inicializacion pars

fitref <- bsem(
  model = model_bayesianoref,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE, 
  inits = "prior", 
  sample = SAMPLE1,
  burnin = BURNIN1,
  n.chains = CHAINS)
## Warning: There were 1 divergent transitions after warmup. See
## https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: There were 28 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See
## https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
## Warning: Examine the pairs() plot to diagnose sampling problems
## Warning: The largest R-hat is 1.17, indicating chains have not mixed.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#r-hat
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#tail-ess
## Warning: blavaan WARNING: at least one parameter has a psrf > 1.2.
## Computing posterior predictives...
## Warning: blavaan WARNING: Small effective sample sizes (< 100) for some
## parameters.
summary(fitref,standardized = TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 3000 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -674.166       0.188
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.202    0.462
##     F_c30             1.441    0.159    1.170    1.794    0.291    0.718
##   sintomas =~                                                           
##     S_br23            1.000                               0.319    0.566
##     S_c30             0.726    6.341  -23.587    3.517    0.232    0.604
##      Rhat    Prior       
##                          
##                          
##     1.008    normal(0,15)
##                          
##                          
##     3.639    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -0.577    4.027   -2.437   14.832   -0.911   -0.911
##   CV_Gral ~                                                             
##     Salud      (c)    0.752    0.088    0.585    0.907    0.752    0.834
##     sintomas   (e)   -0.630    7.417  -15.885   14.866   -0.201   -0.104
##     funcionldd (d)    0.254    4.448   -9.180    9.671    0.051    0.026
##   Salud ~                                                               
##     sintomas         -5.890    8.437  -23.539    9.444   -1.879   -0.873
##     funcionldd (b)   -0.655    5.241  -11.969    8.634   -0.132   -0.061
##      Rhat    Prior       
##                          
##     3.641    normal(0,10)
##                          
##     1.001    normal(0,10)
##     1.005    normal(0,10)
##     1.001    normal(0,10)
##                          
##     1.005  normal(-10,10)
##     1.022    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.072    2.201    2.483    2.342    5.352
##    .F_c30             2.437    0.088    2.265    2.609    2.437    6.014
##    .S_br23            1.765    0.063    1.641    1.889    1.765    3.130
##    .S_c30             2.165    0.090    1.988    2.340    2.165    5.639
##    .CV_Gral           0.837    0.394    0.145    1.582    0.837    0.431
##    .Salud             4.335    0.206    3.933    4.739    4.335    2.013
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.151    0.029    0.102    0.216    0.151    0.787
##    .F_c30             0.079    0.028    0.028    0.138    0.079    0.484
##    .S_br23            0.216    0.053    0.148    0.368    0.216    0.680
##    .S_c30             0.094    0.035    0.013    0.161    0.094    0.636
##    .CV_Gral           0.436    0.104    0.194    0.633    0.436    0.116
##    .Salud             1.539    0.327    0.926    2.214    1.539    0.332
##    .funcionalidad     0.007    0.011    0.000    0.041    0.170    0.170
##     sintomas          0.102    0.048    0.001    0.201    1.000    1.000
##      Rhat    Prior       
##     1.003 gamma(1,.5)[sd]
##     1.010 gamma(1,.5)[sd]
##     1.394 gamma(1,.5)[sd]
##     1.011 gamma(1,.5)[sd]
##     1.005 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.039 gamma(1,.5)[sd]
##     1.208 gamma(1,.5)[sd]
blavFitIndices(fitref) # revisar
## Warning: blavaan WARNING: the chains may not have converged.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc 
##        0.151        0.955        0.760        0.931
blavInspect(fitref, 'rhat')
##         funcionalidad=~F_c30              sintomas=~S_c30 
##                     1.007717                     3.638913 
##                            a                            c 
##                     3.641237                     1.000944 
##                            e                            d 
##                     1.004567                     1.000595 
##               Salud~sintomas                            b 
##                     1.004947                     1.022250 
##               F_br23~~F_br23                 F_c30~~F_c30 
##                     1.003111                     1.010191 
##               S_br23~~S_br23                 S_c30~~S_c30 
##                     1.393566                     1.011171 
##             CV_Gral~~CV_Gral                 Salud~~Salud 
##                     1.004546                     1.000873 
## funcionalidad~~funcionalidad           sintomas~~sintomas 
##                     1.039210                     1.208252 
##                     F_br23~1                      F_c30~1 
##                     1.000200                     1.000195 
##                     S_br23~1                      S_c30~1 
##                     1.000140                     1.000205 
##                    CV_Gral~1                      Salud~1 
##                     1.000941                     1.000082
blavInspect(fitref, 'neff')
##         funcionalidad=~F_c30              sintomas=~S_c30 
##                   2191.24187                     16.26167 
##                            a                            c 
##                     16.25992                  29301.38078 
##                            e                            d 
##                  21231.52889                  40115.33390 
##               Salud~sintomas                            b 
##                  16405.54604                    483.65249 
##               F_br23~~F_br23                 F_c30~~F_c30 
##                  31133.33513                   1221.92409 
##               S_br23~~S_br23                 S_c30~~S_c30 
##                     30.93519                   1277.36384 
##             CV_Gral~~CV_Gral                 Salud~~Salud 
##                  14772.48180                  57444.65191 
## funcionalidad~~funcionalidad           sintomas~~sintomas 
##                    241.03262                     48.29272 
##                     F_br23~1                      F_c30~1 
##                  88335.17567                  78787.62712 
##                     S_br23~1                      S_c30~1 
##                 117010.01158                  80005.24447 
##                    CV_Gral~1                      Salud~1 
##                  29344.01660                  97131.91922
#grafico del sem Bayesiano
#version 1.0
semPaths(
  fitref,
  intercepts = FALSE,
  residuals = TRUE,
  edge.label.cex = 1.5,
  intStyle = "multi",
  optimizeLatRes = TRUE,
  title.color = "black",
  groups = "lat",
  pastel = TRUE,
  exoVar = FALSE,
  sizeInt = 5,
  edge.color = "black",
  esize = 6,
  label.prop = 2,
  sizeLat = 6,
  "std"
)

# trace plots
plot(fitref, par = 1:12,  facet_args = list(ncol = 4))

plot(fitref, par = 13:22, facet_args = list(ncol = 4))

plot(fitref, par = 2:3,   facet_args = list(ncol = 4))

# intervals plot
plot(fitref, par = 1:12,  plot.type = "intervals")

# coord paralelas
plot(fitref, plot.type = "parcoord")

## SEM Bayesiano final utilizando variables moderadoras

# Modelo 1.0 interaccion Edad 
model_bayesiano1.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad + Edad
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

fitedad1.0 <- bsem(
  model = model_bayesiano1.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Warning: There were 8 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See
## https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
## Warning: Examine the pairs() plot to diagnose sampling problems
## Computing posterior predictives...
summary(fitedad1.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -526.666       0.036
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.538    0.811
##     F_c30             1.436    0.156    1.169    1.782    0.772    0.939
##   sintomas =~                                                           
##     S_br23            1.000                               0.331    0.588
##     S_c30             2.353    0.502    1.664    3.542    0.778    0.930
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.607    0.358   -2.444   -1.095   -0.989   -0.989
##   CV_Gral ~                                                             
##     Salud      (c)    0.740    0.089    0.562    0.901    0.740    0.752
##     sintomas   (e)   -1.415    7.248  -16.296   13.695   -0.468   -0.257
##     funcionldd (d)   -0.105    4.594   -9.603    9.502   -0.057   -0.031
##     Edad             -0.005    0.007   -0.018    0.008   -0.005   -0.033
##   Salud ~                                                               
##     sintomas         -5.552    8.210  -22.796    9.353   -1.836   -0.991
##     funcionldd (b)   -0.865    5.241  -11.974    8.772   -0.465   -0.251
##      Rhat    Prior       
##                          
##     1.001    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000  normal(-10,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.072    2.200    2.484    2.342    3.534
##    .F_c30             2.437    0.087    2.265    2.609    2.437    2.963
##    .S_br23            1.765    0.063    1.642    1.889    1.765    3.140
##    .S_c30             2.164    0.090    1.989    2.340    2.164    2.587
##    .CV_Gral           1.155    0.581    0.048    2.317    1.155    0.633
##    .Salud             4.336    0.206    3.932    4.738    4.336    2.339
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.215    0.150    0.342
##    .F_c30             0.081    0.028    0.029    0.139    0.081    0.119
##    .S_br23            0.207    0.036    0.147    0.288    0.207    0.654
##    .S_c30             0.094    0.033    0.019    0.160    0.094    0.134
##    .CV_Gral           0.432    0.110    0.159    0.635    0.432    0.130
##    .Salud             1.537    0.327    0.917    2.215    1.537    0.447
##    .funcionalidad     0.006    0.010    0.000    0.038    0.022    0.022
##     sintomas          0.109    0.042    0.042    0.204    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
blavFitIndices(fitedad1.0, baseline.model = fitref)
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: blavaan WARNING: the chains may not have converged.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Posterior mean (EAP) of devm-based fit indices:
## 
##       BRMSEA    BGammaHat adjBGammaHat          BMc         BCFI         BTLI 
##        0.130        0.936        0.838        0.887        0.554        0.578 
##         BNFI 
##       -2.210
# TODO: generar los plots para cada modelo 


#COMPARACION MODREF Vs MOD1.0 

blavCompare(fitref, fitedad1.0)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.

## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.

## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  918.504 
##  object2:  915.813 
## 
## WAIC difference & SE: 
##    -1.346    1.143 
## 
## LOO estimates: 
##  object1:  919.086 
##  object2:  916.239 
## 
## LOO difference & SE: 
##    -1.423    1.167 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1): -147.500
#Gana el mod ref 7.185
#confimacion COMPARACION MODREF Vs MOD1.0 
blavCompare(fitedad1.0, fitref)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.

## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  915.813 
##  object2:  918.504 
## 
## WAIC difference & SE: 
##    -1.346    1.143 
## 
## LOO estimates: 
##  object1:  916.239 
##  object2:  919.086 
## 
## LOO difference & SE: 
##    -1.423    1.167 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  147.500
#Gana el mod ref -7.185


#Modelo 2.0 interaccion compañero permanente


model_bayesiano2.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad + Con_compañero_permanente
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

fit2.0 <- bsem(
  model = model_bayesiano2.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Warning: There were 13 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See
## https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
## Warning: Examine the pairs() plot to diagnose sampling problems
## Warning: The largest R-hat is 1.18, indicating chains have not mixed.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#r-hat
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#tail-ess
## Warning: blavaan WARNING: at least one parameter has a psrf > 1.2.
## Computing posterior predictives...
## Warning: blavaan WARNING: Small effective sample sizes (< 100) for some
## parameters.
summary(fit2.0,standardized = TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 2500 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -621.486       0.212
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.345    0.652
##     F_c30             0.638    4.539  -16.756    1.781    0.220    0.616
##   sintomas =~                                                           
##     S_br23            1.000                               0.324    0.575
##     S_c30             1.549    4.569  -17.331    3.546    0.502    0.854
##      Rhat    Prior       
##                          
##                          
##     3.176    normal(0,15)
##                          
##                          
##     3.585    normal(0,15)
## Warning in abbreviate(NAMES, minlength = (W - MAX.L), strict = TRUE):
## abreviatura utilizada con caracteres no ASCII
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.035    2.914   -2.419   10.910   -0.973   -0.973
##   CV_Gral ~                                                             
##     Salud      (c)    0.752    0.085    0.585    0.908    0.752    0.797
##     sintomas   (e)   -0.694    7.213  -15.712   14.388   -0.225   -0.119
##     funcionldd (d)    0.285    4.696   -9.462   10.131    0.098    0.052
##     Cn_cmpñr_p       -0.000    0.162   -0.318    0.318   -0.000   -0.000
##   Salud ~                                                               
##     sintomas         -5.748    8.210  -23.088    9.218   -1.862   -0.932
##     funcionldd (b)   -0.888    5.482  -12.563    8.961   -0.306   -0.153
##      Rhat    Prior       
##                          
##     3.572    normal(0,10)
##                          
##     1.001    normal(0,10)
##     1.002    normal(0,10)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.003  normal(-10,10)
##     1.014    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.072    2.200    2.484    2.342    4.434
##    .F_c30             2.437    0.088    2.265    2.610    2.437    6.825
##    .S_br23            1.765    0.063    1.642    1.888    1.765    3.135
##    .S_c30             2.164    0.090    1.987    2.340    2.164    3.684
##    .CV_Gral           0.837    0.437    0.016    1.700    0.837    0.444
##    .Salud             4.336    0.206    3.932    4.739    4.336    2.169
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.160    0.063    0.102    0.402    0.160    0.575
##    .F_c30             0.079    0.028    0.023    0.138    0.079    0.621
##    .S_br23            0.212    0.045    0.148    0.328    0.212    0.669
##    .S_c30             0.093    0.034    0.014    0.160    0.093    0.270
##    .CV_Gral           0.442    0.106    0.197    0.644    0.442    0.124
##    .Salud             1.543    0.322    0.939    2.216    1.543    0.386
##    .funcionalidad     0.006    0.010    0.000    0.038    0.054    0.054
##     sintomas          0.105    0.045    0.002    0.201    1.000    1.000
##      Rhat    Prior       
##     2.018 gamma(1,.5)[sd]
##     1.013 gamma(1,.5)[sd]
##     1.228 gamma(1,.5)[sd]
##     1.017 gamma(1,.5)[sd]
##     1.005 gamma(1,.5)[sd]
##     1.003 gamma(1,.5)[sd]
##     1.029 gamma(1,.5)[sd]
##     1.111 gamma(1,.5)[sd]
#COMPARACION MODREF Vs MOD2.0 
blavCompare(fitref, fit2.0)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: 
## 17 (21.2%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  918.504 
##  object2:  922.775 
## 
## WAIC difference & SE: 
##    -2.136    0.264 
## 
## LOO estimates: 
##  object1:  919.086 
##  object2:  923.893 
## 
## LOO difference & SE: 
##    -2.404    0.306 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  -52.680
#Gana MODREF


#COMPARACION MOD1.0 Vs MOD2.0 
blavCompare(fitedad1.0, fit2.0)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: 
## 17 (21.2%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  915.813 
##  object2:  922.775 
## 
## WAIC difference & SE: 
##    -3.481    1.221 
## 
## LOO estimates: 
##  object1:  916.239 
##  object2:  923.893 
## 
## LOO difference & SE: 
##    -3.827    1.279 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):   94.820
#Gana  MOD2.0 -2.782



#MODELO COMPUESTO 1.0 + 2.0 (Edad + compañero permanente)
model_bayesiano1.0_2.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad + Edad + Con_compañero_permanente
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

fit1.0_2.0 <- bsem(
  model = model_bayesiano1.0_2.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Warning: There were 1 divergent transitions after warmup. See
## https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: There were 17 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See
## https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
## Warning: Examine the pairs() plot to diagnose sampling problems
## Warning: The largest R-hat is 1.18, indicating chains have not mixed.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#r-hat
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#tail-ess
## Warning: blavaan WARNING: at least one parameter has a psrf > 1.2.
## Computing posterior predictives...
## Warning: blavaan WARNING: Small effective sample sizes (< 100) for some
## parameters.
summary(fit1.0_2.0,standardized = TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 2500 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -625.704       0.048
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.346    0.654
##     F_c30             0.648    4.496  -16.559    1.781    0.224    0.623
##   sintomas =~                                                           
##     S_br23            1.000                               0.324    0.576
##     S_c30             1.557    4.558  -17.245    3.578    0.505    0.857
##      Rhat    Prior       
##                          
##                          
##     3.130    normal(0,15)
##                          
##                          
##     3.541    normal(0,15)
## Warning in abbreviate(NAMES, minlength = (W - MAX.L), strict = TRUE):
## abreviatura utilizada con caracteres no ASCII
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.038    2.893   -2.428   10.848   -0.972   -0.972
##   CV_Gral ~                                                             
##     Salud      (c)    0.742    0.089    0.566    0.903    0.742    0.763
##     sintomas   (e)   -1.277    7.215  -16.199   13.896   -0.414   -0.215
##     funcionldd (d)   -0.017    4.710   -9.708    9.926   -0.006   -0.003
##     Edad             -0.005    0.007   -0.019    0.009   -0.005   -0.031
##     Cn_cmpñr_p       -0.016    0.164   -0.339    0.306   -0.016   -0.004
##   Salud ~                                                               
##     sintomas         -5.569    8.148  -22.980    9.232   -1.806   -0.913
##     funcionldd (b)   -0.796    5.462  -12.572    8.924   -0.276   -0.139
##      Rhat    Prior       
##                          
##     3.530    normal(0,10)
##                          
##     1.001    normal(0,10)
##     1.005    normal(0,10)
##     1.002    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.004  normal(-10,10)
##     1.016    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.072    2.202    2.484    2.342    4.421
##    .F_c30             2.437    0.087    2.266    2.609    2.437    6.764
##    .S_br23            1.765    0.063    1.641    1.889    1.765    3.136
##    .S_c30             2.164    0.090    1.988    2.341    2.164    3.673
##    .CV_Gral           1.174    0.644   -0.065    2.457    1.174    0.610
##    .Salud             4.336    0.205    3.932    4.739    4.336    2.192
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.161    0.063    0.103    0.401    0.161    0.572
##    .F_c30             0.079    0.029    0.023    0.139    0.079    0.612
##    .S_br23            0.212    0.045    0.148    0.329    0.212    0.668
##    .S_c30             0.092    0.034    0.012    0.159    0.092    0.265
##    .CV_Gral           0.441    0.110    0.175    0.648    0.441    0.119
##    .Salud             1.543    0.327    0.935    2.218    1.543    0.394
##    .funcionalidad     0.007    0.011    0.000    0.040    0.056    0.056
##     sintomas          0.105    0.045    0.002    0.202    1.000    1.000
##      Rhat    Prior       
##     2.009 gamma(1,.5)[sd]
##     1.012 gamma(1,.5)[sd]
##     1.231 gamma(1,.5)[sd]
##     1.018 gamma(1,.5)[sd]
##     1.005 gamma(1,.5)[sd]
##     1.003 gamma(1,.5)[sd]
##     1.029 gamma(1,.5)[sd]
##     1.110 gamma(1,.5)[sd]
#COMPARACION MODREF Vs MODCOMPUESTO 1.0 + 2.0  
blavCompare(fitref, fit1.0_2.0)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are too high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: 
## 18 (22.5%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  918.504 
##  object2:  924.943 
## 
## WAIC difference & SE: 
##    -3.219    1.063 
## 
## LOO estimates: 
##  object1:  919.086 
##  object2:  926.363 
## 
## LOO difference & SE: 
##    -3.639    1.061 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  -48.462
#Gana MODREF 11.216

#COMPATACION MODCOMPUESTO VS MOD1.0
blavCompare(fit1.0_2.0, fitedad1.0)
## Warning: Some Pareto k diagnostic values are too high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 18 (22.5%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  924.943 
##  object2:  915.813 
## 
## WAIC difference & SE: 
##    -4.565    0.522 
## 
## LOO estimates: 
##  object1:  926.363 
##  object2:  916.239 
## 
## LOO difference & SE: 
##    -5.062    0.605 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  -99.038
#Gana MOD1.0 -4.378
#COMPATACION MODCOMPUESTO VS MOD2.0
blavCompare(fit1.0_2.0, fit2.0)
## Warning: Some Pareto k diagnostic values are too high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 18 (22.5%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: 
## 17 (21.2%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  924.943 
##  object2:  922.775 
## 
## WAIC difference & SE: 
##    -1.084    1.084 
## 
## LOO estimates: 
##  object1:  926.363 
##  object2:  923.893 
## 
## LOO difference & SE: 
##    -1.235    1.086 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):   -4.218
#Gana MOD2.0 -7.160 
#Modelo 3.0 interaccion  + estrato 

model_bayesiano3.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas + Estrato
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad 
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

fit3.0 <- bsem(
  model = model_bayesiano3.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Warning: The largest R-hat is 1.1, indicating chains have not mixed.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#r-hat
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#tail-ess
## Warning: blavaan WARNING: at least one parameter has a psrf > 1.2.
## Computing posterior predictives...
## Warning: blavaan WARNING: Small effective sample sizes (< 100) for some
## parameters.
summary(fit3.0,standardized = TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 2500 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -533.001       0.296
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.374    0.695
##     F_c30             1.434    0.154    1.170    1.774    0.536    0.890
##   sintomas =~                                                           
##     S_br23            1.000                               0.318    0.569
##     S_c30             1.613    4.635  -17.661    3.746    0.513    0.871
##      Rhat    Prior       
##                          
##                          
##     1.003    normal(0,15)
##                          
##                          
##     3.596    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.121    2.954   -2.565   11.201   -0.954   -0.954
##     Estrato           0.085    0.060   -0.018    0.213    0.228    0.113
##   CV_Gral ~                                                             
##     Salud      (c)    0.755    0.072    0.615    0.892    0.755    0.765
##     sintomas   (e)   -1.455    4.083  -10.321    7.745   -0.463   -0.254
##     funcionldd (d)   -0.231    2.265   -5.358    4.418   -0.086   -0.047
##   Salud ~                                                               
##     sintomas         -3.431    5.714  -17.337    6.118   -1.092   -0.593
##     funcionldd (b)    0.694    3.325   -7.392    6.284    0.259    0.141
##      Rhat    Prior       
##                          
##     3.551    normal(0,10)
##     1.001    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.023    normal(0,10)
##     1.002    normal(0,10)
##                          
##     1.009  normal(-10,10)
##     1.010    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.219    0.113    1.988    2.430    2.219    4.126
##    .F_c30             2.262    0.151    1.957    2.542    2.262    3.755
##    .S_br23            1.765    0.062    1.643    1.888    1.765    3.154
##    .S_c30             2.165    0.090    1.989    2.341    2.165    3.675
##    .CV_Gral           0.847    0.359    0.181    1.575    0.847    0.465
##    .Salud             4.193    0.393    3.374    4.942    4.193    2.276
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.001    normal(0,32)
##     1.001    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.002    normal(0,10)
##     1.010    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.214    0.150    0.517
##    .F_c30             0.076    0.027    0.024    0.133    0.076    0.209
##    .S_br23            0.212    0.045    0.148    0.328    0.212    0.677
##    .S_c30             0.084    0.036    0.005    0.152    0.084    0.241
##    .CV_Gral           0.460    0.087    0.310    0.646    0.460    0.139
##    .Salud             1.595    0.301    1.081    2.254    1.595    0.470
##    .funcionalidad     0.011    0.013    0.000    0.048    0.077    0.077
##     sintomas          0.101    0.045    0.002    0.197    1.000    1.000
##      Rhat    Prior       
##     1.001 gamma(1,.5)[sd]
##     1.003 gamma(1,.5)[sd]
##     1.229 gamma(1,.5)[sd]
##     1.003 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.006 gamma(1,.5)[sd]
##     1.102 gamma(1,.5)[sd]
#COMPARACION MODREF Vs MOD3.0 
blavCompare(fitref, fit3.0)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.

## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  918.504 
##  object2:  915.767 
## 
## WAIC difference & SE: 
##    -1.368    1.455 
## 
## LOO estimates: 
##  object1:  919.086 
##  object2:  916.243 
## 
## LOO difference & SE: 
##    -1.422    1.464 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1): -141.165
#Gana MODREF 4.229 


#Modelo 4.0 interaccion  nivel educativo


model_bayesiano4.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad + Nivel_educativo
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

fit4.0 <- bsem(
  model = model_bayesiano4.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Warning: There were 5 divergent transitions after warmup. See
## https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: There were 17 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See
## https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
## Warning: Examine the pairs() plot to diagnose sampling problems
## Warning: The largest R-hat is 1.3, indicating chains have not mixed.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#r-hat
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#tail-ess
## Warning: blavaan WARNING: at least one parameter has a psrf > 1.2.
## Computing posterior predictives...
## Warning: blavaan WARNING: Small effective sample sizes (< 100) for some
## parameters.
summary(fit4.0,standardized = TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 2500 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -979.324       0.075
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.164    0.388
##     F_c30             1.447    0.161    1.174    1.805    0.237    0.646
##   sintomas =~                                                           
##     S_br23            1.000                               0.308    0.543
##     S_c30            -0.896    8.637  -27.638    3.498   -0.276   -0.673
##      Rhat    Prior       
##                          
##                          
##     1.015    normal(0,15)
##                          
##                          
##     3.611    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)    0.447    5.461   -2.416   17.341    0.840    0.840
##   CV_Gral ~                                                             
##     Salud      (c)    0.752    0.085    0.586    0.905    0.752    0.877
##     sintomas   (e)   -0.581    7.541  -15.973   15.116   -0.179   -0.091
##     funcionldd (d)    0.223    4.286   -9.004    9.388    0.036    0.019
##     Nivel_dctv        0.115    0.173   -0.223    0.455    0.115    0.028
##   Salud ~                                                               
##     sintomas         -6.088    8.527  -23.902    9.447   -1.873   -0.818
##     funcionldd (b)   -0.376    5.127  -11.668    8.409   -0.061   -0.027
##      Rhat    Prior       
##                          
##     3.632    normal(0,10)
##                          
##     1.001    normal(0,10)
##     1.010    normal(0,10)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.008  normal(-10,10)
##     1.044    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.072    2.200    2.483    2.342    5.550
##    .F_c30             2.437    0.088    2.265    2.609    2.437    6.652
##    .S_br23            1.765    0.063    1.641    1.889    1.765    3.116
##    .S_c30             2.164    0.090    1.988    2.341    2.164    5.283
##    .CV_Gral           0.684    0.447   -0.158    1.559    0.684    0.348
##    .Salud             4.335    0.206    3.931    4.739    4.335    1.893
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.151    0.029    0.103    0.217    0.151    0.850
##    .F_c30             0.078    0.028    0.025    0.136    0.078    0.583
##    .S_br23            0.226    0.064    0.149    0.402    0.226    0.705
##    .S_c30             0.092    0.036    0.007    0.161    0.092    0.548
##    .CV_Gral           0.441    0.106    0.198    0.642    0.441    0.114
##    .Salud             1.543    0.324    0.941    2.214    1.543    0.294
##    .funcionalidad     0.008    0.012    0.000    0.044    0.295    0.295
##     sintomas          0.095    0.053    0.001    0.199    1.000    1.000
##      Rhat    Prior       
##     1.006 gamma(1,.5)[sd]
##     1.018 gamma(1,.5)[sd]
##     1.610 gamma(1,.5)[sd]
##     1.021 gamma(1,.5)[sd]
##     1.009 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.066 gamma(1,.5)[sd]
##     1.383 gamma(1,.5)[sd]
#COMPARACION MODREF Vs MOD3.0 
blavCompare(fitref, fit4.0)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: 
## 17 (21.2%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  918.504 
##  object2:  924.769 
## 
## WAIC difference & SE: 
##    -3.133    0.875 
## 
## LOO estimates: 
##  object1:  919.086 
##  object2:  925.268 
## 
## LOO difference & SE: 
##    -3.091    0.889 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  305.158
#Gana MODREF 4.092

#COMPARACION MOD3.0 Vs MOD4.0
blavCompare(fit3.0, fit4.0)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: 
## 17 (21.2%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  915.767 
##  object2:  924.769 
## 
## WAIC difference & SE: 
##    -4.501    1.799 
## 
## LOO estimates: 
##  object1:  916.243 
##  object2:  925.268 
## 
## LOO difference & SE: 
##    -4.513    1.812 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  446.323
#Gana MOD4.0 -0.137 #GANADOR A MOD REF



#MODELO COMPUESTO 3.0 + 4.0 (Estrato + nivel educativo)
model_bayesiano3.0_4.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas + Estrato
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad + Nivel_educativo
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

fit3.0_4.0 <- bsem(
  model = model_bayesiano3.0_4.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Warning: There were 1 divergent transitions after warmup. See
## https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: Examine the pairs() plot to diagnose sampling problems
## Warning: The largest R-hat is 1.32, indicating chains have not mixed.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#r-hat
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#tail-ess
## Warning: blavaan WARNING: at least one parameter has a psrf > 1.2.
## Computing posterior predictives...
## Warning: blavaan WARNING: Small effective sample sizes (< 100) for some
## parameters.
summary(fit3.0_4.0,standardized = TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 2500 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                      -1000.835       0.108
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.109    0.264
##     F_c30             0.716    4.112  -14.964    1.777    0.078    0.277
##   sintomas =~                                                           
##     S_br23            1.000                               0.307    0.546
##     S_c30            -0.019    7.673  -26.195    3.716   -0.006   -0.020
##      Rhat    Prior       
##                          
##                          
##     3.132    normal(0,15)
##                          
##                          
##     3.632    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -0.022    4.877   -2.522   16.536   -0.062   -0.062
##     Estrato           0.085    0.061   -0.018    0.213    0.780    0.387
##   CV_Gral ~                                                             
##     Salud      (c)    0.757    0.071    0.617    0.892    0.757    0.717
##     sintomas   (e)   -1.644    4.939  -11.445   10.893   -0.505   -0.279
##     funcionldd (d)   -0.443    2.726   -6.258    5.200   -0.049   -0.027
##     Nivel_dctv        0.146    0.181   -0.210    0.505    0.146    0.039
##   Salud ~                                                               
##     sintomas         -3.742    5.964  -18.391    6.346   -1.149   -0.670
##     funcionldd (b)    0.672    3.742   -8.516    6.342    0.074    0.043
##      Rhat    Prior       
##                          
##     3.654    normal(0,10)
##     1.046    normal(0,10)
##                          
##     1.001    normal(0,10)
##     1.085    normal(0,10)
##     1.020    normal(0,10)
##     1.002    normal(0,10)
##                          
##     1.021  normal(-10,10)
##     1.060    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.219    0.114    1.988    2.434    2.219    5.345
##    .F_c30             2.254    0.150    1.951    2.535    2.254    7.962
##    .S_br23            1.765    0.063    1.643    1.889    1.765    3.139
##    .S_c30             2.164    0.090    1.988    2.340    2.164    7.467
##    .CV_Gral           0.680    0.410   -0.104    1.497    0.680    0.376
##    .Salud             4.179    0.397    3.358    4.941    4.179    2.438
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.027    normal(0,32)
##     1.004    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.004    normal(0,10)
##     1.031    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.160    0.064    0.102    0.405    0.160    0.931
##    .F_c30             0.074    0.028    0.018    0.132    0.074    0.923
##    .S_br23            0.222    0.059    0.149    0.389    0.222    0.702
##    .S_c30             0.084    0.036    0.005    0.153    0.084    1.000
##    .CV_Gral           0.460    0.090    0.302    0.650    0.460    0.141
##    .Salud             1.601    0.300    1.093    2.263    1.601    0.545
##    .funcionalidad     0.010    0.013    0.000    0.048    0.846    0.846
##     sintomas          0.094    0.050    0.001    0.195    1.000    1.000
##      Rhat    Prior       
##     2.044 gamma(1,.5)[sd]
##     1.015 gamma(1,.5)[sd]
##     1.512 gamma(1,.5)[sd]
##     1.013 gamma(1,.5)[sd]
##     1.003 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.030 gamma(1,.5)[sd]
##     1.281 gamma(1,.5)[sd]
#COMPARACION MODREF Vs MODCOMPUESTO 3.0 + 4.0  
blavCompare(fitref, fit3.0_4.0)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: 
## 19 (23.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  918.504 
##  object2:  926.245 
## 
## WAIC difference & SE: 
##    -3.871    1.742 
## 
## LOO estimates: 
##  object1:  919.086 
##  object2:  927.068 
## 
## LOO difference & SE: 
##    -3.991    1.751 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  326.669
#Gana MODREF 
#MODELO 5.0 Situracion laboral

model_bayesiano5.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas + Situacion_laboral
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad 
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

fit5.0 <- bsem(
  model = model_bayesiano5.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Warning: There were 6 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See
## https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
## Warning: Examine the pairs() plot to diagnose sampling problems
## Computing posterior predictives...
summary(fit5.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -524.839       0.190
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.542    0.815
##     F_c30             1.421    0.153    1.158    1.757    0.770    0.938
##   sintomas =~                                                           
##     S_br23            1.000                               0.327    0.584
##     S_c30             2.382    0.530    1.674    3.627    0.780    0.931
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.634    0.377   -2.509   -1.105   -0.987   -0.987
##     Sitcn_lbrl       -0.019    0.051   -0.124    0.083   -0.035   -0.017
##   CV_Gral ~                                                             
##     Salud      (c)    0.759    0.081    0.605    0.911    0.759    0.769
##     sintomas   (e)    0.318    6.048  -12.640   12.787    0.104    0.057
##     funcionldd (d)    0.906    3.725   -7.081    8.618    0.491    0.267
##   Salud ~                                                               
##     sintomas         -5.261    7.311  -20.918    7.909   -1.723   -0.925
##     funcionldd (b)   -0.631    4.542  -10.396    7.664   -0.342   -0.183
##      Rhat    Prior       
##                          
##     1.001    normal(0,10)
##     1.001    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,10)
##                          
##     1.001  normal(-10,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.373    0.109    2.157    2.589    2.373    3.566
##    .F_c30             2.479    0.145    2.191    2.765    2.479    3.018
##    .S_br23            1.765    0.063    1.643    1.888    1.765    3.151
##    .S_c30             2.164    0.090    1.988    2.340    2.164    2.582
##    .CV_Gral           0.930    0.387    0.217    1.706    0.930    0.506
##    .Salud             4.253    0.354    3.489    4.922    4.253    2.282
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.001    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.149    0.029    0.101    0.214    0.149    0.336
##    .F_c30             0.082    0.028    0.030    0.140    0.082    0.121
##    .S_br23            0.207    0.036    0.147    0.288    0.207    0.658
##    .S_c30             0.094    0.034    0.016    0.161    0.094    0.134
##    .CV_Gral           0.441    0.097    0.241    0.633    0.441    0.130
##    .Salud             1.550    0.316    0.979    2.217    1.550    0.446
##    .funcionalidad     0.007    0.011    0.000    0.042    0.025    0.025
##     sintomas          0.107    0.041    0.040    0.201    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
#COMPARACION MODREF Vs MOD5.0 
blavCompare(fitref, fit5.0)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.

## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  918.504 
##  object2:  915.747 
## 
## WAIC difference & SE: 
##    -1.378    0.747 
## 
## LOO estimates: 
##  object1:  919.086 
##  object2:  916.156 
## 
## LOO difference & SE: 
##    -1.465    0.772 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1): -149.327
#Gana MOD5.0 5.366 ####  GANADOR A MOD REF 



#MODELO 6.0 Regimen de salud

model_bayesiano6.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas 
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad 
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad +Regimen_salud

  # residual correlations

'

fit6.0 <- bsem(
  model = model_bayesiano6.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Warning: There were 1 divergent transitions after warmup. See
## https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: There were 15 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See
## https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
## Warning: Examine the pairs() plot to diagnose sampling problems
## Warning: The largest R-hat is 1.3, indicating chains have not mixed.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#r-hat
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#tail-ess
## Warning: blavaan WARNING: at least one parameter has a psrf > 1.2.
## Computing posterior predictives...
## Warning: blavaan WARNING: Small effective sample sizes (< 100) for some
## parameters.
summary(fit6.0,standardized = TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 2500 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -976.604       0.110
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.161    0.381
##     F_c30             1.450    0.161    1.178    1.811    0.233    0.643
##   sintomas =~                                                           
##     S_br23            1.000                               0.307    0.542
##     S_c30            -0.874    8.597  -27.496    3.507   -0.269   -0.662
##      Rhat    Prior       
##                          
##                          
##     1.016    normal(0,15)
##                          
##                          
##     3.570    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)    0.435    5.436   -2.418   17.228    0.832    0.832
##   CV_Gral ~                                                             
##     Salud      (c)    0.762    0.088    0.604    0.930    0.762    0.939
##     sintomas   (e)   -0.144    7.604  -15.622   15.750   -0.044   -0.024
##     funcionldd (d)    0.412    4.327   -8.870    9.755    0.066    0.036
##   Salud ~                                                               
##     sintomas         -6.089    8.644  -24.063    9.676   -1.871   -0.819
##     funcionldd (b)   -0.322    5.219  -11.838    8.663   -0.052   -0.023
##     Regimn_sld        0.286    0.314   -0.332    0.902    0.286    0.060
##      Rhat    Prior       
##                          
##     3.600    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.008    normal(0,10)
##     1.001    normal(0,10)
##                          
##     1.007  normal(-10,10)
##     1.043    normal(0,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.072    2.201    2.483    2.342    5.555
##    .F_c30             2.437    0.087    2.264    2.608    2.437    6.730
##    .S_br23            1.765    0.063    1.641    1.889    1.765    3.115
##    .S_c30             2.164    0.089    1.989    2.341    2.164    5.338
##    .CV_Gral           0.796    0.390    0.049    1.505    0.796    0.429
##    .Salud             3.867    0.554    2.779    4.951    3.867    1.692
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.152    0.029    0.103    0.217    0.152    0.855
##    .F_c30             0.077    0.028    0.024    0.135    0.077    0.586
##    .S_br23            0.227    0.064    0.149    0.403    0.227    0.706
##    .S_c30             0.092    0.036    0.008    0.161    0.092    0.561
##    .CV_Gral           0.438    0.105    0.189    0.636    0.438    0.128
##    .Salud             1.539    0.331    0.910    2.221    1.539    0.295
##    .funcionalidad     0.008    0.012    0.000    0.044    0.308    0.308
##     sintomas          0.094    0.053    0.001    0.199    1.000    1.000
##      Rhat    Prior       
##     1.006 gamma(1,.5)[sd]
##     1.021 gamma(1,.5)[sd]
##     1.602 gamma(1,.5)[sd]
##     1.018 gamma(1,.5)[sd]
##     1.008 gamma(1,.5)[sd]
##     1.002 gamma(1,.5)[sd]
##     1.060 gamma(1,.5)[sd]
##     1.380 gamma(1,.5)[sd]
#COMPARACION MODREF Vs MOD6.0 
blavCompare(fitref, fit6.0)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: 
## 17 (21.2%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  918.504 
##  object2:  924.393 
## 
## WAIC difference & SE: 
##    -2.944    1.004 
## 
## LOO estimates: 
##  object1:  919.086 
##  object2:  924.845 
## 
## LOO difference & SE: 
##    -2.879    1.008 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  302.438
#Gana MODREF   3.451    ####  

#COMPARACION MOD5.0 VS MOD6.0
blavCompare(fit5.0, fit6.0)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: 
## 17 (21.2%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  915.747 
##  object2:  924.393 
## 
## WAIC difference & SE: 
##    -4.323    1.361 
## 
## LOO estimates: 
##  object1:  916.156 
##  object2:  924.845 
## 
## LOO difference & SE: 
##    -4.345    1.373 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  451.765
#Gana MOD6.0   -1.916     ####  

#MODELO COMPUESTO 5.0 + 6.0 (Situracion laboral + Regimen de salud)
model_bayesiano5.0_6.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas + Situacion_laboral
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad 
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad + Regimen_salud

  # residual correlations

'

fit5.0_6.0 <- bsem(
  model = model_bayesiano5.0_6.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Warning: There were 2 divergent transitions after warmup. See
## https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: There were 8 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See
## https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
## Warning: Examine the pairs() plot to diagnose sampling problems
## Computing posterior predictives...
summary(fit5.0_6.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -527.847       0.126
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.541    0.813
##     F_c30             1.425    0.153    1.162    1.763    0.770    0.939
##   sintomas =~                                                           
##     S_br23            1.000                               0.328    0.585
##     S_c30             2.378    0.513    1.676    3.619    0.779    0.930
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.000    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.629    0.367   -2.505   -1.101   -0.987   -0.987
##     Sitcn_lbrl       -0.019    0.051   -0.123    0.082   -0.035   -0.017
##   CV_Gral ~                                                             
##     Salud      (c)    0.768    0.086    0.617    0.935    0.768    0.777
##     sintomas   (e)    0.562    6.148  -12.495   13.456    0.184    0.099
##     funcionldd (d)    1.035    3.806   -7.038    8.985    0.560    0.300
##   Salud ~                                                               
##     sintomas         -5.373    7.473  -21.338    8.243   -1.761   -0.933
##     funcionldd (b)   -0.654    4.668  -10.666    7.947   -0.354   -0.187
##     Regimn_sld        0.288    0.314   -0.331    0.905    0.288    0.073
##      Rhat    Prior       
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.001    normal(0,10)
##     1.001    normal(0,10)
##                          
##     1.001  normal(-10,10)
##     1.001    normal(0,10)
##     1.000    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.372    0.108    2.158    2.587    2.372    3.568
##    .F_c30             2.478    0.144    2.193    2.762    2.478    3.019
##    .S_br23            1.766    0.062    1.644    1.888    1.766    3.150
##    .S_c30             2.165    0.090    1.988    2.341    2.165    2.585
##    .CV_Gral           0.896    0.402    0.143    1.668    0.896    0.481
##    .Salud             3.770    0.635    2.497    5.002    3.770    1.998
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.214    0.150    0.339
##    .F_c30             0.080    0.028    0.029    0.139    0.080    0.119
##    .S_br23            0.207    0.036    0.147    0.288    0.207    0.658
##    .S_c30             0.094    0.034    0.016    0.162    0.094    0.135
##    .CV_Gral           0.439    0.101    0.221    0.635    0.439    0.126
##    .Salud             1.543    0.330    0.926    2.222    1.543    0.433
##    .funcionalidad     0.007    0.011    0.000    0.042    0.025    0.025
##     sintomas          0.107    0.041    0.040    0.201    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
#COMPARACION MODREF Vs MODCOMPUESTO 5.0 + 6.0  
blavCompare(fitref, fit5.0_6.0)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.

## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  918.504 
##  object2:  917.038 
## 
## WAIC difference & SE: 
##    -0.733    1.234 
## 
## LOO estimates: 
##  object1:  919.086 
##  object2:  917.534 
## 
## LOO difference & SE: 
##    -0.776    1.260 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1): -146.319
#Gana 
#MODELO 7.0 Comorbilidad

model_bayesiano7.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas + Comorbilidad
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad 
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

fit7.0 <- bsem(
  model = model_bayesiano7.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Warning: There were 6 divergent transitions after warmup. See
## https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: There were 22 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See
## https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
## Warning: Examine the pairs() plot to diagnose sampling problems
## Warning: The largest R-hat is 1.35, indicating chains have not mixed.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#r-hat
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#tail-ess
## Warning: blavaan WARNING: at least one parameter has a psrf > 1.2.
## Computing posterior predictives...
## Warning: blavaan WARNING: Small effective sample sizes (< 100) for some
## parameters.
summary(fit7.0,standardized = TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 2500 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -858.234       0.132
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.302    0.614
##     F_c30             1.421    0.157    1.152    1.768    0.429    0.824
##   sintomas =~                                                           
##     S_br23            1.000                               0.311    0.546
##     S_c30            -1.628    9.112  -27.859    3.234   -0.507   -0.858
##      Rhat    Prior       
##                          
##                          
##     1.023    normal(0,15)
##                          
##                          
##     3.438    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)    0.936    5.872   -2.276   17.766    0.964    0.964
##     Comorbildd        0.035    0.091   -0.122    0.187    0.114    0.054
##   CV_Gral ~                                                             
##     Salud      (c)    0.686    0.116    0.409    0.860    0.686    0.776
##     sintomas   (e)   -1.201    7.468  -16.498   12.069   -0.374   -0.254
##     funcionldd (d)    0.472    4.198   -8.406    8.282    0.143    0.097
##   Salud ~                                                               
##     sintomas         -4.835   11.843  -26.619   13.716   -1.505   -0.901
##     funcionldd (b)    1.088    6.954  -12.902   11.742    0.329    0.197
##      Rhat    Prior       
##                          
##     3.486    normal(0,10)
##     1.049    normal(0,10)
##                          
##     1.025    normal(0,10)
##     1.008    normal(0,10)
##     1.008    normal(0,10)
##                          
##     1.052  normal(-10,10)
##     1.023    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.285    0.168    1.987    2.595    2.285    4.640
##    .F_c30             2.353    0.230    1.948    2.771    2.353    4.518
##    .S_br23            1.765    0.064    1.640    1.891    1.765    3.093
##    .S_c30             2.164    0.090    1.989    2.340    2.164    3.665
##    .CV_Gral           0.710    0.418   -0.034    1.593    0.710    0.481
##    .Salud             3.488    0.586    2.260    4.512    3.488    2.088
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.039    normal(0,32)
##     1.046    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.001    normal(0,10)
##     1.023    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.151    0.030    0.101    0.217    0.151    0.623
##    .F_c30             0.087    0.028    0.035    0.147    0.087    0.321
##    .S_br23            0.229    0.069    0.147    0.414    0.229    0.702
##    .S_c30             0.092    0.036    0.010    0.162    0.092    0.263
##    .CV_Gral           0.418    0.105    0.175    0.616    0.418    0.192
##    .Salud             1.370    0.347    0.642    2.057    1.370    0.491
##    .funcionalidad     0.006    0.009    0.000    0.035    0.068    0.068
##     sintomas          0.097    0.057    0.001    0.206    1.000    1.000
##      Rhat    Prior       
##     1.012 gamma(1,.5)[sd]
##     1.027 gamma(1,.5)[sd]
##     1.722 gamma(1,.5)[sd]
##     1.024 gamma(1,.5)[sd]
##     1.019 gamma(1,.5)[sd]
##     1.018 gamma(1,.5)[sd]
##     1.097 gamma(1,.5)[sd]
##     1.502 gamma(1,.5)[sd]
#COMPARACION MODREF Vs MOD7.0 
blavCompare(fitref, fit7.0)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: 
## 23 (28.7%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  918.504 
##  object2:  924.196 
## 
## WAIC difference & SE: 
##    -2.846    2.102 
## 
## LOO estimates: 
##  object1:  919.086 
##  object2:  924.555 
## 
## LOO difference & SE: 
##    -2.735    2.099 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):  184.069
#Gana 



#MODELO 8.0 Estado_del_tumor

model_bayesiano8.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas 
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad + Estado_del_tumor
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad

  # residual correlations

'

fit8.0 <- bsem(
  model = model_bayesiano8.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Warning: There were 1 divergent transitions after warmup. See
## https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: There were 19 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See
## https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
## Warning: Examine the pairs() plot to diagnose sampling problems
## Computing posterior predictives...
summary(fit8.0,standardized = TRUE)
## blavaan (0.4-1) results of 6500 samples after 2500 adapt/burnin iterations
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -523.168       0.137
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.538    0.811
##     F_c30             1.437    0.156    1.170    1.781    0.773    0.939
##   sintomas =~                                                           
##     S_br23            1.000                               0.330    0.587
##     S_c30             2.366    0.527    1.669    3.586    0.780    0.931
##      Rhat    Prior       
##                          
##                          
##     1.000    normal(0,15)
##                          
##                          
##     1.001    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -1.615    0.373   -2.463   -1.094   -0.989   -0.989
##   CV_Gral ~                                                             
##     Salud      (c)    0.752    0.090    0.582    0.910    0.752    0.757
##     sintomas   (e)   -1.012    7.223  -15.980   14.077   -0.334   -0.181
##     funcionldd (d)    0.138    4.571   -9.386    9.752    0.074    0.040
##     Estd_dl_tm       -0.159    0.169   -0.492    0.173   -0.159   -0.041
##   Salud ~                                                               
##     sintomas         -5.639    8.279  -23.025    9.413   -1.858   -1.004
##     funcionldd (b)   -0.912    5.272  -12.062    8.761   -0.491   -0.265
##      Rhat    Prior       
##                          
##     1.001    normal(0,10)
##                          
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.000  normal(-10,10)
##     1.001    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.342    0.072    2.201    2.484    2.342    3.529
##    .F_c30             2.436    0.088    2.264    2.608    2.436    2.958
##    .S_br23            1.765    0.063    1.642    1.889    1.765    3.143
##    .S_c30             2.165    0.089    1.988    2.340    2.165    2.584
##    .CV_Gral           1.049    0.456    0.212    1.937    1.049    0.570
##    .Salud             4.334    0.205    3.932    4.738    4.334    2.341
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,10)
##     1.000    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.102    0.215    0.150    0.342
##    .F_c30             0.080    0.027    0.030    0.138    0.080    0.118
##    .S_br23            0.207    0.036    0.148    0.288    0.207    0.656
##    .S_c30             0.094    0.033    0.018    0.160    0.094    0.134
##    .CV_Gral           0.434    0.106    0.186    0.634    0.434    0.128
##    .Salud             1.538    0.330    0.912    2.221    1.538    0.448
##    .funcionalidad     0.006    0.010    0.000    0.038    0.022    0.022
##     sintomas          0.109    0.041    0.041    0.203    1.000    1.000
##      Rhat    Prior       
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
##     1.001 gamma(1,.5)[sd]
##     1.000 gamma(1,.5)[sd]
#COMPARACION MODREF Vs MOD8.0 
blavCompare(fitref, fit8.0)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: 
## 14 (17.5%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  918.504 
##  object2:  914.979 
## 
## WAIC difference & SE: 
##    -1.763    1.085 
## 
## LOO estimates: 
##  object1:  919.086 
##  object2:  915.378 
## 
## LOO difference & SE: 
##    -1.854    1.094 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1): -150.998
#Gana

#MODELO COMPUESTO 7.0 + 8.0 (Comorbilidad +  Estado del tumor)
model_bayesiano7.0_8.0 <- '
  # measurement model
    funcionalidad =~
        prior("normal(0,15)")*F_br23 + prior("normal(0,15)")*F_c30
    sintomas =~
        prior("normal(0,15)")*S_br23 + prior("normal(0,15)")*S_c30

  # regressions
    funcionalidad ~ a*sintomas + Comorbilidad
    CV_Gral ~ c*Salud + e*sintomas + d*prior("normal(0,15)")*funcionalidad + Estado_del_tumor
    Salud ~ prior("normal(-10,10)")*sintomas + b*funcionalidad 

  # residual correlations

'

fit7.0_8.0 <- bsem(
  model = model_bayesiano7.0_8.0,
  data = datos,
  auto.var = TRUE,
  auto.fix.first = TRUE,
  auto.cov.lv.x = TRUE,
  sample = SAMPLE,
  burnin = BURNIN,
  n.chains = CHAINS)
## Warning: There were 18 divergent transitions after warmup. See
## https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: There were 17 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See
## https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
## Warning: Examine the pairs() plot to diagnose sampling problems
## Warning: The largest R-hat is 1.17, indicating chains have not mixed.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#r-hat
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#tail-ess
## Warning: blavaan WARNING: at least one parameter has a psrf > 1.2.
## Computing posterior predictives...
## Warning: blavaan WARNING: Small effective sample sizes (< 100) for some
## parameters.
summary(fit7.0_8.0,standardized = TRUE)
## ** WARNING ** blavaan (0.4-1) did NOT converge after 2500 adapt+burnin iterations
## ** WARNING ** Proceed with caution
## 
##   Number of observations                            80
## 
##   Number of missing patterns                         1
## 
##   Statistic                                 MargLogLik         PPP
##   Value                                       -688.705       0.105
## 
## Latent Variables:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad =~                                                      
##     F_br23            1.000                               0.204    0.466
##     F_c30             1.412    0.153    1.148    1.749    0.288    0.695
##   sintomas =~                                                           
##     S_br23            1.000                               0.328    0.578
##     S_c30             0.725    6.053  -22.479    3.293    0.238    0.614
##      Rhat    Prior       
##                          
##                          
##     1.010    normal(0,15)
##                          
##                          
##     3.528    normal(0,15)
## 
## Regressions:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##   funcionalidad ~                                                       
##     sintomas   (a)   -0.581    3.903   -2.322   14.368   -0.935   -0.935
##     Comorbildd        0.027    0.093   -0.127    0.184    0.130    0.062
##   CV_Gral ~                                                             
##     Salud      (c)    0.677    0.120    0.391    0.855    0.677    0.706
##     sintomas   (e)   -1.301    7.439  -16.432   11.568   -0.427   -0.238
##     funcionldd (d)    0.300    4.531   -8.815    8.472    0.061    0.034
##     Estd_dl_tm       -0.173    0.167   -0.498    0.157   -0.173   -0.046
##   Salud ~                                                               
##     sintomas         -4.058   11.729  -25.513   13.945   -1.332   -0.711
##     funcionldd (b)    0.701    7.287  -13.124   11.958    0.143    0.076
##      Rhat    Prior       
##                          
##     3.565    normal(0,10)
##     1.029    normal(0,10)
##                          
##     1.011    normal(0,10)
##     1.008    normal(0,10)
##     1.009    normal(0,10)
##     1.000    normal(0,10)
##                          
##     1.029  normal(-10,10)
##     1.016    normal(0,10)
## 
## Intercepts:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            2.298    0.170    1.991    2.604    2.298    5.246
##    .F_c30             2.373    0.233    1.957    2.780    2.373    5.721
##    .S_br23            1.765    0.064    1.641    1.891    1.765    3.112
##    .S_c30             2.164    0.090    1.989    2.340    2.164    5.589
##    .CV_Gral           0.929    0.485    0.065    1.945    0.929    0.518
##    .Salud             3.450    0.591    2.221    4.495    3.450    1.843
##    .funcionalidad     0.000                               0.000    0.000
##     sintomas          0.000                               0.000    0.000
##      Rhat    Prior       
##     1.024    normal(0,32)
##     1.027    normal(0,32)
##     1.000    normal(0,32)
##     1.000    normal(0,32)
##     1.001    normal(0,10)
##     1.011    normal(0,10)
##                          
##                          
## 
## Variances:
##                    Estimate  Post.SD pi.lower pi.upper   Std.lv  Std.all
##    .F_br23            0.150    0.029    0.101    0.216    0.150    0.783
##    .F_c30             0.089    0.028    0.039    0.149    0.089    0.517
##    .S_br23            0.214    0.053    0.146    0.369    0.214    0.665
##    .S_c30             0.093    0.034    0.019    0.161    0.093    0.622
##    .CV_Gral           0.410    0.107    0.154    0.612    0.410    0.127
##    .Salud             1.355    0.346    0.625    2.038    1.355    0.386
##    .funcionalidad     0.005    0.008    0.000    0.028    0.122    0.122
##     sintomas          0.108    0.049    0.001    0.209    1.000    1.000
##      Rhat    Prior       
##     1.005 gamma(1,.5)[sd]
##     1.012 gamma(1,.5)[sd]
##     1.424 gamma(1,.5)[sd]
##     1.013 gamma(1,.5)[sd]
##     1.009 gamma(1,.5)[sd]
##     1.008 gamma(1,.5)[sd]
##     1.060 gamma(1,.5)[sd]
##     1.224 gamma(1,.5)[sd]
#COMPARACION MODREF Vs MODCOMPUESTO 7.0 + 8.0  
blavCompare(fitref, fit7.0_8.0)
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: Some Pareto k diagnostic values are slightly high. See help('pareto-k-diagnostic') for details.
## Warning: 
## 15 (18.8%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## Warning: 
## 20 (25.0%) p_waic estimates greater than 0.4. We recommend trying loo instead.
## 
## WAIC estimates: 
##  object1:  918.504 
##  object2:  917.662 
## 
## WAIC difference & SE: 
##    -0.421    2.598 
## 
## LOO estimates: 
##  object1:  919.086 
##  object2:  918.368 
## 
## LOO difference & SE: 
##    -0.359    2.603 
## 
## Laplace approximation to the log-Bayes factor
## (experimental; positive values favor object1):   14.539
#Gana