Build the A matrix in R, changing to columns to reflect reference examples:
A <- matrix (c( 0, 1/2, 1/2, 0, 0, 0,
1/6, 1/6, 1/6, 1/6, 1/6, 1/6, #substitute for dandling node
1/3, 1/3, 0, 0, 1/3, 0,
0, 0, 0, 0, 1/2, 1/2,
0, 0, 0, 1/2, 0, 1/2,
0, 0, 0, 1, 0, 0), byrow=FALSE, nrow=6)
print(A)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.0 0.1666667 0.3333333 0.0 0.0 0
## [2,] 0.5 0.1666667 0.3333333 0.0 0.0 0
## [3,] 0.5 0.1666667 0.0000000 0.0 0.0 0
## [4,] 0.0 0.1666667 0.0000000 0.0 0.5 1
## [5,] 0.0 0.1666667 0.3333333 0.5 0.0 0
## [6,] 0.0 0.1666667 0.0000000 0.5 0.5 0
Our second row (now column) has no outlinks, so our web pages might be disconnected in disjoint sets. Replaced with 1/n for each value.
colSums(A)
## [1] 1 1 1 1 1 1
Introduce decay to form the B matrix:
decay <- 0.85 #from the final
ncol_a <- ncol(A)
B <- decay * A + (1 - decay)/ncol_a
print(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.025 0.1666667 0.3083333 0.025 0.025 0.025
## [2,] 0.450 0.1666667 0.3083333 0.025 0.025 0.025
## [3,] 0.450 0.1666667 0.0250000 0.025 0.025 0.025
## [4,] 0.025 0.1666667 0.0250000 0.025 0.450 0.875
## [5,] 0.025 0.1666667 0.3083333 0.450 0.025 0.025
## [6,] 0.025 0.1666667 0.0250000 0.450 0.450 0.025
Our uniform rank vector.
r <- rep(1/ncol_a,ncol_a)
r
## [1] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667
Convergence attempt using the transpose.
C_10 <- matrix.power(B, 10) %*% r
C_10
## [,1]
## [1,] 0.05205661
## [2,] 0.07428990
## [3,] 0.05782138
## [4,] 0.34797267
## [5,] 0.19975859
## [6,] 0.26810085
colSums(C_10)
## [1] 1
Seems to work. Let’s create a matrix showing page-rank convergence.
convergence_m <-cbind(matrix.power(B, 10) %*% r,
matrix.power(B, 20) %*% r,
matrix.power(B, 30) %*% r,
matrix.power(B, 40) %*% r,
matrix.power(B, 50) %*% r,
matrix.power(B, 60) %*% r)
convergence_m
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.05205661 0.05170616 0.05170475 0.05170475 0.05170475 0.05170475
## [2,] 0.07428990 0.07368173 0.07367927 0.07367926 0.07367926 0.07367926
## [3,] 0.05782138 0.05741406 0.05741242 0.05741241 0.05741241 0.05741241
## [4,] 0.34797267 0.34870083 0.34870367 0.34870369 0.34870369 0.34870369
## [5,] 0.19975859 0.19990313 0.19990381 0.19990381 0.19990381 0.19990381
## [6,] 0.26810085 0.26859408 0.26859607 0.26859608 0.26859608 0.26859608
We didn’t define a convergence value, but, if we set one at the thousandths or tens of thousandths, it looks OK by 30 power iterations.
We’ll save that.
pagerank_1 <- matrix.power(B, 30) %*% r
eig_b <- eigen(B)
eig_b
## eigen() decomposition
## $values
## [1] 1.00000000+0i 0.57619235+0i -0.42500000+0i -0.42500000-0i -0.34991524+0i
## [6] -0.08461044+0i
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0.1044385+0i 0.2931457+0i 2.486934e-15+0.0000e+00i
## [2,] 0.1488249+0i 0.5093703+0i -8.528385e-16-6.9832e-23i
## [3,] 0.1159674+0i 0.3414619+0i -1.930646e-15-0.0000e+00i
## [4,] 0.7043472+0i -0.5890805+0i -7.071068e-01+0.0000e+00i
## [5,] 0.4037861+0i -0.1413606+0i 7.071068e-01+0.0000e+00i
## [6,] 0.5425377+0i -0.4135367+0i 0.000000e+00-1.7058e-08i
## [,4] [,5] [,6]
## [1,] 2.486934e-15-0.0000e+00i -0.06471710+0i -0.212296003+0i
## [2,] -8.528385e-16+6.9832e-23i 0.01388698+0i 0.854071294+0i
## [3,] -1.930646e-15+0.0000e+00i 0.07298180+0i -0.363638739+0i
## [4,] -7.071068e-01+0.0000e+00i -0.66058664+0i 0.018399984+0i
## [5,] 7.071068e-01-0.0000e+00i 0.73761812+0i -0.304719509+0i
## [6,] 0.000000e+00+1.7058e-08i -0.09918316+0i 0.008182973+0i
Verify corresponding eigenvector - with some help from the internet.
pagerank_2 <- eig_b$vectors[,1]/sum(eig_b$vectors[,1])
sum(pagerank_2)
## [1] 1+0i
We’ll save the page rank vector for later. We’ve introduced a complex value - utoh.
For reasons I don’t entirely understand, the below works when I create A where the page ranks are conveyed as rows rather than columns.
A_row <- matrix (c( 0, 1/2, 1/2, 0, 0, 0,
1/6, 1/6, 1/6, 1/6, 1/6, 1/6, #substitute for dandling node
1/3, 1/3, 0, 0, 1/3, 0,
0, 0, 0, 0, 1/2, 1/2,
0, 0, 0, 1/2, 0, 1/2,
0, 0, 0, 1, 0, 0), byrow=TRUE, nrow=6)
igraph_A <- graph_from_adjacency_matrix(A_row, weighted = TRUE)
plot(igraph_A)
The self-link might just have been introduced by (faulty?) handling of the dangling node.
pagerank_3 <- page.rank(igraph_A)$vector
pagerank_3
## [1] 0.05170475 0.07367926 0.05741241 0.34870369 0.19990381 0.26859608
compare_m <-cbind(pagerank_1,pagerank_2,pagerank_3)
compare_m
## pagerank_2 pagerank_3
## [1,] 0.05170475+0i 0.05170475+0i 0.05170475+0i
## [2,] 0.07367927+0i 0.07367926+0i 0.07367926+0i
## [3,] 0.05741242+0i 0.05741241+0i 0.05741241+0i
## [4,] 0.34870367+0i 0.34870369+0i 0.34870369+0i
## [5,] 0.19990381+0i 0.19990381+0i 0.19990381+0i
## [6,] 0.26859607+0i 0.26859608+0i 0.26859608+0i
These tie out - ignoring the complex number issue.
Sources Consulted: https://gowrishankar.info/blog/eigenvalue-eigenvector-eigenspace-and-implementation-of-googles-pagerank-algorithm/ https://medium.com/@arpanspeaks/handling-dangling-nodes-pagerank-14c31d5b6b62 https://igraph.org/r/doc/page_rank.html
Go to Kaggle.com and build an account if you do not already have one. It is free.
Go to https://www.kaggle.com/c/digit-recognizer/overview, accept the rules of the competition, and download the data. You will not be required to submit work to Kaggle, but you do need the data.
’MNIST (“Modified National Institute of Standards and Technology”) is the de facto “hello world” dataset of computer vision. Since its release in 1999, this classic dataset of handwritten images has served as the basis for benchmarking classification algorithms. As new machine learning techniques emerge, MNIST remains a reliable resource for researchers and learners alike.”
digits_training_df <- read.csv("digit_train.csv")
dim(digits_training_df)
## [1] 42000 785
head(digits_training_df)
## label pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9
## 1 1 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0
## 3 1 0 0 0 0 0 0 0 0 0 0
## 4 4 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0
## pixel10 pixel11 pixel12 pixel13 pixel14 pixel15 pixel16 pixel17 pixel18
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel19 pixel20 pixel21 pixel22 pixel23 pixel24 pixel25 pixel26 pixel27
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel28 pixel29 pixel30 pixel31 pixel32 pixel33 pixel34 pixel35 pixel36
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel37 pixel38 pixel39 pixel40 pixel41 pixel42 pixel43 pixel44 pixel45
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel46 pixel47 pixel48 pixel49 pixel50 pixel51 pixel52 pixel53 pixel54
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel55 pixel56 pixel57 pixel58 pixel59 pixel60 pixel61 pixel62 pixel63
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel64 pixel65 pixel66 pixel67 pixel68 pixel69 pixel70 pixel71 pixel72
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel73 pixel74 pixel75 pixel76 pixel77 pixel78 pixel79 pixel80 pixel81
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel82 pixel83 pixel84 pixel85 pixel86 pixel87 pixel88 pixel89 pixel90
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel91 pixel92 pixel93 pixel94 pixel95 pixel96 pixel97 pixel98 pixel99
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel100 pixel101 pixel102 pixel103 pixel104 pixel105 pixel106 pixel107
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel108 pixel109 pixel110 pixel111 pixel112 pixel113 pixel114 pixel115
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel116 pixel117 pixel118 pixel119 pixel120 pixel121 pixel122 pixel123
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 18 30
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 1 25 130
## 6 0 0 0 0 0 0 0 0
## pixel124 pixel125 pixel126 pixel127 pixel128 pixel129 pixel130 pixel131
## 1 0 0 0 0 0 0 0 0
## 2 137 137 192 86 72 1 0 0
## 3 3 141 139 3 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 155 254 254 254 157 30 2 0
## 6 3 141 202 254 193 44 0 0
## pixel132 pixel133 pixel134 pixel135 pixel136 pixel137 pixel138 pixel139
## 1 188 255 94 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel140 pixel141 pixel142 pixel143 pixel144 pixel145 pixel146 pixel147
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 220 179
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel148 pixel149 pixel150 pixel151 pixel152 pixel153 pixel154 pixel155
## 1 0 0 0 0 0 0 0 0
## 2 13 86 250 254 254 254 254 217
## 3 0 0 0 0 9 254 254 8
## 4 6 0 0 0 0 0 0 0
## 5 8 103 253 253 253 253 253 253
## 6 0 0 0 5 165 254 179 163
## pixel156 pixel157 pixel158 pixel159 pixel160 pixel161 pixel162 pixel163
## 1 0 0 0 191 250 253 93 0
## 2 246 151 32 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 9 77 0 0 0 0 0
## 5 253 253 114 2 0 0 0 0
## 6 249 244 72 0 0 0 0 0
## pixel164 pixel165 pixel166 pixel167 pixel168 pixel169 pixel170 pixel171
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel172 pixel173 pixel174 pixel175 pixel176 pixel177 pixel178 pixel179
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 16 179 254 254 254
## 3 0 0 0 0 0 0 0 0
## 4 0 0 28 247 17 0 0 0
## 5 0 0 0 11 208 253 253 253
## 6 0 0 0 0 0 0 0 135
## pixel180 pixel181 pixel182 pixel183 pixel184 pixel185 pixel186 pixel187
## 1 0 0 0 0 0 0 123 248
## 2 254 254 254 254 254 254 231 54
## 3 9 254 254 8 0 0 0 0
## 4 0 0 0 0 0 27 202 0
## 5 253 253 253 253 253 253 253 107
## 6 254 150 0 0 189 254 243 31
## pixel188 pixel189 pixel190 pixel191 pixel192 pixel193 pixel194 pixel195
## 1 253 167 10 0 0 0 0 0
## 2 15 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel196 pixel197 pixel198 pixel199 pixel200 pixel201 pixel202 pixel203
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 72
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 242
## 5 0 0 0 0 0 0 0 31
## 6 0 0 0 0 0 0 0 0
## pixel204 pixel205 pixel206 pixel207 pixel208 pixel209 pixel210 pixel211
## 1 0 0 0 0 0 0 0 0
## 2 254 254 254 254 254 254 254 254
## 3 0 0 0 0 9 254 254 106
## 4 155 0 0 0 0 0 0 0
## 5 253 253 253 253 253 253 253 253
## 6 0 0 82 248 209 5 0 0
## pixel212 pixel213 pixel214 pixel215 pixel216 pixel217 pixel218 pixel219
## 1 0 80 247 253 208 13 0 0
## 2 254 254 254 254 104 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 27 254 63 0 0 0 0
## 5 253 253 253 215 101 3 0 0
## 6 164 236 254 115 0 0 0 0
## pixel220 pixel221 pixel222 pixel223 pixel224 pixel225 pixel226 pixel227
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel228 pixel229 pixel230 pixel231 pixel232 pixel233 pixel234 pixel235
## 1 0 0 0 0 0 0 0 0
## 2 0 0 61 191 254 254 254 254
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 160 207 6 0 0
## 5 0 0 23 210 253 253 253 248
## 6 0 0 0 0 0 8 211 254
## pixel236 pixel237 pixel238 pixel239 pixel240 pixel241 pixel242 pixel243
## 1 0 0 0 0 29 207 253 235
## 2 254 109 83 199 254 254 254 254
## 3 9 254 254 184 0 0 0 0
## 4 0 0 0 0 0 27 254 65
## 5 161 222 222 246 253 253 253 253
## 6 58 0 0 0 0 33 230 212
## pixel244 pixel245 pixel246 pixel247 pixel248 pixel249 pixel250 pixel251
## 1 77 0 0 0 0 0 0 0
## 2 243 85 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 253 39 0 0 0 0 0 0
## 6 6 0 0 0 0 0 0 0
## pixel252 pixel253 pixel254 pixel255 pixel256 pixel257 pixel258 pixel259
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 172 254
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 127
## 5 0 0 0 0 0 0 136 253
## 6 0 0 0 0 0 0 0 0
## pixel260 pixel261 pixel262 pixel263 pixel264 pixel265 pixel266 pixel267
## 1 0 0 0 0 0 0 0 54
## 2 254 254 202 147 147 45 0 11
## 3 0 0 0 0 9 254 254 184
## 4 254 21 0 0 0 0 0 0
## 5 253 253 229 77 0 0 0 70
## 6 0 119 254 156 3 0 0 0
## pixel268 pixel269 pixel270 pixel271 pixel272 pixel273 pixel274 pixel275
## 1 209 253 253 88 0 0 0 0
## 2 29 200 254 254 254 171 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 20 239 65 0 0 0 0
## 5 218 253 253 253 253 215 91 0
## 6 0 18 230 254 33 0 0 0
## pixel276 pixel277 pixel278 pixel279 pixel280 pixel281 pixel282 pixel283
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel284 pixel285 pixel286 pixel287 pixel288 pixel289 pixel290 pixel291
## 1 0 0 0 0 0 0 0 0
## 2 0 1 174 254 254 89 67 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 77 254 21 0 0
## 5 0 5 214 253 253 253 195 0
## 6 0 0 0 0 10 212 254 35
## pixel292 pixel293 pixel294 pixel295 pixel296 pixel297 pixel298 pixel299
## 1 0 0 93 254 253 238 170 17
## 2 0 0 0 0 0 128 252 254
## 3 9 254 254 184 0 0 0 0
## 4 0 0 0 0 0 0 195 65
## 5 0 0 0 0 104 224 253 253
## 6 0 0 0 0 0 33 254 254
## pixel300 pixel301 pixel302 pixel303 pixel304 pixel305 pixel306 pixel307
## 1 0 0 0 0 0 0 0 0
## 2 254 212 76 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 253 253 215 29 0 0 0 0
## 6 33 0 0 0 0 0 0 0
## pixel308 pixel309 pixel310 pixel311 pixel312 pixel313 pixel314 pixel315
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 47 254 254
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 70
## 5 0 0 0 0 0 116 253 253
## 6 0 0 0 0 0 0 0 0
## pixel316 pixel317 pixel318 pixel319 pixel320 pixel321 pixel322 pixel323
## 1 0 0 0 0 0 23 210 254
## 2 254 29 0 0 0 0 0 0
## 3 0 0 0 0 6 185 254 184
## 4 254 21 0 0 0 0 0 0
## 5 253 247 75 0 0 0 0 0
## 6 116 254 154 3 0 0 0 0
## pixel324 pixel325 pixel326 pixel327 pixel328 pixel329 pixel330 pixel331
## 1 253 159 0 0 0 0 0 0
## 2 0 0 83 254 254 254 153 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 195 142 0 0 0 0
## 5 0 26 200 253 253 253 253 216
## 6 0 33 254 254 33 0 0 0
## pixel332 pixel333 pixel334 pixel335 pixel336 pixel337 pixel338 pixel339
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 4 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel340 pixel341 pixel342 pixel343 pixel344 pixel345 pixel346 pixel347
## 1 0 0 0 0 0 0 0 0
## 2 0 80 254 254 240 24 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 56 251 21 0 0
## 5 0 254 253 253 253 195 0 0
## 6 0 0 0 0 124 254 115 0
## pixel348 pixel349 pixel350 pixel351 pixel352 pixel353 pixel354 pixel355
## 1 16 209 253 254 240 81 0 0
## 2 0 0 0 0 0 0 25 240
## 3 0 89 254 184 0 0 0 0
## 4 0 0 0 0 0 0 195 227
## 5 0 0 0 0 0 0 26 200
## 6 0 0 0 0 0 160 254 239
## pixel356 pixel357 pixel358 pixel359 pixel360 pixel361 pixel362 pixel363
## 1 0 0 0 0 0 0 0 0
## 2 254 254 153 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 253 253 253 253 5 0 0 0
## 6 23 0 0 0 0 0 0 0
## pixel364 pixel365 pixel366 pixel367 pixel368 pixel369 pixel370 pixel371
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 64 254 254
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 254 253 253
## 6 0 0 0 0 0 0 0 0
## pixel372 pixel373 pixel374 pixel375 pixel376 pixel377 pixel378 pixel379
## 1 0 0 0 0 27 253 253 254
## 2 186 7 0 0 0 0 0 0
## 3 0 0 0 0 4 146 254 184
## 4 222 153 5 0 0 0 0 0
## 5 253 99 0 0 0 0 0 0
## 6 203 254 35 0 0 0 0 0
## pixel380 pixel381 pixel382 pixel383 pixel384 pixel385 pixel386 pixel387
## 1 13 0 0 0 0 0 0 0
## 2 0 0 0 166 254 254 224 12
## 3 0 0 0 0 0 0 0 0
## 4 0 0 120 240 13 0 0 0
## 5 0 0 0 25 231 253 253 253
## 6 0 197 254 178 0 0 0 0
## pixel388 pixel389 pixel390 pixel391 pixel392 pixel393 pixel394 pixel395
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 36 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel396 pixel397 pixel398 pixel399 pixel400 pixel401 pixel402 pixel403
## 1 0 0 0 0 0 0 0 20
## 2 14 232 254 254 254 29 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 67 251 40 0
## 5 0 254 253 253 253 99 0 0
## 6 0 0 0 23 239 221 11 0
## pixel404 pixel405 pixel406 pixel407 pixel408 pixel409 pixel410 pixel411
## 1 206 254 254 198 7 0 0 0
## 2 0 0 0 0 0 0 0 75
## 3 9 254 254 184 0 0 0 0
## 4 0 0 0 0 0 0 94 255
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 198 255 123
## pixel412 pixel413 pixel414 pixel415 pixel416 pixel417 pixel418 pixel419
## 1 0 0 0 0 0 0 0 0
## 2 254 254 254 17 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 69 0 0 0 0 0 0 0
## 5 223 253 253 253 129 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel420 pixel421 pixel422 pixel423 pixel424 pixel425 pixel426 pixel427
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 18 254 254 254
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 254 253 253
## 6 0 0 0 0 0 0 0 23
## pixel428 pixel429 pixel430 pixel431 pixel432 pixel433 pixel434 pixel435
## 1 0 0 0 168 253 253 196 7
## 2 254 29 0 0 0 0 0 0
## 3 0 0 0 0 9 254 254 184
## 4 0 234 184 0 0 0 0 0
## 5 253 99 0 0 0 0 0 0
## 6 238 178 0 0 0 0 0 0
## pixel436 pixel437 pixel438 pixel439 pixel440 pixel441 pixel442 pixel443
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 48 254 254 254 17
## 3 0 0 0 0 0 0 0 0
## 4 0 0 19 245 69 0 0 0
## 5 0 0 0 0 127 253 253 253
## 6 10 219 254 96 0 0 0 0
## pixel444 pixel445 pixel446 pixel447 pixel448 pixel449 pixel450 pixel451
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 129 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel452 pixel453 pixel454 pixel455 pixel456 pixel457 pixel458 pixel459
## 1 0 0 0 0 0 0 20 203
## 2 2 163 254 254 254 29 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 234 169 0
## 5 0 254 253 253 253 99 0 0
## 6 0 0 0 30 249 204 0 0
## pixel460 pixel461 pixel462 pixel463 pixel464 pixel465 pixel466 pixel467
## 1 253 248 76 0 0 0 0 0
## 2 0 0 0 0 0 0 0 48
## 3 9 254 254 184 0 0 0 0
## 4 0 0 0 0 0 0 3 199
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 25 235 254 62
## pixel468 pixel469 pixel470 pixel471 pixel472 pixel473 pixel474 pixel475
## 1 0 0 0 0 0 0 0 0
## 2 254 254 254 17 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 182 10 0 0 0 0 0 0
## 5 139 253 253 253 90 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel476 pixel477 pixel478 pixel479 pixel480 pixel481 pixel482 pixel483
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 94 254 254
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 254 253 253
## 6 0 0 0 0 0 0 0 26
## pixel484 pixel485 pixel486 pixel487 pixel488 pixel489 pixel490 pixel491
## 1 0 22 188 253 245 93 0 0
## 2 254 200 12 0 0 0 0 0
## 3 0 0 0 0 9 254 254 184
## 4 0 154 205 4 0 0 26 72
## 5 253 99 0 0 0 0 0 0
## 6 243 204 0 0 0 0 0 0
## pixel492 pixel493 pixel494 pixel495 pixel496 pixel497 pixel498 pixel499
## 1 0 0 0 0 0 0 0 0
## 2 0 0 16 209 254 254 150 1
## 3 0 0 0 0 0 0 0 0
## 4 128 203 208 254 254 131 0 0
## 5 0 0 0 78 248 253 253 253
## 6 91 254 248 36 0 0 0 0
## pixel500 pixel501 pixel502 pixel503 pixel504 pixel505 pixel506 pixel507
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 5 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel508 pixel509 pixel510 pixel511 pixel512 pixel513 pixel514 pixel515
## 1 0 0 0 0 0 103 253 253
## 2 0 15 206 254 254 254 202 66
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 61 254 129
## 5 0 254 253 253 253 216 34 0
## 6 0 0 0 33 254 204 0 0
## pixel516 pixel517 pixel518 pixel519 pixel520 pixel521 pixel522 pixel523
## 1 191 0 0 0 0 0 0 0
## 2 0 0 0 0 0 21 161 254
## 3 9 254 254 184 0 0 0 0
## 4 113 186 245 251 189 75 56 136
## 5 0 0 0 0 0 0 33 152
## 6 0 0 0 67 241 254 133 0
## pixel524 pixel525 pixel526 pixel527 pixel528 pixel529 pixel530 pixel531
## 1 0 0 0 0 0 0 0 0
## 2 254 245 31 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 254 73 0 0 0 0 0 0
## 5 253 253 253 107 1 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel532 pixel533 pixel534 pixel535 pixel536 pixel537 pixel538 pixel539
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 60 212
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 206 253 253
## 6 0 0 0 0 0 0 0 33
## pixel540 pixel541 pixel542 pixel543 pixel544 pixel545 pixel546 pixel547
## 1 89 240 253 195 25 0 0 0
## 2 254 254 254 194 48 48 34 41
## 3 0 0 0 0 156 254 254 184
## 4 0 15 216 233 233 159 104 52
## 5 253 253 140 0 0 0 0 0
## 6 254 214 7 0 0 0 50 242
## pixel548 pixel549 pixel550 pixel551 pixel552 pixel553 pixel554 pixel555
## 1 0 0 0 0 0 0 0 0
## 2 48 209 254 254 254 171 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 38 254 73 0 0
## 5 30 139 234 253 253 253 154 2
## 6 254 194 24 0 0 0 0 0
## pixel556 pixel557 pixel558 pixel559 pixel560 pixel561 pixel562 pixel563
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel564 pixel565 pixel566 pixel567 pixel568 pixel569 pixel570 pixel571
## 1 0 0 0 15 220 253 253 80
## 2 0 0 0 86 243 254 254 254
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 16 205 253 253 253 250 208
## 6 0 0 0 5 193 254 78 0
## pixel572 pixel573 pixel574 pixel575 pixel576 pixel577 pixel578 pixel579
## 1 0 0 0 0 0 0 0 0
## 2 254 254 233 243 254 254 254 254
## 3 185 255 255 184 0 0 0 0
## 4 0 0 0 0 0 0 0 18
## 5 106 106 106 200 237 253 253 253
## 6 0 19 128 254 195 36 0 0
## pixel580 pixel581 pixel582 pixel583 pixel584 pixel585 pixel586 pixel587
## 1 0 0 0 0 0 0 0 0
## 2 254 86 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 254 73 0 0 0 0 0 0
## 5 253 209 22 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel588 pixel589 pixel590 pixel591 pixel592 pixel593 pixel594 pixel595
## 1 0 0 0 0 0 0 0 94
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 82 253
## 6 0 0 0 0 0 0 0 0
## pixel596 pixel597 pixel598 pixel599 pixel600 pixel601 pixel602 pixel603
## 1 253 253 253 94 0 0 0 0
## 2 114 254 254 254 254 254 254 254
## 3 0 0 0 0 185 254 254 184
## 4 0 0 0 0 0 0 0 0
## 5 253 253 253 253 253 253 253 253
## 6 103 254 222 74 143 235 254 228
## pixel604 pixel605 pixel606 pixel607 pixel608 pixel609 pixel610 pixel611
## 1 0 0 0 0 0 0 0 0
## 2 254 254 254 239 86 11 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 18 254 73 0 0
## 5 253 253 253 253 209 22 0 0
## 6 83 0 0 0 0 0 0 0
## pixel612 pixel613 pixel614 pixel615 pixel616 pixel617 pixel618 pixel619
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel620 pixel621 pixel622 pixel623 pixel624 pixel625 pixel626 pixel627
## 1 0 0 0 89 251 253 250 131
## 2 0 0 0 0 13 182 254 254
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 1 91 253 253 253 253
## 6 0 0 0 0 30 242 254 254
## pixel628 pixel629 pixel630 pixel631 pixel632 pixel633 pixel634 pixel635
## 1 0 0 0 0 0 0 0 0
## 2 254 254 254 254 254 254 243 70
## 3 185 254 254 184 0 0 0 0
## 4 0 0 0 0 0 0 0 5
## 5 253 253 253 253 253 253 213 90
## 6 254 254 252 84 0 0 0 0
## pixel636 pixel637 pixel638 pixel639 pixel640 pixel641 pixel642 pixel643
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 206 106 0 0 0 0 0 0
## 5 7 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel644 pixel645 pixel646 pixel647 pixel648 pixel649 pixel650 pixel651
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 1
## 6 0 0 0 0 0 0 0 0
## pixel652 pixel653 pixel654 pixel655 pixel656 pixel657 pixel658 pixel659
## 1 214 218 95 0 0 0 0 0
## 2 0 8 76 146 254 255 254 255
## 3 0 0 0 0 63 254 254 62
## 4 0 0 0 0 0 0 0 0
## 5 18 129 208 253 253 253 253 159
## 6 0 23 64 158 200 174 61 0
## pixel660 pixel661 pixel662 pixel663 pixel664 pixel665 pixel666 pixel667
## 1 0 0 0 0 0 0 0 0
## 2 146 19 15 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 186 159 0 0
## 5 129 90 4 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel668 pixel669 pixel670 pixel671 pixel672 pixel673 pixel674 pixel675
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel676 pixel677 pixel678 pixel679 pixel680 pixel681 pixel682 pixel683
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel684 pixel685 pixel686 pixel687 pixel688 pixel689 pixel690 pixel691
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 6
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel692 pixel693 pixel694 pixel695 pixel696 pixel697 pixel698 pixel699
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 209 101 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel700 pixel701 pixel702 pixel703 pixel704 pixel705 pixel706 pixel707
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel708 pixel709 pixel710 pixel711 pixel712 pixel713 pixel714 pixel715
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel716 pixel717 pixel718 pixel719 pixel720 pixel721 pixel722 pixel723
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel724 pixel725 pixel726 pixel727 pixel728 pixel729 pixel730 pixel731
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel732 pixel733 pixel734 pixel735 pixel736 pixel737 pixel738 pixel739
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel740 pixel741 pixel742 pixel743 pixel744 pixel745 pixel746 pixel747
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel748 pixel749 pixel750 pixel751 pixel752 pixel753 pixel754 pixel755
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel756 pixel757 pixel758 pixel759 pixel760 pixel761 pixel762 pixel763
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel764 pixel765 pixel766 pixel767 pixel768 pixel769 pixel770 pixel771
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel772 pixel773 pixel774 pixel775 pixel776 pixel777 pixel778 pixel779
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel780 pixel781 pixel782 pixel783
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
digits_training_df_pix <- digits_training_df[,2:ncol(digits_training_df)]/255
digits_training_df_pix$label <- digits_training_df$label
head(digits_training_df_pix)
## pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9 pixel10
## 1 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0
## pixel11 pixel12 pixel13 pixel14 pixel15 pixel16 pixel17 pixel18 pixel19
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel20 pixel21 pixel22 pixel23 pixel24 pixel25 pixel26 pixel27 pixel28
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel29 pixel30 pixel31 pixel32 pixel33 pixel34 pixel35 pixel36 pixel37
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel38 pixel39 pixel40 pixel41 pixel42 pixel43 pixel44 pixel45 pixel46
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel47 pixel48 pixel49 pixel50 pixel51 pixel52 pixel53 pixel54 pixel55
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel56 pixel57 pixel58 pixel59 pixel60 pixel61 pixel62 pixel63 pixel64
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel65 pixel66 pixel67 pixel68 pixel69 pixel70 pixel71 pixel72 pixel73
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel74 pixel75 pixel76 pixel77 pixel78 pixel79 pixel80 pixel81 pixel82
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel83 pixel84 pixel85 pixel86 pixel87 pixel88 pixel89 pixel90 pixel91
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel92 pixel93 pixel94 pixel95 pixel96 pixel97 pixel98 pixel99 pixel100
## 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0
## pixel101 pixel102 pixel103 pixel104 pixel105 pixel106 pixel107 pixel108
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel109 pixel110 pixel111 pixel112 pixel113 pixel114 pixel115 pixel116
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel117 pixel118 pixel119 pixel120 pixel121 pixel122 pixel123
## 1 0 0 0 0 0.000000000 0.00000000 0.0000000
## 2 0 0 0 0 0.000000000 0.07058824 0.1176471
## 3 0 0 0 0 0.000000000 0.00000000 0.0000000
## 4 0 0 0 0 0.000000000 0.00000000 0.0000000
## 5 0 0 0 0 0.003921569 0.09803922 0.5098039
## 6 0 0 0 0 0.000000000 0.00000000 0.0000000
## pixel124 pixel125 pixel126 pixel127 pixel128 pixel129 pixel130
## 1 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.000000000 0.000000000
## 2 0.53725490 0.5372549 0.7529412 0.33725490 0.2823529 0.003921569 0.000000000
## 3 0.01176471 0.5529412 0.5450980 0.01176471 0.0000000 0.000000000 0.000000000
## 4 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.000000000 0.000000000
## 5 0.60784314 0.9960784 0.9960784 0.99607843 0.6156863 0.117647059 0.007843137
## 6 0.01176471 0.5529412 0.7921569 0.99607843 0.7568627 0.172549020 0.000000000
## pixel131 pixel132 pixel133 pixel134 pixel135 pixel136 pixel137 pixel138
## 1 0 0.7372549 1 0.3686275 0 0 0 0
## 2 0 0.0000000 0 0.0000000 0 0 0 0
## 3 0 0.0000000 0 0.0000000 0 0 0 0
## 4 0 0.0000000 0 0.0000000 0 0 0 0
## 5 0 0.0000000 0 0.0000000 0 0 0 0
## 6 0 0.0000000 0 0.0000000 0 0 0 0
## pixel139 pixel140 pixel141 pixel142 pixel143 pixel144 pixel145 pixel146
## 1 0 0 0 0 0 0 0 0.0000000
## 2 0 0 0 0 0 0 0 0.0000000
## 3 0 0 0 0 0 0 0 0.0000000
## 4 0 0 0 0 0 0 0 0.8627451
## 5 0 0 0 0 0 0 0 0.0000000
## 6 0 0 0 0 0 0 0 0.0000000
## pixel147 pixel148 pixel149 pixel150 pixel151 pixel152 pixel153
## 1 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000 0.00000000 0.0000000
## 2 0.0000000 0.05098039 0.3372549 0.9803922 0.99607843 0.99607843 0.9960784
## 3 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000 0.03529412 0.9960784
## 4 0.7019608 0.02352941 0.0000000 0.0000000 0.00000000 0.00000000 0.0000000
## 5 0.0000000 0.03137255 0.4039216 0.9921569 0.99215686 0.99215686 0.9921569
## 6 0.0000000 0.00000000 0.0000000 0.0000000 0.01960784 0.64705882 0.9960784
## pixel154 pixel155 pixel156 pixel157 pixel158 pixel159 pixel160
## 1 0.0000000 0.00000000 0.0000000 0.00000000 0.0000000 0.749019608 0.9803922
## 2 0.9960784 0.85098039 0.9647059 0.59215686 0.1254902 0.000000000 0.0000000
## 3 0.9960784 0.03137255 0.0000000 0.00000000 0.0000000 0.000000000 0.0000000
## 4 0.0000000 0.00000000 0.0000000 0.03529412 0.3019608 0.000000000 0.0000000
## 5 0.9921569 0.99215686 0.9921569 0.99215686 0.4470588 0.007843137 0.0000000
## 6 0.7019608 0.63921569 0.9764706 0.95686275 0.2823529 0.000000000 0.0000000
## pixel161 pixel162 pixel163 pixel164 pixel165 pixel166 pixel167 pixel168
## 1 0.9921569 0.3647059 0 0 0 0 0 0
## 2 0.0000000 0.0000000 0 0 0 0 0 0
## 3 0.0000000 0.0000000 0 0 0 0 0 0
## 4 0.0000000 0.0000000 0 0 0 0 0 0
## 5 0.0000000 0.0000000 0 0 0 0 0 0
## 6 0.0000000 0.0000000 0 0 0 0 0 0
## pixel169 pixel170 pixel171 pixel172 pixel173 pixel174 pixel175 pixel176
## 1 0 0 0 0 0 0.0000000 0.00000000 0.00000000
## 2 0 0 0 0 0 0.0000000 0.06274510 0.70196078
## 3 0 0 0 0 0 0.0000000 0.00000000 0.00000000
## 4 0 0 0 0 0 0.1098039 0.96862745 0.06666667
## 5 0 0 0 0 0 0.0000000 0.04313725 0.81568627
## 6 0 0 0 0 0 0.0000000 0.00000000 0.00000000
## pixel177 pixel178 pixel179 pixel180 pixel181 pixel182 pixel183
## 1 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000
## 2 0.9960784 0.9960784 0.9960784 0.99607843 0.9960784 0.9960784 0.99607843
## 3 0.0000000 0.0000000 0.0000000 0.03529412 0.9960784 0.9960784 0.03137255
## 4 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000
## 5 0.9921569 0.9921569 0.9921569 0.99215686 0.9921569 0.9921569 0.99215686
## 6 0.0000000 0.0000000 0.5294118 0.99607843 0.5882353 0.0000000 0.00000000
## pixel184 pixel185 pixel186 pixel187 pixel188 pixel189 pixel190
## 1 0.0000000 0.0000000 0.4823529 0.9725490 0.99215686 0.654902 0.03921569
## 2 0.9960784 0.9960784 0.9058824 0.2117647 0.05882353 0.000000 0.00000000
## 3 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.000000 0.00000000
## 4 0.0000000 0.1058824 0.7921569 0.0000000 0.00000000 0.000000 0.00000000
## 5 0.9921569 0.9921569 0.9921569 0.4196078 0.00000000 0.000000 0.00000000
## 6 0.7411765 0.9960784 0.9529412 0.1215686 0.00000000 0.000000 0.00000000
## pixel191 pixel192 pixel193 pixel194 pixel195 pixel196 pixel197 pixel198
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel199 pixel200 pixel201 pixel202 pixel203 pixel204 pixel205 pixel206
## 1 0 0 0 0 0.0000000 0.0000000 0.0000000 0.0000000
## 2 0 0 0 0 0.2823529 0.9960784 0.9960784 0.9960784
## 3 0 0 0 0 0.0000000 0.0000000 0.0000000 0.0000000
## 4 0 0 0 0 0.9490196 0.6078431 0.0000000 0.0000000
## 5 0 0 0 0 0.1215686 0.9921569 0.9921569 0.9921569
## 6 0 0 0 0 0.0000000 0.0000000 0.0000000 0.3215686
## pixel207 pixel208 pixel209 pixel210 pixel211 pixel212 pixel213
## 1 0.0000000 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000 0.3137255
## 2 0.9960784 0.99607843 0.99607843 0.9960784 0.9960784 0.9960784 0.9960784
## 3 0.0000000 0.03529412 0.99607843 0.9960784 0.4156863 0.0000000 0.0000000
## 4 0.0000000 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000 0.1058824
## 5 0.9921569 0.99215686 0.99215686 0.9921569 0.9921569 0.9921569 0.9921569
## 6 0.9725490 0.81960784 0.01960784 0.0000000 0.0000000 0.6431373 0.9254902
## pixel214 pixel215 pixel216 pixel217 pixel218 pixel219 pixel220 pixel221
## 1 0.9686275 0.9921569 0.8156863 0.05098039 0 0 0 0
## 2 0.9960784 0.9960784 0.4078431 0.00000000 0 0 0 0
## 3 0.0000000 0.0000000 0.0000000 0.00000000 0 0 0 0
## 4 0.9960784 0.2470588 0.0000000 0.00000000 0 0 0 0
## 5 0.9921569 0.8431373 0.3960784 0.01176471 0 0 0 0
## 6 0.9960784 0.4509804 0.0000000 0.00000000 0 0 0 0
## pixel222 pixel223 pixel224 pixel225 pixel226 pixel227 pixel228 pixel229
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel230 pixel231 pixel232 pixel233 pixel234 pixel235 pixel236
## 1 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000
## 2 0.23921569 0.7490196 0.9960784 0.99607843 0.9960784 0.9960784 0.99607843
## 3 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.03529412
## 4 0.00000000 0.6274510 0.8117647 0.02352941 0.0000000 0.0000000 0.00000000
## 5 0.09019608 0.8235294 0.9921569 0.99215686 0.9921569 0.9725490 0.63137255
## 6 0.00000000 0.0000000 0.0000000 0.03137255 0.8274510 0.9960784 0.22745098
## pixel237 pixel238 pixel239 pixel240 pixel241 pixel242 pixel243
## 1 0.0000000 0.0000000 0.0000000 0.1137255 0.8117647 0.9921569 0.9215686
## 2 0.4274510 0.3254902 0.7803922 0.9960784 0.9960784 0.9960784 0.9960784
## 3 0.9960784 0.9960784 0.7215686 0.0000000 0.0000000 0.0000000 0.0000000
## 4 0.0000000 0.0000000 0.0000000 0.0000000 0.1058824 0.9960784 0.2549020
## 5 0.8705882 0.8705882 0.9647059 0.9921569 0.9921569 0.9921569 0.9921569
## 6 0.0000000 0.0000000 0.0000000 0.0000000 0.1294118 0.9019608 0.8313725
## pixel244 pixel245 pixel246 pixel247 pixel248 pixel249 pixel250 pixel251
## 1 0.30196078 0.0000000 0 0 0 0 0 0
## 2 0.95294118 0.3333333 0 0 0 0 0 0
## 3 0.00000000 0.0000000 0 0 0 0 0 0
## 4 0.00000000 0.0000000 0 0 0 0 0 0
## 5 0.99215686 0.1529412 0 0 0 0 0 0
## 6 0.02352941 0.0000000 0 0 0 0 0 0
## pixel252 pixel253 pixel254 pixel255 pixel256 pixel257 pixel258 pixel259
## 1 0 0 0 0 0 0 0.0000000 0.0000000
## 2 0 0 0 0 0 0 0.6745098 0.9960784
## 3 0 0 0 0 0 0 0.0000000 0.0000000
## 4 0 0 0 0 0 0 0.0000000 0.4980392
## 5 0 0 0 0 0 0 0.5333333 0.9921569
## 6 0 0 0 0 0 0 0.0000000 0.0000000
## pixel260 pixel261 pixel262 pixel263 pixel264 pixel265 pixel266
## 1 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000
## 2 0.9960784 0.99607843 0.7921569 0.5764706 0.57647059 0.1764706 0.0000000
## 3 0.0000000 0.00000000 0.0000000 0.0000000 0.03529412 0.9960784 0.9960784
## 4 0.9960784 0.08235294 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000
## 5 0.9921569 0.99215686 0.8980392 0.3019608 0.00000000 0.0000000 0.0000000
## 6 0.0000000 0.46666667 0.9960784 0.6117647 0.01176471 0.0000000 0.0000000
## pixel267 pixel268 pixel269 pixel270 pixel271 pixel272 pixel273
## 1 0.21176471 0.8196078 0.99215686 0.9921569 0.3450980 0.0000000 0.0000000
## 2 0.04313725 0.1137255 0.78431373 0.9960784 0.9960784 0.9960784 0.6705882
## 3 0.72156863 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000
## 4 0.00000000 0.0000000 0.07843137 0.9372549 0.2549020 0.0000000 0.0000000
## 5 0.27450980 0.8549020 0.99215686 0.9921569 0.9921569 0.9921569 0.8431373
## 6 0.00000000 0.0000000 0.07058824 0.9019608 0.9960784 0.1294118 0.0000000
## pixel274 pixel275 pixel276 pixel277 pixel278 pixel279 pixel280 pixel281
## 1 0.0000000 0 0 0 0 0 0 0
## 2 0.0000000 0 0 0 0 0 0 0
## 3 0.0000000 0 0 0 0 0 0 0
## 4 0.0000000 0 0 0 0 0 0 0
## 5 0.3568627 0 0 0 0 0 0 0
## 6 0.0000000 0 0 0 0 0 0 0
## pixel282 pixel283 pixel284 pixel285 pixel286 pixel287 pixel288
## 1 0 0 0 0.000000000 0.0000000 0.0000000 0.00000000
## 2 0 0 0 0.003921569 0.6823529 0.9960784 0.99607843
## 3 0 0 0 0.000000000 0.0000000 0.0000000 0.00000000
## 4 0 0 0 0.000000000 0.0000000 0.3019608 0.99607843
## 5 0 0 0 0.019607843 0.8392157 0.9921569 0.99215686
## 6 0 0 0 0.000000000 0.0000000 0.0000000 0.03921569
## pixel289 pixel290 pixel291 pixel292 pixel293 pixel294 pixel295
## 1 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0.3647059 0.9960784
## 2 0.34901961 0.2627451 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000
## 3 0.00000000 0.0000000 0.0000000 0.03529412 0.9960784 0.9960784 0.7215686
## 4 0.08235294 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000
## 5 0.99215686 0.7647059 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000
## 6 0.83137255 0.9960784 0.1372549 0.00000000 0.0000000 0.0000000 0.0000000
## pixel296 pixel297 pixel298 pixel299 pixel300 pixel301 pixel302
## 1 0.9921569 0.9333333 0.6666667 0.06666667 0.0000000 0.0000000 0.0000000
## 2 0.0000000 0.5019608 0.9882353 0.99607843 0.9960784 0.8313725 0.2980392
## 3 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000
## 4 0.0000000 0.0000000 0.7647059 0.25490196 0.0000000 0.0000000 0.0000000
## 5 0.4078431 0.8784314 0.9921569 0.99215686 0.9921569 0.9921569 0.8431373
## 6 0.0000000 0.1294118 0.9960784 0.99607843 0.1294118 0.0000000 0.0000000
## pixel303 pixel304 pixel305 pixel306 pixel307 pixel308 pixel309 pixel310
## 1 0.0000000 0 0 0 0 0 0 0
## 2 0.0000000 0 0 0 0 0 0 0
## 3 0.0000000 0 0 0 0 0 0 0
## 4 0.0000000 0 0 0 0 0 0 0
## 5 0.1137255 0 0 0 0 0 0 0
## 6 0.0000000 0 0 0 0 0 0 0
## pixel311 pixel312 pixel313 pixel314 pixel315 pixel316 pixel317
## 1 0 0 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000
## 2 0 0 0.1843137 0.9960784 0.9960784 0.9960784 0.11372549
## 3 0 0 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000
## 4 0 0 0.0000000 0.0000000 0.2745098 0.9960784 0.08235294
## 5 0 0 0.4549020 0.9921569 0.9921569 0.9921569 0.96862745
## 6 0 0 0.0000000 0.0000000 0.0000000 0.4549020 0.99607843
## pixel318 pixel319 pixel320 pixel321 pixel322 pixel323 pixel324
## 1 0.0000000 0.00000000 0.00000000 0.09019608 0.8235294 0.9960784 0.9921569
## 2 0.0000000 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000
## 3 0.0000000 0.00000000 0.02352941 0.72549020 0.9960784 0.7215686 0.0000000
## 4 0.0000000 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000
## 5 0.2941176 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000
## 6 0.6039216 0.01176471 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000
## pixel325 pixel326 pixel327 pixel328 pixel329 pixel330 pixel331
## 1 0.6235294 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## 2 0.0000000 0.3254902 0.9960784 0.9960784 0.9960784 0.6000000 0.0000000
## 3 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## 4 0.0000000 0.7647059 0.5568627 0.0000000 0.0000000 0.0000000 0.0000000
## 5 0.1019608 0.7843137 0.9921569 0.9921569 0.9921569 0.9921569 0.8470588
## 6 0.1294118 0.9960784 0.9960784 0.1294118 0.0000000 0.0000000 0.0000000
## pixel332 pixel333 pixel334 pixel335 pixel336 pixel337 pixel338 pixel339
## 1 0.00000000 0 0 0 0 0 0 0
## 2 0.00000000 0 0 0 0 0 0 0
## 3 0.00000000 0 0 0 0 0 0 0
## 4 0.00000000 0 0 0 0 0 0 0
## 5 0.01568627 0 0 0 0 0 0 0
## 6 0.00000000 0 0 0 0 0 0 0
## pixel340 pixel341 pixel342 pixel343 pixel344 pixel345 pixel346
## 1 0 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000
## 2 0 0.3137255 0.9960784 0.9960784 0.9411765 0.09411765 0.0000000
## 3 0 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000
## 4 0 0.0000000 0.0000000 0.2196078 0.9843137 0.08235294 0.0000000
## 5 0 0.9960784 0.9921569 0.9921569 0.9921569 0.76470588 0.0000000
## 6 0 0.0000000 0.0000000 0.0000000 0.4862745 0.99607843 0.4509804
## pixel347 pixel348 pixel349 pixel350 pixel351 pixel352 pixel353
## 1 0 0.0627451 0.8196078 0.9921569 0.9960784 0.9411765 0.3176471
## 2 0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## 3 0 0.0000000 0.3490196 0.9960784 0.7215686 0.0000000 0.0000000
## 4 0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## 5 0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## 6 0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.6274510
## pixel354 pixel355 pixel356 pixel357 pixel358 pixel359 pixel360
## 1 0.00000000 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000
## 2 0.09803922 0.9411765 0.99607843 0.9960784 0.6000000 0.0000000 0.00000000
## 3 0.00000000 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000
## 4 0.76470588 0.8901961 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000
## 5 0.10196078 0.7843137 0.99215686 0.9921569 0.9921569 0.9921569 0.01960784
## 6 0.99607843 0.9372549 0.09019608 0.0000000 0.0000000 0.0000000 0.00000000
## pixel361 pixel362 pixel363 pixel364 pixel365 pixel366 pixel367 pixel368
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel369 pixel370 pixel371 pixel372 pixel373 pixel374 pixel375
## 1 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000 0
## 2 0.2509804 0.9960784 0.9960784 0.7294118 0.02745098 0.00000000 0
## 3 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000 0
## 4 0.0000000 0.0000000 0.0000000 0.8705882 0.60000000 0.01960784 0
## 5 0.9960784 0.9921569 0.9921569 0.9921569 0.38823529 0.00000000 0
## 6 0.0000000 0.0000000 0.0000000 0.7960784 0.99607843 0.13725490 0
## pixel376 pixel377 pixel378 pixel379 pixel380 pixel381 pixel382
## 1 0.10588235 0.9921569 0.9921569 0.9960784 0.05098039 0.000000 0.0000000
## 2 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000 0.000000 0.0000000
## 3 0.01568627 0.5725490 0.9960784 0.7215686 0.00000000 0.000000 0.0000000
## 4 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000 0.000000 0.4705882
## 5 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000 0.000000 0.0000000
## 6 0.00000000 0.0000000 0.0000000 0.0000000 0.00000000 0.772549 0.9960784
## pixel383 pixel384 pixel385 pixel386 pixel387 pixel388 pixel389
## 1 0.00000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0
## 2 0.65098039 0.99607843 0.9960784 0.8784314 0.04705882 0.0000000 0
## 3 0.00000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0
## 4 0.94117647 0.05098039 0.0000000 0.0000000 0.00000000 0.0000000 0
## 5 0.09803922 0.90588235 0.9921569 0.9921569 0.99215686 0.1411765 0
## 6 0.69803922 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000 0
## pixel390 pixel391 pixel392 pixel393 pixel394 pixel395 pixel396 pixel397
## 1 0 0 0 0 0 0 0.00000000 0.0000000
## 2 0 0 0 0 0 0 0.05490196 0.9098039
## 3 0 0 0 0 0 0 0.00000000 0.0000000
## 4 0 0 0 0 0 0 0.00000000 0.0000000
## 5 0 0 0 0 0 0 0.00000000 0.9960784
## 6 0 0 0 0 0 0 0.00000000 0.0000000
## pixel398 pixel399 pixel400 pixel401 pixel402 pixel403 pixel404
## 1 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000 0.07843137 0.80784314
## 2 0.9960784 0.99607843 0.9960784 0.1137255 0.00000000 0.00000000 0.00000000
## 3 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000 0.00000000 0.03529412
## 4 0.0000000 0.00000000 0.2627451 0.9843137 0.15686275 0.00000000 0.00000000
## 5 0.9921569 0.99215686 0.9921569 0.3882353 0.00000000 0.00000000 0.00000000
## 6 0.0000000 0.09019608 0.9372549 0.8666667 0.04313725 0.00000000 0.00000000
## pixel405 pixel406 pixel407 pixel408 pixel409 pixel410 pixel411
## 1 0.9960784 0.9960784 0.7764706 0.02745098 0.0000000 0.0000000 0.0000000
## 2 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.2941176
## 3 0.9960784 0.9960784 0.7215686 0.00000000 0.0000000 0.0000000 0.0000000
## 4 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.3686275 1.0000000
## 5 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000
## 6 0.0000000 0.0000000 0.0000000 0.00000000 0.7764706 1.0000000 0.4823529
## pixel412 pixel413 pixel414 pixel415 pixel416 pixel417 pixel418 pixel419
## 1 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0 0 0
## 2 0.9960784 0.9960784 0.9960784 0.06666667 0.0000000 0 0 0
## 3 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0 0 0
## 4 0.2705882 0.0000000 0.0000000 0.00000000 0.0000000 0 0 0
## 5 0.8745098 0.9921569 0.9921569 0.99215686 0.5058824 0 0 0
## 6 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0 0 0
## pixel420 pixel421 pixel422 pixel423 pixel424 pixel425 pixel426 pixel427
## 1 0 0 0 0 0.00000000 0.0000000 0.0000000 0.00000000
## 2 0 0 0 0 0.07058824 0.9960784 0.9960784 0.99607843
## 3 0 0 0 0 0.00000000 0.0000000 0.0000000 0.00000000
## 4 0 0 0 0 0.00000000 0.0000000 0.0000000 0.00000000
## 5 0 0 0 0 0.00000000 0.9960784 0.9921569 0.99215686
## 6 0 0 0 0 0.00000000 0.0000000 0.0000000 0.09019608
## pixel428 pixel429 pixel430 pixel431 pixel432 pixel433 pixel434
## 1 0.0000000 0.0000000 0.0000000 0.6588235 0.99215686 0.9921569 0.7686275
## 2 0.9960784 0.1137255 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000
## 3 0.0000000 0.0000000 0.0000000 0.0000000 0.03529412 0.9960784 0.9960784
## 4 0.0000000 0.9176471 0.7215686 0.0000000 0.00000000 0.0000000 0.0000000
## 5 0.9921569 0.3882353 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000
## 6 0.9333333 0.6980392 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000
## pixel435 pixel436 pixel437 pixel438 pixel439 pixel440 pixel441
## 1 0.02745098 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## 2 0.00000000 0.00000000 0.0000000 0.0000000 0.1882353 0.9960784 0.9960784
## 3 0.72156863 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## 4 0.00000000 0.00000000 0.0000000 0.0745098 0.9607843 0.2705882 0.0000000
## 5 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000 0.4980392 0.9921569
## 6 0.00000000 0.03921569 0.8588235 0.9960784 0.3764706 0.0000000 0.0000000
## pixel442 pixel443 pixel444 pixel445 pixel446 pixel447 pixel448 pixel449
## 1 0.0000000 0.00000000 0.0000000 0 0 0 0 0
## 2 0.9960784 0.06666667 0.0000000 0 0 0 0 0
## 3 0.0000000 0.00000000 0.0000000 0 0 0 0 0
## 4 0.0000000 0.00000000 0.0000000 0 0 0 0 0
## 5 0.9921569 0.99215686 0.5058824 0 0 0 0 0
## 6 0.0000000 0.00000000 0.0000000 0 0 0 0 0
## pixel450 pixel451 pixel452 pixel453 pixel454 pixel455 pixel456
## 1 0 0 0.000000000 0.0000000 0.0000000 0.0000000 0.0000000
## 2 0 0 0.007843137 0.6392157 0.9960784 0.9960784 0.9960784
## 3 0 0 0.000000000 0.0000000 0.0000000 0.0000000 0.0000000
## 4 0 0 0.000000000 0.0000000 0.0000000 0.0000000 0.0000000
## 5 0 0 0.000000000 0.9960784 0.9921569 0.9921569 0.9921569
## 6 0 0 0.000000000 0.0000000 0.0000000 0.1176471 0.9764706
## pixel457 pixel458 pixel459 pixel460 pixel461 pixel462 pixel463
## 1 0.0000000 0.07843137 0.7960784 0.99215686 0.9725490 0.2980392 0.0000000
## 2 0.1137255 0.00000000 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000
## 3 0.0000000 0.00000000 0.0000000 0.03529412 0.9960784 0.9960784 0.7215686
## 4 0.9176471 0.66274510 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000
## 5 0.3882353 0.00000000 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000
## 6 0.8000000 0.00000000 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000
## pixel464 pixel465 pixel466 pixel467 pixel468 pixel469 pixel470
## 1 0.00000000 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000
## 2 0.00000000 0.0000000 0.00000000 0.1882353 0.9960784 0.99607843 0.9960784
## 3 0.00000000 0.0000000 0.00000000 0.0000000 0.0000000 0.00000000 0.0000000
## 4 0.00000000 0.0000000 0.01176471 0.7803922 0.7137255 0.03921569 0.0000000
## 5 0.00000000 0.0000000 0.00000000 0.0000000 0.5450980 0.99215686 0.9921569
## 6 0.09803922 0.9215686 0.99607843 0.2431373 0.0000000 0.00000000 0.0000000
## pixel471 pixel472 pixel473 pixel474 pixel475 pixel476 pixel477 pixel478
## 1 0.00000000 0.0000000 0 0 0 0 0 0
## 2 0.06666667 0.0000000 0 0 0 0 0 0
## 3 0.00000000 0.0000000 0 0 0 0 0 0
## 4 0.00000000 0.0000000 0 0 0 0 0 0
## 5 0.99215686 0.3529412 0 0 0 0 0 0
## 6 0.00000000 0.0000000 0 0 0 0 0 0
## pixel479 pixel480 pixel481 pixel482 pixel483 pixel484 pixel485
## 1 0 0 0.0000000 0.0000000 0.0000000 0.0000000 0.08627451
## 2 0 0 0.3686275 0.9960784 0.9960784 0.9960784 0.78431373
## 3 0 0 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000
## 4 0 0 0.0000000 0.0000000 0.0000000 0.0000000 0.60392157
## 5 0 0 0.9960784 0.9921569 0.9921569 0.9921569 0.38823529
## 6 0 0 0.0000000 0.0000000 0.1019608 0.9529412 0.80000000
## pixel486 pixel487 pixel488 pixel489 pixel490 pixel491 pixel492
## 1 0.73725490 0.99215686 0.96078431 0.3647059 0.0000000 0.0000000 0.0000000
## 2 0.04705882 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000
## 3 0.00000000 0.00000000 0.03529412 0.9960784 0.9960784 0.7215686 0.0000000
## 4 0.80392157 0.01568627 0.00000000 0.0000000 0.1019608 0.2823529 0.5019608
## 5 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000
## 6 0.00000000 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000 0.3568627
## pixel493 pixel494 pixel495 pixel496 pixel497 pixel498 pixel499
## 1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000000
## 2 0.0000000 0.0627451 0.8196078 0.9960784 0.9960784 0.5882353 0.003921569
## 3 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000000
## 4 0.7960784 0.8156863 0.9960784 0.9960784 0.5137255 0.0000000 0.000000000
## 5 0.0000000 0.0000000 0.3058824 0.9725490 0.9921569 0.9921569 0.992156863
## 6 0.9960784 0.9725490 0.1411765 0.0000000 0.0000000 0.0000000 0.000000000
## pixel500 pixel501 pixel502 pixel503 pixel504 pixel505 pixel506 pixel507
## 1 0.00000000 0 0 0 0 0 0 0
## 2 0.00000000 0 0 0 0 0 0 0
## 3 0.00000000 0 0 0 0 0 0 0
## 4 0.00000000 0 0 0 0 0 0 0
## 5 0.01960784 0 0 0 0 0 0 0
## 6 0.00000000 0 0 0 0 0 0 0
## pixel508 pixel509 pixel510 pixel511 pixel512 pixel513 pixel514
## 1 0 0.00000000 0.0000000 0.0000000 0.0000000 0.4039216 0.9921569
## 2 0 0.05882353 0.8078431 0.9960784 0.9960784 0.9960784 0.7921569
## 3 0 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## 4 0 0.00000000 0.0000000 0.0000000 0.0000000 0.2392157 0.9960784
## 5 0 0.99607843 0.9921569 0.9921569 0.9921569 0.8470588 0.1333333
## 6 0 0.00000000 0.0000000 0.1294118 0.9960784 0.8000000 0.0000000
## pixel515 pixel516 pixel517 pixel518 pixel519 pixel520 pixel521
## 1 0.9921569 0.74901961 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000
## 2 0.2588235 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000 0.08235294
## 3 0.0000000 0.03529412 0.9960784 0.9960784 0.7215686 0.0000000 0.00000000
## 4 0.5058824 0.44313725 0.7294118 0.9607843 0.9843137 0.7411765 0.29411765
## 5 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000
## 6 0.0000000 0.00000000 0.0000000 0.0000000 0.2627451 0.9450980 0.99607843
## pixel522 pixel523 pixel524 pixel525 pixel526 pixel527 pixel528
## 1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000000
## 2 0.6313725 0.9960784 0.9960784 0.9607843 0.1215686 0.0000000 0.000000000
## 3 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000000
## 4 0.2196078 0.5333333 0.9960784 0.2862745 0.0000000 0.0000000 0.000000000
## 5 0.1294118 0.5960784 0.9921569 0.9921569 0.9921569 0.4196078 0.003921569
## 6 0.5215686 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000000
## pixel529 pixel530 pixel531 pixel532 pixel533 pixel534 pixel535 pixel536
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel537 pixel538 pixel539 pixel540 pixel541 pixel542 pixel543
## 1 0.0000000 0.0000000 0.0000000 0.3490196 0.94117647 0.99215686 0.7647059
## 2 0.0000000 0.2352941 0.8313725 0.9960784 0.99607843 0.99607843 0.7607843
## 3 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000 0.0000000
## 4 0.0000000 0.0000000 0.0000000 0.0000000 0.05882353 0.84705882 0.9137255
## 5 0.8078431 0.9921569 0.9921569 0.9921569 0.99215686 0.54901961 0.0000000
## 6 0.0000000 0.0000000 0.1294118 0.9960784 0.83921569 0.02745098 0.0000000
## pixel544 pixel545 pixel546 pixel547 pixel548 pixel549 pixel550
## 1 0.09803922 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000
## 2 0.18823529 0.1882353 0.1333333 0.1607843 0.1882353 0.8196078 0.99607843
## 3 0.61176471 0.9960784 0.9960784 0.7215686 0.0000000 0.0000000 0.00000000
## 4 0.91372549 0.6235294 0.4078431 0.2039216 0.0000000 0.0000000 0.00000000
## 5 0.00000000 0.0000000 0.0000000 0.0000000 0.1176471 0.5450980 0.91764706
## 6 0.00000000 0.0000000 0.1960784 0.9490196 0.9960784 0.7607843 0.09411765
## pixel551 pixel552 pixel553 pixel554 pixel555 pixel556 pixel557
## 1 0.0000000 0.0000000 0.0000000 0.0000000 0.000000000 0 0
## 2 0.9960784 0.9960784 0.6705882 0.0000000 0.000000000 0 0
## 3 0.0000000 0.0000000 0.0000000 0.0000000 0.000000000 0 0
## 4 0.1490196 0.9960784 0.2862745 0.0000000 0.000000000 0 0
## 5 0.9921569 0.9921569 0.9921569 0.6039216 0.007843137 0 0
## 6 0.0000000 0.0000000 0.0000000 0.0000000 0.000000000 0 0
## pixel558 pixel559 pixel560 pixel561 pixel562 pixel563 pixel564 pixel565
## 1 0 0 0 0 0 0 0 0.0000000
## 2 0 0 0 0 0 0 0 0.0000000
## 3 0 0 0 0 0 0 0 0.0000000
## 4 0 0 0 0 0 0 0 0.0000000
## 5 0 0 0 0 0 0 0 0.0627451
## 6 0 0 0 0 0 0 0 0.0000000
## pixel566 pixel567 pixel568 pixel569 pixel570 pixel571 pixel572
## 1 0.0000000 0.05882353 0.8627451 0.9921569 0.9921569 0.3137255 0.0000000
## 2 0.0000000 0.33725490 0.9529412 0.9960784 0.9960784 0.9960784 0.9960784
## 3 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7254902
## 4 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## 5 0.8039216 0.99215686 0.9921569 0.9921569 0.9803922 0.8156863 0.4156863
## 6 0.0000000 0.01960784 0.7568627 0.9960784 0.3058824 0.0000000 0.0000000
## pixel573 pixel574 pixel575 pixel576 pixel577 pixel578 pixel579
## 1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000
## 2 0.9960784 0.9137255 0.9529412 0.9960784 0.9960784 0.9960784 0.99607843
## 3 1.0000000 1.0000000 0.7215686 0.0000000 0.0000000 0.0000000 0.00000000
## 4 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.07058824
## 5 0.4156863 0.4156863 0.7843137 0.9294118 0.9921569 0.9921569 0.99215686
## 6 0.0745098 0.5019608 0.9960784 0.7647059 0.1411765 0.0000000 0.00000000
## pixel580 pixel581 pixel582 pixel583 pixel584 pixel585 pixel586 pixel587
## 1 0.0000000 0.0000000 0.00000000 0 0 0 0 0
## 2 0.9960784 0.3372549 0.00000000 0 0 0 0 0
## 3 0.0000000 0.0000000 0.00000000 0 0 0 0 0
## 4 0.9960784 0.2862745 0.00000000 0 0 0 0 0
## 5 0.9921569 0.8196078 0.08627451 0 0 0 0 0
## 6 0.0000000 0.0000000 0.00000000 0 0 0 0 0
## pixel588 pixel589 pixel590 pixel591 pixel592 pixel593 pixel594 pixel595
## 1 0 0 0 0 0 0 0.0000000 0.3686275
## 2 0 0 0 0 0 0 0.0000000 0.0000000
## 3 0 0 0 0 0 0 0.0000000 0.0000000
## 4 0 0 0 0 0 0 0.0000000 0.0000000
## 5 0 0 0 0 0 0 0.3215686 0.9921569
## 6 0 0 0 0 0 0 0.0000000 0.0000000
## pixel596 pixel597 pixel598 pixel599 pixel600 pixel601 pixel602
## 1 0.9921569 0.9921569 0.9921569 0.3686275 0.0000000 0.0000000 0.0000000
## 2 0.4470588 0.9960784 0.9960784 0.9960784 0.9960784 0.9960784 0.9960784
## 3 0.0000000 0.0000000 0.0000000 0.0000000 0.7254902 0.9960784 0.9960784
## 4 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## 5 0.9921569 0.9921569 0.9921569 0.9921569 0.9921569 0.9921569 0.9921569
## 6 0.4039216 0.9960784 0.8705882 0.2901961 0.5607843 0.9215686 0.9960784
## pixel603 pixel604 pixel605 pixel606 pixel607 pixel608 pixel609
## 1 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000
## 2 0.9960784 0.9960784 0.9960784 0.9960784 0.93725490 0.3372549 0.04313725
## 3 0.7215686 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000
## 4 0.0000000 0.0000000 0.0000000 0.0000000 0.07058824 0.9960784 0.28627451
## 5 0.9921569 0.9921569 0.9921569 0.9921569 0.99215686 0.8196078 0.08627451
## 6 0.8941176 0.3254902 0.0000000 0.0000000 0.00000000 0.0000000 0.00000000
## pixel610 pixel611 pixel612 pixel613 pixel614 pixel615 pixel616 pixel617
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel618 pixel619 pixel620 pixel621 pixel622 pixel623 pixel624
## 1 0 0 0 0 0.000000000 0.3490196 0.98431373
## 2 0 0 0 0 0.000000000 0.0000000 0.05098039
## 3 0 0 0 0 0.000000000 0.0000000 0.00000000
## 4 0 0 0 0 0.000000000 0.0000000 0.00000000
## 5 0 0 0 0 0.003921569 0.3568627 0.99215686
## 6 0 0 0 0 0.000000000 0.0000000 0.11764706
## pixel625 pixel626 pixel627 pixel628 pixel629 pixel630 pixel631
## 1 0.9921569 0.9803922 0.5137255 0.0000000 0.0000000 0.0000000 0.0000000
## 2 0.7137255 0.9960784 0.9960784 0.9960784 0.9960784 0.9960784 0.9960784
## 3 0.0000000 0.0000000 0.0000000 0.7254902 0.9960784 0.9960784 0.7215686
## 4 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## 5 0.9921569 0.9921569 0.9921569 0.9921569 0.9921569 0.9921569 0.9921569
## 6 0.9490196 0.9960784 0.9960784 0.9960784 0.9960784 0.9882353 0.3294118
## pixel632 pixel633 pixel634 pixel635 pixel636 pixel637 pixel638
## 1 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000 0.0000000 0
## 2 0.9960784 0.9960784 0.9529412 0.27450980 0.00000000 0.0000000 0
## 3 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000 0.0000000 0
## 4 0.0000000 0.0000000 0.0000000 0.01960784 0.80784314 0.4156863 0
## 5 0.9921569 0.9921569 0.8352941 0.35294118 0.02745098 0.0000000 0
## 6 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000 0.0000000 0
## pixel639 pixel640 pixel641 pixel642 pixel643 pixel644 pixel645 pixel646
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel647 pixel648 pixel649 pixel650 pixel651 pixel652 pixel653
## 1 0 0 0 0 0.000000000 0.83921569 0.85490196
## 2 0 0 0 0 0.000000000 0.00000000 0.03137255
## 3 0 0 0 0 0.000000000 0.00000000 0.00000000
## 4 0 0 0 0 0.000000000 0.00000000 0.00000000
## 5 0 0 0 0 0.003921569 0.07058824 0.50588235
## 6 0 0 0 0 0.000000000 0.00000000 0.09019608
## pixel654 pixel655 pixel656 pixel657 pixel658 pixel659 pixel660
## 1 0.3725490 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## 2 0.2980392 0.5725490 0.9960784 1.0000000 0.9960784 1.0000000 0.5725490
## 3 0.0000000 0.0000000 0.2470588 0.9960784 0.9960784 0.2431373 0.0000000
## 4 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
## 5 0.8156863 0.9921569 0.9921569 0.9921569 0.9921569 0.6235294 0.5058824
## 6 0.2509804 0.6196078 0.7843137 0.6823529 0.2392157 0.0000000 0.0000000
## pixel661 pixel662 pixel663 pixel664 pixel665 pixel666 pixel667 pixel668
## 1 0.0000000 0.00000000 0 0.0000000 0.0000000 0 0 0
## 2 0.0745098 0.05882353 0 0.0000000 0.0000000 0 0 0
## 3 0.0000000 0.00000000 0 0.0000000 0.0000000 0 0 0
## 4 0.0000000 0.00000000 0 0.7294118 0.6235294 0 0 0
## 5 0.3529412 0.01568627 0 0.0000000 0.0000000 0 0 0
## 6 0.0000000 0.00000000 0 0.0000000 0.0000000 0 0 0
## pixel669 pixel670 pixel671 pixel672 pixel673 pixel674 pixel675 pixel676
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel677 pixel678 pixel679 pixel680 pixel681 pixel682 pixel683 pixel684
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel685 pixel686 pixel687 pixel688 pixel689 pixel690 pixel691 pixel692
## 1 0 0 0 0 0 0 0.00000000 0.0000000
## 2 0 0 0 0 0 0 0.00000000 0.0000000
## 3 0 0 0 0 0 0 0.00000000 0.0000000
## 4 0 0 0 0 0 0 0.02352941 0.8196078
## 5 0 0 0 0 0 0 0.00000000 0.0000000
## 6 0 0 0 0 0 0 0.00000000 0.0000000
## pixel693 pixel694 pixel695 pixel696 pixel697 pixel698 pixel699 pixel700
## 1 0.0000000 0 0 0 0 0 0 0
## 2 0.0000000 0 0 0 0 0 0 0
## 3 0.0000000 0 0 0 0 0 0 0
## 4 0.3960784 0 0 0 0 0 0 0
## 5 0.0000000 0 0 0 0 0 0 0
## 6 0.0000000 0 0 0 0 0 0 0
## pixel701 pixel702 pixel703 pixel704 pixel705 pixel706 pixel707 pixel708
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel709 pixel710 pixel711 pixel712 pixel713 pixel714 pixel715 pixel716
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel717 pixel718 pixel719 pixel720 pixel721 pixel722 pixel723 pixel724
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel725 pixel726 pixel727 pixel728 pixel729 pixel730 pixel731 pixel732
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel733 pixel734 pixel735 pixel736 pixel737 pixel738 pixel739 pixel740
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel741 pixel742 pixel743 pixel744 pixel745 pixel746 pixel747 pixel748
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel749 pixel750 pixel751 pixel752 pixel753 pixel754 pixel755 pixel756
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel757 pixel758 pixel759 pixel760 pixel761 pixel762 pixel763 pixel764
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel765 pixel766 pixel767 pixel768 pixel769 pixel770 pixel771 pixel772
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel773 pixel774 pixel775 pixel776 pixel777 pixel778 pixel779 pixel780
## 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0
## pixel781 pixel782 pixel783 label
## 1 0 0 0 1
## 2 0 0 0 0
## 3 0 0 0 1
## 4 0 0 0 4
## 5 0 0 0 0
## 6 0 0 0 0
Borrowing heavily from Stack Overflow, create a function to rotate our numbers to match presentation.
rotate <- function(matrix){apply(matrix,2, rev)}
Visualize with the 255 scale.
par(mfrow=c(2,5))
for (i in 1:10){
digit_image <- rotate(matrix(rev(as.numeric(digits_training_df_pix[i,-c(1, 786)])), nrow = 28))
image(digit_image, col = grey.colors(255), axes=FALSE, xlim=c(0,1), ylim=c(-0.2,1.2))
}
Looking at our first ten labels, this looks good.
digits_training_df_pix$label[1:10]
## [1] 1 0 1 4 0 0 7 3 5 3
Looking just at the training data set - first column is the label, the digit that was drawn by the user.
train_label <- digits_training_df_pix$label
train_frequency <- as.data.frame(table(train_label)) #table for Freq
ggplot(train_frequency, aes(x = train_label,y=Freq)) +
geom_histogram(stat='identity') +
labs(title = 'Frequency Distribution of Drawn Digits - Training Set',
x = 'Drawn Digit')
Create a function to calculate pixel intensity.
pixel_intensity_calc <- function(df) {
digit_rows <- df %>%
rowwise() %>%
dplyr::mutate(pixel_intensity_calc = sum(c_across(starts_with("pixel")))) %>%
ungroup()
return(digit_rows)
}
Use the function to calculate its mean.
pixel_intensity_mean <-
pixel_intensity_calc(digits_training_df_pix) %>%
group_by(label) %>%
summarise(pixel_intensity_mean = mean(pixel_intensity_calc)) %>%
ungroup()
pixel_intensity_mean
## # A tibble: 10 x 2
## label pixel_intensity_mean
## <int> <dbl>
## 1 0 136.
## 2 1 59.6
## 3 2 117.
## 4 3 111.
## 5 4 95.0
## 6 5 101.
## 7 6 109.
## 8 7 89.9
## 9 8 118.
## 10 9 96.3
My guess is that circular strokes in drawing digits lead to larger intensities than straight ones.
digit_train_pca <- prcomp(digits_training_df_pix)
Establish the standard deviation of the PCA and plot the cumulative variance.
digit_train_pca_sd <- digit_train_pca$sdev
digit_train_pca_cum_var <- cumsum(digit_train_pca_sd^2)/sum(digit_train_pca_sd^2)
plot(digit_train_pca_cum_var)
Looks like we hit 95% after 100 but before 200. Let’s try halfway - 140 looks better.
which.max(digit_train_pca_cum_var >= .95)
## [1] 139
which.max(digit_train_pca_cum_var >= 1)
## [1] 705
We hit 95% variance at 139 and 100% at 705. 785 components are possible - one for each column in the original data set.
digit_train_pca_rotation <- digit_train_pca$rotation
for (d in 1:10){
plot(4,4, xlim=c(1,28), ylim=c(1,28))
imageShow(array(digit_train_pca_rotation[,d],c(28,28)))
}
Looks a little like an ultrasound…
digits_training_df_pix_8 <- digits_training_df_pix %>% filter(digits_training_df_pix$label == 8)
head(digits_training_df_pix_8$label)
## [1] 8 8 8 8 8 8
digit_train_pca_8 <- prcomp(digits_training_df_pix_8)
Establish the standard deviation of the PCA and plot the cumulative variance.
digit_train_pca_sd_8 <- digit_train_pca_8$sdev
digit_train_pca_cum_var_8 <- cumsum(digit_train_pca_sd_8^2)/sum(digit_train_pca_sd_8^2)
plot(digit_train_pca_cum_var_8)
which.max(digit_train_pca_cum_var_8 >= .95)
## [1] 135
which.max(digit_train_pca_cum_var_8 >= 1)
## [1] 537
digit_train_pca_rotation_8 <- digit_train_pca_8$rotation
for (d in 1:10){
plot(4,4, xlim=c(1,28), ylim=c(1,28))
imageShow(array(digit_train_pca_rotation_8[,d],c(28,28)))
}
The variance hit 95% slower than I would have thought. But our images are clearly horizontal eights - that look vaguely like anthrax or a worn hippy tattoo.
We split our training set into train and test sets before building the model - which might be breaking the rules.
train_size <- floor(.8 * nrow(digits_training_df_pix))
set.seed(6789)
train_index <- sample(seq_len(nrow(digits_training_df_pix)), size = train_size)
train <- digits_training_df_pix[train_index,]
test <- digits_training_df_pix[-train_index,]
train_x <- train[,names(train) != "label"]
train_x <- lapply(train_x, as.numeric)
train_y <- as.factor(train$label)
test_x <- test[,names(test) != "label"]
test_x <- lapply(test_x, as.numeric)
test_y <- as.factor(test$label)
We will use the multinom function from the nnet package.
digit_mn_model <- multinom(train_y~., train_x, MaxNWts = 100000)
## # weights: 7860 (7065 variable)
## initial value 77366.859125
## iter 10 value 22615.011966
## iter 20 value 18121.636376
## iter 30 value 16868.689561
## iter 40 value 16254.576319
## iter 50 value 15907.790404
## iter 60 value 15233.728359
## iter 70 value 13943.579896
## iter 80 value 12150.556849
## iter 90 value 10928.878374
## iter 100 value 10175.200392
## final value 10175.200392
## stopped after 100 iterations
digit_test_prediction <- predict(digit_mn_model, newdata = test_x)
confusionMatrix(digit_test_prediction,test_y)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1 2 3 4 5 6 7 8 9
## 0 834 0 13 6 1 9 6 1 8 7
## 1 2 917 20 10 6 9 6 14 41 9
## 2 1 6 705 21 3 4 7 6 11 0
## 3 2 6 14 769 3 30 0 0 27 11
## 4 3 2 22 2 778 8 11 10 8 35
## 5 3 2 7 31 3 595 14 4 27 7
## 6 8 3 8 2 6 16 779 2 6 0
## 7 1 2 8 8 4 3 1 823 3 28
## 8 7 7 27 13 6 11 6 1 656 3
## 9 1 1 10 12 31 16 1 33 25 705
##
## Overall Statistics
##
## Accuracy : 0.9001
## 95% CI : (0.8935, 0.9065)
## No Information Rate : 0.1126
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.8889
##
## Mcnemar's Test P-Value : 1.373e-15
##
## Statistics by Class:
##
## Class: 0 Class: 1 Class: 2 Class: 3 Class: 4 Class: 5
## Sensitivity 0.96752 0.9693 0.84532 0.87986 0.92509 0.84879
## Specificity 0.99323 0.9843 0.99220 0.98764 0.98664 0.98727
## Pos Pred Value 0.94237 0.8868 0.92277 0.89211 0.88510 0.85859
## Neg Pred Value 0.99627 0.9961 0.98311 0.98607 0.99162 0.98625
## Prevalence 0.10262 0.1126 0.09929 0.10405 0.10012 0.08345
## Detection Rate 0.09929 0.1092 0.08393 0.09155 0.09262 0.07083
## Detection Prevalence 0.10536 0.1231 0.09095 0.10262 0.10464 0.08250
## Balanced Accuracy 0.98038 0.9768 0.91876 0.93375 0.95586 0.91803
## Class: 6 Class: 7 Class: 8 Class: 9
## Sensitivity 0.93742 0.92058 0.80788 0.87578
## Specificity 0.99326 0.99227 0.98933 0.98288
## Pos Pred Value 0.93855 0.93417 0.89009 0.84431
## Neg Pred Value 0.99313 0.99056 0.97964 0.98678
## Prevalence 0.09893 0.10643 0.09667 0.09583
## Detection Rate 0.09274 0.09798 0.07810 0.08393
## Detection Prevalence 0.09881 0.10488 0.08774 0.09940
## Balanced Accuracy 0.96534 0.95643 0.89860 0.92933
Struggled the mist with 8s followed by 5s. Something about those rounded strokes is difficult to discern.
Sources consulted: https://www.youtube.com/watch?v=OowGKNgdowA https://stackoverflow.com/questions/37953644/r-image-plot-mnist-dataset https://python-course.eu/machine-learning/training-and-testing-with-mnist.php https://stackoverflow.com/questions/21729310/unexpected-apply-function-behaviour-in-r https://stackoverflow.com/questions/24604496/r-backwards-principal-component-calculation https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics/image https://forum.image.sc/t/trackmate-which-pixels-are-used-to-calculate-mean-pixel-intensity/6078 https://stats.oarc.ucla.edu/r/dae/multinomial-logistic-regression/
You are to compete in the House Prices: Advanced Regression Techniques competition https://www.kaggle.com/c/house-prices-advanced-regression-techniques . I want you to do the following.
Loading the data.
house_train <- read.csv("adv_house_train.csv")
house_test <- read.csv('adv_house_test.csv')
Provide univariate descriptive statistics and appropriate plots for the training data set. Provide a scatterplot matrix for at least two of the independent variables and the dependent variable. Derive a correlation matrix for any three quantitative variables in the dataset. Test the hypotheses that the correlations between each pairwise set of variables is 0 and provide an 80% confidence interval. Discuss the meaning of your analysis. Would you be worried about familywise error? Why or why not? 5 points
summary(house_train)
## Id MSSubClass MSZoning LotFrontage
## Min. : 1.0 Min. : 20.0 Length:1460 Min. : 21.00
## 1st Qu.: 365.8 1st Qu.: 20.0 Class :character 1st Qu.: 59.00
## Median : 730.5 Median : 50.0 Mode :character Median : 69.00
## Mean : 730.5 Mean : 56.9 Mean : 70.05
## 3rd Qu.:1095.2 3rd Qu.: 70.0 3rd Qu.: 80.00
## Max. :1460.0 Max. :190.0 Max. :313.00
## NA's :259
## LotArea Street Alley LotShape
## Min. : 1300 Length:1460 Length:1460 Length:1460
## 1st Qu.: 7554 Class :character Class :character Class :character
## Median : 9478 Mode :character Mode :character Mode :character
## Mean : 10517
## 3rd Qu.: 11602
## Max. :215245
##
## LandContour Utilities LotConfig LandSlope
## Length:1460 Length:1460 Length:1460 Length:1460
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## Neighborhood Condition1 Condition2 BldgType
## Length:1460 Length:1460 Length:1460 Length:1460
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## HouseStyle OverallQual OverallCond YearBuilt
## Length:1460 Min. : 1.000 Min. :1.000 Min. :1872
## Class :character 1st Qu.: 5.000 1st Qu.:5.000 1st Qu.:1954
## Mode :character Median : 6.000 Median :5.000 Median :1973
## Mean : 6.099 Mean :5.575 Mean :1971
## 3rd Qu.: 7.000 3rd Qu.:6.000 3rd Qu.:2000
## Max. :10.000 Max. :9.000 Max. :2010
##
## YearRemodAdd RoofStyle RoofMatl Exterior1st
## Min. :1950 Length:1460 Length:1460 Length:1460
## 1st Qu.:1967 Class :character Class :character Class :character
## Median :1994 Mode :character Mode :character Mode :character
## Mean :1985
## 3rd Qu.:2004
## Max. :2010
##
## Exterior2nd MasVnrType MasVnrArea ExterQual
## Length:1460 Length:1460 Min. : 0.0 Length:1460
## Class :character Class :character 1st Qu.: 0.0 Class :character
## Mode :character Mode :character Median : 0.0 Mode :character
## Mean : 103.7
## 3rd Qu.: 166.0
## Max. :1600.0
## NA's :8
## ExterCond Foundation BsmtQual BsmtCond
## Length:1460 Length:1460 Length:1460 Length:1460
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2
## Length:1460 Length:1460 Min. : 0.0 Length:1460
## Class :character Class :character 1st Qu.: 0.0 Class :character
## Mode :character Mode :character Median : 383.5 Mode :character
## Mean : 443.6
## 3rd Qu.: 712.2
## Max. :5644.0
##
## BsmtFinSF2 BsmtUnfSF TotalBsmtSF Heating
## Min. : 0.00 Min. : 0.0 Min. : 0.0 Length:1460
## 1st Qu.: 0.00 1st Qu.: 223.0 1st Qu.: 795.8 Class :character
## Median : 0.00 Median : 477.5 Median : 991.5 Mode :character
## Mean : 46.55 Mean : 567.2 Mean :1057.4
## 3rd Qu.: 0.00 3rd Qu.: 808.0 3rd Qu.:1298.2
## Max. :1474.00 Max. :2336.0 Max. :6110.0
##
## HeatingQC CentralAir Electrical X1stFlrSF
## Length:1460 Length:1460 Length:1460 Min. : 334
## Class :character Class :character Class :character 1st Qu.: 882
## Mode :character Mode :character Mode :character Median :1087
## Mean :1163
## 3rd Qu.:1391
## Max. :4692
##
## X2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath
## Min. : 0 Min. : 0.000 Min. : 334 Min. :0.0000
## 1st Qu.: 0 1st Qu.: 0.000 1st Qu.:1130 1st Qu.:0.0000
## Median : 0 Median : 0.000 Median :1464 Median :0.0000
## Mean : 347 Mean : 5.845 Mean :1515 Mean :0.4253
## 3rd Qu.: 728 3rd Qu.: 0.000 3rd Qu.:1777 3rd Qu.:1.0000
## Max. :2065 Max. :572.000 Max. :5642 Max. :3.0000
##
## BsmtHalfBath FullBath HalfBath BedroomAbvGr
## Min. :0.00000 Min. :0.000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.00000 1st Qu.:1.000 1st Qu.:0.0000 1st Qu.:2.000
## Median :0.00000 Median :2.000 Median :0.0000 Median :3.000
## Mean :0.05753 Mean :1.565 Mean :0.3829 Mean :2.866
## 3rd Qu.:0.00000 3rd Qu.:2.000 3rd Qu.:1.0000 3rd Qu.:3.000
## Max. :2.00000 Max. :3.000 Max. :2.0000 Max. :8.000
##
## KitchenAbvGr KitchenQual TotRmsAbvGrd Functional
## Min. :0.000 Length:1460 Min. : 2.000 Length:1460
## 1st Qu.:1.000 Class :character 1st Qu.: 5.000 Class :character
## Median :1.000 Mode :character Median : 6.000 Mode :character
## Mean :1.047 Mean : 6.518
## 3rd Qu.:1.000 3rd Qu.: 7.000
## Max. :3.000 Max. :14.000
##
## Fireplaces FireplaceQu GarageType GarageYrBlt
## Min. :0.000 Length:1460 Length:1460 Min. :1900
## 1st Qu.:0.000 Class :character Class :character 1st Qu.:1961
## Median :1.000 Mode :character Mode :character Median :1980
## Mean :0.613 Mean :1979
## 3rd Qu.:1.000 3rd Qu.:2002
## Max. :3.000 Max. :2010
## NA's :81
## GarageFinish GarageCars GarageArea GarageQual
## Length:1460 Min. :0.000 Min. : 0.0 Length:1460
## Class :character 1st Qu.:1.000 1st Qu.: 334.5 Class :character
## Mode :character Median :2.000 Median : 480.0 Mode :character
## Mean :1.767 Mean : 473.0
## 3rd Qu.:2.000 3rd Qu.: 576.0
## Max. :4.000 Max. :1418.0
##
## GarageCond PavedDrive WoodDeckSF OpenPorchSF
## Length:1460 Length:1460 Min. : 0.00 Min. : 0.00
## Class :character Class :character 1st Qu.: 0.00 1st Qu.: 0.00
## Mode :character Mode :character Median : 0.00 Median : 25.00
## Mean : 94.24 Mean : 46.66
## 3rd Qu.:168.00 3rd Qu.: 68.00
## Max. :857.00 Max. :547.00
##
## EnclosedPorch X3SsnPorch ScreenPorch PoolArea
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.000
## Mean : 21.95 Mean : 3.41 Mean : 15.06 Mean : 2.759
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000
## Max. :552.00 Max. :508.00 Max. :480.00 Max. :738.000
##
## PoolQC Fence MiscFeature MiscVal
## Length:1460 Length:1460 Length:1460 Min. : 0.00
## Class :character Class :character Class :character 1st Qu.: 0.00
## Mode :character Mode :character Mode :character Median : 0.00
## Mean : 43.49
## 3rd Qu.: 0.00
## Max. :15500.00
##
## MoSold YrSold SaleType SaleCondition
## Min. : 1.000 Min. :2006 Length:1460 Length:1460
## 1st Qu.: 5.000 1st Qu.:2007 Class :character Class :character
## Median : 6.000 Median :2008 Mode :character Mode :character
## Mean : 6.322 Mean :2008
## 3rd Qu.: 8.000 3rd Qu.:2009
## Max. :12.000 Max. :2010
##
## SalePrice
## Min. : 34900
## 1st Qu.:129975
## Median :163000
## Mean :180921
## 3rd Qu.:214000
## Max. :755000
##
ggpairs(house_train[names(house_train) %in% c("FullBath","SaleCondition","SalePrice")], aes(colour = SaleCondition))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
That was fun, but let’s get a little more useful.
ggplot(house_train,aes(x=TotRmsAbvGrd,y=SalePrice)) +
geom_point()
house_train_numeric_cols <- unlist(lapply(house_train, is.numeric))
house_train_numeric <- house_train[, house_train_numeric_cols]
corrplot(cor(house_train_numeric), method = "color")
That’s not particulary visible…
Correlation matrix:
cor_m <- cor(house_train[,c("TotalBsmtSF","TotRmsAbvGrd","LotArea","BedroomAbvGr")])
cor_m
## TotalBsmtSF TotRmsAbvGrd LotArea BedroomAbvGr
## TotalBsmtSF 1.00000000 0.2855726 0.2608331 0.05044996
## TotRmsAbvGrd 0.28557256 1.0000000 0.1900148 0.67661994
## LotArea 0.26083313 0.1900148 1.0000000 0.11968991
## BedroomAbvGr 0.05044996 0.6766199 0.1196899 1.00000000
Overall, we definitely have to worry about collinearities in this data set. Missing values are present. There are weird outliers that may be indicative of poor data quality.
Let’s derive a correlation and test three of the above - starting with the hypothesis that the correlation between each pairwise set of variables is 0.
cor.test(house_train$TotalBsmtSF, house_train$TotRmsAbvGrd, conf.level=0.80)
##
## Pearson's product-moment correlation
##
## data: house_train$TotalBsmtSF and house_train$TotRmsAbvGrd
## t = 11.378, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.2544496 0.3161046
## sample estimates:
## cor
## 0.2855726
cor.test(house_train$LotArea, house_train$BedroomAbvGr, conf.level=0.80)
##
## Pearson's product-moment correlation
##
## data: house_train$LotArea and house_train$BedroomAbvGr
## t = 4.6033, df = 1458, p-value = 4.52e-06
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.08647564 0.15263840
## sample estimates:
## cor
## 0.1196899
cor.test(house_train$LotArea, house_train$FullBath, conf.level=0.80)
##
## Pearson's product-moment correlation
##
## data: house_train$LotArea and house_train$FullBath
## t = 4.851, df = 1458, p-value = 1.36e-06
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.09286177 0.15892007
## sample estimates:
## cor
## 0.1260306
Yes, we are definitely worried about familiy wise. We have many variables - if we’re operating at a significance level of .05, 1 in 20 will appear significant by chance even if there’s no relationship. This level of collinearity only increases the chances of Type I error.
Invert your correlation matrix from above. (This is known as the precision matrix and contains variance inflation factors on the diagonal.) Multiply the correlation matrix by the precision matrix, and then multiply the precision matrix by the correlation matrix. Conduct LU decomposition on the matrix. 5 points
cor_m
## TotalBsmtSF TotRmsAbvGrd LotArea BedroomAbvGr
## TotalBsmtSF 1.00000000 0.2855726 0.2608331 0.05044996
## TotRmsAbvGrd 0.28557256 1.0000000 0.1900148 0.67661994
## LotArea 0.26083313 0.1900148 1.0000000 0.11968991
## BedroomAbvGr 0.05044996 0.6766199 0.1196899 1.00000000
Invert it.
invert_m <- solve(cor_m)
invert_m
## TotalBsmtSF TotRmsAbvGrd LotArea BedroomAbvGr
## TotalBsmtSF 1.1939276 -0.502802 -0.25301047 0.31025506
## TotRmsAbvGrd -0.5028020 2.098094 -0.10210698 -1.38202442
## LotArea -0.2530105 -0.102107 1.09123111 -0.04875736
## BedroomAbvGr 0.3102551 -1.382024 -0.04875736 1.92528869
Precision.
precision_m <- round(cor_m %*% invert_m)
precision_m
## TotalBsmtSF TotRmsAbvGrd LotArea BedroomAbvGr
## TotalBsmtSF 1 0 0 0
## TotRmsAbvGrd 0 1 0 0
## LotArea 0 0 1 0
## BedroomAbvGr 0 0 0 1
LU Decomposition.
lu_cor_m <- lu.decomposition(cor_m)
lu_cor_m
## $L
## [,1] [,2] [,3] [,4]
## [1,] 1.00000000 0.0000000 0.0000000 0
## [2,] 0.28557256 1.0000000 0.0000000 0
## [3,] 0.26083313 0.1257861 1.0000000 0
## [4,] 0.05044996 0.7210126 0.0253247 1
##
## $U
## [,1] [,2] [,3] [,4]
## [1,] 1 0.2855726 0.2608331 0.05044996
## [2,] 0 0.9184483 0.1155280 0.66221281
## [3,] 0 0.0000000 0.9174343 0.02323375
## [4,] 0 0.0000000 0.0000000 0.51940263
Many times, it makes sense to fit a closed form distribution to data. Select a variable in the Kaggle.com training dataset that is skewed to the right, shift it so that the minimum value is absolutely above zero if necessary. Then load the MASS package and run fitdistr to fit an exponential probability density function. (See https://stat.ethz.ch/R-manual/R- devel/library/MASS/html/fitdistr.html ). Find the optimal value of λ for this distribution, and then take 1000 samples from this exponential distribution using this value (e.g., rexp(1000, λ)). Plot a histogram and compare it with a histogram of your original variable. Using the exponential pdf, find the 5th and 95th percentiles using the cumulative distribution function (CDF). Also generate a 95% confidence interval from the empirical data, assuming normality. Finally, provide the empirical 5th percentile and 95th percentile of the data. Discuss. 10 points
Because I live in a basement-free state, let’s explore basement size, which likely has a rightward skew.
ggplot(house_train,aes(x=BsmtFinSF1)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
No shifting required, as 0 is the natural minimum. Using the MASS package, run fitdistr:
optimal_lambda <- fitdistr(house_train$BsmtFinSF1, densfun = "exponential")
optimal_lambda
## rate
## 0.002254081
## (0.000058992)
Now we take our samples - using that top number from above, returned by estimate.
lambda_sample <- rexp(1000, optimal_lambda$estimate)
hist(lambda_sample, breaks = 100)
low_lambda <- qexp(.05, rate = optimal_lambda$estimate)
low_lambda
## [1] 22.75574
high_lambda <- qexp(.95, rate = optimal_lambda$estimate)
high_lambda
## [1] 1329.026
Back to empirical:
low_emp <- quantile(house_train$BsmtFinSF1,0.05)
low_emp
## 5%
## 0
high_emp <- quantile(house_train$BsmtFinSF1,0.95)
high_emp
## 95%
## 1274
Our lambda sample moves its mean slightly to the right, with a slightly less skewed distribution - there’s still a lot of skew!
Build some type of multiple regression model and submit your model to the competition board. Provide your complete model summary and results with analysis. Report your Kaggle.com user name and score. 10 points
One could easily spend 8 hours on this, which is the focus of other MSDS courses. We have two young kids and a busy job - going to set a time cap and then have some fun on Kaggle this summer when we’re not taking any courses.
We’re going to start with all numeric variables and then remove them using backward elimination while selectively adding factor variables based on very rudimentary knowledge of the real estate market.
house_train_quant_col <- house_train %>%
select_all() %>%
map_lgl(is.numeric)
house_train_quant_df <- house_train %>%
select_if(house_train_quant_col)
house_lm_quant <- lm(SalePrice~.,data=house_train_quant_df)
summary(house_lm_quant)
##
## Call:
## lm(formula = SalePrice ~ ., data = house_train_quant_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -442182 -16955 -2824 15125 318183
##
## Coefficients: (2 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.351e+05 1.701e+06 -0.197 0.843909
## Id -1.205e+00 2.658e+00 -0.453 0.650332
## MSSubClass -2.001e+02 3.451e+01 -5.797 8.84e-09 ***
## LotFrontage -1.160e+02 6.126e+01 -1.894 0.058503 .
## LotArea 5.422e-01 1.575e-01 3.442 0.000599 ***
## OverallQual 1.866e+04 1.482e+03 12.592 < 2e-16 ***
## OverallCond 5.239e+03 1.368e+03 3.830 0.000135 ***
## YearBuilt 3.164e+02 8.766e+01 3.610 0.000321 ***
## YearRemodAdd 1.194e+02 8.668e+01 1.378 0.168607
## MasVnrArea 3.141e+01 7.022e+00 4.473 8.54e-06 ***
## BsmtFinSF1 1.736e+01 5.838e+00 2.973 0.003014 **
## BsmtFinSF2 8.342e+00 8.766e+00 0.952 0.341532
## BsmtUnfSF 5.005e+00 5.277e+00 0.948 0.343173
## TotalBsmtSF NA NA NA NA
## X1stFlrSF 4.597e+01 7.360e+00 6.246 6.02e-10 ***
## X2ndFlrSF 4.663e+01 6.102e+00 7.641 4.72e-14 ***
## LowQualFinSF 3.341e+01 2.794e+01 1.196 0.232009
## GrLivArea NA NA NA NA
## BsmtFullBath 9.043e+03 3.198e+03 2.828 0.004776 **
## BsmtHalfBath 2.465e+03 5.073e+03 0.486 0.627135
## FullBath 5.433e+03 3.531e+03 1.539 0.124182
## HalfBath -1.098e+03 3.321e+03 -0.331 0.740945
## BedroomAbvGr -1.022e+04 2.155e+03 -4.742 2.40e-06 ***
## KitchenAbvGr -2.202e+04 6.710e+03 -3.282 0.001063 **
## TotRmsAbvGrd 5.464e+03 1.487e+03 3.674 0.000251 ***
## Fireplaces 4.372e+03 2.189e+03 1.998 0.046020 *
## GarageYrBlt -4.728e+01 9.106e+01 -0.519 0.603742
## GarageCars 1.685e+04 3.491e+03 4.827 1.58e-06 ***
## GarageArea 6.274e+00 1.213e+01 0.517 0.605002
## WoodDeckSF 2.144e+01 1.002e+01 2.139 0.032662 *
## OpenPorchSF -2.252e+00 1.949e+01 -0.116 0.907998
## EnclosedPorch 7.295e+00 2.062e+01 0.354 0.723590
## X3SsnPorch 3.349e+01 3.758e+01 0.891 0.373163
## ScreenPorch 5.805e+01 2.041e+01 2.844 0.004532 **
## PoolArea -6.052e+01 2.990e+01 -2.024 0.043204 *
## MiscVal -3.761e+00 6.960e+00 -0.540 0.589016
## MoSold -2.217e+02 4.229e+02 -0.524 0.600188
## YrSold -2.474e+02 8.458e+02 -0.293 0.769917
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 36800 on 1085 degrees of freedom
## (339 observations deleted due to missingness)
## Multiple R-squared: 0.8096, Adjusted R-squared: 0.8034
## F-statistic: 131.8 on 35 and 1085 DF, p-value: < 2.2e-16
Removing columns that likely shouldn’t have been there in the first place - like time period sold and Id plus the variables that are clearly less useful based on p-value. Year built is a proxy for age and probably should be transformed as such.
house_lm_quant_2 <- lm(SalePrice ~ MSSubClass + LotArea + OverallQual + OverallCond + YearBuilt + MasVnrArea + BsmtFinSF1 + X1stFlrSF + X2ndFlrSF + BsmtFullBath + BedroomAbvGr + KitchenAbvGr + TotRmsAbvGrd + Fireplaces + GarageCars + WoodDeckSF + ScreenPorch + PoolArea,data=house_train_quant_df)
summary(house_lm_quant_2)
##
## Call:
## lm(formula = SalePrice ~ MSSubClass + LotArea + OverallQual +
## OverallCond + YearBuilt + MasVnrArea + BsmtFinSF1 + X1stFlrSF +
## X2ndFlrSF + BsmtFullBath + BedroomAbvGr + KitchenAbvGr +
## TotRmsAbvGrd + Fireplaces + GarageCars + WoodDeckSF + ScreenPorch +
## PoolArea, data = house_train_quant_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -471826 -16295 -1995 13876 299766
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.391e+05 8.879e+04 -9.450 < 2e-16 ***
## MSSubClass -1.632e+02 2.582e+01 -6.322 3.44e-10 ***
## LotArea 4.209e-01 1.002e-01 4.202 2.81e-05 ***
## OverallQual 1.869e+04 1.125e+03 16.619 < 2e-16 ***
## OverallCond 5.078e+03 9.226e+02 5.504 4.40e-08 ***
## YearBuilt 3.918e+02 4.508e+01 8.691 < 2e-16 ***
## MasVnrArea 2.949e+01 5.874e+00 5.021 5.78e-07 ***
## BsmtFinSF1 9.989e+00 2.975e+00 3.358 0.000807 ***
## X1stFlrSF 5.770e+01 4.651e+00 12.407 < 2e-16 ***
## X2ndFlrSF 4.883e+01 4.112e+00 11.874 < 2e-16 ***
## BsmtFullBath 8.955e+03 2.373e+03 3.774 0.000167 ***
## BedroomAbvGr -1.026e+04 1.646e+03 -6.233 6.00e-10 ***
## KitchenAbvGr -1.338e+04 5.098e+03 -2.624 0.008774 **
## TotRmsAbvGrd 5.418e+03 1.214e+03 4.461 8.78e-06 ***
## Fireplaces 2.507e+03 1.734e+03 1.446 0.148471
## GarageCars 1.042e+04 1.695e+03 6.146 1.03e-09 ***
## WoodDeckSF 2.462e+01 7.911e+00 3.112 0.001892 **
## ScreenPorch 5.085e+01 1.689e+01 3.010 0.002657 **
## PoolArea -3.049e+01 2.341e+01 -1.302 0.192979
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 34820 on 1433 degrees of freedom
## (8 observations deleted due to missingness)
## Multiple R-squared: 0.8095, Adjusted R-squared: 0.8071
## F-statistic: 338.4 on 18 and 1433 DF, p-value: < 2.2e-16
Now we’ll continue with backward elimination but return to the original dataset, adding factor variables selectively.
house_lm_3 <- lm(SalePrice ~ MSSubClass + LotArea + OverallQual + OverallCond + YearBuilt + X1stFlrSF + X2ndFlrSF + BedroomAbvGr + KitchenAbvGr + TotRmsAbvGrd + WoodDeckSF + ScreenPorch + HeatingQC + ExterQual + RoofMatl + Condition1 + Neighborhood + LandSlope + LotConfig,data=house_train,na.action=na.omit)
summary(house_lm_3)
##
## Call:
## lm(formula = SalePrice ~ MSSubClass + LotArea + OverallQual +
## OverallCond + YearBuilt + X1stFlrSF + X2ndFlrSF + BedroomAbvGr +
## KitchenAbvGr + TotRmsAbvGrd + WoodDeckSF + ScreenPorch +
## HeatingQC + ExterQual + RoofMatl + Condition1 + Neighborhood +
## LandSlope + LotConfig, data = house_train, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -332580 -13455 -818 12089 257403
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.509e+06 1.317e+05 -11.454 < 2e-16 ***
## MSSubClass -1.559e+02 2.547e+01 -6.121 1.21e-09 ***
## LotArea 7.079e-01 1.092e-01 6.482 1.25e-10 ***
## OverallQual 1.112e+04 1.084e+03 10.256 < 2e-16 ***
## OverallCond 6.404e+03 8.330e+02 7.688 2.80e-14 ***
## YearBuilt 5.287e+02 6.214e+01 8.508 < 2e-16 ***
## X1stFlrSF 7.992e+01 3.982e+00 20.072 < 2e-16 ***
## X2ndFlrSF 5.947e+01 3.709e+00 16.035 < 2e-16 ***
## BedroomAbvGr -8.095e+03 1.483e+03 -5.457 5.71e-08 ***
## KitchenAbvGr -1.395e+04 4.498e+03 -3.100 0.001971 **
## TotRmsAbvGrd 2.863e+03 1.074e+03 2.666 0.007756 **
## WoodDeckSF 2.118e+01 6.821e+00 3.105 0.001941 **
## ScreenPorch 5.092e+01 1.433e+01 3.553 0.000394 ***
## HeatingQCFa -1.473e+03 4.759e+03 -0.309 0.757001
## HeatingQCGd -4.178e+03 2.460e+03 -1.698 0.089664 .
## HeatingQCPo 1.440e+04 3.125e+04 0.461 0.645049
## HeatingQCTA -4.321e+03 2.307e+03 -1.873 0.061277 .
## ExterQualFa -4.276e+04 1.039e+04 -4.117 4.07e-05 ***
## ExterQualGd -4.961e+04 4.986e+03 -9.949 < 2e-16 ***
## ExterQualTA -5.066e+04 5.667e+03 -8.941 < 2e-16 ***
## RoofMatlCompShg 4.847e+05 3.234e+04 14.989 < 2e-16 ***
## RoofMatlMembran 5.274e+05 4.570e+04 11.542 < 2e-16 ***
## RoofMatlMetal 5.302e+05 4.607e+04 11.509 < 2e-16 ***
## RoofMatlRoll 4.859e+05 4.392e+04 11.064 < 2e-16 ***
## RoofMatlTar&Grv 4.739e+05 3.343e+04 14.176 < 2e-16 ***
## RoofMatlWdShake 4.660e+05 3.503e+04 13.303 < 2e-16 ***
## RoofMatlWdShngl 5.666e+05 3.397e+04 16.677 < 2e-16 ***
## Condition1Feedr -4.611e+02 5.653e+03 -0.082 0.935009
## Condition1Norm 6.733e+03 4.607e+03 1.462 0.144093
## Condition1PosA -1.734e+03 1.176e+04 -0.147 0.882821
## Condition1PosN -1.637e+04 8.329e+03 -1.965 0.049566 *
## Condition1RRAe -1.630e+04 1.082e+04 -1.507 0.132030
## Condition1RRAn 6.341e+03 7.583e+03 0.836 0.403224
## Condition1RRNe -1.333e+04 2.170e+04 -0.614 0.539247
## Condition1RRNn 4.438e+03 1.450e+04 0.306 0.759566
## NeighborhoodBlueste 3.034e+03 2.222e+04 0.137 0.891405
## NeighborhoodBrDale -1.706e+03 1.082e+04 -0.158 0.874783
## NeighborhoodBrkSide 1.186e+04 9.535e+03 1.244 0.213702
## NeighborhoodClearCr 7.137e+03 1.012e+04 0.705 0.480884
## NeighborhoodCollgCr 7.328e+03 7.998e+03 0.916 0.359719
## NeighborhoodCrawfor 2.475e+04 9.339e+03 2.650 0.008144 **
## NeighborhoodEdwards -3.393e+03 8.666e+03 -0.391 0.695503
## NeighborhoodGilbert -1.760e+02 8.522e+03 -0.021 0.983529
## NeighborhoodIDOTRR 6.281e+02 1.007e+04 0.062 0.950293
## NeighborhoodMeadowV 6.520e+03 1.073e+04 0.607 0.543687
## NeighborhoodMitchel -6.913e+02 8.964e+03 -0.077 0.938541
## NeighborhoodNAmes 2.379e+03 8.415e+03 0.283 0.777455
## NeighborhoodNoRidge 5.318e+04 9.188e+03 5.788 8.79e-09 ***
## NeighborhoodNPkVill 1.130e+04 1.254e+04 0.901 0.367870
## NeighborhoodNridgHt 4.922e+04 8.268e+03 5.953 3.32e-09 ***
## NeighborhoodNWAmes -5.116e+03 8.778e+03 -0.583 0.560094
## NeighborhoodOldTown 4.689e+02 9.261e+03 0.051 0.959624
## NeighborhoodSawyer 3.856e+03 8.898e+03 0.433 0.664839
## NeighborhoodSawyerW 3.948e+03 8.599e+03 0.459 0.646178
## NeighborhoodSomerst 2.155e+04 8.140e+03 2.647 0.008208 **
## NeighborhoodStoneBr 6.008e+04 9.450e+03 6.357 2.78e-10 ***
## NeighborhoodSWISU 4.498e+03 1.060e+04 0.424 0.671290
## NeighborhoodTimber 1.428e+04 9.121e+03 1.565 0.117770
## NeighborhoodVeenker 2.566e+04 1.181e+04 2.174 0.029902 *
## LandSlopeMod 8.412e+03 4.027e+03 2.089 0.036890 *
## LandSlopeSev -2.236e+04 1.163e+04 -1.923 0.054670 .
## LotConfigCulDSac 7.112e+03 3.747e+03 1.898 0.057907 .
## LotConfigFR2 -5.704e+03 4.777e+03 -1.194 0.232621
## LotConfigFR3 -1.384e+04 1.532e+04 -0.903 0.366504
## LotConfigInside -1.842e+03 2.082e+03 -0.885 0.376401
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 29240 on 1395 degrees of freedom
## Multiple R-squared: 0.8704, Adjusted R-squared: 0.8645
## F-statistic: 146.4 on 64 and 1395 DF, p-value: < 2.2e-16
Note that the following variables have NAs in the test data but would have been significant if we’d had time to build a more robust model: BsmtExposure, KitchenQual
More variables than we’d like. No attempts at transformation. No exploration of time series. Likely overfitting. Unexplored collinearities present. But let’s see how we do, subsetting our test data to only include the variables used in the model.
plot(house_lm_3)
Our model is far from a perfect one. Residuals are not normally distributed. We see outliers for extreme values. Nonetheless, we will submit.
house_test_subset <- house_test %>% dplyr::select(MSSubClass,LotArea,OverallQual,OverallCond,YearBuilt,X1stFlrSF,X2ndFlrSF,BedroomAbvGr,KitchenAbvGr,TotRmsAbvGrd,WoodDeckSF,ScreenPorch,HeatingQC,ExterQual,RoofMatl,Condition1,Neighborhood,LandSlope,LotConfig)
summary(house_test_subset)
## MSSubClass LotArea OverallQual OverallCond
## Min. : 20.00 Min. : 1470 Min. : 1.000 Min. :1.000
## 1st Qu.: 20.00 1st Qu.: 7391 1st Qu.: 5.000 1st Qu.:5.000
## Median : 50.00 Median : 9399 Median : 6.000 Median :5.000
## Mean : 57.38 Mean : 9819 Mean : 6.079 Mean :5.554
## 3rd Qu.: 70.00 3rd Qu.:11518 3rd Qu.: 7.000 3rd Qu.:6.000
## Max. :190.00 Max. :56600 Max. :10.000 Max. :9.000
## YearBuilt X1stFlrSF X2ndFlrSF BedroomAbvGr KitchenAbvGr
## Min. :1879 Min. : 407.0 Min. : 0 Min. :0.000 Min. :0.000
## 1st Qu.:1953 1st Qu.: 873.5 1st Qu.: 0 1st Qu.:2.000 1st Qu.:1.000
## Median :1973 Median :1079.0 Median : 0 Median :3.000 Median :1.000
## Mean :1971 Mean :1156.5 Mean : 326 Mean :2.854 Mean :1.042
## 3rd Qu.:2001 3rd Qu.:1382.5 3rd Qu.: 676 3rd Qu.:3.000 3rd Qu.:1.000
## Max. :2010 Max. :5095.0 Max. :1862 Max. :6.000 Max. :2.000
## TotRmsAbvGrd WoodDeckSF ScreenPorch HeatingQC
## Min. : 3.000 Min. : 0.00 Min. : 0.00 Length:1459
## 1st Qu.: 5.000 1st Qu.: 0.00 1st Qu.: 0.00 Class :character
## Median : 6.000 Median : 0.00 Median : 0.00 Mode :character
## Mean : 6.385 Mean : 93.17 Mean : 17.06
## 3rd Qu.: 7.000 3rd Qu.: 168.00 3rd Qu.: 0.00
## Max. :15.000 Max. :1424.00 Max. :576.00
## ExterQual RoofMatl Condition1 Neighborhood
## Length:1459 Length:1459 Length:1459 Length:1459
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## LandSlope LotConfig
## Length:1459 Length:1459
## Class :character Class :character
## Mode :character Mode :character
##
##
##
dim(house_test_subset)
## [1] 1459 19
house_test_predict <- predict(house_lm_3,house_test_subset)
house_test_predict <- as.data.frame(house_test_predict)
house_test_predict$Id <- house_test$Id
house_test_submission <- house_test_predict[,c(2,1)]
names(house_test_submission)[names(house_test_submission) == "house_test_predict"] <- "SalePrice"
head(house_test_submission,140)
## Id SalePrice
## 1 1461 121535.23
## 2 1462 170599.29
## 3 1463 168699.73
## 4 1464 192671.41
## 5 1465 243811.59
## 6 1466 176702.95
## 7 1467 181008.25
## 8 1468 162279.91
## 9 1469 187013.66
## 10 1470 107552.93
## 11 1471 176962.80
## 12 1472 99488.71
## 13 1473 84418.14
## 14 1474 145679.97
## 15 1475 128800.64
## 16 1476 389301.73
## 17 1477 276357.65
## 18 1478 275825.74
## 19 1479 298360.13
## 20 1480 446803.92
## 21 1481 316914.16
## 22 1482 247131.16
## 23 1483 186897.61
## 24 1484 165603.16
## 25 1485 177939.11
## 26 1486 202102.79
## 27 1487 341455.70
## 28 1488 254326.25
## 29 1489 206576.68
## 30 1490 232760.70
## 31 1491 206728.91
## 32 1492 96777.21
## 33 1493 186714.16
## 34 1494 304150.40
## 35 1495 295703.42
## 36 1496 225057.91
## 37 1497 194946.78
## 38 1498 164142.99
## 39 1499 163667.98
## 40 1500 155220.19
## 41 1501 177195.83
## 42 1502 150609.40
## 43 1503 253993.85
## 44 1504 244319.24
## 45 1505 227413.61
## 46 1506 192734.78
## 47 1507 234238.74
## 48 1508 191090.54
## 49 1509 155668.06
## 50 1510 136084.44
## 51 1511 136443.91
## 52 1512 180001.66
## 53 1513 173448.86
## 54 1514 144913.40
## 55 1515 228309.59
## 56 1516 155454.34
## 57 1517 159641.61
## 58 1518 128951.37
## 59 1519 210287.15
## 60 1520 124173.18
## 61 1521 133950.58
## 62 1522 184089.22
## 63 1523 109339.00
## 64 1524 131387.98
## 65 1525 115788.40
## 66 1526 93898.76
## 67 1527 95304.64
## 68 1528 141319.45
## 69 1529 139533.22
## 70 1530 217071.11
## 71 1531 127161.83
## 72 1532 93404.86
## 73 1533 157283.78
## 74 1534 132318.28
## 75 1535 154487.44
## 76 1536 101140.09
## 77 1537 30620.32
## 78 1538 171045.50
## 79 1539 213060.24
## 80 1540 121616.03
## 81 1541 146845.87
## 82 1542 156465.53
## 83 1543 203306.24
## 84 1544 81476.28
## 85 1545 134513.43
## 86 1546 136442.72
## 87 1547 144836.45
## 88 1548 159128.02
## 89 1549 121905.65
## 90 1550 126107.52
## 91 1551 103927.68
## 92 1552 134931.95
## 93 1553 164837.56
## 94 1554 125897.11
## 95 1555 175233.67
## 96 1556 87479.49
## 97 1557 95548.29
## 98 1558 106677.13
## 99 1559 87861.55
## 100 1560 106421.03
## 101 1561 132820.99
## 102 1562 123378.40
## 103 1563 119431.42
## 104 1564 139855.51
## 105 1565 138585.47
## 106 1566 239749.61
## 107 1567 58288.43
## 108 1568 225989.04
## 109 1569 104993.87
## 110 1570 138803.00
## 111 1571 115712.55
## 112 1572 134148.48
## 113 1573 221627.42
## 114 1574 133267.82
## 115 1575 226538.99
## 116 1576 229576.42
## 117 1577 197618.10
## 118 1578 136158.74
## 119 1579 132340.89
## 120 1580 203682.23
## 121 1581 158934.85
## 122 1582 117791.96
## 123 1583 269215.55
## 124 1584 233798.87
## 125 1585 140577.86
## 126 1586 60372.26
## 127 1587 118088.96
## 128 1588 149609.05
## 129 1589 108592.93
## 130 1590 127170.65
## 131 1591 92426.58
## 132 1592 123946.00
## 133 1593 121292.65
## 134 1594 160584.25
## 135 1595 114865.63
## 136 1596 226248.58
## 137 1597 191771.09
## 138 1598 218212.78
## 139 1599 176268.29
## 140 1600 176566.34
write_csv(house_test_submission, file = 'ames_house_test_submission.csv')
Kaggle username: Jeff Littlejohn Score: 0.28253
Kaggle Screenshot
Leaderboard
Sources consulted: https://rviews.rstudio.com/2019/10/02/multiple-hypothesis-testing/ https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/fitdistr.html https://www.programmingr.com/examples/neat-tricks/sample-r-function/rexp/ https://dplyr.tidyverse.org/reference/select.html